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A B S T R A C T   

The development of new anticancer therapies tends to be very slow. Although their impact on potential can
didates is confirmed in preclinical studies, ~95 % of these new therapies are not approved when tested in clinical 
trials. One of the main reasons for this is the lack of accurate preclinical models. In this context, there are 
different patient-derived models, which have emerged as a powerful oncological tool: patient-derived xenografts 
(PDXs), patient-derived organoids (PDOs), and patient-derived cells (PDCs). Although all these models are 
widely applied, PDXs, which are created by engraftment of patient tumor tissues into mice, is considered more 
reliable. In fundamental research, the PDX model is used to evaluate drug-sensitive markers and, in clinical 
practice, to select a personalized therapeutic strategy. Melatonin is of particular importance in the development 
of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. However, the literature 
regarding the oncostatic effect of melatonin in patient-derived tumor models is scant. This review aims to 
describe the important role of patient-derived models in the development of anticancer treatments, focusing, in 
particular, on PDX models, as well as their use in cancer research. This review also summarizes the existing 
literature on the anti-tumoral effect of melatonin in patient-derived models in order to propose future anti- 
neoplastic clinical applications.   

1. Introduction 

Cancer, which is one of the most significant threats to human life and 
health worldwide [1,2], accounts for more than 9.5 million deaths and 
more than 18 million new cases each year [3,4]. 

However, despite the importance of this disease and the billions of 
dollars devoted to the screening of innovative anticancer drugs, ad
vances in the development of new therapeutic alternatives have been 
very slow [5]. One of the main reasons for this has been the failure of 
drug candidates when tested in clinical trials, with only ~5 % being 
approved in phase III trials due to the limited efficacy of the drugs tested 
[6,7]. While the therapeutic effects of potential anticancer agents are 
adequately confirmed through cell biology and animal models in 

preclinical studies, the discrepancy between preclinical models and real 
patients makes it impossible to predict therapeutic efficacy in humans 
and leads to clinical trial failure [1,8,9]. Thus, the lack of reproducible, 
accurate and relevant preclinical models for the disease further impedes 
advances in cancer therapies [10–12]. 

In addition, during the treatment of clinical tumors, the existing 
differences between individual patients with similar tumoral manifes
tations represent a major challenge. The treatment strategy applied is 
often non-individualized, and existing treatments have different levels 
of efficacy in patients [13]. Currently, there no efficient methods exist to 
evaluate a cancer patient’s responsiveness to therapeutic drugs. Thus, 
the effective choice of medical treatment, mediated, in particular, via 
accurate drug-screening models, is urgently required to enhance 
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treatment efficacy [5]. 
With regard to these issues, patient-derived models, which have 

emerged as a powerful tool in oncology, could overcome some of the 
problems mentioned above. Several studies highlight the usefulness of 
these models in testing the therapeutic efficacy of conventional regi
mens in individualized patients and in identifying new treatment stra
tegies [10,14,15]. 

These findings demonstrate the value of patient-derived models for 
investigating standard-of-care anticancer treatment and for discovering 
novel therapeutic approaches for this deadly disease [10]. 

2. Limitations of existing preclinical models 

Human cancer cell lines established by the US National Cancer 
Institute, as well as cell line-based mouse xenografts, have been a 
fundamental tool in cancer research for decades [1,6]. These models 
have been used to evaluate the effectiveness of potential anticancer 
compounds given their cost-effectiveness, ease of maintenance, propa
gation, reproducibility and high-throughput testing capability [16]. 

However, conclusions reached on the basis of traditional cancer cell 
lines do not readily apply to patients [1], and the antitumor effects 
demonstrated using this approach are often not validated in clinical 
practice [16]. Despite being derived from actual patients, many of these 
cancer cell lines, established several decades ago, may not accurately 
represent the primary tumor and differ considerably from the patients’ 
real cancer [10,17]. 

This discrepancy is explained by several factors. Firstly, the behavior 
and genetic composition of these cells are modified after thousands of 
generations in culture [1]. The factors that contribute to genetic alter
ations, as well as to the phenotypic and morphological characteristics of 
patients’ cancer cells include the composition of cell culture media and 
plastic supports [18–20]. Specifically, the incorporation of fetal calf 
serum into the culture medium can trigger cellular differentiation and 
significant genetic irregularities [13,21,22]. In addition, cell lines 
cultured in serum-contained media have even been reported to weaken 
drug resistance mechanisms [13]. 

Secondly, these cell lines lack a real tumor microenvironment (TME) 
[1], which, apart from cancer cells, encompasses the adjacent lym
phatics, capillaries, stromal cells (immune cells and cancer-associated 
fibroblasts), other normal cells, the extracellular matrix (ECM), and 
diverse signaling molecules; all these elements are widely recognized to 
be crucial factors involved in the progression of cancer [8,23–25]. The 
absence of immune and stromal cell components in established cancer 
cell lines impedes to replicate microenvironment features such as 
tumor-stroma crosstalk, cellular interactions, and three-dimensional 
tumor niche structures [18,26,27]. As a result, the assessment of 
drugs, whose mechanism of action is associated with angiogenesis and 
cell-cell interactions, is impaired [16,28]. 

Thirdly, long-term culture and selective pressure in vitro promote 
the survival of clones with specific features, which are selected and 
outlive other subpopulations [8,16,29]. Consequently, the heterogene
ity of tumor subclones is diminished, resulting in the promotion of a 
more uniform cell population, which fails to accurately represent the 
heterogeneity of existing tumors [18]. Finally, most of these cell lines 
have been reported to be contaminated with other cells [1]. Accord
ingly, some studies suggest that cell lines derived from diverse tumors 
exhibit greater similarity to each other than to the corresponding tumors 
from which they originated [13,30]. 

All these limitations lead to unreliable results based on cell line- 
derived models. Subsequently, translational medicine institutions and 
pharmaceutical companies are no longer satisfied with the results ob
tained from classical cancer cell line-derived models alone [1] and have 
prevented the use of these models for drug screening and evaluating 
preclinical drug efficacy [31,32]. 

Given all the above, the development of accurate evaluation models 
similar to those used in clinical cancer research practice is urgently 

required [1]. 

3. Patient-derived models 

The considerable discrepancy between preclinical evaluation models 
and clinical practice has encouraged the adoption of innovative tech
nologies [1,33]. In this context, the preservation of tumor heterogeneity, 
high genomic and transcriptomic fidelity and the presence of an accu
rate TME are some of the main elements that need to be implemented in 
drug testing tools in order to obtain results that can be transposed into 
clinical practice [16,31,34]. 

The concept of patient-derived models has emerged and received 
broad acceptance in cancer research platforms [1]. Patient-derived 
platforms have enabled researchers to perform drug testing evalua
tions in models derived from patients [16,31]. Currently, there are three 
patient-derived models: patient-derived xenografts (PDXs), 
patient-derived organoids (PDOs), and patient-derived cells (PDCs) 
(Fig. 1) [1]. 

3.1. Patient-derived xenografts (PDXs) 

PDX models are generated by the implantation of human tumor tis
sues or cells into immunodeficient mice (Fig. 1) [5,8,35]. Unlike cell 
line-derived tumor models, PDXs are distinguished by their maintenance 
of the cellular and molecular heterogeneity of the patient’s original 
tumor [5,16]. In addition, these models are histologically and geneti
cally closer to the primary tumor from which they originated [8,36,37]. 

Consequently, PDXs are crucial for enhancing our understanding of 
the genetic and molecular etiology of cancer [8,38,39]. In addition, the 
PDX model, which is recognized as the perfect model for anticancer drug 
evaluation, can accurately reproduce the treatment response of the 
original tumors and provide information that can support the selection 
of therapeutic regimens [5,40–44]. Nevertheless, the PDX model still 
faces several obstacles, including its high cost, time-consuming nature, 
unsatisfactory success rate and limited efficiency in throughput 
screening [1,45]. 

3.2. Patient-derived organoids (PDOs) 

Three-dimensional patient-derived tumor models, more commonly 
known as tumor organoids or tumoroids, have also shown their value in 
the study of cancer biology and in performing drug screenings [46–48]. 
Over the last decade, PDO models of several cancer types, including 
cancer of the intestinal tract, breast, prostate, lung, kidney, liver, head 
and neck, and bladder, have been described [49–53]. 

To generate PDOs, patient-derived tumor tissue is firstly digested 
into single cells or clusters and then transplanted to a basement mem
brane extract with a specific growth medium (Fig. 1) [1,54–56], thus 
creating models that maintain aspects of the tumor structure and het
erogeneity [3,57–59]. 

Compared to more conventional two-dimensional cancer cell line 
cultures, PDOs are able to mimic the TME, to study tumor and immune 
system interactions and to easily model and adapt tumor genetics [49, 
60,61]. In addition, although the PDX model, which is implemented in 
vivo, is often preferred over the PDO model, PDO has two important 
advantages since PDOs can be used for immunity investigations, and all 
grades of tumors can theoretically be used to establish a PDO [1,62]. 
These PDOs, which can mimic the histology and genetic make-up of the 
parental tumor, can facilitate preclinical and pharmacological studies 
[49,63,64], thus indicating their impressive predictive abilities [3,42, 
65–67]. However, like PDXs, the establishment of a PDO model can also 
be time-consuming, costly, and technically difficult [1]. 

3.3. Patient-derived cells (PDCs) 

Despite being the most faithful representations of the human body 

L. Martinez-Ruiz et al.                                                                                                                                                                                                                         



Biomedicine & Pharmacotherapy 167 (2023) 115581

3

and disease, PDXs and PDOs are characterized by high costs and time- 
intensive processes, which ultimately restrict their rate of utilization 
in cancer research. Given the limitations of PDXs and PDOs and that 
traditional cancer cell lines are no longer a credible model, the PDC 
model appears to be an ideal substitute for classical cancer cell lines. 
This model involves the use of cells directly digested and derived from 
the patient’s tumor tissue (Fig. 1) [1,68]. 

However, like traditional cancer cell lines, controlling the source and 
quality of a PDC model can be challenging, and it is difficult to replicate 
the experimental results among different PDCs. Furthermore, the 
divergence between PDC models and the complexities of the human 
body also undermine the authenticity of the research data. Nevertheless, 
PDC remains an essential patient-derived model for cancer research, 
especially in the early stages of research and even in the screening of 
drug candidates [1,69–71]. 

4. PDX model in cancer research 

At present, all patient-derived models are widely applied in various 
areas of medicine, including fundamental research, drug development, 
and clinical applications, and will continue to contribute to the devel
opment of anticancer treatments in the future. However, while all these 
models are derived from patients, because the PDX model is imple
mented in vivo, it is considered to be more accurate and reliable as 
compared to models implemented in vitro [1]. As a result, this review 
will focus on the PDX model and its application in cancer research. 

4.1. PDX establishment variables 

As mentioned above, PDX models are obtained by implanting tumor 

tissues or cells into immunodeficient mice [8,72,73]. The success rate of 
PDX establishment depends on multiple variables including cancer type, 
the technique used to implant the tumor and the animal recipient [16, 
74,75]. 

On the one hand, the success rate of tumor transplantation has been 
found to be higher in patients with tumors exhibiting high malignancy 
and low differentiation [13,75,76]. Moreover, specific tumor types, such 
as colorectal or gastric cancer, have demonstrated a higher probability 
of engraftment as compared to malignancies originating from other sites 
such as the breast or kidney [16]. 

On the other hand, many techniques have been employed to opti
mize PDX engraftment. Firstly, tumor sample collection and storage play 
a pivotal role in PDX development. It is recommended to minimize the 
time between sample collection and implantation, as well as to shorten 
the duration of the process of implanting the tumor into mice. In addi
tion, the implantation of solid tumor fragments has had a higher success 
rate than the implantation of a suspension of single cancer cells after 
tumor dissociation. This may be attributed to the preservation of tumor 
architecture, which might facilitate a successful and faster engraftment 
[6,77–79]. 

The rate of tumor engraftment also depends on the implantation site. 
In orthotopic transplants, tumor samples are implanted into the same 
anatomical site as the patient tumor [6]. This method, which usually 
increases the PDX engraftment success rate, provides a tumor growth 
microenvironment that more closely resembles the microenvironment in 
patients, which is conducive to tumor occurrence [80]. However, this 
transplantation method is technically more challenging and cannot al
ways be performed [8,81]. Moreover, in the case of hormone-dependent 
cancers, it has been reported that the addition of human hormones could 
facilitate tumor engraftment [16]. 

Fig. 1. Schematic representation of the process followed to establish the three different patient-derived models. All of them were derived from the actual patient́s 
tumor tissue, but using the different approaches: patient-derived xenografts (PDXs); patient-derived organoids (PDOs); and patient-derived cells (PDCs). The image 
was created using Biorender.com (accessed on 28 August 2023). 
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Finally, with regard to the animal recipient, the probability of 
obtaining successful engraftment increases with the degree of immu
nosuppression in the animal host [16,82,83]. Initially, PDXs were per
formed using athymic nude mice as hosts, although these murine models 
showed low engraftment rates [18]. This murine strain has the least 
compromised immune system with natural killer (NK) cells present, 
which often contributes to tumor xenograft rejection [6]. 

A higher rate of success can be achieved using animal models lacking 
the functions of both B and T lymphocytes and of NK cells such as non- 
obese diabetic (NOD)/severe combined immunodeficient (SCID) mice, 
particularly, NOD/SCID/IL-2 receptor-g deficient (NOG and NSG) and 
NOD/SCID/Janus kinase 3 deficient (NOJ) mouse models [16,84,85]. 
The use of these strains with higher immunodeficiency could raise 
engraftment efficacy to an 80 % success rate [16,86]. 

Furthermore, while mice are the predominant hosts for PDX gener
ation, other species, such as zebrafish, can also be utilized for this pur
pose. Zebrafish, a non-mammalian species, offer certain advantages over 
traditional mouse models. These advantages include a higher breeding 
rate, lower maintenance costs, and the ability to track malignant cells 
using fluorescent labeling of the transparent Casper zebrafish strain. 
Moreover, the engraftment process for zebrafish PDXs is easier and 
faster as compared to their murine counterparts [16,87–90]. 

Given all these variables, PDXs can be successfully established, and 
also enable the evaluation of cancer biology and treatment strategies in a 
complex organism [16]. 

4.2. Applications of the PDX model 

Once successfully established, PDXs are critical to improving our 
understanding of the genetic and molecular etiology of cancer, as well as 
to developing and validating effective therapies [8,91–94]. 

These models are applied in different areas. Firstly, PDXs have 
played a valuable role in fundamental research for many years. Superior 
to traditional cell lines, PDXs can simulate the heterogeneous and 
complex tumor microenvironment of actual patients, which is used to 
reevaluate the cancer biomarkers screened by traditional technologies 
[1,95–97]. Moreover, given that the majority of PDXs exhibit the same 
histopathological and molecular features as the primary tumors, these 
models are gaining attention in the area of drug development [8,98,99]. 
The PDX model, which is regarded as the pre-experiment of phase II 
clinical trials, is sometimes called “clinical trial phase 0”. Before 
approval in clinical trials, the efficacy of innovative anticancer drugs is 
evaluated and validated by the PDX model. PDXs are also an appropriate 
tool to discover drug-sensitive markers and to screen drug combination 
strategies [1,100–105]. 

On the other hand, in recent years, the PDX model has been widely 
used in clinical practice [106–108]. Directly derived from the tumor 
tissue, PDXs, which can be used to screen an effective clinical treatment 
for a specific patient, may be the most reproducible and homologous 
model of the disease. As previously mentioned, inherent heterogeneity 
among cancer patients often results in different responses to the same 
therapy. Hence, a personalized therapeutic strategy, also called 
personalized treatment, is crucial in clinical practice [109–111]. How
ever, evaluating hundreds of drug candidates independently and 
determining the ideal strategy to be adopted is impractical. Fortunately, 
PDX models have emerged as a viable alternative for patients themselves 
in order to identify the optimal treatment strategy. Existing studies 
indicate an overall predictive accuracy of 90 % for PDX models, thus 
highlighting their efficacy to design effective personalized treatment in a 
clinical context [1,112,113]. 

With regard to personalized treatment, a valuable new tool, known 
as the mini-PDX, has been developed to enable clinicians to selection the 
appropriate therapy, especially chemotherapeutic agents. Mini-PDX is a 
drug sensitivity test model that retains the oncogenicity of patients’ 
tumor cells. In this model, cells human tumor tissues are encased in 
special capsules and injected into immunocompromised mice in order to 

create tumor xenografts. This promising model reduces the complexity 
of the process and obtains faster results as compared to traditional PDX 
models. The mini-PDX model requires only a small number of tumor 
cells and rapidly assesses drug sensitivity in an average testing time of 7 
days, enabling patients to receive personalized treatment within a 
clinically relevant time frame (Fig. 2). Previous studies have demon
strated a strong consistency between mini-PDX- and PDX-based drug 
sensitivity predictions for a variety of solid tumors, indicating that the 
mini-PDX-based drug sensitivity model can accurately predict the 
therapy outcome of cancer patients with cancer [5,114]. 

Briefly, PDX could be the ideal model to simulate actual human 
disease for cancer research. Consequently, in research institutions, 
pharmaceutical companies, and medical organizations, the PDX model 
is widely used to identify biomarkers, as well as to screen clinical drugs 
and precision treatments for different cancers [1,8]. 

4.3. Limitations and challenges of the PDX model 

Despite all the advantages of PDX model, there remain several 
challenges that limit its broad use in clinical practice [1,5,115]. 

Firstly, the PDX model has a low success rate. Highly malignant tu
mors have a better engraftment rate although low grade malignancies 
have also been used for PDX modelling. Additionally, PDX requires a 
large quantity of tumor content. Therefore, minimization of fat and 
connective tissue in the fragments to be implanted is very important. 
These fragments with high tumor content can only be obtained from 
tumor removed biopsies, which limits its application to a limited num
ber of cancer patients [1,5,116]. 

Secondly, PDX modelling can be a time-consuming process. Firstly, 
the use of PDX requires a rigorous and time-consuming ethical approval 
process. Secondly, the establishment of a PDX model often requires 
several months to carry out and involves substantial costs, which is a 
great drawback for both researchers and patients [1]. According to 
existing studies, it takes approximately 4–8 months to assess the treat
ment efficacy of PDX models for a specific cancer. The time lag between 
the transplantation of tumor tissue to mice and the initiation of treat
ment is a limiting factor, which restricts its broader application [5]. 
Among patients with rapid tumor development and a short expected 
survival rate, some may succumb to the disease before obtaining the 
results of the drug sensitivity tests [13,117]. This challenge has been 
overcome by the development of the mini-PDX model, which, as 
mentioned above, is much faster than traditional PDXs [5]. 

Thirdly, it is difficult to conduct studies on cancer immunity in the 
PDX model, as immune deficiency is indispensable for this type of 
modelling [1,82]. Therefore, the use of PDX models to evaluate drugs 
targeting immune-mediated anti-tumor efficacy is hindered. To over
come this, humanized mouse PDX models have emerged as a promising 
alternate [8,118,119]. These models can be obtained by xeno
transplanting human immune cells into irradiated mice or by engi
neering the host to express specific human genes [16,120]. Humanized 
mice and mice with reconstituted human immune systems are currently 
under investigation and should facilitate the testing of different anti
cancer strategies, including immunotherapy within the PDX model [1, 
120–124]. 

Finally, most PDX models involve subcutaneous transplants, which 
are often quite different from the primary environment of tumors where 
few metastases occur. Accordingly, PDXs cannot often be used as a 
metastasis model. Orthotopic transplantation of PDX models can effec
tively solve this problem. Patient-derived orthotopic xenografts 
(PDOXs) provide a tumor growth microenvironment that more closely 
resembles the real situation in patients, which is conducive to tumor 
occurrence and metastasis. However, in contrast to subcutaneous 
transplants, which are easier to manipulate, PDOXs require highly 
technical skills and resources [8]. Tumor inoculation and tumor growth 
monitoring of orthotopic xenografts are technically more difficult and 
invasive than subcutaneous models [6]. Consequently, the methods 
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utilized to assess tumor formation in deep organs need to be improved 
[13]. 

In conclusion, although the PDX model has a bright future in cancer 
research, it is still faced with several obstacles that impede its broader 
application. Nevertheless, most of these challenges are expected to be 
overcome through future scientific and technological advances which 
should expand the scope of the PDX model [1]. 

5. Oncostatic activities of melatonin 

Directly derived from actual patients, the results obtained from 
patient-derived models, especially PDXs, are factual, reliable, and 
effective. Consequently, these models have opened up the possibility of 
developing innovative anticancer therapies that are properly applied in 
clinical practice [1]. Because of its oncostatic impact and lack of asso
ciation with adverse effects, melatonin (N-acetyl-5–methoxytrypt
amine) is of particular relevance to the development of innovative 
cancer treatments [125]. Even though the use of patient-derived models 
has significantly increased in the last 5 years, little is known about the 
oncostatic effect of melatonin in patient-derived tumor models. 

Over recent decades, accumulating evidence has outlined the 

relevance of melatonin to human physiology and pathology. Numerous 
studies have supported the anticancer properties of melatonin 
[126–128] in breast, ovary, prostate, skin, liver and head and neck 
cancer. [129,130]. 

Anticancer function of melatonin involves multiple mechanisms: 
direct pro-apoptotic actions, decreasing the uptake of growth factors 
involved in tumor growth signaling pathways, suppressing cell cycle 
progression, increasing immunosurveillance and anti-angiogenic or 
anti-metastatic effects [129]. Moreover, melatonin can also promote 
reactive oxygen species (ROS) generation leading to cell death in a va
riety of cancers [125–127]. However, melatonin, together with its me
tabolites, are potent free radical scavengers and broad-spectrum 
antioxidants with evolutionarily conserved properties in normal cells. 
Therefore, melatonin can act as an antioxidant in normal cells and as a 
pro-oxidant in cancer cells [131]. These pro-oxidant actions in tumor 
cells are responsible for most of their anti-tumoral effects, as previously 
demonstrated in numerous studies [125–127]. 

5.1. Clinical trials based on the anticancer effects of melatonin 

The properties of melatonin observed in both tumoral and normal 

Fig. 2. Schematic representation of 7-day mini-PDX process. Imaged using Biorender.com (Accessed on 28 June 2023).  
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tissue suggest that melatonin treatment is remarkably effective in terms 
of its clinical translation to cancer patients [132]. 

Nevertheless, although melatonin’s antineoplastic activity has been 
widely explored in both in vivo and in vitro models of carcinogenesis 
[133], when applied in clinical trial studies, some conflicting results 
have arisen. Some of the most important clinical trials regarding mela
tonin’s oncostatic effects demonstrate positive impacts on the anticancer 
treatment to alleviate the chemotherapy-related side effects without any 
significant effectiveness in cancer cells themselves. 

In a randomized double-blind clinical study, melatonin was co- 
administered to patients with HNSCC. The results show that the 
administration of melatonin reduced mucositis, one of the main side 
effects of radiation in HNSCC patients, and also ameliorated pain [134, 
135]. In addition, combining melatonin with a standard CDDP-based 
standard treatment of this type of cancer reduced anemia, a common 
side effect of cisplatin [136]. The amelioration by melatonin of the side 
effects of chemotherapy was also investigated in patients with gastro
intestinal cancer, which showed that, though capable of maintaining 
body weight, melatonin failed to attenuate cachexia [137]; on the other 
hand, metastatic colorectal patients, who received a combined melato
nin/subcutaneous IL-2 treatment following first-line 5-FU therapy, 
showed a higher survival rate after one year as compared to those who 
only received 5-FU treatment [138]. Similarly, a randomized clinical 
trial showed that metastatic breast cancer patients treated with both 
tamoxifen and melatonin had a higher relative response rate as 
compared to those receiving tamoxifen alone [139]. 

Although an investigation of the use of melatonin in non-small cell 
lung cancer (NSCLC) patients has also shown that melatonin improves 
their quality of life, it did not demonstrate any protection against 
chemotherapy-related side effects [140]. In addition, while treatment 
with adjuvant melatonin following NSCLC resection increased the 
2-year disease-free survival rate of patients with late-stage disease, it did 
not beneficially affect their quality of life, symptoms, or immune func
tion [141]. 

In summary then, most of the results of these clinical trials corrob
orate melatonińs protection against the side effects of chemotherapy or 
radiotherapy [134,135]. In general, treatment with melatonin enhances 
the efficacy of therapies, alleviates treatment-related side effects and 
improves patients’ quality of life, including a reduction in the incidence 
of depressive symptoms and an improvement in the quality of sleep of 
cancer patients [142,143]. However, melatonin’s oncostatic properties 
have not always been demonstrated in clinical trials [134,139], which, 
as mentioned above, could be explained by the type of evaluation model 
used in the experiments. 

5.2. Evaluation of the oncostatic effect of melatonin in patient-derived 
tumor models 

The oncostatic effect of melatonin in patient-derived tumor models 
has been little studied. Only five published studies have evaluated the 
role of melatonin in patient-derived tumor models and only three deal 
with PDX models (Table 1) [144–148]. 

The antitumor effects of melatonin were evaluated in tumor orga
noids derived from colorectal cancer (CRC) patientś tumors in two 
different studies [144,147]. Sakatani et al. [144] demonstrated that 
2 mM melatonin significantly inhibited the growth of patient-derived 
CRC organoids. In line with these results, Sharda et al. [147] also 
demonstrated that 0.5 mM melatonin, alone or combined with androg
rapholide, reduced CRC organoid growth. Both studies highlight the 
inhibitory growth potential of melatonin. 

In addition, the oncostatic effects of melatonin have been studied in 
two different PDX models, derived from breast [145] and oral tumors 
[146]. Hasan et al. [145] established a PDX model from a mastectomy 
specimen of an African American woman to analyze the anti-tumor ef
fect of different melatonin-tamoxifen conjugates. The PDX tumor was 
propagated and maintained in SCID/Beige immunodeficient mice. After 

two serial transplantation passages in mice, the tumor was removed, and 
small tumor pieces were dissected. However, in this study, the effects of 
melatonin-tamoxifen drug conjugates were evaluated in these dissected 
tumor pieces and not directly in mice-bearing breast xenografts. Despite 
this limitation, in this study, novel melatonin-tamoxifen drug conjugates 
exhibiting anticancer actions against breast cancer were identified. Two 
of these melatonin-tamoxifen drug conjugates inhibited cell viability 
and decreased cell migration in a wound-healing assay. Based on this 
study, which analyzed the effects of melatonin in patient-derived tumor 
models, it was possible to confirm that melatonin is a promising 
candidate for combinatory use with conventional chemotherapeutics for 
breast cancer treatment. 

On the other hand, Yang et al. [146] successfully established two oral 
cancer PDXs, which revealed a histology consistent with the original 
clinical cancer tissues. Tumor specimens were obtained from oral 
squamous cell carcinoma patients with lymphatic metastases during 
initial surgery. The tumors obtained were subcutaneously implanted 
into NSG mice. When tumor volume reached approximately 3000 mm3, 
the tumor was removed for serial transplantation. When tumor volume 
reached 500 mm3 in the fourth or seventh generation of PDXs, 
depending on the tumor sample, mice bearing PDXs were randomly 
divided into different experimental groups. Mice were treated with 
20 mg/kg/daily melatonin or vehicle (PBS) through intraperitoneal in
jection for 24 or 42 days. Melatonin was observed to significantly inhibit 
tumor growth by 50–75 % as compared to the vehicle in both oral cancer 
PDX models. Melatonin treatment also repressed lysine-specific deme
thylase (LSD) expression in oral PDX, which has been demonstrated to 
contribute to tumor survival, growth and metastasis. No apparent 
toxicity or weight loss in the mice was observed after melatonin 
administration during the experimental period. In conclusion, the effect 
of melatonin in oral cancer was demonstrated to be accompanied by 
LSD1 downregulation in a preclinical PDX model. 

Finally, our research group recently established 3 different PDX 
models of head and neck cancer [148]. Primary tumors were obtained 
from medically indicated surgeries from head and neck cancer patients. 
After tumor digestion, the purified cells/cell aggregates obtained were 
subcutaneously injected into the flank of NSG mice. Once the tumors 
reached 800–1000 mm3, the mice were sacrificed and the tumor was 
extracted, digested and re-implanted into a new generation of 3–5 mice. 
After 3 generations of mice, the mice bearing PDX were randomly 
divided into two experimental groups. The mice were treated with 

Table 1 
Studies of the oncostatic effect of melatonin in patient-derived models.  

Type of 
cancer 

Type of 
patient- 
derived 
model used 

Melatonin dosage Effect Author 

Colorectal 
cancer 
(CRC) 

PDO 2 mM Inhibition of 
colorectal 
cancer (CRC) 
organoid 
growth 

Sakatani 
et al.  
[144] 

Colorectal 
cancer 
(CRC) 

PDO 0.5 mM Inhibition of 
CRC organoid 
growth 

Sharda 
et al.  
[147] 

Breast 
cancer 

PDX (ex-vivo 
treatment) 

10 μM melatonin- 
tamoxifen drug 
conjugate 

Decreased 
cell viability 
and cell 
migration 

Hasan 
et al.  
[145] 

Oral cancer PDX Intraperitoneal 
injections of 
melatonin at 
20 mg/kg/ daily for 
24 or 42 days 

50–80 % 
inhibition of 
tumor growth 

Yang et al. 
[146] 

Head and 
neck 

PDX Intratumoral 
injections of 3 % 
melatonin every 
24 h for 28 days 

30–80 % 
inhibition of 
tumor growth 

Martinez- 
Ruiz et al.  
[148]  
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vehicle solution or 3 % melatonin for 28 days. Melatonin or vehicle 
solution was injected intratumorally every 24 h. Melatonin significantly 
reduced tumor growth as compared to the vehicle group in the three 
PDX models established. Tumor growth inhibition varied by 35–80 %, 
depending on the sample used for PDX establishment. In one of the PDX 
established, melatonin not only exhibited oncostatic but also antitu
moral effects, as the tumors showed complete regression after 28 days of 
melatonin treatment [148]. These results indicate that the treatment 
with melatonin should be considered a potential therapeutic strategy for 
head and neck cancer therapy. 

6. Conclusion and perspectives 

Although established cell line–based research provides an important 
insight into the effects of drugs on cancer cells and into their basic 
mechanisms of action, these findings fail to translate to clinical practice 
[145]. However, patient-derived tumor models, which can accurately 
reflect patients’ tumors, have transformed the field of drug research. 
These models have been gaining attention in recent years and are widely 
applied in various areas of medicine, particularly in translational med
icine and personalized treatment. In this context, patient-derived tumor 
models, which are an appropriate tool for drug evaluation, could fill the 
gap between basic research and clinical practice [1,149]. 

On the other hand, the antitumoral effects of melatonin have been 
widely demonstrated in different studies and cancer models. However, 
little is known about the oncostatic effect of melatonin in patient- 
derived tumor models. The lack of research on the effects of melatonin 
in patient-derived tumor models could explain the inconsistent results 
regarding melatonin when used as an anticancer therapy in clinical 
trials. Patient-derived tumor models might better retain the heteroge
neity and molecular characteristics of patientś tumors. Therefore, the 
use of these models as drug testing tools could provide more accurate 
results than those derived from established cell line-based models, 
providing better approaches to be evaluated in clinical trials. 

Given all the above, the effects of a melatonin treatment specifically 
developed for the purposes of cancer therapy need to be evaluated not 
only in established cancer cell line models but also in patient-derived 
models in order to ensure translatability to clinical applications. Tak
ing into account the oncostatic properties of melatonin and its lack of 
toxicity in normal cells, the evaluation of future formulations of mela
tonin in patient-derived tumor models could lead to the development of 
an effective and accurate melatonin-based anticancer therapy. 
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[72] Z. Dudová, N. Conte, J. Mason, D. Stuchlík, R. Peša, C. Halmagyi, Z. Perova, 
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A. Hidalgo-Gutiérrez, C. Cottet-Rousselle, F. Lamarche, U. Schlattner, A. Guerra- 
Librero, P. Aranda-Martínez, et al., Melatonin drives apoptosis in head and neck 
cancer by increasing mitochondrial ROS generated via reverse electron transport, 
J. Pineal Res. (2022) 1–15, https://doi.org/10.1111/jpi.12824. 

[126] A. Guerra-Librero, B.I. Fernandez-Gil, J. Florido, L. Martinez-Ruiz, C. Rodríguez- 
Santana, Y.Q. Shen, J.M. Gar-cía-Verdugo, A. López-Rodríguez, I. Rusanova, 
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