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a b s t r ac t

Nowadays, linear expressions for the tension stiffening of concrete are widely used in structural analysis software packages. Never-
theless, more complex expressions of tension stiffening available in the literature have been used successfully in the past. The use 
of linear approximations is justified since the influence of the tension stiffening effect on the deformation of a structure is small 
but not negligible. Therefore, linear approximations are simpler and can be accurate enough. However, the linear approximation, in 
its present form, does not provide good results in terms of deformations of reinforced concrete beam-column elements. This paper 
proposes a linear expression of tension stiffening supported by the experimental formulation used to predict the flexural behavior of 
concrete beams. A detailed example is presented.
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r e s u m e n

Expresiones lineales de la rigidez a tracción del hormigón están siendo ampliamente utilizadas en paquetes de software de análisis es-
tructural. Sin embargo, en el pasado se han utilizado con éxito expresiones más elaboradas de la rigidez a tracción del hormigón. El uso 
de aproximaciones lineales está justificado ya que la influencia del efecto de rigidez a tracción del hormigón en la deformación de las 
estructuras de hormigón es pequeña pero no despreciable. En este sentido, las aproximaciones lineales son más simples y pueden ser lo 
suficientemente precisas. Sin embargo, esta aproximación lineal, en su forma actual, no proporciona buenos resultados en términos de 
deformaciones a nivel de elementos estructurales. Esta publicación propone una expresión lineal de la rigidez a tracción apoyada por la 
formulación experimental utilizada para predecir el comportamiento a flexión de vigas de hormigón. Se presenta un ejemplo detallado.
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1.
introduction

The phenomenon of concrete tensile contribution, for tensile 
strains greater than the cracking strain, is called tension stiffen-
ing of concrete. This contribution is caused by the bond effect 
between the concrete and the reinforcing bars. Comprehensive 
studies of this phenomenon can be found in [1], [2], [3], and [4]. 
Tension stiffening models have been widely used in the study of 

the shear response of both reinforced and prestressed concrete 
elements by using the two main theories: the MCFT (Modified 
Compression Field Theory [2]) and the RA-STM (Rotating An-
gle Softened Truss Model [3]). There are several discrepancies 
between these two main theories, which have been the subject 
of an exhaustive justification  by other authors [5], [6].
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International software for structural analysis, such as 
OpenSees [7] and Sap2000 [8], use approximated line-
ar expressions for the tension stiffening model, e.g. model 
“Concrete02” of OpenSees. When using Concrete02, the 
post-cracking behavior in tension is described by a line that 
goes from the tensile strength to 0 in a constant slope which 
is usually deduced by assuming that the tension stiffening 
capacity is null at a value of the strain equal to the yield strain 
of steel (εy). See in the line between the points Figure1: (-εct, 
-fct) and (-εy, 0).

However, as shown below, it has been found that the de-
flections calculated when using the model described in Fig-
ure 1 are lower than those predicted by the formulations pro-
posed by current regulations (EN 1992[9], ACI-318[10]), 
which are based on large experimental campaigns. 

Considering that the tension stiffening effect is primarily 
caused by the bond mechanism between concrete and rein-

forcement [11], the premise that it is zero at ε=εy [1] is well 
established. Alternatively, some authors consider that small 
amount of tensile strength of concrete between cracks be-
yond yielding [12] remains, with a consequent increase in 
the rigidity of the RC element beyond the yielding of the 
reinforcement.

So, if tension stiffening is assumed to be zero at ε=εy, then 
the only variable that remains for modeling the tension stiffen-
ing effect is the tension strength of concrete, fct. In this paper, 
a ψ factor is introduced to adjust fct so that the theoretical de-
flection matches the result proposed by the current standards. 

It is known that for tension strains larger (in absolute 
value) than the one that corresponds to cracking (note that 
cracking happens at (-εct, -fct), see Figure 1), the stress and 
strain distributions along the length of the reinforcing bars are 
no longer constant for either steel or concrete, see Figure 2, 
adapted from [11].
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Figure 1. Strain-Stress curve of concrete, including tension stiffening.

Figure 2. Stress and strain distributions along the reinforcing bars and the effective concrete area, adapted from [11].



Due to this variability, the strain of the bar could be εy at 
the crack location while in sections between cracks (where 
concrete in tension is undamaged), the bar stress is lower 
than fy. This implies that the average stress-strain response 
of the reinforcement exhibits yielding at an average stress 
that is below fy. The average steel stress and strain associat-
ed with the yielding at a crack location is called “apparent 
yield” [3],[5], see Figure 3. Thus, before the average strain 
(i.e., calculated along a length intersecting several cracks) 
reaches εy, the steel reinforcement will have already yielded 
at the cracks. Beyond the apparent yield point, the tension 
stiffening phenomenon presents a large drop in its slope [1], 
[11] which cannot be observed when using the linear ap-
proach, see Figure 3 adapted from [2]. This drawback can be 
overcome by appropriately correcting the value of the tensile 
strength of concrete, as proposed in this work. 

2.
deflection formulation for beam elements

The linear tension stiffness model proposed is going to be 
evaluated using results from the deflections of beams. The 
deflections used in this study are obtained from formulations 

endorsed by ACI-318 and EN 1992, which represent the ex-
perience and approval of the engineering community.

ACI-318 uses an interpolation function to calculate ef-
fective inertia, [13], while EN 1992 uses an interpolation 
function that is applicable to the deflections calculated with 
the gross inertia and with the cracked inertia, [11]. Recently, 
slenderness limits have been proposed to avoid the explicit 
calculation of cracking and deformation. [14]. 

EN 1992 presents an explicit formulation of the concrete 
stress-strain curve, and therefore this study has been devel-
oped using the European code (e.g. Figure 1 shows the stress-
strain formulation given by EN 1992 for a concrete with a 
characteristic strength of 25 MPa). 

Example

The example studied is a simply supported beam with a 
6-meter span, which is of the beams used in the construc-
tion of buildings. This example, shown in Figure 4, has been 
adapted from [11].

The values of the effective depth, the modulus of elastic-
ity, the characteristic compressive strength of concrete, and 
the steel yield stress are d=450 mm, Ecm=30 500 MPa, fck= 25 
MPa and fy=400 MPa, respectively. 
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Figure 3. Variation of average tensile stress in concrete up to failure

Figure 4. Example studied of reinforced concrete beam.



In the original example, the beam was subjected to a uni-
form load (q) that is equal to 16.9 kN/m. The maximum 
immediate deflection caused by this load, calculated in ac-
cordance withACI-318 [10], is 10.7 mm while the value 
of the maximum immediate deflection calculated using the 
simplified method in EN 1992 [9] is 9.9 mm. The implicit 
consideration of shrinkage in the ACI-318 approach justifies 
this discrepancy. A detailed resolution of these results can be 
seen on YouTube (in Spanish): (https://www.youtube.com/
watch?v=_YInm-fDRXs&t=1037s and https://www.you-
tube.com/watch?v=BkXO6s2Ktwk) for ACI-318 [10] and 
EN 1992 [9], respectively.

3.
analytical procedure

As an alternative to the formulations proposed by EN 1992 
[9] and ACI-318 [10], an analytical procedure for obtaining 
the immediate deflections of a reinforced or prestressed con-
crete element has been applied as follow:
1) The equilibrium equations, of both axial forces and bend-

ing moments at cross-sectional level, are

(1a)

(1b)

N = ʃ σ (εcg + ϕy)dAc +    σs,j(εcg+ϕyj) Aϕ,j

N = ʃ σ (εcg + ϕy)ydAc +    yj σs,j(εcg+ϕyj) Aϕ,j

Ac

Ac

j

j

with N and M as the external axial force and bending 
moment, respectively. Ac is the area of concrete, σc is the con-
crete stress. The plane section hypothesis is assumed (Figure 
5), so the strain can be expressed as ε=εcg+Φy, where εcg is the 
strain at the center of gravity (cg), Φ is the curvature, and y 
is the distance to the center of gravity. σs,j is the stress of the j 
bar, yj is the distance of the j bar to the center of gravity, and 
Aϕ,j is the area of the j bar.

In the equilibrium equations, the model of concrete used is 
the short-term model proposed by EN 1992 [9] plus a linear 
tension stiffening model (see Figure 1) which corresponds to 
a concrete with a characteristic strength (fck) of 25 MPa. A bi-
linear steel model with no strain hardening has been adopted. 

For a fixed value of axial force N and a given value of 
curvature Φ , εcg is calculated from the axial force equilibri-
um (Eq. 1a). M is calculated by introducing the calculated 

value of εcg in Eq.1b. In doing so, a pair (M,Φ) is obtained. 
By incrementing the value of the curvature for the same val-
ue of the axial force and solving Eqs. 1a and 1b, new pairs 
(M,Φ) are obtained, and the moment-curvature diagram of 
the cross-section can be formed.
2) The values of the bending moment along the length of 

the concrete member are transformed into curvature val-
ues by using the moment-curvature diagram, and 

3) By assuming small deformations, the curvature values 
are integrated twice to obtain the deflection of the el-
ement. This is done using finite differences. The formu-
lation for the length of element L when divided into 
n+1 segments of equal length, is shown in Eq. 2. The 
supports are located at i=0 and i=n+1, and the deflection 
at these points is zero. 

(2)

The deflection is calculated by inverting the f matrix as:  
y = f -1 y"

Continue previous example

For the linear tension stiffening model, a reduction factor (ψ) 
for the tensile strength is considered:

   fct = ψ fctm

  

       where fctm = 0.3 fck
2/3 (3)

With fctm as the mean axial tensile strength of concrete 
formulated in EN 1992 [9]. The linear models of tensile con-
crete for values of ψ =1.0, 0.5, 0.3 and 0.25 are shown in 
Figure 6. 
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Figure 5. Plane section hypothesis. Stress distribution. External actions.
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The moment-curvature diagrams of the cross-section for 
the different values of ψ are calculated introducing each one 
of the linear approximations of the tension stiffening in Fig-
ure 6 in the equilibrium equations, see Figure 7. 

The theoretical deflection of the beam in Figure 4 is solved 
by the integration of curvatures using finite-differences. The 
beam was divided into 20 segments. Table 1 summarized 
the values obtained for both the moments and curvatures at 
cracking (Mcr and Φcr, respectively) and the maximum deflec-
tion (δmax). The computer code is available on request. 

TABLE 1.
Maximum deflections

ψ Mcr (kN·m) ɸcr (1/m) δmax (mm)

1.0 38.64 0.00035 4.68

0.5 19.82 0.00018 8.41

0.3 12.08 0.00011 9.70

0.25 9.91 0.00009 10.00

As can be seen in Table 1, the linear approximation (i.e. ψ=1) 
leads to a maximum deflection of less than half of the de-
flection predicted by the regulation. By ensuring that the 
theoretical deflection equals the deflection given by the reg-
ulation (EN 1992 [9] in this case) (δmax=9.9 mm) a linear in-
terpolation between the two bottom rows results in ψ=0.27.

The new version of Eurocode 2 (prEN 1992) has re-
duced the effective area of concrete influenced by tensile 
stress in concrete, from the traditional value of a square area 
centered on the reinforcing bar of 15Φ side to 10Φ side. 
This is a variation of the effective concrete area of 44%. 
Additionally, in order to compensate for the sudden drop 
in tensile stress for strains greater than those that corre-
spond to the first crack (Figure 3), given by most of the 
existing models, a continuous linear function is proposed 
with a reduction in the tensile capacity of 0.6. If these two 
values (0.44 and 0.6) are fitted into a single parameter ψ 
(i.e. 0.44·0.6=0.26), the result obtained of 0.27 is similar 
to this value.
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Figure 6. Linear approximations of tensile strength of concrete (tension stiffening).

Figure 7. Moment curvature diagrams for the tensile model of concrete in Figure 6.



4.
conclusions

Due to the relative importance of the tension stiffening phe-
nomenon, for the sake of simplicity, complex expressions of 
tension stiffening are being substituted with simpler linear 
approximations. Although linear approximations of tension 
stiffening lead to more rigid solutions in term of deflections, 
the simplicity of these approximations means that they are 
being widely used in computer software. 

This work presents a new linear approximation that 
matches the results given by current standards in terms of de-
flections and this overcomes the problem caused by underes-
timating the deflections inherent in bilinear approximations.
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