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Exploring and correcting the bias in the estimation of the Gini 
measure of inequality 

Juan F. Muñoz; Pablo J. Moya-Fernández; Encarnación Álvarez-Verdejo 

Abstract 

The Gini index is probably the most commonly used indicator to measure inequality. For 
continuous distributions, the Gini index can be computed using several equivalent formulations. 
However, this is not the case with discrete distributions, where controversy remains regarding 
the expression to be used to estimate the Gini index. We attempt to bring a better understanding 
of the underlying problem by regrouping and classifying the most common estimators of the Gini 
index proposed in both infinite and finite populations, and focusing on the biases. We use Monte 
Carlo simulation studies to analyse the bias of the various estimators under a wide range of 
scenarios. Extremely large biases are observed in heavy-tailed distributions with high Gini 
indices, and bias corrections are recommended in this situation. We propose the use of some 
(new and traditional) bootstrap- and jackknife-based strategies to mitigate this bias problem. 
Results are based on continuous distributions often used in the modelling of income 
distributions. We describe a simulation-based criterion for deciding when to use bias corrections. 
Various real data sets are used to illustrate the practical application of the suggested bias 
corrected procedures.  

keywords: Gini index; Income distribution; Bootstrap; Jackknife; Survey sampling 

1 Introduction 

Lorenz (1905) and Gini (1912) were the first to develop measures of inequality. More than a 
century after these contributions, inequality analysis remains an active and essential topic in 
numerous fields. The Gini index, also often referred to as the Gini coefficient, is probably the most 
commonly used to measure inequality. This indicator ranges between 0 and 1, where 0 indicates 
perfect equality, and 1 the opposite. Inequality is of special interest in economic studies (Piketty, 
2015; Tridico, 2018), and the Gini index is used especially to measure income inequality. Many 
studies indicate that income inequality has been increasing overall in recent years (Bonacini et 
al., 2021), and marked differences can be observed across various countries. For instance, results 
from the 𝐸𝑈-𝑆𝐼𝐿𝐶 (European Union Statistics on Income and Living Conditions) survey show that 
Slovakia has the smallest Gini index estimate (0.21), while Turkey (0.43) has the highest of all the 
countries in the 𝐸𝑈-𝑆𝐼𝐿𝐶. At a global level, the World Bank indicates that South Africa has the 
highest Gini index (0.63). These results are associated with countries, but more extreme values 
are expected at regional level, in subpopulations, small areas, etc. 

The aforementioned differences across countries indicate that institutions and policies may have 
an important role to play in reducing inequality. In fact, reducing inequality is one of the 17 
Sustainable Development Goals of the United Nations 2030 Agenda for Sustainable Development. 
The Gini index is a common statistical tool employed by the 2030 Agenda for measuring 
inequality (see Szymańska, 2021). However, it should be noted that in order to reduce inequality, 
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it is crucial to be able to accurately measure this phenomenon without biases and/or errors. 
Indeed, Efron (1990) argued that a large bias is usually an undesirable aspect of an estimator’s 
performance. The relevance of the Gini index has also been demonstrated by its use to describe 
inequality in many fields and among different socioeconomic groups, such as length of life or 
well-being (Wang et al., 2020), educational opportunity (Bulle, 2016), housing prices (Villar and 
Raya, 2015), gender inequality (Larraz, 2015; Larraz et al., 2019), input- and outcome inequality 
(Jasso, 2021), and horizontal and vertical inequality (Canelas and Gisselquist, 2019). 

There is a formal theoretical definition of the Gini index for continuous distributions, and many 
equivalent formulations have been proposed in the literature. As discussed by Davidson (2009), 
there is no disagreement about the definition of the Gini index for continuous distributions, since 
the various existing expressions provide the same outcome. However, for discrete distributions, 
many different formulations have been suggested in the extensive literature, and there has been 
notable controversy surrounding the appropriate version to use in this scenario (see also Langel 
and Tillé, 2013). For discrete distributions, various expressions of the Gini index are plug-in 
formulations of theoretical definitions of the Gini index for continuous distributions. Throughout 
this article, we refer to this value derived from a continuous distribution as the true value of the 
Gini index, and formulations of the Gini index for discrete distributions are referred to as 
empirical versions or estimators of the true Gini index. A highly debated topic in the literature is 
whether or not to use a specific bias corrected estimator, which is denoted as 𝐺  in this paper. 
Jasso (1979), Deltas (2003) and Davidson (2009) provide some arguments in favour of 𝐺 . 

Statistical techniques can be based on infinite or finite populations. Classical statistical theory 
assumes that sampled units are independently selected from an infinite population, whereas 
survey sampling theory (see Särndal et al., 2003) considers that samples are selected from a 
finite population. Survey sampling has specific features, and this implies that statistical 
techniques designed for infinite populations must be modified so that they can be used for finite 
populations. For instance, the usual assumption of independence is not satisfied in finite 
populations when samples are selected without replacement. Note also that the use of 
continuous probabilistic distributions to model income and wealth distributions is common 
practice in many real-world applications. For instance, the Dagum, Pareto, Weibull and Gamma 
distributions are used, respectively, by Pérez and Alaiz (2011), Atkinson (2017), Bakar and 
Pathmanathan (2020) and Salem and Mount (1974). The Lognormal distribution is often used to 
model household income in many countries (see Clementi and Gallegati, 2005).  

This paper describes, in Section 2, the most common formulations for calculating the Gini index 
from both discrete and continuous distributions, and in scenarios of infinite and finite 
populations. The first aim of this paper is to regroup and classify existing empirical versions of 
the Gini index, and provide a better overview of the problem of estimating this parameter. The 
second aim is to analyse, in Section 3, the biases of different versions of the Gini index. For this 
purpose, we consider a variety of Gini indices and various probabilistic distributions commonly 
used to model income distributions. Our results reveal that extremely large biases may appear, 
especially for heavy-tailed distributions and large Gini indices, and bias correction procedures 
are recommended in this situation. As expected, the bias problem is more serious in small 
samples, as is the case of rural studies (Wan, 2001), small areas (Frabrizi and Trivisano, 2016), 
subpopulations (Särndal et al., 2003, p. 386), etc. The third contribution is to describe, in Section 
4, bias correction procedures that may reduce the aforementioned large biases. Bootstrap and 
jackknife methods are considered, and a novel empirical bootstrap is also adapted to the problem 
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of estimating the Gini index. In Section 5, the bias correction procedures are analysed using 
Monte Carlo simulation studies. Section 6 describes a simulation-based criterion for deciding 
when to use bias correction procedures, which are then illustrated, in Section 7, by application to 
various real data sets. Finally, a brief discussion is presented in Section 8. The supplementary 
material contains: (i) the selected parameters of the analysed probabilistic distributions; (ii) 
results from simulation studies based on large samples (𝑛 = 500); (iii) description of the bias 
functions suggested in Section 4, and information on their percentages of use; and (iv) efficiency 
and bias ratios of estimators of the Gini index, which are explored in Sections 5 and 6.  

2 The Gini index 

2.1 Definition 

We assume that inequality is analysed using a variable of interest 𝑌, which is a nonnegative 
continuous random variable. A popular formulation of the Gini index is defined in terms of the 
average absolute difference between each possible pair of individuals (Qin et al., 2010), i.e., 

 
𝐺 =

1

2𝜇
|𝑥 − 𝑦| 𝑑𝐹 (𝑥)𝑑𝐹 (𝑦), (1) 

where  

𝜇 = 𝐸[𝑌] = 𝑦 𝑓(𝑦)𝑑𝑦 = 𝑦 𝑑𝐹 (𝑦), 

is the mean of 𝑌, and 𝐹 (𝑦) = 𝑃(𝑌 ≤ 𝑦) and 𝑓(𝑦) are, respectively, the distribution function and 
the probability density function of 𝑌. A formulation of 𝐺 based on the distribution function is (Qin 
et al., 2010; Berger and Gedik-Balay, 2020): 

 
𝐺 =

1

𝜇
{ 2𝐹 (𝑦) − 1}𝑦𝑑𝐹 (𝑦). (2) 

Anand (1983) showed that the Gini index 𝐺 can be computed as 2/𝜇  times the covariance 
between 𝑌 and the distribution function 𝐹 (𝑦), i.e., 

 
𝐺 =

2

𝜇
𝑐𝑜𝑣{𝑌, 𝐹 (𝑦)}. (3) 

Finally, Yitzhaki (1998) and Berger and Gedik-Balay (2020) consider the expression 

𝐺 = 1 −
𝜇

𝜇
, 

where 𝜇 = 𝐸(𝑍) = ∫ { 1 − 𝐹 (𝑧)}𝑑𝑧 is the expectation of the minimum 𝑍 = min{𝑌 , 𝑌 }, and 𝑌  
and 𝑌  are two independent random variables with the same distribution as 𝑌. For continuous 
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distributions, the Gini index can be defined in many other ways, as can be seen in Yitzhaki (1998), 
Giorgi and Gibliarano (2017), etc. In practice, the value of 𝐺 is estimated by means of a sample 𝑆, 
with size 𝑛, and which can be selected from either infinite or finite populations (Langel and Tillé, 
2013). The estimation of 𝐺 under both scenarios is discussed in Section 2.2. 

2.2 Estimation  

For infinite populations, {𝑌 : 𝑖 ∈ 𝑆} are considered as a sequence, with size 𝑛, of nonnegative 
random variables with the same distribution as the variable of interest 𝑌. The Gini index is 
estimated using an estimator of 𝐺 based on the observations of individuals selected in the sample 
𝑆, and which are denoted as {𝑦 : 𝑖 ∈ 𝑆}. Such estimators are usually defined as plug-in 
formulations derived from a theoretical definition of 𝐺. This methodology may introduce a bias in 
comparison to the true parameter 𝐺, especially for extreme values of the Gini index. As can be 
seen in Section 3, a notable example is the plug-in expression of Equation (2), which is defined as 
(see Qin et al., 2010; Berger and Gedik-Balay, 2020): 

 
𝐺 =

1

𝑛𝑦
{2𝐹 (𝑦 ) − 1}𝑦

∈

=
2

𝑛𝑦
𝑦

∈

𝐹 (𝑦 ) − 1, (4) 

where 𝑦 = 𝑛 ∑ 𝑦∈  is the sample mean, 𝐹 (𝑡) = 𝑛 ∑ 𝛿∈ (𝑦 ≤ 𝑡) is the sample (empirical) 
distribution function, and 𝛿(⋅) is the indicator variable that takes the value 1 if its argument is 
true and 0 otherwise. The classical empirical version of 𝐺 (Giorgi and Gigliarano, 2017) is the 
plug-in expression of Equation (1), i.e.: 

 
𝐺 =

1

2𝑛 𝑦
𝑦 − 𝑦

∈∈

. (5) 

Note that many equivalent versions of 𝐺  have been suggested in the extensive literature on the 
Gini index. For instance, Sen (1973) proposed the popular formulation 

𝐺 =
2

𝑛 𝑦
𝑖𝑦( )

∈

−
𝑛 + 1

𝑛
=

2

𝑛 𝑦
𝑟

∈

𝑦 −
𝑛 + 1

𝑛
, 

where 𝑦( ) are the values 𝑦  sorted in increasing order and 𝑟  is the rank of unit 𝑖 in the sample 𝑆. 
Similarly, the Gini index can be defined using the regression coefficient of an ordinary least 
squares regression (see Ogwang, 2000). This is the idea behind 

𝐺 =
2𝛽

𝑛
−

𝑛 + 1

𝑛
, 

which assumes the regression model 𝑖 = 𝛽 + 𝑢 , and where the heterocesdatic error 𝑢  has 
variance 𝜎 /𝑦( ). The least squares estimator of 𝛽 is given by 

 
𝛽 =

∑ 𝑖∈ 𝑦( )

∑ 𝑦( )∈
. (6) 
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Finally, an equivalent version of 𝐺  is the empirical version of Equation (3), i.e.,   

𝐺 =
2

𝑛𝑦
𝑐𝑜𝑣 𝑖, 𝑦( ) , 

where  

𝑐𝑜𝑣 𝑖, 𝑦( ) =
1

𝑛
𝑖

∈

𝑦( ) −
𝑛 + 1

2
𝑦. 

The estimator 𝐺  and its equivalent versions satisfy the symmetry axiom of Sen (1973), which 
establishes that an estimator of 𝐺 based on a set of observations, say {𝑦 : 𝑖 ∈ 𝑆}, must coincide 
with the Gini index estimated by means of the same approach but using the sample 𝑆 exactly 
replicated, i.e., doubled in size (see Davidson, 2009). Alternatively, the bias corrected estimator 

 𝐺 =
𝑛

𝑛 − 1
𝐺 , (7) 

is often used instead of 𝐺 . Some equivalent expressions of 𝐺  are: 

𝐺 =
2

𝑛(𝑛 − 1)𝑦
𝑖

∈

𝑦( ) −
𝑛 + 1

𝑛 − 1
;

𝐺 =
1

2𝑦

𝑛

2
𝑦 − 𝑦 ;

𝐺 = 1 −
𝑧

𝑦
.

 

Jasso (1979) suggested the use of 𝐺 , Wang et al. (2016) consider 𝐺 , and 𝐺  is used by Berger 
and Gedik-Balay (2020), where 𝑧 = 𝑛 ∑ 𝑧 .∈  and 

𝑧 . =
1

𝑛 − 1
min

∈ ,

𝑦 , 𝑦 . 

Giles (2004) and Davidson (2009) provide theoretical justifications for the use of 𝐺  to reduce 
the bias of 𝐺 . As can be seen in Section 3, 𝐺  may result in serious biases for small Gini indices, 
but this problem can be easily solved by replacing 𝐹 (𝑡) in Equation (4) with the smooth (or 
midpoint) distribution function 𝐹∗(𝑡) = 𝑛 ∑ [𝛿(𝑦 < 𝑡) + 0.5𝛿(𝑦 = 𝑡)]∈ , and the resulting 
estimator coincides with 𝐺  (see Berger, 2008). In addition, 𝐺 , 𝐺  and 𝐺  are related when 𝑦 ≠
𝑦  for all  𝑖 ≠ 𝑗, since  

 
𝐺 = 𝐺 −

1

𝑛
, (8) 
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if this condition is satisfied, and  

 
𝐺 =

𝑛

𝑛 − 1
𝐺 −

1

𝑛
 (9) 

according to Equations (7) and (8). Note that expressions (5) and (7), or their equivalent 
formulations, are more frequently used in practice, and practitioners must be aware of the bias of 
𝐺  when 𝐺 is small. The use of the smooth distribution function in Equation (4) will prevent this 
bias problem.  For empirical distributions, additional formulations of the Gini index can be seen 
in Giorgi and Gigliarano (2017). 

For a finite population 𝑈 with 𝑁 individuals, {𝑌 : 𝑖 ∈ 𝑈} denotes a sequence of nonnegative 
random variables with the same distribution function 𝐹 (𝑦), and {𝑦 : 𝑖 ∈ 𝑈} are the population 
values of the variable of interest. In practice, social surveys are used to estimate the Gini index, 
and they are generally based on complex sampling designs with unequal probabilities. Therefore, 
the sample 𝑆 is now selected from 𝑈 by using a sampling design with survey weights 𝑤 = 𝜋 , 
where 𝜋 = 𝑃(𝑖 ∈ 𝑆) are the inclusion probabilities, with 𝑖 ∈ 𝑆. The problem of estimating 𝐺 from 
finite populations thus entails two steps. First, an empirical version of 𝐺 based on the population 
values {𝑦 : 𝑖 ∈ 𝑈} is required. We denote the population empirical versions of 𝐺 in finite 
populations as 𝐺 , 𝐺  and 𝐺 , and they are defined as 𝐺 , 𝐺  and 𝐺 , respectively, after 
substituting the sample values with the population values in Equations (4), (5) and (7). The 
second step is to estimate the selected population empirical version (𝐺 , 𝐺  or 𝐺 ) using 
weighted estimators. Some that can be found in the literature are: 

 
𝐺 =

2

𝑁𝑦
𝑤

∈

𝑦 𝐹 (𝑦 ) − 1; (10) 

 

 
𝐺 =

1

2𝑁 𝑦
𝑤

∈∈

𝑤 𝑦 − 𝑦 ; (11) 

and 

 
𝐺 = 1 −

𝑧

𝑦
, (12) 

where 𝑁 = ∑ 𝑤∈ , 𝑦 = 𝑁 ∑ 𝑤∈ 𝑦 , 𝑧 = 𝑁 ∑ 𝑤∈ 𝑧 . ,    

𝑧 . =
1

𝑁 − 𝑤
𝑤

∈ ,

min 𝑦 , 𝑦 , 

and 𝐹 (𝑡) = 𝑁 ∑ 𝑤∈ 𝛿(𝑦 ≤ 𝑡). Note that Equations (10), (11) and (12) reduce, respectively, 
to Equations (4), (5) and (7) under simple random sampling without replacement (SRSWOR). 
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3 Simulation studies to analyse the bias 

In this section, we analyse the bias of 𝐺 , 𝐺  and 𝐺  in comparison to the true (asymptotic) value 
𝐺, and using samples selected from infinite populations. This analysis is equivalent to the 
problem of analysing the bias of 𝐺 , 𝐺  and 𝐺  in comparison to the true (asymptotic) value 𝐺.  

3.1 Description  

We consider various continuous probabilistic distributions (Pareto, Dagum, Lognormal, Weibull 
and Gamma) often used in the modelling of income distributions. For each probabilistic 
distribution, parameters involved in the theoretical formulation of 𝐺 are selected such that 𝐺 
takes the values {0.1,0.2, … ,0.8}, thus allowing us to examine different levels of inequality. 
Additional parameters required in distributions are also fixed, and all of them can be seen in the 
supplementary material (Table A1). For the Dagum distribution, the theoretical value of 𝐺 
depends on both shape parameters 𝑎 and 𝑝, and for this reason the values 𝑝 = {0.5,20} are also 
fixed, and such distributions are denoted, respectively, as Dagum-p0.5 and Dagum-p20. The aim 
is to analyse the biases of the various estimators of the Gini index under the described scenarios, 
with these estimators being calculated using samples randomly drawn from an underlying 
continuous distribution with a true value 𝐺 for the Gini index. This framework is also adopted by 
Deltas (2003), Davidson (2009), Berger and Gedik-Balay (2020), etc. We analyse both small and 
large sample sizes, specifically, 𝑛 = {50,500}. This study is equivalent to analysing the biases for 
samples, with size 𝑛, selected under SRSWOR from a large finite population (𝑁 → ∞), with 
population values drawn from the analysed probabilistic distributions.   

Let 𝜃  be a given statistic for the unknown parameter 𝜃, based on the observations {𝑦 : 𝑖 ∈ 𝑆}. 
Throughout this article, the expected value based on 𝑅 replications of 𝜃  is defined as 

 
𝐸 𝜃 = 𝜃‾ =

1

𝑅
𝜃

( )
, (13) 

where 𝜃
( ) is the statistic 𝜃  evaluated at the 𝑟-th pseudo original sample 𝑆( ), which is also 

selected, with size 𝑛, from the distribution function 𝐹 (𝑦). 𝑅 = 1000 replications are considered 
in simulation studies. The empirical measures can be expressed in terms of either the true Gini 
index 𝐺 or the expected values of estimators. We use the expected values because large biases 
can be obtained and 𝐺 is unknown in practice. Reporting the results in terms of 𝐺 makes it more 
difficult for empirical researchers to assess the performance of estimators for the specific data 
that they are analysing. Finally, note that various figures in this paper require only a customary 
estimator of 𝐺, and we use 𝐺   because it is less biased than its competitors (𝐺  and 𝐺 ).    

In this section, we first use Monte Carlo simulations to investigate the relative bias (𝑅𝐵) of the 
various empirical versions (𝐺 , 𝐺  and 𝐺 ) in comparison to the true (asymptotic) value 𝐺.  For a 
given statistic 𝜃 , this measure is defined as 

𝑅𝐵 = 100 ×
𝐵 𝜃

𝜃
, 
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where the empirical bias is given by 𝐵 𝜃 = 𝐸 𝜃 − 𝜃 = 𝜃‾ − 𝜃. Comparisons are based on 
distributions with different levels of skewness because the value of the coefficient of skewness 
may have an impact on the bias of estimators of the Gini index. For discrete distributions, the 
coefficient of skewness is defined as: 

 𝛾 =
𝜇 .

𝜎
, (14) 

where 𝜎 = (𝜇 . ) /  is the sample standard deviation, and 𝜇 . = 𝑛 ∑ (𝑦 − 𝑦)∈  is the 𝛼-th 
central moment based on 𝑆. The aim of Figure 1 is to investigate the skewness for the 
probabilistic distributions considered in this paper, so this figure displays the expected values 𝛾‾  
versus the expected values 𝐺‾ . , where 𝛾‾  and  𝐺‾ .  are calculated using Equation (13) after 
substituting 𝜃( ) with 𝛾( ) and 𝐺 ( ), respectively, and which are computed using Equations (14) 
and (7) at the 𝑟-th pseudo original sample 𝑆( ).      

 

Figure 1: Expected values of the coefficient of skewness (𝛾‾ ) based on samples with sizes 𝑛 =
{50,500}, and randomly selected from various continuous probabilistic distributions (infinite 

populations). The x-axes show the expected values of the estimator 𝐺  (𝐺‾ . ). 

 

From Figure 1 we observe that the Pareto distribution is the most highly skewed distribution, 
followed by the Dagum-p20, Dagum-p0.5 and Lognormal distributions, in that order. The Weibull 
and Gamma distributions have similar values of 𝛾‾ , and they are the least skewed distributions in 
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this study. For highly skewed distributions, serious biases can be observed when 𝐺 is large, as a 
result of which the maximum value of 𝐺‾ .  is far from 𝐺 = 0.8, the maximum Gini index used in 
this study. This is not the case with less skewed distributions, since accurate estimates are also 
obtained when 𝐺 is large, and the expected values 𝐺‾ .  are close to the required Gini index. For 
the various probabilistic distributions, the expected skewness increases as the sample size rises. 
This can be explained by the upper bound for 𝛾  based on the sample size and suggested by 
Cramer (1957). This bound indicates that estimates for the coefficient of skewness may 
underestimate the true value when the sample size is small (Dorić et al., 2009). For the Dagum 
distribution, the expected skewness increases as its shape parameter 𝑝 increases. 

In this section we also analyse the impact of the skewness on the bias using box plots for 
estimates of 𝐺 . Thus, we illustrate this relationship between skewness and bias by comparing 
two different distributions in terms of skewness (Pareto and Gamma, as can be seen in Figure 1).    

3.2 Results and conclusions 

Figure 2 displays the 𝑅𝐵𝑠 of 𝐺 , 𝐺  and 𝐺  when 𝑛 = 50. First, we analyse the results from the 
less skewed distributions (Weibull and Gamma). The bias of 𝐺  is negligible for the various 
expected values of estimators. The bias of 𝐺  is slightly larger, in absolute terms, than that of 𝐺 , 
but lies within a reasonable range. Biases of both 𝐺  and 𝐺  do not seem to be affected by the 
value of the Gini index. 𝐺  is severely biased when the expected values of estimators are small, 
with values of 𝑅𝐵 that can be close to 20%. This empirical version must be modified to correct 
this bias, and two simple solutions are discussed in Section 2.2. First, the distribution function 
𝐹 (𝑡) can be replaced, in Equation (4), by the smooth distribution function 𝐹∗(𝑡). This adjustment 
allows empirical versions 𝐺  and 𝐺  to be equivalent. Second, we can use one of the 
transformations described in Equations (8) and (9) when all observations are different.  As the 
Gini index increases, the 𝑅𝐵 of 𝐺  decreases and 𝐺  and 𝐺  have similar 𝑅𝐵𝑠. 

For heavy-tailed distributions (Pareto, Dagum-p20, Dagum-p0.5 and Lognormal), biases of 𝐺 , 𝐺  
and 𝐺  seem to be affected by the value of the Gini index, and serious negative 𝑅𝐵𝑠 are obtained 
as the expected values of estimators increase (as much as −25%). We also observe a strong 
relationship between the 𝑅𝐵 and the coefficient of skewness. The largest 𝑅𝐵𝑠, in absolute terms, 
are produced by the Pareto distribution, which is the most skewed (see Figure 1), and biases, in 
absolute terms, decrease as the values of 𝛾‾  decrease. 

For larger sample sizes, readers are referred to the supplementary material, where Figure A1 
replicates Figure 2 for samples with size n=500. We point out that the 𝑅𝐵, in absolute terms, 
decreases as the sample size increases. For less skewed distributions, the bias of 𝐺  is negligible, 
and the 𝑅𝐵 of 𝐺  can be close to 2% for the various distributions. Non-negligible biases are also 
observed for heavy-tailed distributions, with values of RB close to  −15% when 𝑛 = 500. 
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Figure 2: Relative biases (𝑅𝐵𝑠) of estimators 𝐺 , 𝐺   and 𝐺   based on samples with size 𝑛 = 50, 
and randomly selected from various continuous probabilistic distributions (infinite populations). 

In Figure 3 we investigate the effect of the skewness on the bias of 𝐺  using box plots and various 
Gini indices, with the most (Pareto) and the least (Gamma) skewed distributions from this study. 
From Figure 2 we observe that the bias of 𝐺  is negligible for the various Gini indices when 
samples are selected from the Gamma distribution, while Figure 3 confirms that the estimates are 
concentrated, with a low variability, around the target value 𝐺. This is not the case with the 
Pareto distribution, which shows highly biased estimates and marked variability. From Figures 2 
and 3 we observe that the bias of 𝐺 , in absolute terms, increases as the Gini index rises, while 
from Figure 3 we see that the variability of estimates also becomes higher as 𝐺 increases, with 
values of 𝐺  that can be larger than 0.9 when 𝐺 = 0.4, or smaller than 0.3 when 𝐺 = 0.8.          
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Figure 3:  Box plots for 1000 estimates of the Gini index (𝐺) using the estimator  𝐺  and various 
values of 𝐺. Samples, with size 𝑛 = 50, are randomly selected from the Pareto and Gamma 

distributions (infinite populations).  

4 Bias correction procedures 

Results from Section 3 indicate that the customary estimators of the Gini index can be severely 
biased, especially for heavy-tailed distributions and large Gini indices, and that the use of a bias 
correction procedure may alleviate this bias problem. Various bias correction procedures are 
presented in this section, before being analysed in Section 5, and then applied to various real data 
sets in Section 7. Section 6 describes a criterion for deciding when to use bias corrections. 

Bootstrap and jackknife techniques (see Efron and Tibshirani, 1993, and Wolter, 2007) can be 
used as bias correction procedures. Some authors who have demonstrated the capacity of these 
methods to correct biases are Pfeffermann and Correa (2012) and Jiao and Han (2020). When it 
comes to the problem of estimating the Gini index, such statistical techniques have been used 
mainly for the construction of confidence intervals and variance estimation (see Moran, 2006, 
and Larraz et al., 2020, for bootstrap techniques, and Berger, 2008, and Davidson, 2009, for 
jackknife techniques). The estimator 𝐺  emerges as the bias corrected version of 𝐺  (Deltas, 
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2003; Davidson, 2009), but Section 3 shows that 𝐺  can also be severely biased.  Van Ourti and 
Clarke (2011) investigated a bias correction method for the Gini index, but focussing on the bias 
due to grouped data. We now explore correction procedures for the biases discussed in Section 3. 
Bias corrections are applied to 𝐺  and 𝐺  (defined, respectively, for infinite and finite 
populations) because they are less biased than the alternative empirical versions described in 
Section 2. However, bias correction procedures can also be applied to any other empirical 
version.  

For an infinite population, we first suggest the jackknife technique proposed by Ogwang (2000), 
which can be easily implemented by a fast algorithm. Langel and Tillé (2013) showed that this 
method has desirable properties for the variance estimation of the Gini index. Ogwang (2000) 
proposed the application of the jackknife technique on 𝐺 , with jackknife estimates defined as 

𝐺 (𝑘) = 𝐺 +
2

𝑛𝑦 − 𝑦( )

𝑦( )𝛽

𝑛
+

∑ 𝑖 𝑦( )

𝑛(𝑛 − 1)
−

𝑛𝑦 − ∑ 𝑦( ) + 𝑘𝑦( )

𝑛 − 1
−

1

𝑛(𝑛 − 1)
, 

where 𝛽 is the regression coefficient defined by Equation (6). Note that 𝐺 (𝑘) is equivalent to 
applying 𝐺  successively to the observations {𝑦( ): 𝑖 ∈ 𝑆} and after removing the 𝑘 −th unit. The 
bias corrected estimator applied to 𝐺  and based on Ogwang’s jackknife is defined as 

𝐺
.

= 𝑛𝐺 − (𝑛 − 1)𝐺‾
.

, 

where 𝐺‾
.

= 𝑛 ∑ 𝐺 (𝑘). The bias corrected estimator applied to 𝐺  and based on 
jackknife is given by 

 𝐺
.

= 𝑛𝐺 − (𝑛 − 1)𝐺‾
.

, (15) 

where 𝐺‾
.

= 𝑛 ∑ 𝐺 (𝑘), and 𝐺 (𝑘) is the estimator 𝐺  computed from the observations 
{𝑦( ): 𝑖 ∈ 𝑆} after removing the 𝑘 −th unit. Note that 𝐺

.  is one of the two bias corrected 
estimators that we report in the results from infinite populations. Pfeffermann and Correa (2012) 
proposed an empirical bootstrap bias correction procedure based on pseudo original and 
bootstrap samples selected from plausible parameters. This method was used to estimate the 
prediction mean square error in small area estimation of proportions. We also propose the 
adaption of this empirical bootstrap method to the problem of estimating the bias of 𝐺 , thus 
giving rise to a novel bias corrected estimator of 𝐺.  

The empirical bootstrap procedure considers a set of plausible parameters, which are randomly 
generated from a confidence interval for 𝐺. For each plausible parameter, a pseudo original 
sample is generated from the underlying distribution of the original sample data. This method 
uses a cross-validation procedure that splits the various pseudo original samples into two 
groups: training and validation. In Section 3 we observed that both the Gini index and the 
coefficient of skewness have an impact on the bias of 𝐺  for heavy-tailed distributions. For the 
training group, we suggest various functions underlying the bias correction, which depend on the 
estimates of 𝐺  and 𝛾  computed from each pseudo original sample and on the expected values of 
𝐺  and 𝛾  based on bootstrap samples. Efron and Tibshirani (1993) and Hall and Maiti (2006) 
indicate that bias corrections may increase the variance, so the validation group is used to choose 
the optimum bias function that minimizes the mean square error (MSE) of the suggested bias 
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corrected estimator. In Section 5, we also investigate the impact of using bias corrections on the 
MSE. For an infinite population, the algorithm for estimating the bias of 𝐺  and for computing the 
suggested bias corrected estimator is described in detail as follows: 

Step 1 (Plausible parameters). Select at random 𝐻 plausible values for the target parameter 𝐺 
from a Uniform distribution, i.e., 𝐺 ∼ 𝑈𝑛(𝐺 , 𝐺 ), with ℎ = 1, … , 𝐻, and where 𝐺  and 𝐺  are, 
respectively, the lower and upper limits of a confidence interval for the true Gini index 𝐺. 

Step 2 (Pseudo original samples for training and validation groups). Generate a pseudo original 
sample 𝑆 , with size 𝑛, from 𝑓(𝑦; 𝐺 ) and for each ℎ = 1, … , 𝐻, where 𝑓(𝑦; 𝐺 ) is the probability 
density function 𝑓(𝑦) with a Gini index equal to 𝐺 . Then, split the 𝐻 samples at random into two 
groups, the training group 𝛺  and the validation group 𝛺 , such that 𝛺  contains a set of 𝑇 
samples (𝑆 , with 𝑡 = 1, … , 𝑇), 𝛺  contains 𝑉 samples (𝑆 , with 𝑣 = 1, … , 𝑉) and 𝐻 = 𝑇 + 𝑉. 

Step 3 (Estimates from the pseudo original samples). For the training group 𝛺 , compute 𝐺  and 
𝛾  for each sample 𝑆 , and using, respectively, Equations (7) and (14). Similarly, for the 
validation group 𝛺 , compute 𝐺  and 𝛾  using the samples 𝑆 . 

Step 4 (Training phase: expected values based on bootstrap samples). For the training group 𝛺 , 
generate 𝐵 bootstrap samples 𝑆( ), with size 𝑛, from each sample 𝑆 , with 𝑏 = 1, … , 𝐵. Compute 
𝐺

( ) and 𝛾
( ) for each bootstrap sample 𝑆

( ), using Equations (7) and (14), respectively. The 
expected values of 𝐺  and 𝛾  based on bootstrap samples are denoted, respectively, as 𝐺‾ .  and 
𝛾‾ , and are computed using 𝐺 ( ) and 𝛾( )

 in Equation (13), after substituting 𝑟 and 𝑅 with 𝑏 and 
𝐵, respectively. 

Step 5 (Training phase: expected values based on pseudo original samples). For the training 
group 𝛺 , generate 𝑅 pseudo original samples 𝑆

( ), with size 𝑛, from 𝑓(𝑦; 𝐺 ) and for each 𝑡 =

1, … , 𝑇, with 𝑟 = 1, … , R. Compute 𝐺
( ) for each sample 𝑆

( ), and using Equation (7). The 
expected value based on pseudo original samples is denoted as 𝐺‾ . , and is computed using 
Equation (13). 

Step 6 (Training phase: coefficient estimates). For the training group 𝛺 , estimate the unknown 
coefficients of a set of eligible bias functions 𝑞 𝐺 ; 𝐺‾ . ; 𝛾 ; 𝛾‾ , with 𝑙 = 1, … , 𝐿, that predict 
the variable 𝐷 = 𝐺‾ . − 𝐺 . An example of bias function is the linear expression  

 𝐺‾ . − 𝐺 = 𝑎 + 𝑎 (𝛾‾ − 𝛾 ). (16) 

Step 7 (Validation phase: bias corrected estimators). For the validation group 𝛺  and for each 
function 𝑞 , compute the suggested bias corrected estimator of 𝐺 , defined by 

𝐺
. (𝑙) = 𝐺 − 𝑞 𝐺 ; 𝐺‾ . ; 𝛾 ; 𝛾‾ , 

where 𝑞  is the bias function 𝑞  after substituting its coefficients with the estimates computed in 
Step 6. 

Step 8 (Validation phase: optimum function). For the validation group 𝛺 , identify the optimum 
function 𝑞  that minimizes the MSE of the estimators 𝐺 . (𝑙), and which is defined as 
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𝑀𝑆𝐸 =
1

𝑉
𝐺

. (𝑙) − 𝐺 . 

Step 9 (Bias corrected estimator). Compute the suggested bias corrected estimator 

 𝐺
.

= 𝐺 − 𝑞 𝐺 ; 𝐺‾ . ; 𝛾 ; 𝛾‾ , (17) 

where 𝐺‾ .  and 𝛾‾  are, respectively, the expected values of 𝐺  and 𝛾  based on bootstrap samples 
and derived from the original sample 𝑆.                                                                                                             □ 

𝐺
.  is the second bias corrected estimator computed for infinite populations. Any method can 

be used to construct the confidence interval required in Step 1. Some existing confidence 
intervals for the Gini index are based on bootstrap (Qin et al., 2010), jackknife (Berger, 2008), 
linearization (Deville, 1999) or empirical likelihood (Berger and Gedik-Balay, 2020). Variance 
estimators for the Gini index (Langel and Tillé, 2013) can also be used to construct confidence 
intervals based on the normality assumption. For the sake of simplicity, we use the traditional 
bootstrap method with confidence interval limits given by 𝐺 = 𝐺 ( . )

.  and 𝐺 = 𝐺 ( . )
. , 

where 𝐺 ( )
.  is the 𝛼-th quantile of the bootstrap estimates 𝐺 ( ). The latter are computed using 

the estimator 𝐺  on the bootstrap sample 𝑆( ), which is taken, with size 𝑛, from the original 
sample 𝑆. As discussed by Pfeffermann and Correa (2012), the selected interval must be broad 
enough to contain the target parameter 𝐺. We use a confidence level of 99% because of the 
serious biases detected in Section 3. Pfeffermann and Correa (2012) also argue that the size of 
this confidence interval has no direct effect on the bound of the bias, and give a discussion on the 
number of parameters that should be included in the training and validation groups.  

For the training group, Step 6 requires bias functions 𝑞  that predict 𝐷 = 𝐺‾ . − 𝐺  with the aim 
of estimating the bias of 𝐺 , i.e., 𝐵 𝐺 = 𝐸 𝐺 − 𝐺. In Section 3, we concluded that both the Gini 
index and the coefficient of skewness may have an impact on the 𝑅𝐵 of 𝐺 , so we suggest bias 
functions that depend on 𝐺  and 𝛾 . The expected values 𝐺‾ .  and 𝛾‾  based on bootstrap 
samples are also considered. Table A2 from the supplementary material describes the 𝐿 = 7 
candidate bias functions considered in Step 6 of the suggested algorithm. For the sake of 
simplicity, we only consider multiple linear regression functions, but more complex functions 
and/or additional statistics can also be used, and are expected to yield more accurate results. 

For an infinite population, additional bias correction procedures can be computed (See Wolter, 
2007). For instance, we also calculated, in Section 5, bootstrap methods based on additive and 
multiplicative corrections (see Hall and Maiti, 2006, and Pfeffermann and Correa, 2012, for 
detailed definitions), but we omitted them because the bias correction estimators (15) and (17) 
are less biased. Pfeffermann and Correa (2012) also argue that the aforementioned additive and 
multiplicative corrections may yield non-negligible biases with small samples, meaning 
alternative bias correction procedures may be preferable.  

Bootstrap and jackknife techniques were originally designed for infinite populations, and do not 
have a direct application to finite populations due to the inherent features of survey sampling. 
Adjustments are thus required to apply these methods to finite populations (Quatember, 2015). 
For finite populations, the rescaled bootstrap technique (Rao et al., 1992) can be used for bias 
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correction of a given empirical version of 𝐺. This method has been used in many research studies 
(Berger and Muñoz, 2015; Moya et al., 2020; etc.) in many areas (see Yang et al., 2010; Muñoz et 
al., 2018; etc.). Simplicity is the main advantage of the rescaled bootstrap over alternative 
bootstrap methods, which can be more computationally intensive. The rescaled bootstrap 
consists in computing a new set of weights (named bootstrap weights) for each bootstrap 
sample, which are obtained by applying a scale adjustment to the original survey weights 𝑤 . 
Specifically, the bootstrap weights are given by 

𝑤
( )

= 𝑤
𝑟 𝑛

𝑛 − 1
, 

with 𝑖 ∈ 𝑆 and 𝑏 = 1, … , 𝐵, where 𝑟  denotes the number of times that 𝑖 −th unit is selected in the 
bootstrap sample 𝑆( ). For a finite population, we first consider the additive bias corrected 
estimator of 𝐺 based on the rescaled bootstrap, which is defined as 

 𝐺 . = 𝐺 − 𝐺‾ . − 𝐺 = 2𝐺 − 𝐺‾ . , (18) 

where 𝐺‾ .  is the expected value of 𝐺  based on the bootstrap estimates 𝐺
( ), and which are 

defined as 𝐺  after substituting the original survey weights 𝑤  with the bootstrap weights 𝑤( ).  

Second, we also consider the aforementioned empirical bootstrap bias correction. We now 
describe an extension of this method to finite populations. It requires the rescaled bootstrap 
technique along with confidence intervals and estimators based on survey weights. A confidence 
interval that can be used in Step 1 is given by the limits 𝐺 = 𝐺 ( . )

.  and 𝐺 = 𝐺 ( . )
. , where 

𝐺 ( )
.  is the 𝛼-th quantile of the weighted estimates 𝐺

( ) derived from the rescaled bootstrap 
and based on 𝐺 . The following Step 1-b must be included between Steps 1 and 2: 

Step 1-b (Pseudo original finite population). Generate a pseudo original population 𝑈∗ with 
observations given by {𝑦∗: 𝑖 ∈ 𝑈∗} and selected from 𝑓(𝑦; 𝐺 ), with 𝑘 = 1, … , 𝐾. 

The pseudo original samples of Steps 2 and 5 are selected from 𝑈∗ instead of 𝑓(𝑦; 𝐺 ), and using 
the same sampling design as for the original sample 𝑆. The weighted coefficient of skewness is 
defined as 

 𝛾 =
𝜇 .

𝜎
, (19) 

where 𝜎 = (𝜇 . ) /  and 𝜇 . = 𝑁 ∑ 𝑤∈ 𝑦 − 𝑦 . In Step 3, 𝐺  and 𝛾  are replaced by 
𝐺  and 𝛾 , which are calculated using the sample 𝑆  and Equations (12) and (19), respectively. 
In Step 4, bootstrap estimates are substituted with 𝐺

( ) and 𝛾( ), which are obtained using the 
rescaled bootstrap method. The expected values of 𝐺  and 𝛾  based on the rescaled bootstrap 
are denoted, respectively, as 𝐺‾ .  and 𝛾‾ , and they are computed using 𝐺 ( ) and 𝛾( )

 in Equation 
(13), after substituting 𝑟 and 𝑅 with 𝑏 and 𝐵, respectively. The same set of eligible functions are 
used in Step 6, but they depend on weighted quantities, i.e., 𝑞 𝐺 ; 𝐺‾ . ; 𝛾 ; 𝛾‾ . In Step 7, the 
suggested bias corrected estimators of 𝐺  are defined by 
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𝐺
. (𝑙) = 𝐺 − 𝑞 𝐺 ; 𝐺‾ . ; 𝛾 ; 𝛾‾ , 

and they are used to identify, in Step 8, the optimum function 𝑞 . Finally, the suggested bias 
corrected estimator that we compute in finite populations is given by 

 𝐺
.

= 𝐺 − 𝑞 𝐺 ; 𝐺‾ . ; 𝛾 ; 𝛾‾ . (20) 

For finite populations, additional bias correction procedures can also be computed. For instance, 
we also calculated, in Section 5, Campbell’s (1980) jackknife (see Berger and Skinner, 2005, and 
Berger, 2008) and the multiplicative bootstrap method (see Hall and Maiti, 2006), but we omitted 
them because Campbell’s jackknife is more biased than (18) and (20), and additive and 
multiplicative bootstrap methods give similar results.   

5 Simulation studies to analyse the bias correction procedures 

5.1 Description 

We now evaluate various bias correction procedures by means of the RB measure defined in 
Section 3, and using the probabilistic distributions and sample sizes also described in that 
section. As discussed in Section 4, bias correction procedures substantially mitigate the detected 
biases, but the price to pay is a possible increase in the MSE. For this reason, we use the relative 
root mean square error (𝑅𝑅𝑀𝑆𝐸) to investigate the effect of bias corrections on efficiency. For a 
given statistic 𝜃 , the corresponding 𝑅𝑅𝑀𝑆𝐸 based on 𝑅 replications is defined as 

𝑅𝑅𝑀𝑆𝐸 = 100 ×
𝑀𝑆𝐸 𝜃

/

𝜃
, 

where the empirical mean square error is given by 𝑀𝑆𝐸 𝜃 = 𝑅 ∑ 𝜃
( )

− 𝜃 . Sections 6 

and 8 give more detailed discussions on the importance of both bias and MSE measures. In 
Section 3, we observed that 𝐺  yields extremely large values of 𝑅𝐵 when 𝐺 is small, and 𝐺  is 
slightly more biased than 𝐺 . For the sake of clarity, 𝐺  and 𝐺  and the corresponding bias 
corrected estimators are omitted from the figures in this section, but they can also be computed, 
as discussed in Section 4. Similarly, for finite populations, weighted estimators of 𝐺  and 𝐺  are 
omitted. For infinite populations, the percentage of the number of times that each eligible bias 
function is selected as the optimum function of the suggested algorithm described in Section 4 
can be seen in the supplementary material (Table A3). For the various probabilistic distributions, 
the bias function defined in Equation (16) is the most often selected as the optimum function. 

𝐵 = 1000 bootstrap samples are used in bootstrap methods. Following Pfeffermann and Correa 
(2012), we consider 𝐻 = 200 plausible parameters, of which 𝑇 = 60 and 𝑉 = 140 are used for 
the training and validation groups, respectively. Samples are selected from finite populations 
with size 𝑁 = 10000, which in turn are drawn from the investigated continuous distributions. 
We consider unequal inclusion probabilities by using the randomized systematic sampling design 
(Wu and Thompson, 2020). The effect of the design is increased by generating inclusion 
probabilities 𝜋  with a correlation of 0.7 between 𝜋  and 𝑦  (Berger and Gedik-Balay, 2020).  
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5.2 Results and conclusions 

For infinite populations, Figure 4 displays the 𝑅𝐵𝑠 of estimators of 𝐺 based on samples with size 
𝑛 = 50. We observe that the bias correction procedures reduce, in absolute terms, the bias of 𝐺 , 
although the empirical bootstrap (𝐺

. ) performs better than the bias corrected estimator based 
on the jackknife (𝐺

. ), especially for large Gini indices. For the Pareto distribution, the 𝑅𝐵𝑠 of 
𝐺

.  and 𝐺
.  are close to 0% when their expected values are smaller than 0.3 and 0.4, 

respectively. For the Dagum-p20 distribution, this situation comes when the expected values are 
smaller than 0.4, and the 𝑅𝐵𝑠 of 𝐺 .  and 𝐺 .  are close to 0% when the expected values are 
smaller than 0.5 in the Dagum-p0.5 distribution. For the Lognormal distribution, the bias 
corrected estimators give negligible biases (absolute values of 𝑅𝐵 smaller than 2%) for the 
various Gini indices. In the extreme scenario of heavy-tailed distributions and large Gini indices, 
the values of 𝑅𝐵 may be as much as −25% (see the Pareto distribution at the last expected value 
of 𝐺 ), and the empirical bootstrap may reduce this 𝑅𝐵 by more than 10%. The gain in accuracy 
of the empirical bootstrap over 𝐺

.  is greater when 𝑛 = 500 (see Figure A2 in the 
supplementary material). For instance, with expected values of estimators close to 0.7 in the 
Pareto distribution, the 𝑅𝐵s of 𝐺 , 𝐺 .  and 𝐺 .  are −15%, −12% and −7%, respectively. 

Values of RB based on samples with size 𝑛 = 50 and derived from finite populations can be seen 
in Figure 5. We observe that the empirical bootstrap (𝐺

. ) performs better than the rescaled 
bootstrap (𝐺 . ), which in turn minimizes the bias problem of the customary estimator (𝐺 ). 
Biases for samples with size 𝑛 = 500 and derived from finite populations can be seen in the 
supplementary material (Figure A3). 

Figure 6 displays the impact on the efficiency of using corrected estimators. The efficiency of bias 
correction procedures lies in a reasonable range relative to the efficiency of the estimator 𝐺 , 
especially for the correction based on the empirical bootstrap. In particular, the empirical 
bootstrap performs better than the jackknife. In addition, the empirical bootstrap is slightly less 
efficient than the customary estimator 𝐺 , and is more efficient for large Gini indices. The larger 
the sample size, the lower the impact on the efficiency of both bias corrected estimators, as can 
be seen in Figure A4.  Results derived from finite populations, and based on small and large 
samples, can be seen in Figures A5 and A6. 
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Figure 4: Relative biases (𝑅𝐵𝑠) of estimators  𝐺  , 𝐺 .  and 𝐺 .  based on samples with size 𝑛 =
50, and randomly selected from various continuous probabilistic distributions (infinite populations). 
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Figure 5: Relative biases (𝑅𝐵𝑠) of estimators 𝐺  , 𝐺 .   and 𝐺 .  based on samples with size 𝑛 =
50, and randomly selected from a finite population with size 𝑁 = 10000. Population values are 

randomly drawn from various continuous probabilistic distributions. 
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Figure 6: Relative Root Mean Square Errors (𝑅𝑅𝑀𝑆𝐸𝑠) of estimators 𝐺  , 𝐺 . and 𝐺 .  based on 
samples with size 𝑛 = 50, and randomly selected from various continuous probabilistic distributions 

(infinite populations). 

6 A simulation-based criterion for deciding when to use bias correction 

Results from Section 3 indicate that the three common empirical versions of 𝐺 can be biased for 
heavy-tailed distributions, which may be a serious issue when the Gini index is large. An 
important problem that arises in practice is determining when to use bias correction procedures. 
Note that the bias and the MSE (or equivalently the RB and the RRMSE) are two relevant 
measures to evaluate the quality of estimators. However, as noted by Särndal et al. (2003, p. 164),  
the bias must also be small relative to the standard error, since failure to meet this requirement 
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may result in invalid confidence intervals and/or undesirable coverage probabilities. This ratio 
between the bias and the standard error is popularly referred to as the bias ratio. For a given 
statistic 𝜃  and 𝑅 replications, the empirical bias ratio (BR) is defined as 

𝐵𝑅 =
𝐵 𝜃

𝑉 𝜃
/

, 

where the empirical variance is given by 𝑉 𝜃 = 𝑅 ∑ 𝜃
( )

− �̅� . Like the MSE, the BR 

also involves both bias and variance of the estimator. Särndal et al. (2003, p. 41) advise empirical 
researchers to avoid estimators that are considerably biased, and instead seek out estimators 
with small biases, and then choose one with a small variance. Following this idea, the suggested 
criterion consists of analysing both RB and BR measures for the estimator 𝐺 , and bias 
corrections are suggested when non-negligible biases are observed. RRMSE values can be used to 
choose the most efficient bias correction estimator. Särndal et al. (2003, p. 165) indicate that the 
effect of the bias ratio on the coverage probability can be ignored when |𝐵𝑅| < 0.1, and the use of 
bias corrected estimators is not justified here. The effect on the coverage probability is not 
extremely pronounced when |𝐵𝑅| ≤ 0.5, but it can be a serious problem otherwise. On the other 
hand, absolute values of RB lower than 2% can be considered negligible, and bias correction 
procedures are not recommended if this is the case. In summary, bias corrections are suggested 
when the estimator 𝐺  satisfies |𝐵𝑅| ≥ 0.1 and |𝑅𝐵| ≥ 2%.   

The aim of Figure 7 is to show that the customary estimator 𝐺  can yield poor bias ratios, with 
bias corrections justified because they substantially minimize this problem. For infinite 
populations and samples with size 𝑛 = 50, 𝐺  yields absolute values of 𝐵𝑅 close to 1.4, and poor 
coverage probabilities are expected. Furthermore, the vertical lines in Figure 7 indicate the first 
expected value (�̅� . ) with non-negligible biases, i.e., with absolute values of 𝑅𝐵 larger than 2%. 
We see that the condition imposed by the bias ratio (|𝐵𝑅| < 0.1) is more demanding than the 
condition based on the relative bias (|𝑅𝐵| < 2%), i.e., the first value of �̅� .  with a |𝐵𝑅| ≥ 0.1 is 
smaller than the first value of �̅� .  with a |𝑅𝐵| ≥ 2%. For example, non-negligible biases are 
observed for the Pareto distribution when �̅� . ≅ 0.2, and the absolute value of 𝐵𝑅 is larger than 
0.1 in this situation. These results reveal the presence of a mild bias problem, which can be 
solved using bias correction procedures, as can be seen in Figures 4 and 7. From Figure 7 we also 
observe that the BR values of the corrected estimators, in absolute terms, are generally smaller 
than 0.5, and are substantially smaller than those of 𝐺 . The desirable properties in terms of both 
𝐵𝑅 and 𝑅𝐵 measures and the negligible impact on the efficiency (see the Pareto distribution in 
Figure 6 when �̅� . = 2) indicate that correction procedures are recommended to mitigate the 
detected biases.   
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Figure 7: Bias Ratios (𝐵𝑅𝑠), in absolute terms, of estimators 𝐺  , 𝐺 .  and 𝐺 .  based on samples 
with size 𝑛 = 50, and randomly selected from various continuous probabilistic distributions 
(infinite populations). Using the estimator 𝐺 , horizontal and vertical dotted lines are fixed, 

respectively, at |𝐵𝑅| = 0.1 and at the first expected value with |𝑅𝐵| > 2%.  
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this criterion is based on two conditions: |𝐵𝑅| ≥ 0.1 and |𝑅𝐵| ≥ 2%. A grading scale classifies the 
non-negligible biases into three categories: mild (2 ≤ |𝑅𝐵| < 5), moderate (5 ≤ |𝑅𝐵| < 10) and 
severe (|𝑅𝐵| ≥ 10). This scale can be used to identify the scenarios where bias corrections are 
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either weakly or strongly recommended. Thus, while bias is not a serious issue for mild biases, 
the use of bias correction procedures is suggested to reduce this bias. Bias corrections are highly 
recommended in the case of moderate biases. The bias is a serious problem in the presence of 
severe biases, meaning bias corrections are strongly advised. 

 

 

Figure 8:  Grading scale based on the Relative Biases (RBs) and Bias Ratios (BRs) of 𝐺  when 
samples, with sizes 𝑛 = {50,200,500,1000}, are randomly selected  from the Pareto, Dagum-p20, 

Dagum-p05 and Lognormal distributions (infinite populations). Non-negligible biases with |𝐵𝑅| ≥
0.1 are considered as mild ( 2 ≤ |𝑅𝐵| < 5), moderate (5 ≤ |𝑅𝐵| < 10) and severe (|𝑅𝐵| ≥ 10). The 

x- and y-axes show the expected values of 𝐺  and 𝛾  (𝐺‾ .  and γ‾ , respectively). 

For small sample sizes (𝑛 = 50) and γ‾ ≥ 2.6, mild biases are expected when 𝐺‾ . ≥ 0.2, 
approximately. Moderate biases are observed when γ‾ ≥ 3.5 and 𝐺‾ . ≥ 0.37, and bias 
corrections are highly recommended in this situation. For samples with size 𝑛 = 200, mild biases 
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are expected when 𝐺‾ . ≥ 0.39, and moderate biases are obtained when 𝐺‾ . ≥ 0.47. For samples 
with size 𝑛 = 500, mild and moderate biases are expected when 𝐺‾ . ≥ 0.48 and 𝐺‾ . ≥ 0.56, 
respectively. Finally, for 𝑛 = 1000, bias corrections could be applied when 𝐺‾ . ≥ 0.49, and 
moderate biases are observed when 𝐺‾ . ≥ 0.57. Severe biases are not expected when 𝑛 ≥ 1000 
and 𝐺 ≤ 0.8 (the maximum true Gini index considered in this study). In summary, for small 
samples sizes (e.g., 𝑛 = 50), bias correction procedures may be required when the estimates of 
the Gini index are greater than 0.2, and can be highly recommended when they exceed 0.37. For 
larger sample sizes (e.g., 𝑛 = 500), mild biases can be expected when the estimates of the Gini 
index are greater than 0.48, and bias corrections are highly advisable when the estimates of the 
Gini index are larger than 0.56. For different sample sizes and Gini indices associated with 
specific data that empirical researchers are analysing, the aim of Figure 8 is to depict the values 
of the coefficient of skewness that would require the use of bias corrections.  

7 Applications to real data sets 

In this section, bias correction procedures are applied for estimating the Gini index in a total of 
six subpopulations with sizes between 26 and 503, and derived from three real data sets (see 
Table 1). A common goal in most surveys is not only to provide estimates for the whole 
population, but also for specific subpopulations (also named domains). For instance, estimates of 
unemployment in labour-force surveys are provided at national level, but this information is also 
of special interest at provincial and local levels. In household surveys, subpopulations are usually 
created on the basis of household sizes or consumption units. Age, sex and occupational groups 
are also often used to create subpopulations in many studies.           

The first real data set consists of total net household incomes extracted from the 2019 Spanish 
Survey on Income and Living Conditions (ES-SILC). Subpopulations, with sizes 𝑛 = {26,51}, are 
created using different consumption units, with the aim of using the Gini index to estimate 
income inequality. The second real data set is obtained from the World Bank’s Enterprise Survey 
(WBES), which has been used extensively in international management studies (Vendrell-
Herrero et al., 2022; Gomes et al., 2018; etc.). For private sector firms from over 130 developed 
and developing countries, the WBES contains information on a broad range of topics including 
competition performance, corruption, financial data, infrastructure, technology, etc. Using this 
survey, we estimate the Gini index of the labour productivity per hour worked in Argentinean 
firms for the years 2017 and 2018. The sizes of the resulting subpopulations are 𝑛 = {61,503}. 
Finally, the third real data set (named WATER) consists of a survey on shower habits conducted 
in Andalusia, a region in southern Spain facing water scarcity. The interest is to analyse the 
inequality in time spent showering, creating subpopulations, with sizes 𝑛 = {38,74}, using the 
number of inhabitants at provincial level. 

The bias corrected estimator 𝐺
.  is based on a continuous probabilistic distribution, and for 

this reason the Kolmogorov-Smirnov (KS) Goodness of Fit test is used to fit distributions to the 
various subpopulations used in this study. From Table 1 we observe that the Lognormal, Fisk, 
Dagum and Weibull distributions yield KS p-values above the usual significance level (5%), and 
the null hypothesis that data come from the corresponding continuous probabilistic distribution 
is not rejected. For the various subpopulations, the simulation-based criterion described in 
Section 6 indicates that the use of a bias correction procedure is recommended, since non-
negligible biases and BRs greater than 0.1 are expected according to Figure 8. In particular, the 
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estimator 𝐺  is expected to underestimate the true Gini index, with higher estimates expected 
from the bias corrected estimators.  

Population 𝑛 𝛾  𝐺  𝐺
.  𝐺

.  Distribution KS p-value  
ES-SILC 26 2.81 0.518 0.534 0.540 Fisk 0.85 

     0.526 Lognormal 0.65 
 51 3.51 0.476 0.486 0.488 Fisk 0.99 
     0.480 Lognormal 0.62 
     0.499 Dagum 0.11 

WBES 61 3.22 0.505 0.513 0.509 Lognormal 0.38 
     0.516 Fisk 0.37 
 503 15.85 0.734 0.784 0.752 Fisk 0.57 

WATER 38 3.92 0.358 0.368 0.370 Dagum 0.07 
     0.359 Weibull 0.06 
     0.366 Fisk 0.06 
     0.363 Lognormal 0.05 
 74 3.09 0.435 0.439 0.442 Fisk 0.10 
     0.442 Dagum 0.10 

Table 1: Estimates of the Gini index for various subpopulations derived from the ES-SILC, WBES and 
WATER populations. The null hypothesis that data come from a specific continuous probabilistic 

distribution is tested using the Kolmogorov-Smirnov (KS) Goodness of Fit test, and the 
corresponding p-values are provided. The bias corrected estimator 𝐺 .  is based on probabilistic 

distributions that fit the data. 

For the subpopulation with size 𝑛 = 51 derived from ES-SILC, we observe that estimates of the 
coefficient of skewness and the Gini index are, respectively, 𝛾 = 3.51 and 𝐺 = 0.476. These 
results indicate that moderate biases are expected according to Figure 8. As we expected, bias 
corrected estimators provide higher estimates than 𝐺 , with values as much as 4.8% larger than 
𝐺 = 0.476 (see the estimation of 𝐺

.  based on the Dagum distribution). For 𝑛 = 503 in the 
WBES population, the estimates 𝛾 = 15.85 and 𝐺 = 0.734 indicate the presence of serious 
biases, and the difference with respect to the estimator 𝐺  goes from 2.5% (𝐺

.
= 0.752) to 

6.8% (𝐺
.

= 0.784). For the various subpopulations in this study, we observe that estimates 
derived from the bias correction procedures are larger than estimates based on 𝐺 , a result 
which coincides with the findings of Sections 3 and 5.         

8 Discussion 

The Gini index is a very popular indicator to measure inequality that has been used in many 
economic studies. For discrete distributions, the Gini index is usually estimated using a plug-in 
formulation of a given theoretical definition of the Gini index for continuous distributions. This 
methodology may introduce a serious bias in comparison to the true (asymptotic) value of the 
Gini index. Note that the Gini index can also be estimated using techniques such as empirical 
likelihood (Owen, 2001), but there is no simple application of this method to complex sampling 
designs. The analysis of alternative estimation methodologies is beyond the scope of this paper, 
i.e., we assume the classical formulations derived from theoretical definitions of the Gini index. 



26 
 

First, this paper attempts to provide a better overview of the problem of estimating the Gini 
index by regrouping and classifying the most common empirical versions proposed for discrete 
distributions, and defined under the two existing statistical theories (infinite and finite 
populations). Second, this paper identifies the scenarios where the bias may be a serious issue, 
and such scenarios are based on common continuous distributions often used in the modelling of 
income distributions. For instance, 𝐺  (denoted as 𝐺  in finite populations) yields large biases 
when the Gini index and the sample size are small, but this bias problem can be easily solved by 
using the midpoint distribution function in the definition of 𝐺 . When all the sample observations 
are different, another solution is to use one of the transformations described in Equations (8) and 
(9). In addition, results derived from this study indicate that the various empirical versions of 𝐺 
produce serious biases in the presence of heavy-tailed distributions and large Gini indices. 
Accordingly, bias correction procedures are suggested to mitigate this bias problem, and they are 
investigated using Monte Carlo simulation studies. We also describe a simulation-based criterion 
for deciding when to use bias corrections. Finally, bias corrected procedures are illustrated by 
application to the problem of estimating the Gini index in various real data sets.  

The empirical bootstrap obtains less biased estimates than alternative bias correction 
procedures. With infinite populations, the traditional jackknife performs well in terms of relative 
bias. For finite populations, the rescaled bootstrap may reduce the bias of the existing empirical 
versions of 𝐺. It is important to note that the empirical bootstrap is a parametric procedure that 
requires generating sets of data from the probabilistic distribution fitted to the original sample. 
However, the use of continuous distributions in the modelling of income distributions is a 
common practice in many real-world applications, and the empirical bootstrap can thus be 
implemented if this is the case. In addition, it should be noted that for the sake of simplicity the 
empirical bootstrap bias correction is based only on standard regression functions, but 
alternative bias functions can also be used, and they may potentially improve the performance of 
this method. Finally, the empirical bootstrap is more computationally intensive than alternative 
procedures, but this is not a problem with current computing facilities. 

The outcome of the grading scale described in Section 6 can help empirical researchers decide 
whether the specific data they are analysing have non-negligible biases and large bias ratios, 
meaning the use of bias corrections would therefore be recommended. For heavy-tailed 
distributions, non-negligible biases may appear in small samples (e.g., 𝑛 = 50) from low 
estimates of the Gini index (e.g., 𝐺 ≥ 0.2).  For samples with sizes 𝑛 = 200 and 𝑛 = 1000, non-
negligible biases can be expected for estimates of the Gini index greater than 0.4 and 0.5, 
respectively. Severe biases are not expected when the sample size is larger than 1000. Figure 8 
gives a more precise understanding of the conditions required in practice to apply a bias 
correction, which depend on the sample size and estimates of both the coefficient of skewness 
and the Gini index. 

Both bias and MSE measures are important to evaluate the quality of estimators. Numerous 
authors indicate that the use of bias correction procedures may have an impact on the efficiency 
of bias corrected estimators. This issue has also been investigated in this paper, with the results 
indicating that said impact is not relevant, especially as the sample size increases. The empirical 
bootstrap is more efficient than alternative bias correction procedures, but slightly less efficient 
than the customary empirical versions of 𝐺, and may even have the smallest MSEs for large Gini 
indices. Conventional advice in the literature is to avoid estimators that are considerably biased, 
so empirical researchers should seek estimators with smaller biases, and then choose one with a 
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small variance. Following this idea, the empirical bootstrap can be good choice for estimating the 
Gini index in the scenarios discussed in Sections 5 and 6. However, alternative bias correction 
procedures also perform well in terms of bias and efficiency in many situations, and they may be 
preferable in terms of simplicity.       

For less skewed distributions (e.g., Weibull and Gamma), the bias of 𝐺  is not a problem, and the 
bias of 𝐺  lies within a reasonable range. This implies that bias correction procedures are not 
required for less skewed distributions. Bias corrections are applied to 𝐺  because it shows the 
best performance in this study. However, such procedures can easily be applied to any other 
estimation method in the literature. 

The observed biases may have an important impact on the coverage rates of confidence intervals 
of the Gini index, especially in the case of the large bias ratios obtained by the estimator 𝐺 . This 
implies that bias corrected estimators are highly recommended for the construction of 
confidence intervals, since they can be invalid and/or undesirable coverage probabilities can be 
obtained in the case of moderate or severe biases. Large biases are also observed by the bias 
corrected estimators in the case of large Gini indices and highly skewed distributions. These 
arguments represent promising directions for future research. For instance, the interval 
estimation based on bias corrected estimators can be investigated to analyse when such 
confidence intervals have desirable empirical coverages. Alternative estimation methodologies 
can also be used to improve the estimation of the Gini index. In particular, it would be interesting 
to reduce the biases that still remain in the aforementioned extreme situations (highly skewed 
distributions with large Gini indices). For instance, information from auxiliary variables can be 
incorporated at the estimation stage, and more accurate results are expected. 
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