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Abstract

This paper investigates real options models that violate the assumption of positive persistence of uncertainty. Without this fun-

damental assumption, existing methodologies are inadequate to address the firm’s investment problem. To tackle this issue, we

introduce a discrete-time version of a real options model and employ reinforcement learning, specifically Q-learning, to derive the

optimal solution. Our findings reveal that in scenarios where the assumption of positive persistence of uncertainty is violated, the

firm’s investment behavior can exhibit disconnected investment regions.

Keywords: Investment analysis, Real options, Reinforcement learning

1. Introduction

In a standard real options model, the value of a single invest-

ment project for a value-maximizing firm is considered where

future cash flows are uncertain in an infinite continuous time

setting and the investment problem is to derive the optimal in-

vestment timing ([16], [3], [18], [6]). Central to the existing

methodologies are assumptions on the structure of the value

function and the stochastic process. The first assumption cor-

responds to monotonicity, which dictates that the value func-

tion of waiting for one period is monotonic in the underlying

state variable. The second fundamental assumption is the posi-

tive persistence of uncertainty of the probability distribution of

the stochastic variable: “There is positive persistence of uncer-

tainty, in the sense that the cumulative probability distribution

ϕ(x′|x) of future [e.g. demand] values x′ shifts uniformly to

the right when the current [e.g. demand] value x increases”

([6]). In case these two assumptions are satisfied, the optimal

investment decision is guaranteed to exhibit a single-threshold
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behavior, i.e. there exists a clear division of the range into low

and high values separated by a threshold such that not invest is

optimal for one side of the threshold and invest on the other.

In some investment problems, the assumption of positive per-

sistence of uncertainty is violated when shocks in preferences

create uncertainty. This means that an increase in demand at

present could signify a decrease in demand that may occur in

the future ([7]). Products such as fidget spinners, hoverboards,

initial versions of virtual reality headsets, and Snap Inc’s Spec-

tacles (released in 2016) illustrate a distinctive market dynamic

wherein an initial increase in demand does not result in an in-

crease in the expected future demand. Fidget spinners, for in-

stance, experienced a swift increase in demand, only to see an

equally rapid decline in consumer interest. This trajectory of

demand was mirrored by hoverboards and early iterations of

virtual reality headsets. In the case of Snap Inc.’s Spectacles,

the product was launched to significant public anticipation and

a high initial consumer demand. However, despite this promis-

ing outlook, the demand for Spectacles diminished quickly. The

declining consumer interest was not predominantly due to the

emergence of superior market alternatives; instead, it can be

attributed to the evanescent nature of consumer trends and a

decrease in product appeal. Such scenarios exemplify that an
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initial surge in product demand does not necessarily entail sus-

tained future interest, thereby challenging the assumption of

positive persistence of uncertainty in demand over time.

When the assumption of the positive persistence of uncer-

tainty fails, the uniqueness of the optimal investment threshold

is not guaranteed, and the current solution methods are inad-

equate to address the firm’s investment problem. To address

the latter, in this paper, we use a discrete Markov decision pro-

cess to model the firm’s investment problem. A firm faces a

single-investment decision where it can only invest once. It

has the choice to either invest or delay at each stage as long as

the firm has not invested yet. We employ a model-based rein-

forcement learning approach, specifically Q-learning, to solve

the problem formulated by the Markov decision process. The

main advantage of our proposed solution method is its flexibil-

ity in handling complex problems without imposing assump-

tions on the probability distribution of the stochastic variable.

Although [11] applies reinforcement learning within real op-

tions models to assess investment decisions related to upgrad-

ing hydropower plant capacity, their work still relies on the as-

sumption of positive persistence of uncertainty (see also [5],

[14]). To our knowledge, the present paper is the first effort to

study real options models without this fundamental assumption

on the probability distribution of the stochastic variable.

The literature on strategic investment strategy in a discrete-

time context is not extensive. However, [22] integrates invest-

ment timing using the real options approach with fundamental

game theory and industrial organization principles to demon-

strate how competition can impact project valuation. In the

case of [12], they offer a strategic justification for growth op-

tions amidst uncertainty and imperfect competition in a duopoly

framework. They demonstrate that within a market character-

ized by strategic competition, greater uncertainty may prompt

investment in growth options if a significant strategic advantage

is present (see also [21] and [20]). In [9], the focus is on exam-

ining how technological competition influences the dynamics

of value and returns for Research and Development (R&D) in a

duopoly market. The authors reveal that the value of an R&D

company in a race responds differently to successes and failures

and that the risk premium is significantly impacted by losing a

development stage. [17] tackles the investment timing prob-

lem, wherein firms encounter a range of distinct investment op-

portunities that may be viewed as a collection of real options.

As for [19], it delves into bilateral deals among partnerships

in uncertain conditions, but with downstream flexibility. The

authors demonstrate how optionality impacts the synergies re-

sulting from a partnership in their work. In [8], the investment

strategies for capacity are developed using real options. The

study compares binomial and Markov models, with the con-

clusion that the Markov model is more reliable and yields bet-

ter decision policies. According to [8], Markov models offer

greater flexibility due to their independence from any assump-

tions about the probability distribution of stochastic variables,

non-constant probabilities of variation, and the ability to gener-

alize the binomial distribution. We explore real options models

while refraining from making any assumptions regarding the

probability distribution of the stochastic variable.

The primary contribution of this paper lies in formulating a

discrete and finite robust real options model using a Markov

decision process capable of addressing a broad range of invest-

ment problems. Unlike existing real options methodologies, our

methodology does not rely on the limiting assumption of the

positive persistence of uncertainty for the stochastic variable’s

probability distribution. This flexibility allows us to delve into

the complexities of a firm’s decision-making process in mar-

kets where consistent growth is not expected. Notably, our

findings indicate that without the positive persistence of uncer-

tainty assumption, the firm’s investment strategy might exhibit

disconnected investment regions. This underscores that there

may exist situations where the firm decides to invest at a cer-

tain demand level, but intriguingly, opts not to invest when the

demand is marginally higher. We employ reinforcement learn-

ing, specifically Q−learning, as a solution method to determine

the optimal investment decision for the firm. Additionally, we

provide numerical examples and economic interpretations.

The paper is organized as follows. Section 2 presents the
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general setup of our model. In Section 3 we develop the solu-

tion method. An example of disconnected investment regions

is given in Section 4, and the paper is concluded in Section 5.

2. General Setup

We consider a value-maximizing firm with a single invest-

ment project in the monopoly market. The firm finds the op-

timal investment strategy at each moment by taking a binary

action to invest or not invest. The firm can only invest once

in the investment project in which it receives some immediate

and future revenue and incurs an immediate irreversible invest-

ment cost, i.e. once the investment is made, recovering the cost

of undertaking the project is not possible. On the other hand,

there is no cost and immediate revenue if the firm decides not

to invest at the current stage. In our framework, uncertainty

arises from the demand level such that future revenues are not

certain. Therefore, the investment problem for the firm is to

decide on the optimal state to undertake an investment project

under uncertainty.

The demand level is the only uncertain element of the model

and is denoted by the stochastic random variable y. The firm

receives information about the market in which the current de-

mand level, y, is revealed. The firm evaluates the investment

opportunity by calculating its immediate and discounted ex-

pected future revenues against incurring the irreversible invest-

ment cost. We denote the investment cost of the firm by I. The

firm incurs the immediate irreversible investment cost once the

investment is made. If the firm invests at the current stage or

has already invested in the previous stage, it receives the imme-

diate revenue of yD, where D is a constant demand factor and

the discounted expected future revenue. Let Y = {y0, y1, . . . , yn}

be a finite set of demand levels where the dynamics are deter-

mined by the transition function P : Y → [0, 1]. The expected

future revenue of the firm is discounted by γ ∈ [0, 1).

In this paper, we model the described investment problem by

employing finite Markov decision processes (MDP) ([1], [10]).

MDPs are a class of stochastic sequential processes that have

been applied in many fields ([13], [2], [26]). The essence of the

model is that the decision maker (firm) inhabits an environment

that changes the state randomly in response to the actions taken

by the decision maker. The states embed information about the

environment which affects the immediate reward obtained by

the firm, and the probabilities of future transitions ([15]). The

firm aims to select actions that maximize a long-term measure

of total reward.

Formally, an MDP consists of a finite set of states S and a

finite set of possible firm actions As. Depending on the action

taken at state s ∈ S, the system is transitioned to the next state

s̄ ∈ S with respect to the transition function π : S × A →

[0, 1]. The transition map, π(s̄|s, as), represents the probability

that the system jumps to the next state s̄ ∈ S if the action a ∈ As

is taken at the current state s ∈ S. Hence, π(s̄|s, a) ≥ 0 and∑
s̄∈S π(s̄|s, a) = 1. After taking action a ∈ As, at each state

s ∈ S, the firm receives an immediate reward which is denoted

by the function R : S × A→ R.

For the monopoly market, the investment problem is mod-

eled as follows. Let ω ∈ Ω = {0, 1} denote whether the firm

has already invested, ω = 1, or not invested, ω = 0. We call

ω ∈ Ω the internal state of the firm. Our MDP has a finite set of

states of S = Y × Ω. In each state, we keep track of the actual

demand level, y ∈ Y , and the internal state of the firm, ω ∈ Ω.

Given that we are at state s = (y, ω) ∈ S, the firm takes action

a ∈ As depending on the value of the internal state ω ∈ Ω. If

at state s ∈ S the firm has already invested (i.e. ω = 1) the

only option for the firm is to do nothing which is denoted by

a = 0. If at state s ∈ S the firm has not invested (i.e. ω = 0) it

needs to decide whether to invest, represented by “1” or not in-

vest, represented by “0”. The set of actions for the firm at state

s = (y, ω) is given by

As :=


{0} if ω = 1

{0, 1} if ω = 0
. (1)

The immediate reward for the firm by taking action a ∈ As at

state s = (y, ω) ∈ S is represented by the function R : S × A→

R. If the firm has already invested (i.e. ω = 1), the firm does

not take action (i.e. a = 0), and the firm receives R(y, ω, a) =
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yD. On the contrary, if the firm has not invested (i.e. ω = 0),

the firm must make a decision from the set of possible actions

(i.e. a ∈ As = {0, 1}). Therefore, the immediate reward is

R(y, ω, a) = yD − I when the firm invests, and zero in case of

not investing in the market. Summing up, we obtain

R(y, ω, a) := (ω + a)yD − aI,∀y ∈ Y, ω ∈ Ω, a ∈ A(y,ω). (2)

When the action is taken, the internal state of the firm is updated

by ω̄ = ω + a, and the demand level is updated according to

the dynamics of the system, P(y). The relation between the

transition function π and the demand dynamics P(y) is given by

π(ȳ, ω̄|y, ω, a) =


P(ȳ|y) if ω̄ = ω + a

0 otherwise
. (3)

Equation (3) implies that the probability of transitioning to a

subsequent state is contingent on the internal state ω ∈ Ω and

the action a ∈ As executed at the current state s ∈ S. If the

forthcoming internal state ω̄ ∈ Ω satisfies the update rule ω̄ =

ω + a, then the state changes according to the system dynamics

P(ȳ|y).

3. Solution Methodology: Q-learning

In reinforcement learning, the state-action value function

(also known as Q-function) estimates the expected total reward

obtained by taking a particular action in a given state and fol-

lowing a specific policy thereafter. It takes into account the cur-

rent state, the chosen action, and the possible future states and

rewards that result from that action ([23]). To find the firm’s

optimal strategy, we use the state-action value function to com-

pute the quality of undertaking a particular action a ∈ As at each

state s ∈ S.

3.1. Strategies

A strategy is a set of rules that an agent uses to determine

which action to take in a given state to maximize its expected

cumulative reward. It is essentially a mapping from states to

actions, and it is the firm’s way of making decisions based on

its environment. A strategy can be stochastic, meaning it se-

lects actions with a certain probability distribution or it can be

deterministic, meaning it assigns a probability one to an action

at each state. The goal of reinforcement learning is to learn an

optimal policy that maximizes the expected cumulative reward

over time. By definition, every Markov decision process has a

deterministic stationary optimal policy ([4]). Therefore, we de-

fine a strategy as σ : S → A such that σ(s) ∈ As for all s ∈ S.

To evaluate a strategy σ we use the Q-function. Let Qσ(s, a)

be defined as the discounted expected future reward by taking

action a ∈ As at state s ∈ S, and continuing according to the

policy σ in the following states. Then by definition it follows

that Qσ(s, a) satisfies the set of linear equations

Qσ(s, a) = R(s, a) + γ
∑

s̄∈S π(s̄|s, a)Qσ(s̄, σ(s̄)),∀s ∈ S. (4)

Given an initial state s ∈ S, the firm aims to find a policy σ that

maximizes the total reward (i.e. Qσ(s, σ(a))). [10] shows that

there exists an optimal policy σ∗ for any given initial state. The

optimal Q-function, Q∗(s, a), can be found as a set of nonlinear

equations given by

Q∗(s, a) = R(s, a) + γ
∑

s̄∈S π(s̄|s, a) maxā∈As {Q
∗(s̄, ā)} , (5)

where the policy that takes an action, arg maxa Q∗(y, ω, a), in

state s ∈ S is optimal ([1]). The Bellman optimality equation

(5) is a recursive relationship that specifies the optimal action-

value function given the current state and optimal policy in sub-

sequent states. It involves considering all possible actions that

can be taken from the current state, calculating the immediate

reward associated with each action, and adding the discounted

expected value of the next state, which is determined by the op-

timal policy. This process is repeated until a terminal state is

reached. The resulting Q-function represents the expected total

reward that can be obtained by taking a specific action in a spe-

cific state s ∈ S and following the optimal strategy thereafter

([23]).

3.2. Q-values

Considering the explained investment problem in Section 2,

if the firm at some state s ∈ S has already invested in the market
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(i.e. ω = 1) then the firm does not make a decision (i.e. a =

0). Therefore, from equation (5) the Bellman equation of the

monopolistic firm is given by the linear system

Q∗(y, ω, a) = Q∗(y, 1, 0) = yD + γEP
[
Q∗(ȳ, 1, 0)|y

]
. (6)

If at state s ∈ S, the firm has not invested (i.e. ω = 0), then for

any given y ∈ Y , the Bellman equation of the monopolistic firm

is given by the linear system

Q∗(y, 0, a) =


γEP

[
maxā∈{0,1} Q∗(ȳ, 0, ā)|y

]
if a = 0

yD − I + γEP
[
Q∗(ȳ, 1, 0)|y

]
if a = 1

. (7)

The firm’s optimal action at state s = (y, ω) ∈ S for any

given value of demand y ∈ Y is not invest if Q(y, 0, a = 0) ≥

Q(y, 0, a = 1), and invest if Q(y, 0, a = 0) < Q(y, 0, a = 1).

3.3. Reinforcement Learning

Reinforcement learning is a powerful subfield of machine

learning that focuses on enabling agents to learn how to make

optimal decisions through interactions with an environment.

The core idea behind reinforcement learning is that an agent

learns by receiving feedback in the form of rewards or penal-

ties for its actions and adjusts its decision-making policy ac-

cordingly. Q-learning is a popular and widely used algorithm

in reinforcement learning that enables agents to learn an opti-

mal policy for any given environment by iteratively improving

their estimates of the expected rewards associated with differ-

ent actions. The idea behind Q-learning is introduced in [25] as

a simple way for agents to learn how to act optimally in con-

trolled Markovian domains. The foundations for reinforcement

learning using MDPs and proposing the Q-learning method as

the solver was laid out by the work of [24]. The firm (agent)

learns the environment by receiving information through its in-

teraction with the environment by taking actions and obtain-

ing rewards. Therefore, the firm’s reasoning is over a learning

process through its interaction with the environment with the

aim of maximizing the rewards it receives over the planning

horizon. The firm is not constrained to a particular course of

action and must explore the quality of various actions through

experimentation. Mostly, the taken action affects the immedi-

ate reward, the next state which the agent will fall into, and the

subsequent rewards ([23]). To find the optimal investment strat-

egy for the firm, we can use reinforcement learning algorithms

where the environment dynamics are given, and the firm needs

to learn the value of actions at different states. For that, we im-

plement a specific class of algorithms in reinforcement learning

called Q-learning to learn the value of an action in a particular

state. We propose to use Q-learning as a solution method for

the investment problem which gives the value of taking a par-

ticular action a ∈ As at state s ∈ S. In Q-learning, to solve

equation (5), Q-values are iterated to update

Qt+1(s, a) = Qt(s, a)︸  ︷︷  ︸
current value

+ ηt︸︷︷︸
learning rate

learned value︷                                                           ︸︸                                                           ︷(
R(s, a) + γ

n∑
s̄∈S

π(s̄|s, a) ·max
ā∈As

Qt(s̄, ā)︸                                           ︷︷                                           ︸
new estimation

−Qt(s, a)
)
, (8)

where a learning rate is ηt ∈ (0, 1). In the update rule (8), the

current value Qt(s, a) is updated by a learned value which is

adjusted by a constant learning rate through experimentation to

fit our model-based Q-learning algorithm. The iterative pro-

cess is based on the Bellman equation, which can be viewed

as a fixed point equation. The fixed point theorem provides a

mathematical framework for analyzing and proving the conver-

gence of iterative algorithms like Q-learning. By applying the

fixed point theorem, we can prove the existence and unique-

ness of the solution to the Bellman equation, which is the opti-

mal action-value function. This theoretical framework is essen-

tial for understanding the convergence properties of Q-learning

and other iterative algorithms. Furthermore, it helps in proving

the convergence of Q-learning to the optimal policy. The Q-

learning algorithm converges with probability one if the set of

states and the set of actions are finite,
∑

t ηt = ∞ and
∑

t η
2
t < ∞,

and the variance of the reward function is bounded ([24]). The

pseudocode for the Q-learning algorithm is given by
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Algorithm 1 Q-learning: Learn function Q : S × A→ R
Require: Demand levels Y = {y0, . . . , yn}, Internal state Ω = {0, 1}, Sates S =

Y × Ω, Actions A = {0, 1}, Transition probabilities π(s̄|s, a), Discounting

factor γ ∈ [0, 1), learning rate η ∈ (0, 1)

procedure Qlearning(S, A, π, R, γ)

Initialize Q : S × A→ R+0 arbitrarily

while ∆ < θ (small positive number) do

for s ∈ S do

for a ∈ A do

Q̄(s, a) ← Q(s, a) +

η
(
R(s, a) + γ

∑n
s̄∈S π(s̄|s, a) ·maxā∈As Q(s̄, ā) − Q(s, a)

)
∆← max{∆, |Q − Q̄|}

Q̄← Q
return Q

4. Disconnected Investment Regions

The assumption of positive persistence of demand is that the

current high demand is likely to continue into the future, shift-

ing the future distribution of demand accordingly. While this

assumption is valid for many investment problems, it fails in

scenarios where a spike in demand is followed by a signifi-

cant decline, as highlighted by [7]. There have been historical

instances of products that experienced a sudden spike in de-

mand, such as fidget spinners, hoverboards, early versions of

virtual reality headsets, and Snap’s Spectacles, failing to sus-

tain this high demand over time. These products initially at-

tracted significant consumer interest, only to see that interest

fades quickly, not necessarily due to the introduction of supe-

rior alternatives but often due to the fleeting nature of consumer

trends and diminished product appeal. Given these historical

instances, it is imperative for companies to consider scenar-

ios where initial surges in demand do not guarantee sustained

future demand. Our methodology is designed to account for

these complex scenarios, thereby providing firms with a more

nuanced, reliable tool for understanding and navigating the un-

predictable dynamics of market demand over time.

The discrete-time setting involves a system of difference

equations rather than the partial differential equations used in

continuous-time settings, and the optimal investment timing

rules can be determined using recursive algorithms or other

numerical methods. The monotonicity assumption, concern-

ing the value function of waiting, is required in both discrete

time and continuous time for the existence and uniqueness of

solutions. The continuous-time setting requires the monotonic-

ity assumption to ensure the regularity of the solutions to the

Hamilton-Jacobi-Bellman (HJB) equation, which is essential

for proving the existence and uniqueness of solutions. In our

discrete model, given that the profit P(y) = yD is monotonic in

the underlying stochastic variable y, the assumption of positive

persistence of uncertainty is sufficient to ensure the existence

and uniqueness of the investment threshold.

In the following, we consider the introduced investment

problem in Section 2 and provide numerical results using the

Q-learning algorithm (1). The following example illustrates the

case in which the real options models are without the restrictive

assumption on the stochastic process. Thus, the results demon-

strate different investment threshold behavior, namely discon-

nected investment regions, depending on the dynamics of the

Markov decision process.

4.1. An Example of Disconnected Investment Regions

In this section, we illustrate the concept of disconnected in-

vestment regions through a concrete example. Let the matrix

PNon-Standard
Y in the following represent the market demand in

terms of transition probabilities between different demand lev-

els. The bolded values indicate high transition probabilities,

suggesting a strong inclination towards retaining the current de-

mand level or transitioning to an adjacent level. Conversely,

gray-highlighted values indicate relatively low transition prob-

abilities, depicting minor chances of those transitions. A stand-

out feature of this matrix is the evident diagonal trend of high

probabilities, implying that for demand levels y0 to y5, there is

a strong likelihood of demand either staying consistent or tran-

sitioning to the immediately subsequent level. For example,

given the current demand is at level y0, there is a 92% chance

that the demand will either remain the same or increase slightly.

However, the matrix also exhibits some anomalies. Particu-

larly, for demand level y6, rather than a heightened probability
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of maintaining the current demand or a slight increase, the sys-

tem shows a strong 97.4% inclination to revert dramatically to

the demand level y0. This deviation from the diagonal trend

suggests that upon reaching a certain demand threshold (in this

case, y6), the system is highly likely to reset to its initial state.

This behavior, which is evident at y6, signifies that the assump-

tion of the positive persistence of uncertainty is violated. The

transition matrix PNon-Standard
Y is given as follows

y0 y1 y2 y3 y4 y5 y6 y7 y8



y0 0.92 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

y1 0.001 0.929 0.01 0.01 0.01 0.01 0.01 0.01 0.01

y2 0.001 0.001 0.938 0.01 0.01 0.01 0.01 0.01 0.01

y3 0.001 0.001 0.001 0.947 0.01 0.01 0.01 0.01 0.01

y4 0.001 0.001 0.001 0.001 0.956 0.01 0.01 0.01 0.01

y5 0.001 0.001 0.001 0.001 0.001 0.965 0.01 0.01 0.01

y6 0.974 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.01

y7 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.983 0.01

y8 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.992

.

Figure 1 underscores the absence of a distinct single-threshold

behavior, indicating that there is not a single cut-off point

separating optimal actions. Table 1 provides a detailed rep-

resentation of the firm’s action-value function for each state

s ∈ S, contingent on the chosen action a ∈ As. This function

clearly deviates from the monotonic condition posited in [6].

Table 1: The Q-values are calculated using the Q-learning algorithm (1) for

a monopoly market. The parameter values are, D = 2, I = 4, γ = 0.8, y =

{0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, and PNon-Standard
Y .

Disconnected investment regions

ω a y0 y1 y2 y3 y4 y5 y6 y7 y8

0 0 1.6329 1.6329 2.1951 3.6919 5.2478 6.8665 1.5239 10.6127 12.4448

1 -1.4391 0.4491 2.3901 4.3869 6.4428 8.5615 1.3291 13.3091 15.6412

1 0 2.5609 4.4491 6.3901 8.3869 10.4428 12.5614 5.3291 17.3091 19.6412

1 - - - - - - - - -

Let G : Y → R be defined as G(y) := max{0,Q(y, ω =

0, a = 0) − Q(y, ω = 0, a = 1)} for any given value of demand

y ∈ Y . A positive value of G(y) means that not invest is the op-

timal action, whereas zero corresponds to invest as the optimal

action. When the firm operates in states s0 and s1, the opti-

mal choice is not invest. This is evidenced by the inequalities

Q(y0, ω = 0, a = 0) = 1.6329 > −1.4391 = Q(y0, ω = 0, a = 1)

and Q(y1, ω = 0, a = 0) = 1.6329 > 0.4491 = Q(y1, ω = 0, a =

1). In contrast, if the firm finds itself in states s2, investing be-

comes the optimal choice, as illustrated by Q(y2, ω = 0, a =

0) = 2.1951 < 2.3901 = Q(y2, ω = 0, a = 1). Yet, when at

state s6 = (y6, ω = 0), the optimal strategy reverts to not invest.

The results highlight the presence of disconnected investment

regions. Contrary to the conventional single-investment thresh-

old, there may be scenarios where a firm decides to invest when

demand is at a certain level, but decides not to invest when the

demand increases slightly.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G(
y)

Figure 1: Disconnected investment regions. The parameter values for

the function G(y) are given by D = 2, I = 4, γ = 0.8, Y =

{0, 0.25, 0.5, 0.75, 0.1, 1.25, 1.5, 1.75, 2}, and PNon-Standard
Y .

5. Conclusion

Real options models can be used to assess investment

projects in an uncertain economic environment. The current

methodologies only tackle situations where two assumptions

are met, resulting in single-investment threshold behavior. The

first assumption is the monotonicity of the value function in

the underlying state, and the second one is the positive persis-

tence of uncertainty. However, investment problems may fail

to satisfy the positive persistence of uncertainty. In this case,

existing methods are insufficient to tackle the firm’s investment

problem. To overcome this limitation, we propose to model a

single firm’s investment problem as a finite and discrete Markov

decision process and employ reinforcement learning, in partic-

ular Q-learning, to determine optimal strategies without rely-

ing on restrictive probability distribution assumptions. Our re-
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search highlights the need for more flexible analytical methods

in handling real-world investment complexities. When positive

persistence of uncertainty is absent, a firm’s optimal decisions

may exhibit disconnected investment regions, diverging from

conventional single-threshold behavior. Specifically, there may

exist situations where the firm decides to invest at a particular

demand level, but intriguingly, opts not to invest when the de-

mand is marginally higher.
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