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Chapter 1

Introduction

1.1 Background

Availability of rich volumes of data has become more commonplace than

ever in many research fields. Researchers are increasingly working with datasets

where large or even huge blocks of variables concerning the same observation

units are gathered from multiple data sources. Such a data setup is known as

‘multiblock data’ (A. Tenenhaus & Tenenhaus, 2011), and there are many exam-

ples of it. In health science, predictor variables from self-reported questionnaires,

brain imaging and eye tracking all obtained for the same set of individuals are

used in conjunction to study the mechanisms behind nicotine addiction (Kang

et al., 2012). Likewise, in clinical psychology, in order to investigate the path-

ways that lead to eating disorders, gene expression data and questionnaire data

are analyzed together (Steiger, Labonté, Groleau, Turecki, & Israel, 2013). For

data consisting of many variables - both in the single and multiblock setting -

summary variables are often introduced by combining the predictor variables to

identify predictive mechanisms behind an outcome. Capturing the information

shared among predictor variables, the summary variables can be understood as

representations of the predictive mechanisms. When multiple blocks of data are

available, this approach of summary variables gives rise to a unique opportunity to

reveal predictive mechianisms of a multi-source nature; mechanisms linked with

predictor variables originating from multiple data sources can be found. For the

eating disorder example, only by the multiblock data setup, a mixture of genetic

and environmental variables, such as an interaction between certain genenetic

susceptibilities and exposure to childhood abuse, can be discovered as a predictive

mechanism. Integrated analysis of multiple sources is therefore considered as a

promising approach in many fields for obtaining a comprehensive picture behind

an outcome, since it can uncover these mechanisms characterized by a blend of
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variables from multiple sources.

However, capturing the predictive mechanisms that encompass multiple sour-

ces is a challenging task, as they tend to manifest themselves in a subtle way.

It is common that mechanisms stemming from individual data blocks are more

pronounced in a multiblock dataset (Van Deun, Smilde, Van Der Werf, Kiers, &

Van Mechelen, 2009). This is particularly the case when these individual blocks

are much larger than other blocks, or when the blocks are heterogeneous (i.e. the

scales on which the variables are measured are vastly different across the blocks).

A starting point in tackling this issue is by distinguishing two types of predictive

mechanisms; while the block-specific mechanism is known as a ‘distinctive pro-

cess’, the predictive mechanism in relation with multiple blocks is called a ‘com-

mon process’. To be concrete, as determinants of eating disorders, the abovemen-

tioned example of interaction between genetic susceptibilities and childhood abuse
would be a common process pertaining to the gene expression and questionnaire

blocks, while home environment would be a distinctive process concerning only the

questionnaire block. Only by a refined approach that completely sets the two pro-

cesses apart, it is possible to reveal the subtle common processes and fully reach

the potential harboured within multiblock data.

Moreover, predictive modelling with multiblock data is complicated by sev-

eral issues regarding predictor variables. First, multiblock datasets often contain

predictor variables that are collinear (highly correlated) with each other (this is

known as multicollinearity). This is an inherent issue for a high-dimensional setup

(i.e. datasets with a larger number of variables than observations). When not

taken care of, multicollinearity makes estimated model coefficients unstable and

leads to overfitting; the obtained results are heavily dependent on the specific

sample of data in hand rather than correctly reflecting the true nature of the pop-

ulation (Babyak, 2004). Second, as blocks of predictor variables collected without

a specific aim are joined together, it is common for multiblock datasets to con-

sist of many predictor variables that are redundant for the research question of

interest. In the nicotine addiction example, brain imaging data concerning most

areas of the brain may not be relevant for addiction. Presence of many redundant

predictors blows up the number of coefficients to be estimated, which not only

leaves researchers with a burden to inspect an infeasibly elaborate model, but also

inflates the risk of falsely identifying a predictive effect by chance. Therefore, a

method that finds a subset of important predictor variables amidst the irrelevant

ones and also treats multicollinearity is required, in order to construct a concise

and accurate model for prediction. Figure 1.1 illustrates a multiblock data setup

and the common and distinctive processes along with the important and unimpor-

tant predictor variables.
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Figure 1.1. Example multiblock data setup with common and distinctive processes. The

row indices 1 to I refer to the observations. The columns x1 to x50 indicate the predictor

variables in the first block while x51 to x1050 are predictors in the second block. The

outcome variable is indicated by y. The rectangles with dashed line borders indicate

predictors that are redundant to the common and distinctive predictive processes behind

the outcome, while the filled rectangles refer to relevant predictors.

Challenges present within multiblock data are not only confined to predic-

tor variables, but can also concern the outcome variable. The outcome variable

may be continuous or categorical. While the nicotine addiction can be measured

by a number of cigarettes smoked per day which would be a continuous variable,

the eating disorder may be determined by a medical diagnosis which would be a

categorical variable. A method with versatility to address the two types of vari-

ables and address both regression and classification problems is needed. Moreover,

there may be settings with many outcome variables to target for. The abovemen-

tioned complication of redundant predictor variables applies here; some outcome

variables may not be relevant to the research question. It is also likely that cer-

tain outcome variables would not have strong links with the predictor variables

in hand, rendering themselves difficult to predict given the available predictors.

A method that can filter out these redundant outcome variables is necessary, as

they may obscure the relevant predictive relationships concerning other outcome

variables.
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1.2 Method

A classical yet powerful tool that provides a good basis for overcoming these

challenges is principal component analysis (PCA). It is a dimension reduction tech-

nique that compresses the large set of variables into a smaller set of summary

variables known as principal components, in such a way that the amount of infor-

mation compressed in the lower dimensions of principal components is maximized

(Jolliffe, 1986). For a dataset X concerning I observation units and J variables,

PCA with R (R is a pre-specified number smaller than I and J) components mod-

els the data by the following equations:

X = XWP⊤ + E (1.1)

with W a J × R matrix of weights, P a J × R matrix of loadings and E a I × J

matrix of residual variables. The weights dictate the combination of the variables

into the principal components (T = XW) with T denoting the I × R matrix of

principal component scores. On the other hand, the loadings indicate the relation-

ship between the components and the variables. The principal components are

considered as representations of the processes measured by the variables, and the

weights and the loadings are studied to interpret the principal components.

Extensions of PCA that address the challenges of multiblock data already ex-

ist. Nevertheless, they are purely designed for exploration of model structures

underneath the data, without the focus on prediction of outcomes. To treat multi-

collinearity and the redundant variables problem, sparse PCA has been proposed

by imposing regularization penalties on the coefficients (H. Shen & Huang, 2008;

Zou, Hastie, & Tibshirani, 2006). The regularization penalties, first introduced

for the method of linear regression, force certain coefficients that correspond to

redundant variables to zero, which drops these variables out of the model (Tibshi-

rani, 1996). This approach of regularization has been the workhorse for modelling

with high-dimensional data, as it not only provides a concise model pertaining to

a subset of essential variables, but also prevents the problem of multicollinearity

and overfitting (McNeish, 2015). Sparse PCA borrows these advantages by regu-

larizing the weights or the loadings; it allows correct identification of a subset of

variables that have substantive links with the components.

In the same vein, extensions of PCA that explicitly aim to detach the common

and distinctive processes from each other have also been devised. Simultaneous

component analysis (SCA; Kiers & ten Berge, 1989) is a framework of such meth-

ods. SCA finds principal components from a supermatrix that concatenates the
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multiple data blocks concerning the same observations. By default, these compo-

nents are derived in relation to all data blocks in the dataset. However, by intro-

ducing constraints, two types of components - distinctive and common components
- can be identified, serving as representations for distinctive and common pro-

cesses (see for example Schouteden, Van Deun, Pattyn, & Van Mechelen, 2013).

Distinctive components are found such that they are only associated with a sin-

gle data block, whereas common components are connected with multiple blocks.

Moreover, these SCA approaches have been further adapted to also cater for the

presence of collinear and redundant variables by inducing sparsity on the coeffi-

cients in the same manner as in sparse PCA (de Schipper & Van Deun, 2018; Gu &

Van Deun, 2016). These extensions are able to attain interpretable common and

distinctive components that are associated with a small subset of variables.

In setting up a model to predict an outcome, the component scores from

PCA and its aforementioned extensions can be employed to fit a regression model,

instead of using the original set with a large number of variables. This is a well-

known approach known as principal component regression (PCR; Jolliffe, 1982).

However, this two-step approach has the shortcoming that the prediction of the

outcomes is not considered at the first step of finding the component scores; the

components are derived with the only aim to summarize the variables in hand.

Components that represent important predictive influences may therefore be omit-

ted in this setting. For instance, in the nicotine addiction example, a component

reflecting a brain activity with a crucial link to addiction may be missed due to the

presence of other components that better summarize the brain imaging variables

in hand.

Instead of this two-step approach of PCR, multivariate methods that provide

summary variables in lower dimensions that also incorporate the prediction prob-

lem have been proposed and used widely in many disciplines including chemomet-

rics (S. Wold, Sjöström, & Eriksson, 2001), multi-omics (Lê Cao, Rossouw, Robert-

Granié, & Besse, 2008) and marketing (Hair, Ringle, & Sarstedt, 2011). Principal

covariates regression (PCovR; De Jong & Kiers, 1992) belongs to this family of

multivariate methods and it finds ‘principal covariates’ which account for a max-

imal amount of information in both the predictor and outcome variables. Let X

and Y refer to J predictor variables and L outcome variables concerning I obser-

vations. PCovR uses the following equations to model the predictor and outcome

variables simultaneously:

Y =XWP(Y )⊤ + E(Y )

X =XWP(X)⊤ + E(X)
(1.2)
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where the weights W in this setting dictate how the predictor variables are com-

bined into the principal covariates. The first line concerns the model for the out-

come variables, with P(Y ) a L × R matrix of regression coefficients and E(Y ) the

residual matrix for the outcomes. On the other hand, the second line provides

the model for the predictor variables, with P(X) a J × R matrix of loadings and

E(Y ) the residual matrix for the predictors. According to these model equations,

principal covariates are considered to reflect the underlying processes composed

of predictor variables that play a predictive role in the outcome variables. It is

worth noting that the PCovR model is identical to the models employed by PCR or

another popular multivariate tool called partial least squares (PLS; H. Wold, 1982;

S. Wold, Martens, & Wold, 1983), although the estimated models differ across the

three methods. More detailed comparisons between PCovR and these other mul-

tivariate methods can be found in the following chapters. Additionally, from the

perspective of machine learning that distinguishes statistical methods into super-

vised and unsupervised methods, PCovR can be considered as being in between

the two. It carries out the unsupervised task of finding a lower dimensional rep-

resentation of the predictor variables, while also fulfilling the supervised task of

predicting the outcome variables.

In light of the challenges of multiblock data, whereas a sparse extension of

PCovR that tackles the problem of collinear and redundant variables has been de-

vised (sparse PCovR; Van Deun, Crompvoets, & Ceulemans, 2018), developments

that also disentangle the common and distinctive processes from each other have

not yet been put forward. Namely, extensions analogous to those aforementioned

in the PCA setting that accommodate multiblock data have not been proposed

in the context of PCovR. To this end, this dissertation sets its focus at extending

the PCovR method to overcome the challenges present within multiblock data.

The methods will uncover common and distinctive predictive processes behind

the outcome of interest, and concisely represent them by basing the components

on a small set of important variables. Both continuous and categorical outcome

variables will be considered by the methods, as well as the setting with multiple

outcome variables. Owing to the intimate connection between PCA and PCovR,

we have also conducted research on topics within sparse PCA, with an aim to seek

out possible future directions for sparse PCovR research. These sparse PCA stud-

ies are also included in the dissertation given their direct relevance to the PCovR

extensions. In the following, we provide the outline of the dissertation.
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1.3 Outline of the dissertation

In Part I, we propose three extensions of PCovR for high-dimensional data

from multiple sources. Chapter 2 provides a multiblock extension to sparse PCovR.

By imposing a constraint that can force the entire set of coefficients corresponding

to certain data blocks to zero (called the zero block constraint), the method is able

to explicitly discern between common and distinctive covariates, which reflect the

common and distinctive predictive processes. Further sparsity is induced by regu-

larization penalties, as done in sparse PCovR (Van Deun et al., 2018). A simulation

study was conducted to comparatively assess the method against similar methods

with respect to the quality of prediction and the retrieval of the true processes un-

derlying data. The method was found to be better at prediction than the two-stage

PCR approach that first derives the common and distinctive components; the two-

stage approach may omit an important process. At the same time, the zero block

constraint and the penalties together were able to construct models that reflect

the true underlying processes better than the PLS method designed for multiblock

data. By employing an empirical dataset concerning different types of measure-

ments made on potato samples, we demonstrated that the novel method has com-

petitive performance for predicting the sensory experience while uncovering an

interpretable model. This chapter was published in Journal of Chemometrics.
In Chapter 3, we expanded the multiblock sparse PCovR method to address

a classification problem. By combining the method put forward in Chapter 2 with

the generalized linear model framework, a logistic regression variant of multiblock

sparse PCovR was devised. Moreover, instead of using a zero block constraint

which entailed an excessive number of model estimations, a regularization penalty

that forces the entire set of coefficients from a data block to zero was incorporated,

reducing the computational load significantly. Two different types of penalties

were therefore employed to identify common and distinctive covariates and also

to impose sparsity. In a simulation study, we found that the method outperforms a

classifier based on PLS in both classification and recovery of underlying processes.

Practical value of our method was illustrated with an empirical dataset concerning

questionnaires on three different members from the same family (mother, father

and child). The method classified the families well, while constructing a concise

model with common and distinctive covariates. This chapter was published in

Behavior Research Methods.
Whereas Chapter 2 and 3 placed the stress in the variable selection problem

of the predictors, we looked towards incorporating variable selection of outcome

variables in Chapter 4. A sparse PCovR method that excludes unimportant vari-

ables at both ends of predictor and outcome variables was proposed therein. Being
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one of the first studies on the simultaneous selection of predictors and outcomes,

it is a relevant direction as the problem characterized by the excess of unneces-

sary variables also pertains to outcome variables. In comparison to sparse PCovR

and sparse PLS methods that do not explicitly remove redundant outcome vari-

ables, the novel method was reported to be better at outcome prediction in the

simulation study. We adopted a dataset regarding a cold study that includes 16

symptoms associated with cold and flu as the outcomes and many other variables

under various themes such as blood chemistry and health practices as predictors.

By using the novel PCovR method, we were able to identify 10 symptoms that

are relevant to being affected by the cold virus and a group of predictors that are

important for predicting these symptoms. It was also found to have better predic-

tion quality than the two competing methods under comparison. This chapter is

currently under review.

In Part II, we looked into possible opportunities to further refine the PCovR

methodology for large and multiblock data by taking a step back and visiting topcis

within sparse PCA. Since sparse PCovR is rooted in sparse PCA, chapters in this

part are of high relevance not only to the previous chapters but also to future

developments of sparse PCovR. Chapter 5 sheds light on important issues that arise

by imposing sparsity to the PCA problem. It is well-known that the solutions of

non-sparse PCA are found by singular value decomposition (SVD). In this setting,

weights, loadings and right singular vectors are equal to each other. However, they

are no longer equal to each other in sparse PCA where the weights and loadings

are made sparse. This loss of equality is often overlooked in the literature, leading

to complications with respect to simulation studies and algorithm initialization

strategies. We pointed out that commonly used setups for simulation studies are

not comprehensive, and at times resulting in optimistic conclusions on sparse PCA

methods. Also, the risk of only relying on the right singular vectors to initialize

the algorithms was demonstrated by our simulation study. The consequences of

choosing between weights or loadings to be sparse have been highlighted by the

simulation study and by employing two empirical datasets. The relevance of these

findings is not limited to sparse PCA, but also to extensions of PCovR presented in

this dissertation and to sparse PLS, as these methods share the same structures for

modelling the data. This chapter was published in Behavior Research Methods.
Lastly, Chapter 6 proposes a new algorithm for solving a sparse PCA problem.

We considered a sparse PCA problem formulated with a maximization problem to

optimize, which is different from the PCovR methods devised in Part I. An iterative

thresholding algorithm was derived on the basis of the minorization-maximization

numerical procedure. The algorithm has guarantees for optimality, meaning that

the solution found by the algorithm is optimal with respect to the objective func-

12
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tion. To our knowledge, it is the first work within this formulation of sparse PCA

that proves local optimality. On top of the local optimality, as maximization prob-

lems of sparse PCA have been known to be more feasible for very large sets of data

than minimization problems, this chapter implies a next promising direction for

sparse PCovR extensions.
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Extending Principal Covariates Regression
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Chapter 2

Sparse Common and Distinctive Covariates

Regression

Having large sets of predictors from multiple sources concerning the same observation units
and the same criterion is becoming increasingly common in chemometrics. When analyzing such
data, chemometricians often have multiple objectives: prediction of the criterion, variable selec-
tion, and identification of underlying processes associated to individual predictor sources or to sev-
eral sources jointly. Existing methods offer solutions regarding the first two aims of uncovering the
predictive mechanisms and relevant variables therein for a single block of predictor variables; but,
the challenge of uncovering joint and distinctive predictive mechanisms and the relevant variables
therein in the multisource setting still needs to be addressed. To this end, we present a multiblock
extension of principal covariates regression which aims to find the complex mechanisms in which
several or single sources may be involved; taken together, these mechanisms predict an outcome of
interest. We call this method Sparse Common and Distinctive Covariates Regression (SCD-CovR).
Through a simulation study, we demonstrate that SCD-CovR provides competitive solutions when
compared with related methods. The method is also illustrated via an application to a publicly
available dataset.

Keywords: Multiblock data, Principal covariates regression, Common and distinctive processes,
Data integration, Variable selection

Park, S., Ceulemans, E. & Van Deun, K. (2020). Sparse common and distinctive covariates regres-

sion. Journal of Chemometrics, page e3270.
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2.1 Introduction

When predicting an outcome by a number of predictor variables, there often

is the additional aim to obtain insight in the mechanisms at play. For example,

when modeling vaccine efficacy as a function of mRNA transcription rates soon

after vaccination (Nakaya et al., 2011) setting up a prediction tool was not the

only aim. The authors also wanted to understand the involved biological pro-

cesses by finding - in the transcriptomics data - those biological pathways that are

associated to the efficacy of the vaccine. To obtain an even deeper understanding

of the system under study often large and heterogeneous collections of data are

used that result in several blocks of predictors pertaining to the same observation

units. A prominent example is multi-omics studies. These are used to obtain a bet-

ter understanding of disease mechanisms by jointly studying several features of

the biological system (e.g., genomic, transcriptomic, and proteomic data collected

from the same sample of patients and controls; Hasin, Seldin, & Lusis, 2017. Ob-

taining insights from such large multiblock data implies revealing 1) the relevant

features in the system, and 2) the orchestration of the system (which features act

jointly and which ones act individually in shaping the outcome). For example, the

emergence of asthma is known to depend on a complex interplay between genetic

susceptibility and environmental exposure (Gallagher et al., 2011). A complicat-

ing factor in the analysis of the data, is that they often consist of large collections

of untargeted variables which implies that it is the data analyst’s task to sort out

the relevant predictors from the variables that are irrelevant for the process under

study. Moreover, such selection of variables is necessary to ease the interpretation

of the resulting model and to address model inconsistency in the high-dimensional

setting of (many) more variables than cases (Van Deun et al., 2019).

Within chemometrics, Partial Least Squares (PLS) and Principal Covariates

Regression (PCovR) are popular methods which target the twofold goals of de-

riving the components that represent the underlying processes and predicting the

criterion variables. Variants of the methods suited for multiblock data have been

devised and shown to be useful at extracting insight about the mechanisms while

predicting the criterion variable. Examples include incorporating information on

physical properties of intermediate granules when modeling the relationship be-

tween process variables and crushing strength of finished tablets (Westerhuis &

Coenegracht, 1997), predicting sensory attributes of carrot genotypes via find-

ing joint mechanisms concerning dry matter content, non-volatile and volatile

compounds (Kreutzmann, Svensson, Thybo, Bro, & Petersen, 2008), and map-

ping an interrelated model between consumer preference and sensory information

such as odour and flavour pertaining to different flavoured water samples (Måge,
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Menichelli, & Næs, 2012). As these multiblock methods are subject to interpreta-

tional difficulties due to a large number of predictors, sparse PCovR (SPCovR) and

sparse PLS (SPLS) were devised to provide solutions that perform variable selec-

tion (Lê Cao et al., 2008; Van Deun et al., 2018). Furthermore, viewing each block

of predictors as representative of a part of the system under study, multiblock data

may present two different types of underlying predictive mechanisms; those that

pertain only to variables from a single predictor block and the mechanisms that

require joint involvement of variables from multple predictor blocks. We denote

the two types of mechanisms by distinctive and (partially) common mechanisms,

respectively (with partially indicating mechanisms that pertain to variables from

multiple though not all blocks). Identification of these mechanisms has not been

fully addressed in the context of criterion prediction by the existing methods.

On the other hand, for purely explorative purposes (this is, only revealing

underlying mechanisms without trying to predict a criterion), methods that specif-

ically aim to capture common and distinctive processes have been put forward. Si-

multaneous component analysis (SCA) with distinctive and common components

(DISCO-SCA), Joint and individual variation explained (JIVE) and similar other

approaches aim to unravel the structure of the underlying processes by separat-

ing common and distinctive mechanisms (Lock, Hoadley, Marron, & Nobel, 2013;

Schouteden et al., 2013). Måge, Smilde, and van der Kloet (2019) provided a

comprehensive comparison of the performance of several of these approaches un-

der varying data structures while Smilde et al. (2017) proposed a general frame-

work for the methods devised to decompose multiblock data into common and

distinctive processes. Moreover, to attain more interpretable solutions especially

with high dimensional data, sparse methods have been developed that capture

the common and distinctive processes by incorporating particular penalty terms

or pre-specified structures (de Schipper & Van Deun, 2018; Gu & Van Deun, 2016;

Van Deun, Wilderjans, Van den Berg, Antoniadis, & Van Mechelen, 2011).

Along these lines of research, a method is needed that serves the twofold

goals of obtaining insightful predictive models in the setting of high dimensional

multi-block data. As discussed, such a method should incorporate predictor se-

lection and uncover the common and distinctive predictive mechanisms. The de-

velopment of such a method could be envisaged both along the PLS and PCovR

lines. Yet, in comparison to SPLS, SPCovR has been shown to be more effective

in recovering the underlying processes (Van Deun et al., 2018) and it also offers

more flexibility concerning the importance assigned to the dual aim of prediction

of the criterion variable and the reconstruction of the predictor variables. There-

fore, the current paper focuses on PCovR and integrates the sparse PCovR and SCA

methods in the new sparse common and distinctive covariates regression method
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(SCD-CovR). We evaluate the performance of SCD-CovR by comparing it with

other methods that are characterized by similar goals such as sparse generalized

canonical correlation analysis (SGCCA) which is based on PLS (A. Tenenhaus et

al., 2014).

The paper is arranged as follows. First, we describe SCD-CovR in detail, fol-

lowed by a brief overview of existing related methods. Then, simulation studies

that comparatively demonstrate the performance of SCD-CovR and other meth-

ods are presented and their results are discussed. Finally, we conclude the paper

by formulating some limitations and directions for future research. The imple-

mentation of SCD-CovR was done in R and it can be found on Github: https://

github.com/soogs/SCD-CovR, along with the code used to generate the results

reported in this paper.

2.2 SCD-CovR

We will use the following notation throughout the paper: scalars, vectors

and matrices are denoted by italic lowercase, bold lowercase and bold upper-

case letters respectively. Transposing is indicated by the superscript ⊤. Lowercase

subscripts running from 1 to corresponding uppercase letters denote indexing:

i ∈ {1, 2, . . . , I}. Subscript C indicates concatenation of multiple data blocks, while

superscripts (X) and (y) highlight affiliation with predictor and criterion variables,

respectively.

2.2.1 Model and objective function

SCD-CovR models a criterion in function of multiple blocks of predictors all

obtained from the same set of observation units. Let Xk be a column-centered

matrix containing the scores of the I observation units on the Jk predictors in

the kth predictor block; with k ∈ {1, 2, . . . , K}. Also, let y be a centered vector

containing the I scores on the criterion.

The SCD-CovR model is based on the well-known PCA model which takes

the following formulation for Xk:

Xk = XkWk(P
(X)
k )⊤ + E(X) (2.1)

where Wk and P
(X)
k are Jk × R matrices of component weights and loadings,

respectively. To identify the solution, usually the constraint (P(X)
k )⊤P

(X)
k = IR is

added under a principal axes orientation. The weights define how the predictors

are combined into the R principal components (namely, Tk = XkWk, implying

tir =
∑

jk
xijkwjkr) while the loadings express the relationship between them. E(X)
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is used to denote the matrix of residuals. This formulation is known as the weight-

based model (Van Deun et al., 2011).

PCovR explicitly models the criterion as a function of the components in the

PCA model (2.1):

y = XkWkp
(y) + e(y) (2.2)

with p
(y)
k the vector of R regression coefficients and e(y) the residuals pertaining

to the criterion. The twofold aim of PCovR in reconstructing Xk and predicting y

is expressed by the objective function to be minimized (De Jong & Kiers, 1992):

L(Wk,P
(X)
k ,p(y)) = α

∥∥y −XkWkp
(y)
∥∥2
2

∥y∥22
+ (1− α)

∥∥∥Xk −XkWk(P
(X)
k )⊤

∥∥∥2
2

∥Xk∥22
(2.3)

with 0 ≤ α ≤ 1 a known constant. The α parameter specifies the balance be-

tween modeling the criterion and modeling the block of predictors. With α set at

0, the method is identical to PCA followed by regression, while at 1 it becomes

equivalent to linear regression (namely ŷi =
∑

r p̂
(y)
r t̂ir =

∑
r(
∑

jk
p̂
(y)
r xijkŵjkr) =∑

jk
(
∑

r p̂
(y)
r ŵjkr)xijk , with

∑
r p̂

(y)
r ŵjkr as a regression coefficient for the jkth pre-

dictor). How to optimally balance α has been explicitly explored by Vervloet,

Van Deun, Van den Noortgate, and Ceulemans (2013). Note that to identify the

PCovR solution, De Jong and Kiers (1992) introduced the constraint T⊤T = IR.

As pointed out by Vervloet et al. (2013), the solution is still subject to rotational

freedom.

As PCA and PCovR construct the components by linearly combining all the

predictors, the interpretation of the components can be difficult, especially when

the number of predictors grows large. The solutions can also be inconsistent in the

high-dimensional setup (Johnstone & Lu, 2009). To overcome these issues, Zou

et al. (2006) devised a sparse PCA method that imposes regularization penalties

on the objective function. Note that sparse implies that many of the component

weights are penalized to become zero. A sparse variant of PCovR, SPCovR, was

also developed in a similar manner (Van Deun et al., 2018). SPCovR finds the

solutions by minimizing the following objective function:

L(Wk,P
(X)
k ,p(y)) = α

∥∥y −XkWkp
(y)
∥∥2
2

∥y∥22
+ (1− α)

∥∥∥Xk −XkWk(P
(X)
k )⊤

∥∥∥2
2

∥Xk∥22
+ λL |Wk|1 + λR ∥Wk∥22

(2.4)
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such that (P
(X)
k )⊤P

(X)
k = IR and with λL ≥ 0, λR ≥ 0 and α ≥ 0. The reg-

ularization parameters are the lasso, with |Wk|1 =
∑

jk,r
|wjkr|, and the ridge

∥Wk∥22 =
∑

jk,r
w2

jkr
, together forming the elastic net (Zou & Hastie, 2005). The

former shrinks and forces certain weights to be exactly zero, while the latter only

shrinks the estimates. Therefore, the lasso penalty is employed to obtain sparse

weights while the ridge penalty is required to ensure stable estimates under high-

dimensionality. It can also be seen that when both of the tuning parameters λL

and λR are 0, the PCovR formulation (2.3) is retrieved. Note that because of the

penalties, the SPCovR model is identified and not subject to rotational freedom.

However, the components pertain to permutational freedom and sign invariance.

SPCovR and the above methods only target data with a single predictor block

and hence do not address the questions associated with multiple predictor blocks.

These questions can be answered by performing a joint decomposition of the K

predictor blocks into components by imposing a SCA model (Kiers & ten Berge,

1989):

XC = XCWC(P
(X)
C )⊤ + E(X) (2.5)

where XC = [X1, . . . ,XK ] (of size I ×
∑K

k=1 J
(X)
k ) denotes the supermatrix that

concatenates the predictor blocks. Consequently, WC and P
(X)
C are weight and

loading matrices of size
∑K

k=1 J
(X)
k ×R. Hence, the criterion variable can be mod-

eled using the SCA weights:

y = XCWCp
(y) + e(y) (2.6)

with p
(y)
C a vector of R regression coefficients.

As the interpretation of SCA solutions is even more challenging, sparse SCA

methods were devised (Van Deun et al., 2011). Furthermore, a sparse SCA method

that explicitly models common and distinctive processes was proposed. This method,

sparse common and distinctive SCA (SCaDS), minimizes the following objective

function (de Schipper & Van Deun, 2018):

L(WC ,P
(X)
C ) =

∥∥∥XC −XCWC(P
(X)
C )⊤

∥∥∥2
2
+ λL |WC |1 + λR ∥WC∥22 (2.7)

such that (P(X)
C )⊤P

(X)
C = IR and subject to zero block constraints on WC that fix

block-specific sets of weights - pertaining to one or several predictor blocks - to

zero. This implies that the component is determined only by predictors of those

blocks for which the weights have not been fixed to zero. Common components

are obtained by not placing such zero block constraints on the component. The
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lasso penalty is used in addition to the zero block constraints to achieve sparseness

within the common and distinctive components. As an alternative to using such

a fixed structure, sparse multi-block PCA methods which rely on a group lasso

penalty (which has the property to shrink entire groups of coefficients to zero)

have also been proposed (Gu & Van Deun, 2016).

Building upon SCaDS and SPCovR, we propose the SCD-CovR that predicts

the criterion, while providing sparse solutions that capture the common and dis-

tinctive processes in the predictor blocks. SCD-CovR implies minimizing the fol-

lowing objective function:

L(WC ,P
(X)
C ,p(y)) = α

∥∥y −XCWCp
(y)
∥∥2
2

∥y∥22
+ (1− α)

∥∥∥XC −XCWC(P
(X)
C )⊤

∥∥∥2
2

∥XC∥22
+ λL |WC |1 + λR ∥WC∥22

(2.8)

such that (P(X)
C )⊤P

(X)
C = IR, and subject to zero block constraints on WC .

As in SCaDS, common and distinctive components can be obtained with SCD-

CovR through the zero block constraints on WC . Similarly as for SPCovR, the

components both account for variation in the criterion and predictor variables

with α allowing to flexibly tune prediction and reconstruction. The WC weights

can be examined to understand which predictors define the derived common and

distinct components. It is also easy to see that this method is an adaptation of

PCovR. When λL and λR = 0 are equal to zero and with the absence of the zero

block constraints, the formulation is identical to PCovR.

2.2.2 Algorithm

To solve the optimization problem defined in (2.8) we use an alternating

procedure where the loadings P
(X)
C and the regression coefficients p(y) are solved

for conditional upon fixed values for the weights WC and vice versa. A schematic

outline of the algorithm is given here below. The optimization procedure that we

propose here closely follows those proposed for SCaDS and SPCovR (de Schip-

per & Van Deun, 2018; Van Deun et al., 2018). This procedure boils down to

solving for all components together (unlike deflation methods that solve for each

component in turn) and using a coordinate descent procedure to solve the con-

ditional elastic net problem to estimate the sparse weights. More details on the

procedure can be found in the Appendix. The alternating routine ensures that the

loss is non-increasing and the algorithm converges to a stationary point, usually a

23



Chapter 2

local minimum. To avoid local minima problems, we recommend to use multiple

random and a rational starting value based on PCovR.

Algorithm 2.1 SCD-CovR
1: Inputs:

XC and y, number of components R, weighting parameter α, regularization
parameters λL and λR, maximum number of iterations T , convergence threshold
ϵ ≥ 0

2: Initialize:
WC ←WC

(0), P(X)
C ← P

(X)
C

(0)
, p(y) ← p(y)(0), L0 ← Initial loss,

Loss difference d← 1, Iteration counter t← 1

3: while t < T or ϵ < d do
4: Conditional estimation of P(X)

C

(t)
and p(y)(t) given WC

(t−1)

5: Conditional estimation of WC
(t) given P

(X)
C

(t)
and p(y)(t)

6: Lu ← updated loss given WC
(t), P(X)

C

(t)
and p(y)(t)

7: d← L0 − Lu

8: t← t+ 1
9: L0 ← Lu

10: end while

2.2.3 Model selection

To use our proposed SCD-CovR method, values have to be provided for the

number of components R, the weighting parameter α, the number of (partially)

common and distinct components, and the ridge and lasso regularization param-

eters λL and λR. In order to select a suitable model, these parameters need to be

tuned according to some optimality criterion. Several model selection strategies

exist targeting different optimality criteria. These include cross-validation which

is often recommended within the literature for methods involving regularization

parameters. To optimize the optimality criterion, a grid search can be used that

exhaustively compares all possible combinations of the tuning values for the dif-

ferent parameters. A sequential approach where each parameter is tuned in turn

can also be considered as it was demonstrated to work well for cross-validation for

PCovR (Vervloet, Van Deun, Van den Noortgate, & Ceulemans, 2016). As cross-

validation is computationally costly if we consider all combinations of the tuning

parameters, we therefore opt to use the sequential approach in the simulation

study and the empirical application. The procedures are implemented slightly dif-

ferently in these two sections because no oracle information is available for the

empirical example. However, in general, the procedures first optimize R, λR and

α simultaneously, followed by tuning the zero block constraints and λL. An inter-

esting feature of the sparse PCA or PCovR methods with sparse weights instead
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of loadings is that the level of sparsity does not closely relate to the amount of

variance explained; models comprised of components with very sparse weights

can account for a comparable amount of variance as models that are much less or

barely sparse (de Schipper & Van Deun, 2018). The weights are used to construct

the component scores and these can be approximated very well with few non-zero

weights. This even means that distinctive components can still account for a con-

siderable amount of variance in the data block(s) for which the component has all

zero weights.

2.2.4 Related methods

SCD-CovR is a method with three main objectives. It (a) predicts a crite-

rion, (b) recovers the underlying common and distinctive predictor mechanisms

via dimension reduction, and (c) derives sparse and therefore interpretable com-

ponents. The method offers a solution that achieves all of these objectives in a

balanced and a flexible manner. This section lists other component based methods

devised to fulfill and balance these multiple objectives. When prediction is the only

objective, methods with more emphasis on prediction may outperform SCD-CovR.

In a similar vein, Smilde, Westerhuis, and Boque (2000) commented that PLS usu-

ally yields better prediction if the multiple blocks are analyzed as one single ‘su-

perblock’. Accounting for the multiblock structure helps in revealing meaningful

insights but may come with lower prediction quality. On the other hand, applying

a componentwise approach or explicitly taking into account the multi-block struc-

ture regularizes the problem. As such procedures safeguard against overfitting,

they may improve the prediction quality especially in unstable settings (e.g., high

dimensional data).

A method often used to aim both at prediction and modeling the variation

in the block of predictors is principal component regression (PCR). This method

first performs PCA and then, in a second and separate step, regresses the criterion

on the components. The PCA step can be performed with SCaDS (leading to PCR-

SCaDS) to also meet the objectives of finding common and distinctive mechamisms

and having sparse component weights. It is closely related to SCD-CovR, as the

components found by PCR-SCaDS are equal to the SCD-CovR components that we

would obtain if we set the weighting parameter α to zero. Moreover, both meth-

ods encourage the recovery of the common and distinctive structure by imposing

zero block constraints on the weights matrix. In comparison to SCD-CovR, PCR-

SCaDS does not take the regression problem into consideration when deriving the

components, implying that the processes that underlie the predictors would be re-

trieved with higher quality. However, simultaneously, PCR-SCaDS suffers from the
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weakness that predictor components that explain a lot of variance in the criterion

may not be recovered (Vervloet et al., 2016).

SGCCA is another component-based method that addresses the multiple goals

of simultaneous prediction and modeling the variation in the predictors. Being

an extension of PLS, multiple data blocks are analyzed simultaneously to obtain

sparse components while at the same time these components should account for

the variation in the criterion (A. Tenenhaus et al., 2014). Extracting components

that also allow to predict well is similar to SCD-CovR but unlike PCR-SCaDS. How-

ever, while SCD-CovR provides a flexible framework to weight reconstruction of

the predictors and prediction of the criterion, PLS-based methods tend to lean

closer to prediction (Van Deun et al., 2018; Vervloet et al., 2016). This also means

that SGCCA may have more difficulties in recovering the underlying processes.

Furthermore, methods based on PLS are often more prone to overfitting than those

derived from PCovR, which in turn results in a diminished quality of out-of-sample

prediction. Finally, SGCCA does not explicitly facilitate the retrieval of common

and distinctive processes.

On top of these two methods, SPCovR can also be considered closely related

to SCD-CovR. Their only difference is the zero block constraints on the weights

for finding the common and distinctive structure. The two methods are expected

to yield similar performance with respect to prediction. However, SCD-CovR can

be expected to be better at capturing the common and distinctive underlying pro-

cesses and thus in giving insight into joint and distinctive mechanisms.

Summarizing, the four methods can be expected to perform differently in

terms of prediction and recovering the underlying components when administered

to the same data. Concerning prediction, PCR-SCaDS is expected to underperform

because it would be unable to capture an underlying process that is strongly as-

sociated to the criterion but accounts only for a minor portion of the variation in

the predictor variables. We anticipate SGCCA to be more prone to overfitting than

the other methods. Regarding correct recovery of the component weights, SGCCA

would be relatively worse than the other methods due to its stronger focus on the

prediction. Lastly, SCD-CovR and PCR-SCaDS are expected to recover the under-

lying common and distinctive processes more effectively than the other methods

as they specifically target these processes through the zero block constraints.

2.3 Simulation study

Although adaptations of PLS, PCR and PCovR have been compared in pre-

vious research (Van Deun et al., 2018; Vervloet et al., 2016), they have not been

put to test in settings where underlying common and distinctive processes are
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expected. Also, the effectiveness of the methods may depend on certain data char-

acteristics. Therefore, we have conducted a simulation study in which we examine

the performance of the methods with respect to sparse retrieval of the underlying

processes, identification of common and distinctive components, and the predic-

tion of the criterion.

2.3.1 Design and procedure

Fixing the number of observations I to 100, two blocks of predictor variables

were generated to represent 3 components with a common and distinctive struc-

ture. Two components represented processes distinctive to predictor block 1 and

2, respectively. The remaining component reflects a common process involving

both of the blocks. We defined the three components such that one of them ex-

plains 50% of the true structural variance in the predictors, another one 40% and

the remaining one 10%. Adopting the terminology from Vervloet et al. (2016), we

refer to the first two components as ‘strong’ components and call the third one a

‘weak’ component. On the other hand, the three components also differ in ‘rele-

vance’ for predicting the criterion, in that one of them explains 66.7% of the true

criterion variance and the other two 16.67% each. Finally, 70% of the weights and

the loadings were made sparse.

We manipulated five data characteristics which are listed in the overview

below. Each level within the manipulated factors is provided in square brackets.

For the second and third factor which concern the strength and the relevance of

the components, the proportion of variance explained is provided in the following

order: [component distinctive to block 1, component distinctive to block 2, and

common component].

Study setup
1. Number of predictors Jk in each block: [100], [10]

2. Strength of the three components: [50%, 40%, 10%], [10%, 40%, 50%]; in the
first case the common component is weak and in the second case the first distinctive
component is.

3. Relevance of the three components: [16.67%, 16.67%, 66.67%], [66.67%, 16.67%,
16.67%]; in the first case the common component is the most relevant and in the
second the first distinctive is.

4. Proportion of error in XC : [10%], [50%]

5. Proportion of error in y: [10%], [50%]

To obtain two predictor blocks that correspond to the settings described

above, the following procedure was followed. The true predictor matrix X∗
C is

defined by the model X∗
C = X∗

CWC(P
(X)
C )⊤T where the weights and the loadings
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are equal and column-orthogonal: WC = P
(X)
C . First a random column-centered

matrix T∗ of size I × R was generated from a multivariate normal distribution

with the identity matrix as covariance matrix. Subsequently, T∗ was centered

and column-orthogonalized to yield T. Second, to obtain a sparse and orthogo-

nal weights matrix, we started by generating a random weights matrix of W∗
C of

size
∑

k Jk × R from a uniform distribution over the interval of [0, 1]. To cre-

ate one distinctive component for each of the two predictor blocks, the weights

of the predictors on this component were set to zero in the other block. In the

remaining non-zero parts, randomly chosen elements were replaced by zeros to

attain a sparsity level of 70% when computed across the full matrix. The resulting

matrix was orthogonalized using a Gram-Schmidt procedure in a manner that the

sparse elements are retained to yield the true weights matrix WC . Furthermore,

a diagonal matrix D was created with the diagonal values representing the rela-

tive proportion of variance accounted for by the components (i.e., reflecting their

strength). Since WC = P
(X)
C , the true predictor matrix X∗

C was then obtained

as XC
∗ = TD(P

(X)
C )⊤ = X∗

CWC(P
(X)
C )⊤. Finally, residuals were added generated

from a standard normal distribution and scaled such that the predictor blocks con-

tain the desired level of error to yield XC . The proportion of error is defined as

the proportion of total variance in the observed XC or y that is due to error. The

scores on the criterion variable were obtained in a similar fashion with the equa-

tion y = TDp(y) + e(y) = X∗
CWCp

(y) + e(y). To specify the regression coefficients

p(y), we first fixed the coefficient pertaining to the second component to −0.3.

This second component is constantly irrelevant across the conditions. The other

two coefficients were specified according to the different levels of strength and

relevance.

Fully crossing the conditions and generating 50 replicate datasets per con-

dition, 2 × 2 × 2 × 2 × 2 × 50 = 1600 datasets were produced. Each of the 1600

datasets was subjected to eight different analyses. The different analysis methods

resulted from crossing the following four methods with two different numbers of

extracted components.

Analysis methods
1. Method: [SCD-CovR], [SPCovR], [PCR-SCaDS], [SGCCA]

2. Number of components extracted: [2], [3]

Although a 3-component model was used for data generation, we varied the

extracted number of components because we aim to understand the behaviour and

the performance of different methods at identifying the components. When meth-

ods extract two components from data generated using a 3-component model,

methods can focus on different aspects and thus yield different subsets of compo-
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nents. As the relevance and the strength of the three components are manipulated

across the conditions, we can observe how both aspects determine which two

components are extracted. For example, as mentioned in Section 2.2.4, we expect

PCR-SCaDS to recover the strong components rather than the relevant compo-

nents.

2.3.2 Model selection

The number of components R extracted for all four methods is fixed by the

study design. A few other tuning parameters were fixed such as to correspond to

the true model structure. Suitable values for the tuning parameters that were not

fixed were found sequentially, for each data set and each analysis method.

For SCD-CovR, using the given R, we first simultaneously tuned the weight-

ing parameter α and the ridge penalty λR via 10-fold cross-validation, keeping the

lasso penalty λL at 0 (which therefore does not induce any sparsity) and the zero

block constraints such that no distinctive components are imposed. We adopted

the 1 standard error (SE) rule to select a parameter which yields the most general

model among the set of parameters with errors within 1 SE from the minimal cross

validation error. Usually, generality of models indicate that the model is unsatu-

rated and thus easy to interpret and unlikely to overfit. Since higher α values place

more emphasis on criterion prediction and therefore lead to a model more prone

to overfitting, we chose the lowest α value via the 1 SE rule. Second, a suitable

common and distinctive component structure was determined. When extracting

2 components, the zero block constraints on WC that provide the structure of the

common and distinctive components was chosen through 10-fold cross-validation.

We selected the common and distinctive structure of the two components which

led to the smallest cross validation error. The 1 SE rule was not used since it is

difficult to define what a general model is with regards to the common and dis-

tinctive structure. On the other hand, for retrieving three components, the defined

true structure was provided. The lasso parameter was tuned by selecting the value

that results in the correct number of zero component weights.

For SPCovR, the set of tuning parameters is the same as SCD-CovR except

for the zero block constraints. As α and λR were selected without any zero block

constraints for SCD-CovR, these values were adopted for SPCovR (note that when

the zero block constraints do not impose distinctive components, SCD-CovR is

equivalent to SPCovR). Also here λL was tuned to return the correct number of

zero coefficients.

For PCR-SCaDS the number of common and distinctive components as well

as λR and λL need to be determined. We started the sequential approach by per-
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forming 10-fold cross-validation with the 1 SE rule for determining λR. Next, the

zero block constraints and λL were found as previously discussed for SCD-CovR.

Finally, for SGCCA, the λL tuning parameter was fixed to yield the same

number of zero-coefficients as in the generated data. The ridge penalty in SGCCA

was tuned using the default setting the package provides.

2.3.3 Evaluation criteria

The four considered methods serve multiple aims: predicting a criterion, cap-

turing possible common and distinctive underlying processes and providing sparse

solutions for better interpretation. To assess the effectiveness of the methods at

meeting these aims, we employed two evaluation criteria.

1. Out-of-sample R2: equivalent to the R2 measure for OLS, but applied for an inde-
pendent out-of-sample test set.

2. Correct classification rate: proportion of WC coefficients correctly classified as zero
and non-zero elements relative to the total number of coefficients.

The independent test set (of 100 observation units) needed for computing

the out-of-sample R2 was generated following the same underlying model and

the procedures as the data used for estimation. The out-of-sample R2 measure is

computed by the following equation.

R2
out-of-sample = 1−

∥ytest − ŷtest∥22
∥ytest∥22

(2.9)

where ytest refers to the y scores from an out-of-sample test set and ŷtest indi-

cates the predicted score that corresponds to ytest. Therefore,
∥ytest − ŷtest∥22
∥ytest∥22

refers

to the scaled sum of squared prediction error. Since this scaled sum of predic-

tion error can be larger than one, it is possible for the out-of-sample R2 to take a

negative value. The correct classification rate is computed by comparing the true

and the estimated WC weights matrices. To handle the permutational freedom

and the sign invariance of the estimated components, we calculated Tucker con-

gruence between the columns of the true WC matrix and those of the estimated

WC matrix. After pairing the true and estimated WC columns that resulted in

the highest Tucker congruence, the correct classification rate is calculated from

the matching pairs of true and estimated WC columns. This strategy was also

used when only two components were extracted: they were matched to those two

components of the three true ones that yield the highest Tucker congruence.
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2.3.4 Results

2.3.4.1 Out-of-sample R2

First we consider the performance of the four methods in terms of how well

they predict new data. The results are summarized in Figures 2.1, 2.2, 2.3, and

2.4. The first two of these refer to the results obtained when extracting two com-

ponents only, while the latter two refer to the analyses with three extracted com-

ponents.

The aggregated results over all conditions, for the analyses with two ex-

tracted components, can be found in Figure 2.1. It can be observed that on aver-

age PCR-SCaDS has smaller out-of-sample R2 than the other three methods. The

latter show similar performance among each other. To examine whether there is

an effect of the design factors and of the used method on out-of-sample R2, we

studied how the out-of-sample R2 changes according to each of the conditions in

the design by observing the boxplots.

Figure 2.2 presents these boxplots of out-of-sample R2 arranged for each

condition, conveying that the proportion of error variance in y plays an influential

role in the performance of the methods. In the conditions where the error variance

in y equals 10%, the four methods have comparable levels of prediction perfor-

mance in those situations where the strong component is relevant for prediction

(the two columns in the middle). In contrast, when the component relevant for

prediction is a weak one, the out-of-sample R2 of PCR-SCaDS decreases consider-

ably. On the other hand, although this trend of underperformance of PCR-SCaDS

can also be found in the 50% error on y conditions, it is not as pronounced.

SGCCA is more sensitive to whether the relevant component is strong or

weak: When a strong component is relevant, the method has comparable out-

of-sample R2 with the other three methods. However, for datasets where the

weak component is relevant, SGCCA outperforms the other methods. SCD-CovR

and SPCovR outperform PCR-SCaDS with respect to prediction in all conditions;

they perform similar to or a bit better than SGCCA in terms of prediction when

the strong component is also the relevant one but SGCCA has better predictive

performance when the relevant component is a weak component. The underper-

formance of PCR-SCaDS is not a surprising outcome because it only considers the

predictor variables in constructing the components. Therefore, the variance ex-

plained in y by a weak but relevant component is not effectively captured by the

method, since it extracts the two strong though irrelevant components.

Figure 2.3 summarizes the out-of-sample R2 obtained when each of the

methods extracted three components. SGCCA appears to stand out with a slightly

lower out-of-sample R2 on average, while the other three methods show very sim-
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Figure 2.1. Box plots of the out-of-sample R2 when two components are extracted: Ag-

gregated results. The red dot indicates the mean.

ilar performance. Figure 2.4 shows the results laid out in function of the factors.

In most of the conditions in Figure 2.4 we can observe the trend conveyed

in Figure 2.3: SGCCA shows a lower level of out-of-sample R2 while the other

three methods perform comparably. The underperformance of SGCCA is clearer

in the conditions in which the proportion of error in y is 50%. This result can be

attributed to overfitting: For these conditions where SGCCA showed low levels of

R2, the residuals (in-sample errors) were considerably smaller than the prediction

error computed with the out-of-sample observation of y. On the other hand, the

two different types of errors were comparable for the three other methods. In

contrast to Figure 2.2 with 2-component models, the prediction quality of PCR-

SCaDS is similar with the one shown by SCD-CovR and SPCovR. This is reasonable,

as in this setup where all three underlying components are extracted, PCR-SCaDS

is able to extract the relevant but weak component.

In conclusion, the results for the out-of-sample R2 show that SCD-CovR

yields a relatively high quality of prediction. When two components are extracted,

it outperforms PCR-SCaDS while with three extracted components, the method re-

sults greater R2 than SGCCA. Additionally, the performance of SPCovR is compa-

rable to that of SCD-CovR. It should be noted, however, that when not all compo-

nents are extracted and there is a weak component that is relevant for prediction,

than SGCCA is the prefered method in terms of prediction.

2.3.4.2 Correct classification rate

Figure 2.5 and 2.6 present the results of the correct classification rate. In Fig-

ure 2.5 which pertains to the analyses with two extracted components, PCR-SCaDS
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Figure 2.2. Box plots of the out-of-sample R2 when two components are extracted; each

panel corresponds to one of the 16 conditions. The column panels indicate the manip-

ulated strength and relevance of the 3 components; D1 and D2 denote the components

distinctive to block 1 and 2 respectively, while C refers to the common component. The

row panels indicate the number of variables Jk in each predictor block.
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Figure 2.3. Box plots of the out-of-sample R2 when three components are extracted:

Aggregated results. The red dot indicates the mean.

yields the highest rate of weights correctly classified as zero or non-zero, closely

followed by SCD-CovR and SPCovR. SGCCA has a considerably lower correct clas-

sification rate. SCD-CovR, SPCovR and PCR-SCaDS again show comparable and

high correct classification rates also when three components were extracted (Fig-

ure 2.6), where SGCCA underperforms again. This general trend seen in Figures

2.5 and 2.6 is largely consistent across conditions.

The outperformance of PCR-SCaDS and SCD-CovR is sensible. On top of

the lasso penalty which induces sparsity, these methods also constrain the weights

such that an entire set of weights belonging to a predictor block are made sparse.

When three components are extracted, the oracle information of the common and

distinctive component structure is provided which further eases the correct clas-

sification. In contrast, SPCovR and SGCCA do not explicitly cater for capturing

common and distinctive processes and thus are expected to show a diminished

rate of correct classification. However, SPCovR resulted in a very similar level

of performance as SCD-CovR and this can be attributed to the usage of rational

starting values based on PCovR. Since the predictor variables were generated with

an underlying true unrotated structure of PCA, initializing the convergence with

PCovR solutions helps SPCovR in correctly retrieving the weights.

To conclude, the results from the correct classification rate suggest that SCD-

CovR and SPCovR return weights that are of similar quality as those obtained with

PCR-SCaDS which emphasizes the recovery of the weights more.
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Figure 2.4. Box plots of the out-of-sample R2 when three components are extracted; each

panel corresponds to one of the 16 conditions. The column panels indicate the manip-

ulated strength and relevance of the 3 components; D1 and D2 denote the components

distinctive to block 1 and 2 respectively, while C refers to the common component. The

row panels indicate the number of variables Jk in each predictor block.
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Figure 2.5. Box plots of the correct classification rate when two components are extracted:

Aggregated results. The red dot indicates the mean.
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Figure 2.6. Box plots of the correct classification rate when three components are ex-

tracted: Aggregated results. The red dot indicates the mean.
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2.3.4.3 Capturing common and distinctive components

On top of the prediction quality and the correct retrieval of sparse weights,

SCD-CovR also targets another objective, namely to capture common and distinc-

tive predictive processes. For each of the 1600 simulated datasets that the methods

were administered to, we counted the number of common and distinctive compo-

nents found by the methods. Regardless of the presence of zero block constraints,

a column of the estimated WC matrix that contains only zeroes for a predictor

block is considered a distinctive component. Otherwise, when non-zero weights

are found for both blocks, the component is a common component. For instances

where an entire column is zero, the corresponding component is identified as nei-

ther common nor distinctive. Table 2.1 provides the numbers of these components

(note that we generated all of the replicate datasets by a 3-component model with

two components distinctive to each predictor block and one common component).

Concerning analyses with two components where the zero block constraints

are selected via cross validation for SCD-CovR and PCR-SCaDS, it can be seen that

almost all of the components found by PCR-SCaDS were distinctive. SCD-CovR

identified about 41% of the estimated components as distinctive components. SP-

CovR and SGCCA which do not impose an explicit constraint for the distinctive

components mostly identified common components, naturally. With respect to

the 3-component models, SCD-CovR and PCR-SCaDS with the oracle information

on the common and distinctive structure returned the components reflecting the

structure effectively. However, it can be seen that SCD-CovR provided a few more

distinctive components than defined. These are instances where the lasso penalty

sparsifies the weights corresponding to an entire predictor block, while the respec-

tive component is a common component. Although SPCovR and SGCCA do not

provide sufficient numbers of distinctive components, SPCovR derived a lot more

of those than in the 2-component setting. Interestingly, the number of components

did not appear to influence the effectiveness of SGCCA in capturing the common

and distinctive components. Also, a component distinctive to the first predictor

block was found much more frequently than the other distinctive component by

SGCCA.

These numbers of retrieved common and distinctive components suggest that

SCD-CovR is as effective as PCR-SCaDS with heavy emphasis on reconstructing

the predictors when the correct common and distinctive structure is given. SP-

CovR which has similar performance with SCD-CovR at correct classification of the

weights falls short at providing enough distinctive components, when the correct

number of 3 components are used. This implies in practice that far more com-

ponents extracted by SPCovR would be interpreted as a common process rather

than a distinctive one, than the components derived using SCD-CovR. Evaluat-
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ing the performance of the methods under 2-component model is less straight-

forward than 3-component model, because now the methods have to summarize

the structural variation governed by three true components by estimating only

two. Methods can choose certain favourable components or may create compos-

ite components which combine multiple true components. In such cases, simply

deriving more distinctive components perhaps does not directly link to outperfor-

mance. Although 50% of the replicate datasets were characterized by the common

component being a strong component, PCR-SCaDS extracted only distinctive com-

ponents. This indicates the method’s strong inclination towards finding distinctive

components. At the same time, while the other 50% of the datasets did not feature

the common component being strong, a vast majority of the components retrieved

by SPCovR and SGCCA were common components. This implies that these two

methods favor common components. In contrast, 59% of the components re-

trieved by SCD-CovR were common components, and this appears to address the

true component structure better than the other methods. To conclude, our re-

sults from 2-component models suggest that SCD-CovR is more capable than the

other methods in finding an adequate balance between common and distinctive

components in reflecting the underlying component structure.

Table 2.1. Number of common and distinctive components considering the weights ma-

trix. D1 and D2 indicate components distinctive to block 1 and 2, respectively and C refers

to a common component. There were 1600 replicate datasets, thus the total numbers of

estimated components for the analyses with two and three components were 3200 and

4800, respectively.

SCD-CovR SPCovR PCR-SCaDS SGCCA

2-component model

D1 666 101 1596 197

D2 641 138 1599 9

C 1893 2961 0 2994

3-component model

D1 1636 643 1601 200

D2 1601 840 1601 8

C 1563 3317 1595 4592

2.4 Illustrative application

In this section we illustrate SCD-CovR by applying it to an empirical dataset.

We also compare with results that are obtained with the related methods to exam-

ine the practical effectiveness of SCD-CovR.
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2.4.1 Dataset and pre-processing

We analyzed a dataset originally from Thybo, Bechmann, Martens, and En-

gelsen (2000) regarding texture measurements of potatoes. The dataset consists of

20 potato samples that were analyzed using three measurement platforms: chem-

ical analysis, uniaxial compression and sensory analysis. The chemical analysis

block contains 14 variables regarding chemical aspects of the potatoes, such as

the chemical composition. The uniaxial compression block with 36 variables pro-

vides measurements obtained from administering uniaxial compression at 6 defor-

mation rates on cooked potato samples. The sensory analysis block is comprised

of 9 sensory variables reported by trained experts. Here, we conduct SCD-CovR

with the aim to predict the sensory experience, while also exploring the under-

lying common and distinctive predictive processes in the chemical and uniaxial

compression blocks.

To this end, we constructed a univariate criterion from the sensory analysis

data block by extracting the first principal component. All variables were first

centered and scaled to unit sum of squares. Next, in order to account for the

differing size of the two predictor data blocks, we scaled these blocks so that the

sum of squares of each data block is equal. We administered SCD-CovR along

with the three related methods employed in the simulation study to assess the

performance of the methods when being applied to an empirical dataset.

2.4.2 Model selection

The model selection strategy for this empirical dataset was largely in line

with the strategy used in the simulation study, applying the same tuning sequence.

However, the true number of components as well as their status (common, distinc-

tive for block one or two) and the level of sparseness were unknown in this setting.

We found the number of components through a residual test where we observe the

change of sum of squared residuals ∥y − ŷ∥22 (where y and ŷ indicate the observed

criterion and the fitted values respectively) while increasing the number of com-

ponents. For the test, we fixed the ridge and lasso penalties λR and λL to 0.01 (to

account for high dimensionality) and 0 respectively. As the common and distinc-

tive structures of the model may interact with the number of components needed,

we included all the possible combinations of the common and distinctive compo-

nents in the residual test. Concerning the weighting parameter α, we used the

maximum likelihood approach discussed in Vervloet et al. (2013). The following

formula was used:
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αML = 1−
∥XC∥22

∥XC∥22 + ∥y∥
2
2

σ2
E(X)

σ2
e(y)

(2.10)

where σ2
E(X) and σ2

e(y)
refer to the error variances to be estimated (see Vervloet,

Kiers, Van den Noortgate, and Ceulemans (2015) for details). The results from the

residual test are shown in Figure 2.9. Within each number of components, mod-

els comprised mostly of distinctive components resulted in larger sums of resid-

uals. However, when observing the overall trend, the sum of squared residuals

decreases sharply at three components independently of the common and distinc-

tive structures. The sum of residuals then stabilizes with subsequent numbers of

components. The residual test using the aforementioned tuning parameters there-

fore resulted in the choice of three components. In order to make the method

comparison fair, we also used three components when applying the other meth-

ods.

Given this number of components, we used the same model selection pro-

cedure as in the simulation study. This procedure consists of conducting cross-

validation for α and λR simultaneously, followed by cross-validation for the zero

block constraints. Both procedures employed 10 folds. The 1 SE rule was adopted

for α and λR but not for the zero block constraints. Out of the three different con-

figurations of zero block constraints which resulted in similar levels of cross vali-

dation error, (D1,D2,C), (C,C,C) and (D2,C,C), the configuration with the smallest

error, (D1, D2, C) was selected (Figure 2.10). We acknowledge that it is hard to

tell which of these three structures is the true underlying common and distinctive

structure, however. Since the oracle level of sparsity is unavailable for this empir-

ical example, λL was determined through 10-fold cross-validation with the 1 SE

rule as well. The plots that depict the cross-validation errors and the correspond-

ing standard errors can be found in Appendix 2.C.

With regards to SPCovR, we adopted the same number of components, α and

λR as used for SCD-CovR. The lasso penalty λL was chosen through 10-fold cross-

validation with the 1 SE rule. For PCR-SCaDS, the procedures from the simulation

study were taken. λL was determined through 10-fold cross-validation with the 1

SE rule. Lastly, SGCCA only needs tuning of the lasso penalty governing the level

of sparsity, this penalty was tuned via 10-fold cross-validation with the 1 SE rule as

well. The plots in Appendix 2.B can be consulted for the cross-validation results.
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Table 2.2. Tuning parameters and R2 per method. ‘Block’ refers to the zero block con-

straints

R α Ridge Lasso Block R2

SCD-CovR 3 0.7 0.005 3.579 C, D1, D2 0.981

SPCovR 3 0.7 0.005 5.477 NA 0.933

PCR-SCaDS 3 NA 0.001 0.011 D1, D2, D2 0.663

SGCCA 3 NA NA 0.277 NA 0.954

2.4.3 Results

The four methods were administered with the tuning parameters in Table

2.2. The table also provides the R2 values of each method, calculated by R2 =

1− (∥y − ŷ∥22 / ∥y∥
2
2) where y and ŷ indicate the observed criterion and the fitted

values respectively.

The R2 values are very high, except for PCR-SCaDS. In order to also test

for out-of-sample prediction quality, we conducted 10-fold cross-validation. The

results can be seen in Figure 2.7 and are in agreement with those found in our

simulation study. SCD-CovR and SPCovR produced less cross-validation errors

than PCR-SCaDS and SGCCA; cross-validation error is comparable to prediction

error. Inspecting the weights matrix produced by the two outperforming methods,

we found that SPCovR produced two common components and one component

distinctive to the chemical block, while SCD-CovR found one common component

and one distinctive component for each predictor block. It is difficult to determine

which of the both solutions is more interpretable, but this finding indicates that

SCD-CovR is capable of capturing more distinctive components than SPCovR while

providing competitive quality in prediction.
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Figure 2.7. Cross-validation error and the corresponding standard error of the four meth-

ods.

For interpretation of the final SCD-CovR model, we can first study the re-

trieved sparse weights matrix (Appendix 2.C). It displays that the resulting weights

matrix is very sparse; there are only 7, 5 and 4 non-zero weights that correspond to

the three components respectively. As dictated by the tuned zero-block constraints,

the weights matrix contains non-zero coefficients from both predictor blocks only

in the column that corresponds to the common component.

We further investigated the model by inspecting Figure 2.8. This figure plots

the component scores of the potato samples. Out of the 20 potato samples, 12

were grown conventionally and 8 were grown organically. Although this informa-

tion was not incorporated when fitting the model, the two types can be clearly

distinguished using the two distinctive components. Therefore, these components

found by SCD-CovR not only are capable of predicting the response variable but

also reveal existing structural variation. In summary, the exploration of the final

model shows that the method is able to fulfill its aims. It retrieves common and

distinctive components that are sparse and thus more interpretable. The compo-

nents also adequately explain the variance in both response and the predictors.
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Figure 2.8. Component scores of the potato samples. The two types of potato samples

are displayed in different colours. C, D1 and D2 indicate the type of the components (i.e.

D1 refers to the component distinctive to the first predictor block which is the chemical

analysis).

2.5 Discussion

Data originating from multiple sources can be analyzed with several objec-

tives: prediction of a criterion, selection of relevant variables and uncovering the

common and distinctive underlying mechanisms. We proposed SCD-CovR to ad-

dress these three aims simultaneously.

Through a simulation study incorporating multiple evaluation criteria that

reflect these aims, we demonstrated that SCD-CovR outperforms three related

methods that serve a subset of these goals; SPCovR, PCR-SCaDS and SGCCA.

Our method resulted in better prediction than PCR-SCADS and was also more

effective than SGCCA for prediction under certain conditions. The coefficients re-

trieved by SCD-CovR better reflected the true underlying coefficients than those

found by SGCCA. Lastly, with respect to finding common and distinctive processes,

the method outperformed SPCovR and SGCCA in capturing the block structure of

common and distinctive components. We further illustrated this comparative ad-

vantage of SCD-CovR by re-analyzing a publicly available empirical dataset. The

SCD-CovR cross-validation error was lower than that of PCR-SCaDS and SGCCA.

At the same time, SCD-CovR retrieved more distinctive components than SPCovR.

These results provide further insight into the strengths of our proposed method.

The outperformance in prediction compared to PCR-SCaDS reiterates previous

comparisons of PCovR and PCR (Heij, Groenen, & van Dijk, 2007; Vervloet et

al., 2016). Deriving components while taking the criterion into account is more

effective for prediction, than adopting a two-step approach of first constructing
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the components and then subsequently using them for prediction. Similarly, PLS

methods have been found to be more prone to overfitting than PCovR methods

(Van Deun et al., 2018) and our outcome of the simulation study shows the same,

with SCD-CovR yielding better out-of-sample prediction under several conditions.

Moreover, SPCovR and SCD-CovR being more effective than SGCCA exhibits the

benefits of the weighting parameter α. It enables a good balance between focus-

ing on the predictors or the criterion, while SGCCA emphasizes the criterion more

strongly. Our results are all based on α values established through cross-validation

and thus indicate the effectiveness of the weighting parameter even within a data-

driven approach. Lastly, concerning the identification of common and distinctive

components, the simulation results from the three-component models illustrate

the outperformance of SCD-CovR when the zero block constraints are correctly

specified. This implies that the method can be especially effective when supported

by an adequate model selection strategy.

Our proposed method also comes with some weaknesses. Model selection

is an obvious challenge. As the method is devised to serve multiple aims, it in-

volves many parameters to be tuned. The weighting parameter α, the number

of components, the common and distinctive component structure and the penal-

ization parameters are all influential and the retrieved model heavily depends on

the choice of these parameters. Furthermore, identifying and discerning common

and distinctive processes for data fusion methods is a very complicated task as it

often interacts with other aspects such as the number of components (Måge et

al., 2019). In the same vein, the weighting parameter α involved with PCovR is

also difficult to tune (Vervloet et al., 2016). However, as the current paper fo-

cuses more on the proposal and the illustration of the new SCD-CovR method,

this intricate problem of model selection has not been extensively addressed.

The examples presented in the current study only concern a scenario with

two data blocks, but it is possible to extend our method to a situation with more

blocks. In that case, a component that is constructed by predictors from a single

data block would be defined as a distinctive component. Components pertaining

to predictors from multiple but not all blocks would be called partially or locally

common, as opposed to globally common components that involve predictors from

all of the data blocks. These terminologies are in line with the previous literature

such as Måge et al. (2019). In such data circumstances, the challenge of model

selection would involve heavy computational burden because our method caters

for capturing of common and distinctive underlying processes by means of the

pre-specified zero block constraints. Given K data blocks and R components, no

less than
(
(2K−1)+R−1

R

)
different zero block constraints should be evaluated. Con-

sidering that the method also involves several other parameters for retrieving the
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sparse solutions, the model selection procedure becomes a particularly intensive

task.

As it holds for many other methods that rely on the lasso and elastic net

penalties to attain sparsity, SCD-CovR is not free from the shortcoming that non-

zero coefficients may be overly shrunken towards zero. Alternatives have been

proposed, including the adaptive lasso (Zou, 2006) and the SCADS penalty (Fan &

Li, 2001) which apply different degrees of shrinkage depending on the value of the

coefficients. Stability selection (Meinshausen & Bühlmann, 2010) is another effec-

tive method for variable selection that does not shrink the non-zero coefficients.

However, some degree of shrinkage of the non-zero coefficients may be benefi-

cial in terms of bias-variance tradeoff as it helps to stabilize the OLS estimates

(Breiman, 1995).

There are several future directions that the method can extend towards.

Handier solutions to retrieve the distinctive components such as the Group lasso

penalty can be adopted to greatly relieve the computational demand of the zero

block constraints. Gu and Van Deun (2019) have implemented the Group lasso

to find distinctive components within the multi-block sparse PCA setting and this

could be one of the possible future directions in extending the SCD-CovR method.

Another natural extension is to allow multiple criterion variables, as the current

method only entails the univariate regression problem. Furthermore, the method

can be adapted to incorporate more diverse structures of underlying processes.

The current simulation study assumes that the data generating model follows the

properties of PCA where the weights and the loadings are equal. However, true

structures where this equality does not hold may exist. It would be interesting

to examine the applicability of the method within such circumstances, as both

weights and loadings would need to be considered for interpretation. Similarly,

our proposed method only enforces sparsity in the weights, but the true structure

may also include sparse loadings. Looking further into these other possible mod-

els where loadings or both weights and loadings are sparse can also be a plausible

direction in devising a predictive method that is more interpretable, in a modern

multiblock setting.
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2.A Alternating least squares for SCD-CovR

As given in Section 2.2, the objective function to be minimized is:

L(WC ,P
(X)
C ,p

(y)
C ) = α

∥∥∥y −XCWCp
(y)
C

⊤∥∥∥2
2

∥y∥22
+ (1− α)

∥∥∥XC −XCWCP
(X)
C

⊤∥∥∥2
2

∥XC∥22
+ λL |WC |1 + λR ∥WC∥22

(2.11)

such that (P(X)
C )⊤P

(X)
C = IR, λL, λR ≥ 0, α ≥ 0 and zero block constraint on

WC .

The solutions are found through an alternating procedure where the objec-

tive is minimized with regards to P
(X)
C and p(y) conditional on a fixed value of WC

and vice versa. The procedure iterates until a convergence criterion is met. Many

methods which attain sparse solutions from PCA through regularization penalty

have adopted this approach to find the solutions (de Schipper & Van Deun, 2018;

Van Deun et al., 2018; Zou et al., 2006). The procedure for SCD-CovR is similar

to these methods, but the minimization with respect to P
(X)
C and p(y) given WC

is slightly different. The loadings P
(X)
C are obtained via an analytical solution;

P
(X)
C = UV⊤ where U and V are found through singular value decomposition

of X⊤
CXCWC = UDV⊤. The regression coefficients y are given by the ridge re-

gression estimates; p(y) = (X⊤
CXC + λRI)

−1X⊤
Cy, where I is a (

∑K
k Jk)× (

∑K
k Jk)

identity matrix and λR is a ridge penalty. Conditional on these values, the weights

W are found through the coordinate descent algorithm. The zero block constraint

specifies the elements that will be put to zero to encourage the common and dis-

tinctive processes. The details on the conditional estimation of W given P
(X)
C and

p(y) can be found in de Schipper and Van Deun (2018).
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2.B Model selection for the illustrative application
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Figure 2.9. SCD-CovR: residual plot for determining the number of components. Each

dot represents one model with a certain common and distinctive component structure.

The colours indicate the type of component that occupies more than 65% of the total

number of components in a model (e.g. when common components make up more than

65% of the total set of components, the model is coloured red). When one particular type

of component does not dominate the model, it is indicated by purple. D1 and D2 denote

models dominated by components distinctive to block 1 and 2 respectively, while C refers

to the common component.
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Figure 2.10. SCD-CovR: cross-validation error and corresponding standard error for zero

block constraint for common and distinctive structure. D1 and D2 indicate components

distinctive to block 1 and 2 while C denotes the common component. The selected zero

block constraint with the smallest cross-validation error is displayed in red.
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Figure 2.11. SCD-CovR: cross-validation error and corresponding standard error for the

lasso penalty. The blue dashed line indicates the bound used for the 1 SE rule and the

selected lasso value is shown in red.
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Figure 2.12. SPCovR: cross-validation error and corresponding standard error for the

lasso penalty. The blue dashed line indicates the bound used for the 1 SE rule and the

selected lasso value is shown in red.
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Figure 2.13. PCR-SCaDS: cross-validation error and corresponding standard error for the

ridge penalty. The blue dashed line indicates the bound used for the 1 SE rule and the

selected ridge value is shown in red.
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Figure 2.14. PCR-SCaDS: cross-validation error and corresponding standard error for zero

block constraint for the common and distinctive structure. D1 and D2 indicate components

distinctive to block 1 and 2 while C denotes the common component. The selected zero

block constraint with the smallest cross-validation error is displayed in red.
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Figure 2.15. PCR-SCaDS: cross-validation error and corresponding standard error for the

lasso penalty. The blue dashed line indicates the bound used for the 1 SE rule and the

selected lasso value is shown in red.
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Figure 2.16. SGCCA: cross-validation error and corresponding standard error for the lasso

penalty. The blue dashed line indicates the bound used for the 1 SE rule and the selected

lasso value is shown in red.
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2.C Illustrative application retrieved weights

Table 2.3. Weights retrieved by the final SCD-CovR model from the illustrative applica-

tion. The table on the left presents weights corresponding to the chemical analysis block,

the one on the right corresponding to the uniaxial compression block.

C D1 D2

Chemical analysis
PEU 0 0 0
starch 0 -6.004 0
TotalN 0 0 0
phytic 0 -0.024 0
Ca 0 -0.494 0
Mg 0 0 0
Na 0 -0.003 0
K -2.519 0 0
his1 0 0 0
his2 0.138 0 0
his3 0.306 0 0
his4 0 1.130 0
his5 0.480 0 0
his6 0 0 0

C D1 D2

Uniaxial compression
FractureWork20 0 0 0
BreakWork20 0 0 4.947
stressT20 0 0 0
strainH20 0 0 0
modulus20 0 0 0
slope20 0 0 0
FractureWor100 0 0 0
BreakWork100 0 0 0
stressT100 0 0 0
strainH100 0.133 0 0
modulus100 0 0 0
slope100 0 0 0
FractureWor250 0 0 0
BreakWork250 0 0 0
stressT250 0 0 0
strainH250 0 0 0
modulus250 0 0 1.766
slope250 0 0 0
FractureWor500 0 0 0
BreakWork500 0 0 0
stressT500 0 0 0
strainH500 0 0 0
modulus500 0 0 0
slope500 0 0 0
FractureWor750 0 0 0
BreakWork750 0 0 0
stressT750 0 0 0
strainH750 0 0 0
modulus750 0 0 1.663
slope750 0 0 0
FractureWor1000 0 0 0
BreakWork1000 5.758 0 0
stressT1000 0 0 0
strainH1000 0 0 0
modulus1000 0 0 1.104
slope1000 0.155 0 0
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Logistic Regression with Sparse Common and

Distinctive Covariates

Having large sets of predictor variables from multiple sources concerning the same individ-
uals is becoming increasingly common in behavioural research. On top of the variable selection
problem, predicting a categorical outcome using such data gives rise to an additional challenge
of identifying the processes at play underneath the predictors. These processes are of particular
interest in the setting of multi-source data because they can either be associated individually with
a single data source or jointly with multiple sources. Although many methods have addressed
the classification problem in high dimensionality, the additional challenge of distinguishing such
underlying predictor processes from multi-source data has not received sufficient attention. To
this end, we propose the method of Sparse Common and Distinctive Covariates Logistic Regres-
sion (SCD-Cov-logR). The method is a multi-source extension of principal covariates regression
that combines with generalized linear modeling framework to allow classification of a categorical
outcome. In a simulation study, SCD-Cov-logR resulted in outperformance compared to related
methods commonly used in behavioural sciences. We also demonstrate the practical usage of the
method under an empirical dataset.

Keywords: Multiblock data, Principal covariates regression, Common and distinctive processes,
Data integration, Classification, Logistic regression

Park, S., Ceulemans, E., & Van Deun, K. (2023). Logistic regression with sparse common and

distinctive covariates. Behavior Research Methods, 1-32.
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3.1 Introduction

In behavioural research, it is often of interest to classify subjects, e.g., by

constructing a logistic regression model. For example, in mental health research

scores on various tests are used to classify subjects into having versus not hav-

ing a disorder such as alcoholism (Babor, Higgins-Biddle, Saunders, & Monteiro,

2001), dementia (Mioshi, Dawson, Mitchell, Arnold, & Hodges, 2006), and eating

disorders (Botella, Huang, & Suero, 2015; Hill, Reid, Morgan, & Lacey, 2010). By

constructing a classification model, the factors predicting class membership can

be investigated. For example, Barnes et al. (2009) studied the importance of var-

ious measures such as genotype, fMRI and cognitive tests in predicting dementia

among older adults through logistic regression. As a result, a risk index that strat-

ifies older adults into different risk groups depending on their scores on certain

risk factors was put forward.

Many studies in behavioural sciences of today involve datasets comprised

of multiple blocks of predictor variables obtained for the same individuals, with

each block of variables originating from different measurement instruments. Ex-

amples of such blocks include demographic data, social media, genetic profiling,

and questionnaires. These joint datasets are referred to as multiblock data (more

details on the conceptual framework are given in Van Mechelen & Smilde, 2010).

A unique feature of multiblock data is that they can reveal two different kinds

of sources of interindividual variation; those that concern single individual data

blocks and those that jointly encompass multiple blocks. These sources of variation

are referred to as distinctive and common, respectively, and they are used to re-

veal the processes underlying the emergence of particular conditions. To explain

more concretely, let us consider a block of genotype data and another block of

self-reported health behaviour data collected from two groups of children; ADHD-

diagnosed and healthy. Studying the onset of ADHD by adopting this multiblock

dataset, processes that only underlies the genotype data may be found. For exam-

ple, a dompaninergic pathway involving dopamine transporter gene (DAT1) and

a serotonergic pathway incorporating serotonin transporter gene (5HTTT) have

been reported to play a role in ADHD (Gizer, Ficks, & Waldman, 2009). These

biological pathways would be considered as distinctive processes as they entail

only the genotype data block. On the other hand, the multiblock data could also

reveal a process that involves both blocks of genotype and health behaviour. Kahn,

Khoury, Nichols, and Lanphear (2003) found the combination of maternal prenatal

smoking with a DAT1 genotype leading to ADHD, while in another study, maternal

stress during pregnancy together with dopamine receptor 4 gene (DRD4) were

associated with severity of ADHD symptoms (Grizenko et al., 2012). Such cases
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of gene-environment interplay are examples of common processes as they involve

multiple data blocks.

Methods based on PCA have been actively proposed to disentangle the com-

mon and distinctive processes from multiblock data, but without considering the

prediction problem of an outcome variable (e.g. simultaneous component anal-

ysis with distinctive and common components, DISCO-SCA; Schouteden et al.,

2013). As multiblock datasets are often characterized by a large number of vari-

ables, these PCA based methods have been further extended. The presence of

many variables complicates the interpretation of the components derived by SCA

as they are associated with a large set of variables. The introduction of sparseness

penalties - limiting the number of variables associated with a component - yields

interpretable components that represent common and distinctive processes (e.g.

sparse common and distinctive SCA (SCaDS); de Schipper & Van Deun, 2018).

Recently, a method that identifies common and distinctive processes from a

multiblock dataset in the context of a regression problem for a continuous outcome

has been proposed (Sparse Common and Distinctive Covariates Regression (SCD-

CovR); S. Park, Ceulemans, & Van Deun, 2020). The method is an extension

of Principal Covariates Regression (PCovR) which finds summary variables that

explain variance in both predictors and outcome by combining PCA and linear

regression (De Jong & Kiers, 1992). SCD-CovR incorporates SCaDS into the PCovR

framework to obtain sparse common and distinctive predictor processes. In order

to address the classification problem, the current paper extends the SCD-CovR

method to logistic regression; this means that here we develop sparse common

and distinctive covariates logistic regression method (SCD-Cov-logR). SCD-Cov-

logR reveals the common and distinctive predictor processes that play a role in

classification of the outcome and does so in an interpretable/insightful way by

relying on sparse representations.

The paper is arranged as follows. First, we provide the methodological back-

ground and mathematical details of SCD-Cov-logR. Then, the results from simu-

lation studies that comparatively demonstrate the performance of SCD-Cov-logR

against an existing method with a similar set of objectives are presented. After

further illustration of the current method on an empirical multiblock dataset, the

paper is concluded by formulating some limitations and directions for future re-

search. The implementation of SCD-Cov-logR was done in R and Rcpp, which can

be found on Github: https://github.com/soogs/SCD-Cov-logR, along with the

code used to generate the results reported in the paper.
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3.2 Methods

3.2.1 Notation

The following notation is used throughout the paper: scalars, vectors and

matrices are denoted by italic lowercase, bold lowercase and bold uppercase let-

ters respectively. Transposing is indicated by the superscript ⊤. Lowercase sub-

scripts running from 1 to corresponding uppercase letters denote indexing: i ∈
{1, 2, . . . , I}. Subscript C indicates concatenation of multiple data blocks, while

superscripts (X), (y) and (g) highlight affiliation with predictor, continuous outcome

and binary outcome variables, respectively. To denote estimates, aˆover the sym-

bol denoting the population parameter is used (i.e. b̂ is the estimated logistic

regression coefficients). X refers to a matrix containing the standardized scores

of J predictors corresponding to I observation units (that is, each column has

mean zero and variance equal to one). In the context of multiple predictor blocks,

Xk (with size I × Jk) indicates a kth predictor block matrix with its predictors

column-scaled and standardized; with k ∈ {1, 2, . . . , K}. XC = [X1, . . . ,XK ] (of

size I ×
∑K

k=1 Jk) denotes the supermatrix that concatenates the predictor blocks.

g indicates a dummy vector of size I containing the scores on the binary outcome

variable, while y is a vector of size I of a continuous outcome. In the context of an

outcome variable with multiple categories, G (with size I×M) refers to a dummy

matrix for the categorical outcome with M total categories. For the ith observation

unit, gim = 1 if the response is in the mth category and gim = 0 otherwise. Lastly,

Ia denotes a a × a identity matrix where the subscript a indicates the size of the

matrix.

3.2.2 Model and objective function

SCD-Cov-logR is a classification method for a categorical outcome. The

method is particularly suitable when multiple large blocks of predictor variables

are available as it allows to take the block structure into account and to limit the

number of variables contributing to the predictive processes. SCD-Cov-logR con-

structs two types of summary covariates: distinctive covariates based on a linear

combination of the predictor variables of one single data block and common co-

variates that combine variables of multiple data blocks. Identification of different

types of predictor processes helps understanding of processes that play important

roles in the classification of the outcome. To further facilitate the interpretation

of these processes, SCD-Cov-logR introduces regularization penalties to select a

subset of the predictor variables in constructing the common and distinctive co-

variates. Taken together, an effective classification method results where common
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and distinctive predictor processes are identified in a sparse and therefore inter-

pretable manner; the method is also flexible in the sense that it includes several

other methods as a special case such as logistic regression and PCovR for cate-

gorical outcomes. We start with a brief description of the building blocks, namely

logistic regression and PCovR, before moving onto SCD-Cov-logR. While the cur-

rent method allows classification of both binary and multiclass outcome variables

via logistic regression, we focus on binary logistic regression in the following sub-

sections in describing our method. The multiclass classification via multinomial

logistic regression will be discussed thereafter, as it is a straightforward extension

of the binary problem.

3.2.2.1 Logistic regression

Logistic regression assumes that the log-odds (logit) of the binary outcome

are linearly dependent on the predictor variables. Let xi be the vector of predictor

scores for subject i and gi the score on the outcome (either 0 or 1). The log-odds

for subject i is modelled by:

log
(

p(gi = 1)

1− p(gi = 1)

)
= x⊤

i b+ b0 (3.1)

where p(gi = 1) denotes the probability that the ith subject would fall under

the category represented by a 1. The vector b indicates the logistic regression

weights and the scalar b0 the intercept. From this model it follows that

p(gi = 1) =
1

1 + e−(x⊤
i b+b0)

p(gi = 0) =1− p(gi = 1),

(3.2)

which can be used to set up the likelihood equation. The estimates of the lo-

gistic regression parameters can then be obtained by maximizing the log-likelihood

or minimizing the negative log-likelihood; here, the latter will be used for integra-

tion with the PCovR objective. The following negative log-likelihood is minimized:

L(b, b0) = −
I∑
i

(gi(b0 + x⊤
i b)− log(1 + e(b0+x⊤

i b))). (3.3)

Typically, the minimum of this function is found via a numerical procedure

as it has no closed form. A popular approach is the Newton-Raphson method for

finding the root of the first derivative which amounts to iteratively reweighted
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least squares. It boils down to formulating local quadratic approximations of the

negative log-likelihood in an iterative scheme that, after initialization, uses the

minimum of the quadratic approximation for updating in the next iteration.

3.2.2.2 PCovR

In a setting with a large set of predictor variables, the ordinary (least-squares)

approach to linear regression involves several drawbacks. It is difficult to interpret

the large set of regression coefficients corresponding to each of the predictors.

Also, in the case of multicollinearity (highly correlated predictors), the estimates

are instable. When the number of predictors exceeds the number of observations

(high-dimensionality), the method has no unique solution. In order to alleviate

these difficulties, Principal Covariates Regression (PCovR; De Jong & Kiers, 1992)

was put forward by combining PCA with linear regression. PCovR introduces sum-

mary variables, the so-called ‘principal covariates’, in modelling the predictor and

outcome variables. The covariates summarize the predictors by a linear combi-

nation of the original variables that is obtained in such a way that they account

for variation in both predictor and outcome variables. Regression coefficients are

found for these limited number of covariates instead of for each of the original

predictor variables, resolving the challenges of finding a unique and stable regres-

sion model in the setting of a large number of predictors. Since the covariates

summarize the predictors, they can be understood to represent the predictor pro-

cesses behind the outcome. Let R be the pre-specified number of covariates to be

derived. PCovR then assumes the following models for the predictor and outcome

variables:

y =XWp(y) + e(y)

X =XW(P(X))⊤ + E(X).
(3.4)

Both the models for the outcome y and for the predictor variables X rely on

the same summary predictor scores XW with W refering to the weights matrix of

size J ×R. The weights prescribe the linear combination of the predictors to com-

pose the principal covariates (namely, T = XW). The first line of Equation (3.4)

shows the model underlying the outcome; in that model p(y) indicates a vector

of R regression coefficients while e(y) denotes the residuals pertaining to the out-

come. The second line of Equation (3.4) gives the model for the predictors. P(X)

indicates the loadings matrix of size J × R. Similar to the regression coefficients

p(y) for the outcome variable in the first line, the loadings matrix linearly com-

bine the covariates to reconstruct back the predictors. It can be seen as regression
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coefficients obtained from regressing the predictor variables on the principal co-

variates. Note that this model formulation also underlies the methods of principal

components regression (PCR; see Jolliffe, 1982) and partial least squares (PLS;

H. Wold, 1982; S. Wold et al., 1983).

The aim of PCovR to find covariates that effectively reconstruct X and simul-

taneously predict y is expressed by the following joint loss function (De Jong &

Kiers, 1992):

L(W,P(X),p(y)) = α

∥∥y −XWp(y)
∥∥2
2

∥y∥22
+ (1− α)

∥∥X−XW(P(X))⊤
∥∥2
2

∥X∥22
, (3.5)

with 0 ≤ α ≤ 1, a known constant which specifies the balance between fitting

the outcome and the predictors. With α set at 0, the method is the same as PCR

where the outcome variable is regressed on the principal components found by

PCA. On the other hand, with α = 1, the method is equivalent to linear regression
1. The solution of Equation (3.5) is not identifiable without imposing constraints.

Therefore, the covariates are often constrained to be orthonormal (T⊤T = IR) to

identify the solution (De Jong & Kiers, 1992).

The principal covariates in the PCovR model are used to represent the pro-

cesses that underlie both the predictor and outcome variables. Therefore, it is

important to interpret the derived covariates to understand the nature of these

processes. There are two ways of interpreting the covariates. Firstly, the loadings

matrix P(X) can be studied. When the principal covariates are scaled to vari-

ance equal to one (T⊤T = IIR) and the predictor variables have been centered

and scaled to variance equal to one, the loadings are equal to the correlation be-

tween the principal covariates and the predictor variables. Therefore, P(X) can

be conveniently interpreted in two ways; regression coefficients that reconstruct

the predictors (namely, T(P(X))⊤ = (XW)(P(X))⊤ = X) and covariate-predictor

correlations. The loadings derived within PCA are also commonly studied in the

same manner. On the other hand, the second way to understand the covariates

is by observing the weights matrix W. The weights are used in combining the

predictors to construct the covariates, and therefore they describe the composi-

tion of the covariates. They also play an important role in applying the model to

new data, in the context of prediction for new observations, as they are used to

transform the new predictor variables to covariate scores. Studying the loadings

or the weights are both valid ways to understand the nature of the covariates and

the two estimates can both be inspected in a complementary manner. However,

1ŷi =
∑

r p̂
(y)
r t̂ir =

∑
r(
∑

j p̂
(y)
r xijŵjr) =

∑
j(
∑

r p̂
(y)
r ŵjr)xij , with

∑
r p̂

(y)
r ŵjr as a regression

coefficient for the jth predictor, where r is an index for each covariate.
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if one of the estimates should be chosen for inspection, the choice should depend

on the research aim of interest; loadings reflect the strength of association of the

predictor variables with the principal covariates while weights prescribe how the

covariates are constructed. We refer to Guerra-Urzola, Van Deun, Vera, and Si-

jtsma (2021) for a thorough discussion of the issue of loadings versus weights in

the context of sparse PCA.

3.2.2.3 SCD-Cov-logR

Here, we propose a method for binary classification that is suitable for multi-

block data where several blocks of predictor variables are available: besides the

fact that the method can handle many predictors or even high-dimensional data, it

yields particular insight in the data by revealing common and distinctive predictor

processes in a sparse and therefore interpretable manner.

Model

We make use of a model formulation that integrates the logistic regression

and PCovR models in Equations (3.2) and (3.4). More specifically, the model for

the outcome variable is adapted. Let the vector xCi denote the ith row of the

supermatix XC resulting from the concatenation of the predictor blocks and let

WC of size
∑K

k=1 Jk × R denote the corresponding weights matrix, then the log-

odds of the binary outcome can be modelled by the principal covariates as follows:

log
(

p(gi = 1)

1− p(gi = 1)

)
=xC

⊤
i WCp

(g) + p
(g)
0

xCi =
[
xC

⊤
i WC(P

(X)
C )⊤

]⊤
+ e

(X)
i ,

(3.6)

where p(g) in the first line of the equation denotes the vector of R regres-

sion coefficients and p
(g)
0 the intercept. As in the PCovR model (3.4), the weights

matrix dictates the composition of the covariates (TC = XCWC). In the second

line, P
(X)
C indicates the loadings matrix of size

∑K
k=1 Jk × R. They recover the

predictor variables from the covariates, as done in the PCovR model. Therefore,

the covariates in this model explain both the variance of predictor variables and

the log-odds of the binary outcome variable.

The model in Equation (3.6) includes all predictor variables in constructing

the principal covariates while often it is of interest to find the subset of variables

that are relevant for the predictor processes represented by the principal covari-

ates. Hence, our proposed model is subject to a sparsity inducing penalty that

limits the number of predictor variables contributing to the covariates. SCD-Cov-

logR therefore imposes the sparsity on the weights, as we are interested in finding
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a subset of predictors that together make up the predictor processes. In this way,

understanding the covariates becomes much easier as they are based on a smaller

subset of predictors.

To understand the composition of the covariates not only at the level of the

individual variables but also at the level of the blocks, sparsity is imposed in two

ways: On the one hand at the level of the blocks (blockwise sparsity) and, on the

other hand, at the level of the individual variables (elementwise sparsity). Block-

wise sparsity refers to forcing the weights corresponding to an entire set of pre-

dictors in a data block to zero. By doing so, distinctive covariates which are only

comprised of predictors from a single data block can be obtained. If more than

one predictor blocks but not all make up a covariate, that would be referred to as

a locally common covariate, as opposed to a globally common covariate where all

of the predictor blocks are involved in deriving the covariate (Måge et al., 2019).

Elementwise sparsity indicates dropping individual predictors out of the model.

Combining these two types of sparsity encouraged at different levels, only a sub-

set of predictors within the blocks that are chosen by blockwise sparsity would be

left in the model to make up a covariate. Common and distinctive covariates that

are comprised of a small interpretable subset of predictors can therefore be found

to represent the underlying predictor processes.

Objective function

In setting up the objective function of SCD-Cov-logR, the objectives for lo-

gistic regression and PCovR are combined. As discussed, for a binary outcome the

log-odds are regressed on the covariates. Hence, the squared error pertaining to

the outcome (the left term in (3.5)) is replaced by a negative log-likehood function

based on the PCovR logistic regression model (first line in (3.6)). Furthermore,

the two types of sparsity on the weights WC are accomplished by imposing two

different penalties. We employ the group lasso penalty (M. Yuan & Lin, 2006)

which shrinks and sparsifies the weights at the block level, and the lasso penalty

(Tibshirani, 1996) that does the same but for individual weights. This combina-

tion of penalties is also known as the sparse group lasso (Friedman, Hastie, &

Tibshirani, 2010a; Simon, Friedman, Hastie, & Tibshirani, 2013). The objective of

SCD-Cov-logR is to minimize the following loss function,
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L(WC ,P
(X)
C ,p(g), p

(g)
0 ) =

α

l0

[
−

I∑
i

(gi(p
(g)
0 + xC

⊤
i WCp

(g))− log(1 + e(p
(g)
0 +xC

⊤
i WCp(g))))

]

+
1− α

∥XC∥22

I∑
i

∥∥∥xC
⊤
i − xC

⊤
i WC(P

(X)
C )⊤

∥∥∥2
2

+
R∑
r

λLr |wCr|1 +
R∑
r

K∑
k

λGr

√
Jk
∥∥w(k)

r

∥∥
2
+ λR

∥∥p(g)
∥∥2
2

(3.7)

where the loadings associated with the predictors P(X)
C are constrained to be

column-orthogonal ((P(X)
C )⊤P

(X)
C = IR) in order to identify the solution (and to

avoid an ill-posed problem resulting in ever-decreasing weights compensated by

ever-increasing loadings). l0 refers to the negative log-likelihood of the null model

fitted without any predictors l0 = −
∑I

i (gilog(p̄) + (1− gi)log(1− p̄)), where p̄ =
1
I

∑I
i gi is the proportion of observations in the first category. The terms with

λGr and λLr refer to the group lasso and the lasso penalties corresponding to the

rth covariate. w
(k)
r indicates the weights corresponding to the covariate r and

the predictor block k. The last term denotes the ridge penalty imposed on the

regression coefficients p(g) to prevent divergence occuring due to covariates being

correlated.

The first term of the loss function represents the negative log-likelihood func-

tion based on (3.6). It is in the same format as the negative log-likehood function

commonly used for logistic regression, except that it has been adapted according

to the multiblock PCovR model structure. This term is divided by the log-likelihood

of the null model2 l0, while the second term of sum of squared predictor errors is

divided by the total sum of squared predictor scores. The two types of losses are

therefore placed within a comparable scale between 0 and 1. With respect to the

penalties on the weights, it can be seen that the group lasso penalty ∥·∥2 concerns

a group of weights connecting the predictors in the kth predictor block with the

rth covariate, while the lasso penalty |·|1 is imposed on all of the
∑K

k=1 Jk individ-

ual weights corresponding to rth covariate. The two penalties together make up

the sparse group lasso.

It is possible to re-express the objective function by scaling the α parameter

such that it already takes account of the negative log-likelihood of the null model

l0 and the sum of squared predictor scores ∥XC∥22. The scaled weighting parameter

β is defined by:
2This ratio of negative log-likelihoods is used in computation of McFadden’s pseudo R2

(McFadden et al., 1973) that provides insight on explained variance in the context of logistic re-
gression.
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β =
α ∥XC∥22

α ∥XC∥22 + (1− α)l0
(3.8)

β can then replace α
l0

in the objective function (3.7) while (1 − β) replaces
(1−α)

∥XC∥22
, leading to a different expression of the same objective. Such rescaling of

the weighting parameter has been shown in Vervloet et al. (2013).

Relation to existing methods

Several existing methods rely on objective functions that are similar to the

objective introduced here in (3.7). A method called Sparse Principal Component

Regression (SPCR; Kawano, Fujisawa, Takada, & Shiroishi, 2018) has been pro-

posed and combined with generalized linear modelling. SPCR and SCD-Cov-logR

are characterized by similar objective functions; our method can be viewed as an

extension of SPCR for the setting of multiple predictor blocks. Likewise, several

other methods can be seen as a special case of the objective function in (3.7).

First, if the balancing parameter α is fixed at zero, common and distinctive sparse

covariates would be found only optimizing the fit to the predictor variables. This

solution would be equivalent to that of SCaDS (de Schipper & Van Deun, 2018),

which finds common and distinctive sparse components from multiblock data. For

this reason, and also because the algorithm for SCD-Cov-logR is infeasible when α

is equal to exactly zero, we rely on SCaDS to find the solutions when α = 0. Sec-

ond, if the negative log-likelihood term is replaced by squared error pertaining to

a continuous outcome (
∥∥y −XCWCp

(y)
∥∥2
2
/ ∥y∥22), the objective function becomes

that of SCD-CovR (S. Park et al., 2020), which shares the same aims as SCD-Cov-

logR except it targets a continuous outcome. Third, starting from the SCD-CovR

formulation, if the group lasso parameter is fixed at zero and only a single block

of predictors are employed, the problem boils down to SPCovR (Van Deun et al.,

2018) which finds sparse covariates. As these methods serve as the basis for the

current SCD-Cov-logR, further details of these directly related methods are pro-

vided in Appendix (3.A). Finally, fixing the lasso and group lasso parameters at

zero such that weights are found without sparsity, the problem can be seen as an

extension to PCovR to account for a binary classification problem.

Algorithm

The minimizing solution of Equation (3.7) can be found by an alternating

procedure where the loadings P
(X)
C and the regression coefficients p(g) and p

(g)
0

are solved for conditional upon fixed values for the weights WC and vice versa.

Such an alternating approach has been effective for SCaDS, SCD-CovR and SP-

CovR. To treat the minimization of (3.7) which is complicated by the negative

log-likelihood term, we make use of a local quadratic approximation, similar to
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the iteratively reweighted least squares approach that is usually taken to solve

the logistic regression problem (Friedman, Hastie, & Tibshirani, 2010b). The al-

ternating routine continues until the algorithm converges to a stationary point,

usually a local minimum. Since the iteratively reweighted least squares procedure

is known to sometimes lead to divergence, we also employ the maximum number

of iteration of 5000 as another form of stopping criterion. As the objective func-

tion (3.7) is not a convex problem, it is subject to local minima. We recommend

to use multiple random starting values, along with rational starting values based

on PCovR (administered by treating the binary outcome as a continuous variable).

Furthermore, employing multiple starting values is particularly important because

the estimation of WC is often a high dimensional regression problem prone to

instable estimates (Guerra-Urzola et al., 2021; Jia & Yu, 2010), meaning that dif-

ferent starting values may result in different estimates. The sparse group lasso

problem for WC is treated via coordinate descent (Friedman et al., 2010a), while

closed-form solutions exist for the conditional updates of P(X)
C , p(g) and p

(g)
0 . Fur-

ther details on the algorithm for minimizing the objective function can be found

in the Appendix (3.B), including the schematic outline of the algorithm and the

derivation of solutions to the conditional updates (3.C, 3.D).

3.2.2.4 Multiclass classification

Our method can be slightly adapted to address a classification problem in the

presence of more than two categories. The method is posed in the same manner

as the binary problem, except it relies on multinomial logistic regression. The logit

model in (3.6) is generalized to a ‘baseline-category logit model’ (Agresti, 2003)

which is a common approach to extend logistic regression to a multiclass problem.

Let p(gim = 1) and p(giM = 1) denote the probability that subject i would fall under

the category m and the last category M , respectively. Treating the last category as

the baseline, the log-odds of the ith observation being in category m as opposed

to being in the baseline category is modelled:

log
(
p(gim = 1)

p(giM = 1)

)
=xC

⊤
i WCp

(g)
m + p0

(g)
m , for m = 1, . . . ,M − 1

xCi =
[
xC

⊤
i WC(P

(X)
C )⊤

]⊤
+ e

(X)
i ,

(3.9)

where p
(g)
m and p0

(g)
m refer to the regression coefficients and the intercept that

correspond to category m. By calculating M − 1 sets of the regression coeffi-

cients, the log-odds of any pairs of response categories can be determined. As for

the objective function, the negative log-likelihood function based on the baseline-
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category logit model replaces the negative log-likelihood concerning the binary

classification provided in (3.7):

L(WC ,P
(X)
C ,p(g)

m , p0
(g)
m )

=
α

l0

[
−

I∑
i

{
M−1∑
m

gim(p0
(g)
m + xC

⊤
i WCp

(g)
m )− log(1 +

M−1∑
m

e(p0
(g)
m +xC

⊤
i WCp

(g)
m ))

}]

+
1− α

∥XC∥22

I∑
i

∥∥∥xC
⊤
i − xC

⊤
i WC(P

(X)
C )⊤

∥∥∥2
2

+
R∑
r

λLr |wCr|1 +
R∑
r

K∑
k

λGr

√
Jk
∥∥w(k)

r

∥∥
2
+ λR

∥∥p(g)
∥∥2
2

(3.10)

where the loadings P(X)
C are constrained to be column-orthogonal ((P(X)

C )⊤P
(X)
C =

IR) as done for the binary problem (3.7). Other quantities and penalty terms are

also defined the same. l0 here refers to the negative log-likelihood of the null

model l0 = −
∑I

i

[∑M−1
m gimlog(p̄m) + giM log(p̄M)

]
where p̄m = 1

I

∑I
i gim is the

proportion of observations in the mth category. Hence, the negative log-likelihood

and the sum of squared errors are also scaled in this objective function. The

weighting parameter α can be rescaled to β in the same manner as for the binary

classification problem (see (3.8)). Furthermore, note that both the model (3.9)

and the objective function (3.10) become equal to those of the binary problem

(3.6), (3.7) when the total number of categories M are set at two. To find the

minimizing solution of (3.10), an alternating algorithm very similar to that for the

binary problem is employed. The only difference is that the negative log-likelihood

term with multiple categories is treated with partial quadratic approximation with

respect to the category m where only p
(g)
m and p0

(g)
m are allowed to vary at a time.

This partial quadratic approximation has been used for treating a penalized multi-

nomial logistic regression problem (Friedman et al., 2010b). Details on the algo-

rithm are provided in the Appendix (3.E).

3.2.3 Toy example

In order to provide a clearer picture of the goals that the method targets and

the estimates it provides, we showcase the method on a toy example dataset for a

binary classification problem in this section. We generated the dataset according

to one of the conditions of the simulation study which follows later. The dataset is

composed of two data blocks and its underlying model assumes three covariates.

Two of these covariates represent processes that are distinctive to the first and the
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second data blocks respectively, while the third covariate is a common process,

affiliated with both data blocks. In addition, the model was defined such that

the covariate distinctive to the second block is not relevant in the classification

of the outcome variable. Each of the two data blocks consists of 15 predictors

concerning the same set of 100 observation units. There is one binary outcome

variable. Details of the data generation setup can be found in the simulation study

section.

A few technicalities come with the application of the SCD-Cov-logR to data.

First, it is important to note that the solution is influenced by several tuning pa-

rameters that need to be fine-tuned via model selection. Second, also different

starting values may yield different solutions because the algorithm can converge

to a local minimum. The model selection procedure we adopted to find the solu-

tions presented in the following will be discussed in the next section, along with

our consideration regarding multiple starting values. Third, a pre-processing step

precedes method application. All of the predictor variables are centered and scaled

to unit sum of squares. Subsequently, the different predictor blocks are weighted

such that the sum of squares are equal across the blocks, in order to account for

the differing block sizes.

The estimates retrieved by the method along with the population parame-

ters used to generate the dataset are provided in Table 3.1. It first shows that

the weights ŴC are found sparse and correctly reflect the population weights

zero-nonzero structure. Most of the estimated weights are smaller in magnitude

than the population weights because the lasso and group lasso penalties not only

enforce sparsity but also shrink the coefficients towards zero. The weights are

interpreted as the coefficients in the linear combination that forms the covari-

ates from the predictor variables; tir =
∑

j wjrxij. Therefore, the weights cor-

rectly represent that the first two covariates are distinctive for each of the data

blocks while the third is common. The logistic regression coefficients and the

intercept p̂(g) and p̂
(g)
0 are also obtained and are in agreement with the popu-

lation parameters; the covariate distinctive to the second data block is much

less relevant than the other covariates in the classification problem. These co-

efficients can be combined with the covariates to yield the predicted log-odds;∑
r(p̂

(g)
r t̂ir) + p̂

(g)
0 = ŷi. The inverse-logistic function (3.2) is used to transform the

ŷi log-odds into predicted probabilities for the categories of the outcome variable;

if the probability is larger than 0.5, the class predicted by the model is 1. Let us

take an example of the first observation xC1, the covariate scores of this observa-

tion t̂1 = xC
⊤
1 ŴC = [2.875, 0.046, 3.384]⊤ are combined with the regression coef-

ficients to get the predicted log odds
∑

r(p̂
(g)
r t̂1r) + p̂

(g)
0 = log

(
p(ĝ1=1)

1−p(ĝ1=1)

)
= 0.862.

Applying the inverse logistic function, the predicted probablity for this observation
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to be classified as 1 is 1
1+e−0.862 = 0.703. Since this probability is larger than 0.5,

we predict the observation as being in class 1, which is indeed true for the first

observation in our toy example dataset.

Table 3.1. Population weights, and the solution found by SCD-Cov-logR from the toy

example dataset: weights and logistic regression coefficients. The column names D1, D2

and C indicate that the corresponding covariate is defined as being distinctive to block 1,

distinctive to block 2 and common.

WC

D1 D2 C

Block 1
x1 0.5 0 0
x2 0.5 0 0
x3 0.5 0 0
x4 0.5 0 0
x5 0 0 0.354
x6 0 0 0.354
x7 0 0 0.354
x8 0 0 0.354
x9 0 0 0
x10 0 0 0
x11 0 0 0
x12 0 0 0
x13 0 0 0
x14 0 0 0
x15 0 0 0

Block 2
x16 0 0 0.354
x17 0 0 0.354
x18 0 0 0.354
x19 0 0 0.354
x20 0 0.5 0
x21 0 0.5 0
x22 0 0.5 0
x23 0 0.5 0
x24 0 0 0
x25 0 0 0
x26 0 0 0
x27 0 0 0
x28 0 0 0
x29 0 0 0
x30 0 0 0

ŴC

D1 D2 C

Block 1
x1 0.358 0 0
x2 0.391 0 0
x3 0.463 0 0
x4 0.475 0 0
x5 0 0 0.359
x6 0 0 0.319
x7 0 0 0.276
x8 0 0 0.233
x9 0 0 0
x10 0 0 0
x11 0 0 0
x12 0 0 0
x13 0 0 0
x14 0 0 0
x15 0 0 0

Block 2
x16 0 0 0.358
x17 0 0 0.401
x18 0 0 0.342
x19 0 0 0.307
x20 0 0.483 0
x21 0 0.415 0
x22 0 0.381 0
x23 0 0.453 0
x24 0 0 0
x25 0 0 0
x26 0 0 0
x27 0 0 0
x28 0 0 0
x29 0 0 0
x30 0 0 0

Logistic regression coefficients

Population
D1 -0.600
D2 -0.010
C 0.800
intercept 0

Estimated
D1 -0.735
D2 -0.072
C 0.907
intercept -0.090

Altogether, examining this solution, it would be concluded that there are

two underlying predictor processes that exclusively involve predictor variables of

only one of the two data blocks and one process that involves predictors from both

data blocks. Predictors x9 to x15 and x24 to x30 are filtered out of the model; they
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are not related with any of these processes. Only two processes out of the three

are important in classifying the binary outcome variable. The predictor process

distinctive to the second data block is irrelevant for the classification problem.

Concerning the performance of classifying the outcome, the method classified 92

in-sample observations. To gauge the quality of predicting the classes of unseen

data, we applied the fitted model to 100 observations of out-of-sample data that

were generated from the same population as the in-sample observations. The

method was able to classify 92 out-of-sample observations correctly.

3.2.4 Model selection

The SCD-Cov-logR method involves several (usually) unknown parameters

that govern the characteristics of the derived model; the number of covariates R,

the weighting parameter α, the lasso and group lasso parameters λLr, λGr for the

sparse weights and the ridge parameter λR for the logistic regression coefficients.

These parameters are usually tuned in accordance to a certain optimality criterion

such as prediction error. Several model selection strategies can be used for differ-

ent model parameters, while we adopt cross-validation for all of the parameters

except for the number of covariates. A straightforward way to administer cross-

validation is the grid search that exhaustively compares all possible combinations

of the ranges of values for the different parameters in optimizing the criterion of

cross-validation error. However, as the current method entails many parameters

to be tuned, such a scheme involves a very heavy computational load. Instead, a

sequential approach where sets of parameters are tuned in turn can be considered

as it was demonstrated to work well for model selection for PCovR (Vervloet et al.,

2016) and also for SCD-CovR (S. Park et al., 2020). In the following, we propose

a sequential cross-validation model selection procedure and demonstrate it with

the toy example dataset.

The first step of the sequential approach is to determine the number of co-

variates. This was recommended in a study that compares model selection strate-

gies for PCovR (Vervloet et al., 2016). S. Park et al. (2020) also selected the num-

ber of covariates first and obtained models with good performance in SCD-CovR.

For finding the number of covariates in SCD-Cov-logR, we first perform PCA on the

predictor variables with varying number of principal components. Instead of the

well-known scree test that manually looks for an ‘elbow’ in the plot of eigenval-

ues (representing the amount of variance explained by each principal component)

which involves an element of subjectivity, the acceleration factor technique pro-

posed by Raîche, Walls, Magis, Riopel, and Blais (2013) is adopted. It finds the

elbow by computing at which point the slope of the graph of eigenvalues change

most sharply. The technique retains the principal components that derived prior to
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the principal component where the sharp change in slopes occurs. The R package

“nFactors” is employed for this purpose (Raiche, Magis, & Raiche, 2020).

With the number of covariates fixed, cross-validation is administered to si-

multaneously select the optimal values of α and λR. For each combination of

values, the mean of squared residuals is computed. These residuals are discrep-

ancies between the binary outcome scores of the observations in held-out samples

and their corresponding predicted probabilities computed by:

1
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where n denotes the size of the held-out samples. In the case of the multiclass

problem, the following equation:
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is employed to compute the residuals. The one standard error rule (Fried-

man, Hastie, Tibshirani, et al., 2001) is adopted, which selects the least complex

model within one standard error of the best-performing model. For α, higher

values are associated with model complexity and overfitting because it places a

heavier emphasis on the prediction problem of the outcome which becomes prone

to overfitting with increasing number of predictor variables (Babyak, 2004; Mc-

Neish, 2015). Similarly, lower values of λR are related with overfitting as it leads

to high variance of parameter estimates across samples. Therefore, the one stan-

dard error rule aims to select the models with the lowest α and the highest λR

values. When the two parameters are not in agreement, the model with lower α

is preferred over the model with higher λR as the former is seen to exert more

impact on the final model. Note that the rescaled parameter β can be tuned in-

stead of directly tuning for α. Higher values of β are related to overfitting, in the

same manner as for α. The one standard error rule would thus choose the models

comprised with the lowest β and the highest λR values in this case.

We tune the sparsity parameters for the weights at the final stage of the

model selection procedure because they exert relatively small influences on the

fit of the model with respect to both classification or reconstruction of the blocks

of predictor variables (de Schipper & Van Deun, 2021; S. Park et al., 2020). In a

paper that examined the efficacy of various model selection strategies for sparsity

penalty parameters in sparse PCA that retrieves sparse weights like SCD-Cov-logR,

it was reported that even a very sparse model yields good recovery of summary

component scores (de Schipper & Van Deun, 2021). The authors advise using
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cross-validation with the one standard error rule to select the parameters, when

the aim of the analysis includes understanding of underlying processes. For our

proposed method, the one standard error rule is set up such that the model with

the highest values of λLr and λGr are chosen within models with minimal cross-

validation error. Between the two parameters, the model with higher λLr is pre-

ferred over the model with higher λGr because λLr encourages the sparse solution

in a more direct manner than λGr. While different values of the parameters can

be specified concerning the weights corresponding to each of the rth covariate,

we usually adopt the same values across multiple covariates to ease the compu-

tational burden. Additionally, in choosing the ranges of sparsity parameters to

be considered for model selection, values separated by a reasonable interval can

be selected between a near-zero value and another value that leads to complete

sparsity. One way to choose such an interval is by selecting a sequence of equally

spaced values on the log scale, as done in de Schipper and Van Deun (2021) and

recommended in Friedman et al. (2010b).

Model selection for the toy example

We demonstrate the model selection procedure by applying it on the toy ex-

ample dataset. First, PCA is administered to the concatenated set of centered and

standardized predictor variables with various numbers of principal components.

Figure 3.4 in Appendix 3.F depicts the variance explained by each component.

With the acceleration factor technique, the number of covariates is chosen to be

three because the sharpest change in the slopes occurs at the fourth principal

component. With the number of covariates fixed, we administered a 5-fold cross-

validation, simultaneously varying the values of β and λR. Instead of directly

controlling the values for α, we varied the values for its rescaled version β. The

parameters λLr and λGr were fixed at zero for the cross-validation. We considered

the values of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for β and [0.1, 0.5, 1, 3,

5, 10, 30, 50] for λR. With the one standard error rule, a β value of 0.2 and λR

of 1 was selected. Given these parameters, we finally conducted another 5-fold

cross-validation for λLr and λGr. The range of [0.5, 1, 5, 7, 10, 15, 30, 45, 100]

was employed for λLr and [0.1, 0.5, 1, 2, 5, 10] for λGr. The one standard error

rule selected the model with λLr = 45 and λGr = 2. The solution provided above

in Table 3.1 was obtained by adopting these values for the analysis of the data. It

is worth noting that using an exhaustive approach to cross-validation that consid-

ers all combinations of these ranges of parameters also resulted in models that are

similar to this reported model. The results from this exhaustive approach can be

found in Appendix (3.G).

In the above model selection procedures, rational starting values (i.e., the

PCovR solution) were used in initializing the SCD-Cov-logR algorithm. To account
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for the problem of local minima, 20 different sets of random starting values were

generated. Using each set of starting values, we conducted the same model selec-

tion procedures to find the tuning parameters and the final model estimates. We

found that the solution resulted from the rational starting values were associated

with the lowest minimum, compared with the other starting values. Comparing

the estimates obtained by different starting values, although some starting val-

ues yielded estimates that are quite different from those of the rational starting

values, the starting values that resulted in smaller loss led to estimates that are

very similar to those of the rational starting values. These estimates also correctly

classified the same numbers of in-sample and out-of-sample observations as the

estimates from the rational starting values. Since the rational starting values led

to the lowest minimum, we reported these estimates in the previous section. It

also seems sensible that the rational starting values from PCovR finds a lower

minimum because the data was generated from a clear PCovR model structure (as

seen in the Simulation Study section). However, in practice, it is recommended

to adopt multiple random starting values and the rational values to initialize the

algorithm and subsequently choose the solution that attains the lowest minimum.

This applies especially if the underlying true model structure is unknown, unlike

for the current toy example.

3.2.5 Related methods

SCD-Cov-logR is a classification method with three main objectives. It (a)

classifies a categorical outcome, (b) recovers the underlying common and distinc-

tive predictor processes via dimension reduction, and (c) derives sparse weights

and therefore interpretable covariates. The method offers a solution that achieves

all of these objectives in a flexible manner such that the user can emphasize one

goal over another according to the research aim. In this section, we will present

two methods that are related to SCD-Cov-logR, in the sense that they target a sim-

ilar set of goals. Alongside, regularized logistic regression is also discussed as a

benchmark method for classification with a large set of predictors.

3.2.5.1 PCR (logistic regression)

A commonly used method that aims both at classification and modeling the

variation in the block of predictors is based on principal component regression

(PCR; see Jolliffe, 1982). This method first performs PCA on the predictors and

then, in a second and separate step, builds a classification model using the re-

trieved components as the predictor variables. In order to derive common and

distinctive processes from multiblock data, the PCA step can be conducted with
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SCaDS (de Schipper & Van Deun, 2018). We will refer to this two-step approach

of SCaDS followed by logistic regression by SCaDS-logR. As discussed above, this

is the special case of SCD-Cov-logR with the weighting parameter α is speci-

fied at zero. Hence, it addresses the same research goals of SCD-Cov-logR, ex-

cept that it does not take the outcome variable into consideration when deriv-

ing the components. Due to this, the underlying processes that play important

roles for the outcome variable rather than the predictor variables may be omitted

(Vervloet et al., 2016).

3.2.5.2 DIABLO

Data Integration Analysis for Biomarker discovery using a Latent component

method for Omics (DIABLO; Singh et al., 2016) is a partial least squares (PLS)-

based framework that addresses the multiple aims of prediction and sparse mod-

eling of the variation in the predictors. PLS (H. Wold, 1982; S. Wold et al., 1983)

is a widely used method that has the same model structures as PCovR; it finds

components that represent the underlying processes among the predictors while

predicting the outcome variable. PLS can also be seen as an approach to Struc-

tural Equation Modelling (SEM) when complex models are built without being

mainly guided by theory (M. Tenenhaus, Tenenhaus, & Groenen, 2017). DIABLO

is an extension of PLS that jointly analyzes multiple predictor blocks and obtains

sparse components. Simultaneously, these sparse components explain the varia-

tion in the outcome variable. Therefore, DIABLO meets all of the research aims

of SCD-Cov-logR. While our proposed method treats the multiblock problem by

concatenating the predictor matrix to construct a single model that covers several

data blocks, DIABLO derives one model separately for each data block; predic-

tions from each model are accumulated via majority voting to give the overall

classification. Therefore, DIABLO can be seen to only find components that are

distinctive to each block. However, it is possible to specify how correlated these

components built on each block would be. This would encourage capturing of

the variance accounted for by common predictor processes, although they may

not be explicitly obtained. Singh et al. (2016) demonstrated that when building a

classification model for breast cancer subtypes with predictors from multiple data

blocks (mRNA, miRNA, methylation and proteins) from The Cancer Genome Atlas

(TCGA), DIABLO was able to select more variables that are strongly correlated

with each other than elastic net regression.

Another core difference between SCD-Cov-logR and DIABLO lies with the

parameter α that balances between reconstruction of the predictors and prediction

of the outcome variable. PLS-based methods do not offer such an option and tend

to lean closer to a PCovR model emphasizing prediction, this is α close to one
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(Van Deun et al., 2018; Vervloet et al., 2016). Furthermore, methods based on

PLS are often more prone to overfitting than those derived from PCovR, which in

turn results in a diminished quality of out-of-sample prediction. The results from

S. Park et al. (2020) demonstrated this pattern of results in a multiblock regression

setting.

Moreover, DIABLO does not adopt a generalized linear model framework to

treat the classification of categorical outcome variables. Instead, when construct-

ing a classification model, DIABLO adopts a simple heuristic where the categorical

outcome is coded into a binary matrix with each column indicating the member-

ship of the observation unit in a certain class. The classification model is then

estimated in the same manner as the regression model by treating the binary ma-

trix as continuous outcome variables. Among the fitted values given for each of

the classes, the class that corresponds to the largest fitted value is the class deter-

mined by the DIABLO model. This approach of administering PLS for a classifi-

cation problem has also been shown to be equivalent to performing discriminant

analysis (Barker & Rayens, 2003). There are PLS methods that are formulated

in combination with the generalized linear model framework such that a logistic

regression model can be constructed (Chung & Keles, 2010; Ding & Gentleman,

2005), but these methods are only suitable for the analysis of a single data block.

Additionally, Lê Cao, Boitard, and Besse (2011) reported that this approach per-

forms comparatively with the binary indicator matrix approach of DIABLO.

3.2.5.3 Regularized logistic regression

Regularized logistic regression is a logistic regression method that performs

variable selection (Friedman et al., 2010b). Due to the regularization penalties,

the method can also be applied to high dimensional datasets. Hence, it can be

considered as a benchmark method for classification in the setting of many predic-

tors, being actively applied in behavioural sciences; for example to detect psycho-

logical symptom patterns from large-scale questionnaires (Tutun et al., 2019) and

to classify different emotions using EEG signal patterns (D.-W. Chen et al., 2020).

However, since it does not extract covariates or factors, the method does not meet

all of the aims of SCD-Cov-logR such as identifying the underlying processes gov-

erning the predictors.

3.2.5.4 Toy example illustration

In order to compare the two related methods that share the goals of SCD-

Cov-logR, we administered them along with the benchmark of regularized logistic

regression on the toy example dataset. As the population model parameters are
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known, we configured the methods such that they return the solutions that re-

flect the population model structure as closely as possible. For regularized logistic

regression, the lasso penalty parameter was tuned by cross-validation, as it is not

possible for the method to derive the covariate structures. For principal component

(logistic) regression, we administered SCaDS (de Schipper & Van Deun, 2018) on

the predictor matrix with three components. Lasso and group lasso parameters

were chosen such that they reflect the population model. The outcome variable

was regressed on the derived sparse principal components via logistic regression.

In order to fit the DIABLO model in accordance with the population model

such that the common and distinctive predictor processes can be explicitly found,

we fitted a 1-component model separately from each of the two data blocks which

would match the two distinctive covariates generated. For the common covariate,

we constructed a 1-component model from a supermatrix that concatenates the

two data blocks. These components across the blocks were specified to be uncor-

related, as the true covariates were defined to be uncorrelated. As DIABLO allows

the users to specify the number of non-zero weights per component, we specified

these in correspondence with the number of non-zero weights in the true weights

matrix.

Table 3.2 presents the estimates resulting from the different methods. The ta-

ble shows that only the two-step principal component logistic regression approach

of SCaDS-logR finds the covariates that perfectly represent the population model

structure. DIABLO can find the distinctive covariates, but does not perform well

at correctly finding the non-zero parameters. It is difficult to interpret the reg-

ularized logistic regression coefficients as they do not go hand-in-hand with the

population model. However, it can be seen that the predictors that do not have

any relations with the covariates were filtered out, yet, also some of the predictors

that do have a relation with the covariates were also filtered out.

With respect to the performance to classify the outcome variable, the number

of correctly classified in-sample and out-of-sample observations for each of the

methods are provided in Table 3.3. The results pertaining to SCD-Cov-logR are

also given to offer comparison. It appears that SCD-Cov-logR and SCaDS-logR

lead to comparable and good predictive performances, although the four methods

don’t exhibit large differences.

Extending this comparative evaluation of the related methods and SCD-Cov-

logR to a simulation study requires comparison of the methods on all criteria that

reflect the multiple research aims of SCD-Cov-logR. The benchmark regularized

logistic regression does not meet this requirement since it fails to meet all of the

research aims; it does not uncover underlying predictor processes via structures

such as covariates. While both PCR (SCaDS-logR) and DIABLO address the aims,

76



Logistic Regression with Sparse Common and Distinctive Covariates

Table 3.2. Estimates provided by PCR, DIABLO and regularized logistic regression. The

true weights WC is also provided as a reference.

WC SCaDS-logR DIABLO LogR

D1 D2 C D1 D2 C D1 D2 C b

Block 1
x1 0.5 0 0 0.392 0 0 0 0 0 -0.198
x2 0.5 0 0 0.399 0 0 0 0 0 -0.304
x3 0.5 0 0 0.430 0 0 0 0 -013 -0.262
x4 0.5 0 0 0.496 0 0 0 0 0 -0.112
x5 0 0 0.354 0 0 0.328 0.606 0 0.480 0.265
x6 0 0 0.354 0 0 0.291 0.411 0 0.330 0.336
x7 0 0 0.354 0 0 0.262 0.636 0 0.502 0.333
x8 0 0 0.354 0 0 0.217 0.242 0 0.200 0.221
x9 0 0 0 0 0 0 0 0 0 0
x10 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0
x12 0 0 0 0 0 0 0 0 0 0
x13 0 0 0 0 0 0 0 0 0 0
x14 0 0 0 0 0 0 0 0 0 0
x15 0 0 0 0 0 0 0 0 0 0

Block 2
x16 0 0 0.354 0 0 0.357 0 0.537 0.364 0.180
x17 0 0 0.354 0 0 0.370 0 0.533 0.353 0.189
x18 0 0 0.354 0 0 0.311 0 0.525 0.335 0.232
x19 0 0 0.354 0 0 0.281 0 0.389 0 0
x20 0 0.5 0 0 0.443 0 0 0 0 0
x21 0 0.5 0 0 0.424 0 0 0 0 0
x22 0 0.5 0 0 0.419 0 0 0 0 0
x23 0 0.5 0 0 0.479 0 0 0 0 0
x24 0 0 0 0 0 0 0 0 0 0
x25 0 0 0 0 0 0 0 0 0 0
x26 0 0 0 0 0 0 0 0 0 0
x27 0 0 0 0 0 0 0 0 0 0
x28 0 0 0 0 0 0 0 0 0 0
x29 0 0 0 0 0 0 0 0 0 0
x30 0 0 0 0 0 0 0 0 0 0
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Table 3.3. Number of correctly classified observations provided by PCR, DIABLO and

regularized logistic regression.

SCD-Cov-logR SCaDS-logR DIABLO LogR

In-Sample 92 91 83 87

Out-of-Sample 92 92 84 88

PCR has been compared in previous works against PCovR and showed underper-

formance in discovering the true covariate structure (Vervloet et al., 2016) and

also in prediction of the outcome (Heij et al., 2007; Tu & Lee, 2019); the reason

that PCR falls short is because its components are found without considering the

outcome. Moreover, in the setting of multiple predictor blocks, PCovR resulted in

better prediction of the outcome when some of the underlying predictor processes

important for predicting the outcome only account for a small amount of variance

in the predictors (S. Park et al., 2020). Therefore, in the simulation study section

below, we evaluate the performance of our current method against the only com-

petitor that accounts for all criteria, this is DIABLO.

3.2.6 Toy example multiclass problem

As an additional demonstration for our current method under a multiclass

classification problem, we generated a toy example dataset again with a categori-

cal outcome variable with 3 categories. The characteristics of the data and the un-

derlying model were kept the same as the toy example above, except for the defini-

tion of the regression parameters and the number of observation units (I = 1000).

Appendix (3.H) provides further details on the data generating setup. Out of the

3 categories, the third category was taken as the baseline category in forming

the log-odds models. We administered the sequential model selection procedure

as done for the binary problem, employing 5-fold cross-validation considering the

same ranges of parameters as for the binary problem again (see section 3.2.4). The

following model parameters were selected: R = 3, β = 0.1, λR = 0.1, λLr = 100

and λGr = 10. Table 3.4 shows the solution together with the defined popu-

lation parameters used to generate the data. It can be seen that the estimated

weights correctly represent the true underlying weights. The logistic regression

coefficients found are also in agreement with the population parameters; two co-

variates important for discerning the categories from the third (baseline) category

are correctly picked out. Moreover, the constructed model classified 842 in-sample

observations and 845 out-of-sample observations correctly (both out of 1000 total

observations).
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Table 3.4. Population parameters and the solution found by SCD-Cov-logR from the toy

example multiclass dataset. The column names D1, D2 and C indicate that the correspond-

ing covariate is defined as being distinctive to block 1, distinctive to block 2 and common.

The third category is chosen as the baseline category; the regression coefficients construct

the log-odds of the first or the second category as opposed to the third.

WC

D1 D2 C

Block 1
x1 0.5 0 0
x2 0.5 0 0
x3 0.5 0 0
x4 0.5 0 0
x5 0 0 0.354
x6 0 0 0.354
x7 0 0 0.354
x8 0 0 0.354
x9 0 0 0
x10 0 0 0
x11 0 0 0
x12 0 0 0
x13 0 0 0
x14 0 0 0
x15 0 0 0

Block 2
x16 0 0 0.354
x17 0 0 0.354
x18 0 0 0.354
x19 0 0 0.354
x20 0 0.5 0
x21 0 0.5 0
x22 0 0.5 0
x23 0 0.5 0
x24 0 0 0
x25 0 0 0
x26 0 0 0
x27 0 0 0
x28 0 0 0
x29 0 0 0
x30 0 0 0

ŴC

D1 D2 C

Block 1
x1 0.485 0 0
x2 0.485 0 0
x3 0.475 0 0
x4 0.476 0 0
x5 0 0 0.345
x6 0 0 0.344
x7 0 0 0.348
x8 0 0 0.338
x9 0 0 0
x10 0 0 0
x11 0 0 0
x12 0 0 0
x13 0 0 0
x14 0 0 0
x15 0 0 0

Block 2
x16 0 0 0.350
x17 0 0 0.345
x18 0 0 0.348
x19 0 0 0.349
x20 0 0.482 0
x21 0 0.475 0
x22 0 0.480 0
x23 0 0.482 0
x24 0 0 0
x25 0 0 0
x26 0 0 0
x27 0 0 0
x28 0 0 0
x29 0 0 0
x30 0 0 0

Logistic regression coefficients

1 2

Population
D1 0.600 0.950
D2 0.010 0.312
C -0.800 0.010
intercept 0 0

Estimated
D1 1.843 2.865
D2 -0.026 0.941
C -1.966 0.015
intercept 0.033 -0.025

3.3 Simulation study

Through a simulation study, we study the performance of the SCD-Cov-logR

and DIABLO with respect to retrieval of the underlying processes and the classifi-

cation of a binary outcome variable. We focus on the binary classification problem

as the multiclass problem is a direct extension of the binary problem; it is ex-
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pected that the insights obtained from the binary problem to be applicable for

the multiclass problem. We hypothesize that SCD-Cov-logR would be better at

out-of-sample classification than DIABLO as it is less susceptible to overfitting.

SCD-Cov-logR would also provide models that better reflect the true underlying

predictor processes as it allows a good balance between explaining the predictors

and the outcome via the weighting parameter.

3.3.1 Design and procedure

We relied on the data generating setup presented by Chung and Keles (2010)

which was used for examining the performance of several variants of sparse PLS

that were set up to address the classification problem. Fixing the number of ob-

servations I to 100, the setup was modified such that two blocks of predictor vari-

ables were generated from three underlying covariates. One distinctive covariate

per each predictor block was defined, while the remaining covariate reflected a

common process involving both of the blocks. The three covariates were defined

to differ in relevance for predicting the outcome variable, in that only two of them

were defined as being relevant. We generated J = 200 predictor variables (100

per data block) for the high dimensional setting and J = 30 (15 per data block)

for the low dimensional. The following setup was used:

T ∼MVN (0,Σ = 502I3)

E ∼MVN (0,ΣE = σ2IJ)

XC ← TW⊤
C + E

z← 1/(1 + exp(−Tp(g)))

gi ∼ Bernoulli(zi)

(3.11)

T is a I × 3 covariate scores matrix drawn from a multivariate normal distri-

bution defined with the mean vector fixed to 0 and a diagonal covariance matrix

Σ with all of its diagonal elements fixed at 502. The three covariates are there-

fore uncorrelated. The columns of the J × 3 weights matrix WC is defined such

that they reflect the defined common or distinctive nature of the corresponding

covariates. For example, weights corresponding to a covariate distinctive to the

first predictor block, are non-zero only for predictors in the first block while the

remaining weights corresponding to predictors in the second block are all zero.

Likewise, for a common covariate, non-zero weights are defined for predictors in

both blocks. On top of these zero weights that determine the common or distinc-

tive nature of the covariates, further sparsity is added by defining more elements

of WC as zeros. The sparsity levels of the weights matrix is fixed at 82% and 85%
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for low and high dimensional settings, respectively. It is important to note that the

weights matrix was constructed such that it is column-orthogonal: W⊤
CWC = IR.

Together with the covariates T which are orthogonally defined, this model corre-

sponds to the well-known PCA decomposition where the weights are equal to the

loadings (for discussion; Guerra-Urzola et al., 2021). This is why the weights W⊤
C

in (3.11) linearly combine the covariates T to generate the predictors XC in the

same manner as loadings in PCA decomposition. An example of the population

weights matrix in a low dimensional setting is presented in section 3.2.3 (Table

3.2) along with the toy example dataset, and the weights are defined in a similar

manner for a high dimensional setting.

The predictors XC are generated by multiplying the covariate scores matrix

with the weights matrix and adding random error on top. The residual matrix E

is generated from a multivariate normal distribution with zero mean vector and

a diagonal covariance matrix ΣE such that the residuals are uncorrelated with

each other and also with the covariate scores. The variance of the error variables

are adjusted according to one of the manipulated design factors of the simulation

study: proportion of variance in XC explained by the underlying covariates. p(g)

indicates the regression coefficients. gi is sampled from a Bernoulli distribution

with the probability defined by the linear combination of T and p(g) transformed

by the inverse-logitic function (see Equation (3.2)).

Based on this data generating model, we manipulated three data character-

istics which are listed in the overview below. The different levels taken by these

manipulated factors are provided between square brackets.

Study setup
1. Number of predictors Jk in each block: [100], [15]

2. Covariates relevant to the response g: [D1, D2], [D1, C]

3. Proportion of variance in XC explained by the covariates: [0.8], [0.5], [0.2]

The number of predictors manipulated by the first design factor determines

whether the dataset would be low or high-dimensional. The second design factor

indicates which covariates are relevant for the classification of the binary outcome

with D1, D2 and C denoting the two distinctive and the common covariate, respec-

tively. The relevance of the covariates is manipulated by specification of regression

coefficients p(g), which equals [0.60,−0.80, 0.01] and [0.60, 0.01,−0.80] for the two

levels respectively. For the first level, the two distinctive covariates are made rele-

vant in explaining the outcome variable, while the covariate distinctive to the first

block and the common covariate are relevant in the second level. As stated above,

the proportion of variance in the predictors accounted for by the covariates is con-
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trolled by the variance of the error variables E. Fully crossing these factors and

generating 50 datasets per condition, 2× 2× 3× 50 = 600 datases were produced.

Two different analyses were administered to each of these datasets: SCD-

Cov-logR and DIABLO. As done for DIABO for the toy example dataset, a 1-

component model was fitted for each of the two data blocks to match the two

distinctive covariates generated. For the common covariate, we constructed a 1-

component model from a supermatrix that concatenates the two data blocks.

3.3.2 Model selection

As the true underlying structure of the datasets is already known, several

tuning parameters were tailored to correspond to the true structure. For SCD-

Cov-logR, the number of covariates was fixed at three. The weighting parameter

α and the ridge penalty parameter λR that regularizes the logistic regression coeffi-

cients were tuned together via 5-fold cross-validation. As done in the toy example

in section 3.2.4, we used the rescaled weighting parameter β instead of α. The

ranges of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and [0.5, 1, 5, 10, 30, 50] respectively

were used for β and λR. We adopted the 1 standard error (SE) rule to select a set

of parameters which provides the most general model among the set of parame-

ters yielding errors within 1 SE from minimum cross-validation error. We chose

the lowest β and the highest λR. For the toy example, the lasso λLr and the group

lasso λGr parameters were fixed at zero while tuning β and λR. Instead, for the

simulation study, they were fixed differently for various conditions of the simula-

tion study to encourage retrieval of one common and two distinctive covariates

(Appendix 3.I).

Finally, with values of β and λR fixed, in order to find the parameters λLr and

λGr that match the population weights structure the closest, we fitted the method

with a range of values for λLr and λGr. The ranges of [3, 5, 10, 15, 20, 30, 50,

80] and [0.5, 1, 2, 3, 5, 10] were adopted respectively for λLr and λGr. As in the

toy example dataset, the datasets have been generated such that a PCovR model

underlies the true sparse model structure. This means that the rational starting

values are likely to provide a more optimal solution than random starting values.

Therefore, we only employed the rational starting values based on PCovR.

For DIABLO, we specified the number of nonzero weights according to the

defined model structure. As done for the toy example dataset, the components

from different blocks were fitted such that they are not correlated. This is sensible

because the true covariates are generated to be uncorrelated from each other.
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3.3.3 Evaluation criteria

Because the methods have several objectives, including recovery of the un-

derlying processes and classification of a binary outcome, two measures are used

to study performance of the methods in relation to each of these objectives. The

performance measures are:

1. Out-of-sample balanced error rate (BER): (false positive rate + false negative
rate)/2.

2. Correct weights classification rate: proportion of the weights correctly classified as
zero and non-zero elements relative to the total number of coefficients.

An independent test set (of 100 observation units) needed for computing

the out-of-sample BER was generated following the same data generating proce-

dures as the data used for model-fitting. A BER equal to zero indicates a perfect

classification. The correct weights classification rate represents the method’s abil-

ity in retrieving the underlying processes. SCD-Cov-logR provides weights matrix

ŴC of size
∑2

k=1 Jk × R which covers the entire set of the multiblock predictors.

For the weights provided by SCD-Cov-logR, we first computed Tucker congruence

(L. R. Tucker, 1951) between the columns of the true WC matrix and those of the

estimated ŴC matrix. After matching the columns that resulted in the highest

Tucker congruence to account for the permutational freedom of the covariates,

the correct classification rate was calculated from the matching pairs of true and

estimated WC columns.

On the other hand, for DIABLO, one component each was estimated for the

two predictor blocks and the concatenated supermatrix. Components derived from

the individual predictor blocks naturally correspond to the true distinctive covari-

ates. In order to calculate the correct classification rate, the weights estimated for

these estimated components were compared against true weights that correspond

to the true distinctive covariates. Likewise, the weights found from the concate-

nated supermatrix were compared against the true weights corresponding to the

common covariate.

3.3.4 Results

3.3.4.1 Out-of-sample BER

We first examine the performance of the two methods concerning the pre-

diction for new data. The estimates obtained by the methods from the training

dataset are applied on the out-of-sample test set generated under equal conditions.

The results from our simulation study arranged for each condition are displayed
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in Figure 3.1. It can first be seen that SCD-Cov-logR resulted in the smaller out-

of-sample BER in almost all of the conditions. With regards to the manipulated

design factors, the relevance of the covariates seems to have played an important

role in different performances among the methods. When the two distinctive co-

variates are defined as being relevant, the discrepancy in the methods is smaller,

but with the covariate distinctive to the first block and the common covariate rel-

evant, the outperformance of SCD-Cov-logR stands out more prominently. The

proportion of variance in XC accounted for by the covariates resulted in the ‘main

effect’ - with smaller proportion leading to higher BER for all of the methods. Fi-

nally, it appears that the discrepancy in the performance of the methods is larger

when the dataset is high-dimensional. Overall, we conclude that SCD-Cov-logR

outperforms DIABLO at predicting the classes of new observations. However, the

methods present more comparable performance when the processes relevant for

classification are distinctive, under low dimensionality.
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Figure 3.1. Box plots of the out-of-sample BER; each panel corresponds to one of the 12

conditions. The column panels indicate the number of predictors in each data block and

the proportion of variance accounted for by the underlying processes. The row panels

indicate the two covariates relevant for the outcome variable; “D1”, “D2” and “C” refer to

the covariate distinctive to the first block, the covariate distinctive to the second block and

the common covariate, respectively.
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3.3.4.2 Correct weights classification rate

Figure 3.2 presents the outcome of the correct weights classification rate.

Across all of the conditions, SCD-Cov-logR resulted in the higher of correct classi-

fication. It is also noteworthy that the classification rate for the method is mostly

above 0.95. The figure shows the influence of the relevance of the underlying co-

variates and its interaction with the other manipulated data circumstances. When

the two distinctive covariates were relevant, regardless of the dimensionality, SCD-

Cov-logR resulted in a much higher classification rate than DIABLO. On the other

hand, when the covariate distinctive to the second data block was defined irrele-

vant, DIABLO’s performance was closer to SCD-Cov-logR’s in the conditions with

more variance of the predictors explained and with 15 predictor variables per

block. In conclusion, SCD-Cov-logR is better than DIABLO at correctly retrieving

the the underlying population weights.
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Figure 3.2. Box plots of the correct weight classification rate; each panel corresponds to

one of the 12 conditions. The column panels indicate the number of predictors in each

data block and the proportion of variance accounted for by the underlying processes. The

row columns refer to the two covariates relevant for the outcome variable; “D1”, “D2”

and “C” refer to the covariate distinctive to the first block, the covariate distinctive to the

second block and the common covariate, respectively.

85



Chapter 3

3.4 Illustration: 500 Family Data

3.4.1 Dataset and pre-processing

We demonstrate an example use of SCD-Cov-logR by administering the method

on an empirical dataset. We adopted the dataset from the 500 Family Study

(Schneider & Waite, 2008) which investigated into how work impacts the well-

being of parents and children in American middle-class families. Questionnaire

data from different members of the same family were collected. We computed

sum scores from questionnaire items that refer to the same construct. These scores

concern the feelings of the family members, their recent mutual activities and how

they perceive thier relationship. 24 sum score variables were computed and are

used as predictors in constructing the SCD-Cov-logR model. They can be found in

Table 3.5. Eight of the predictors pertain to responses from the mother, another

eight to responses from the father and lastly six predictors are based on the re-

sponses of the child. The dataset therefore is comprised of three blocks according

to the member of the family, and each observation unit refers to a family. All of the

predictors were centered and standardized. Since the blocks have different sizes,

they were weighted such that the sum of squares are equal across blocks.

The families are categorized into two groups according to the child’s most

recent grade at school. The family with the child with a grade B or higher is

classified as having academic overachievement (coded as 1), while grade C or

lower is classified as underachievement (coded as 0). We excluded the families

with missing values on any of the predictor variables, and made a random sub-

set selection of 58 families in order to obtain a balance between the size of two

categories. We conducted SCD-Cov-logR to target this classification problem of

academic underachievement while simultaneously constructing a model that de-

scribes the underlying common and distinctive processes of the three predictor

blocks.

3.4.2 Model selection

We employed the sequential cross-validation model selection strategy dis-

cussed in section 3.2.4 applied to the toy example dataset. Moreover, 50 sets of

random starting values were employed alongside the rational starting values in

conducting the model selection and final model fitting.

First, the number of covariates was found by administering PCA on the pre-

dictor matrix. By using the acceleration factor technique, we found that when

going from 1 to 2 principal components, the amount of variance explained by

the principal components changes the most drastically (Figure in the Appendix

86



Logistic Regression with Sparse Common and Distinctive Covariates

3.J). With the number of covariates determined at two, we carry out the cross-

validation to select the other tuning parameters. The different sets of starting

values were introduced at this stage. The complete process of model selection and

model fitting was conducted for each set of starting values. The resulting solutions

from 50 random starting values and 1 rational starting value were compared in

terms of the value of the loss function: The solution with the smallest loss was

retained as the final solution.

The cross-validation procedures administered for each of the starting values

were as the following: first, 20-fold cross-validation was conducted with varying

values of the rescaled weighting parameter β and λR. At this stage, the tuning

parameters λLr and λGr were fixed at zero for the cross-validation. We considered

the values of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for β and [0.01, 0.05,

0.1, 0.5, 1, 2, 5, 10, 15, 20] for λR. Using the one standard error rule, values

of β and λR are selected. Given these selected values, the second sequence of

20-fold cross-validation for λLr and λGr was conducted. With the ranges of [0,

0.05, 0.1, 0.3, 0.5, 1, 3, 5, 7, 10, 15, 20, 30, 50] adopted for both parameters,

the same parameter value was used concerning the two covariates. We used the

one standard error rule again to choose the values of λLr and λGr, completing the

model selection procedure.

Similar to the toy example dataset, a smaller minimum was achieved by the

set of rational starting values. The final values for the tuning parameters selected

through the sequential procedure were: β = 0.1, λR = 2, λLr = 10, λGr = 10. The

final model estimates obtained are presented in Table 3.5.
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3.4.3 Results

Table 3.5. Weights and logistic regression coefficients derived by SCD-Cov-logR from the

500 family dataset. The covariate labels heading the columns of the table with weights

and the rows of the table with logistic regression coefficients indicate which data blocks

the corresponding covariate is associated with.

ŴC

Child Parents

Mother

Relationship with partners 0 0.276

Argue with partners 0 0.269

Childs bright future 0 0

Activities with children 0 0

Feeling about parenting 0 0.188

Communation with children 0 0.357

Argue with children 0 0.171

Confidence about oneself 0 0.406

Father

Relationship with partners 0 0.091

Argue with partners 0 0.183

Childs bright future 0 0

Activities with children 0 0

Feeling about parenting 0 0

Communation with children 0 0

Argue with children 0 0.210

Confidence about oneself 0 0.050

Child

Self confidence/esteem 0.285 0

Social life and extracurricular 0.336 0

Importance of friendship 0.459 0

Self Image 0.381 0

Happiness 0.374 0

Confidence about the future 0.281 0

Logistic regression coefficients

Estimated

Child 0.288

Parents 0.034

Intercept -0.007

The estimated weights matrix from Table 3.5 show that there are two pre-

dictive processes for the child’s academic achievement. The first component is dis-

tinctive to the child block and is associated with all of the variables from the data

block. It appears that all of the variables in the child block have an impact in the

the academic achievement. On the other hand, the second component is locally

common, involving several variables from the mother and the father blocks but not

from the child block. Observing the weights from the second covariate, it can be

88



Logistic Regression with Sparse Common and Distinctive Covariates

seen that parents’ high confidence in the child’s future and the amount of activities

they partake with the child are not important in predicting the child’s academic

achievement. Also, according to this model, the father’s positive feeling about par-

enting and his level of communication do not exert strong influence in the child’s

academic achievement. Moreover, the logistic regression coefficients suggest that

the Child covariate is much more relevant in predicting child’s academic achieve-

ment group. It appears that the attitudes that the children themselves have are

the most important in leading to academic overachievement.

The covariate scores of the 58 families can be seen in Figure 3.3 which

presents a fair separation of the two categories of the families. With the obser-

vations separated along the X-axis, It can be seen that the Child covariate plays a

more important role in separating the two groups. This is in line with the small

magnitude of the coefficient corresponding to the Parents covariate. Out of the 58

families, the final model classifies 43 families correctly. In order to also examine

the classification performance of the model on out-of-sample data, we performed

a leave-one-out cross-validation which resulted in 40 families being correctly clas-

sified. Together, this implies that the model showed about 70% of classification

accuracy for both in-sample and out-of-sample observations.
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Figure 3.3. Scatterplot of the two covariates found by SCD-Cov-logR. The colours repre-

sent the academic achievement of the child.

To obtain more comparative insight about the quality of the method under

this empirical dataset, we administered the related methods discussed in the meth-

ods section; regularized logistic regression, PCR (SCaDS-logR) and DIABLO. The
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PCA step for the PCR was conducted with SCaDS to tackle the multiblock nature

of the data, as demonstrated with the toy example dataset in section 3.2.5. The

number of components for SCaDS was set at two, so that the model is compara-

ble to the SCD-Cov-logR model constructed with two covariates. The lasso and

group lasso parameters governing the sparseness of SCaDS weights were selected

with 20-fold cross-validation with the one standard error rule. Similarly, a 2-

component model was estimated with DIABLO. The number of non-zero weights

to be estimated per component was tuned via 20-fold cross-validation. Lastly, the

lasso parameter for regularized logistic regression was also chosen with 20-fold

cross-validation. Table 3.6 provides the number of correctly classified in-sample

observations from each of the methods. As done for SCD-Cov-logR, leave-one-out

cross-validation was conducted to gauge the out-of-sample classification quality.

These results are also provided in the table. It can be seen that the four methods

led to very comparable performances with respect to prediction. The estimates

derived by the methods are provided in Appendix (3.K) and they can be inspected

to understand the constructed models. It was found that only SCaDS-logR iden-

tified predictive processes concerted by several predictors, akin to the covariates

of SCD-Cov-logR. Both regularized logistic regression and DIABLO found a very

sparse model with only two non-zero coefficients.

Table 3.6. Number of correctly classified observations (out of the total 58) provided

by SCD-Cov-logR, PCR, DIABLO and regularized logistic regression. The out-of-sample

classification is computed via leave-out-out cross-validation.

SCD-Cov-logR SCaDS-logR DIABLO LogR

In-Sample 43 43 44 43

Out-of-Sample (leave-one-out CV) 40 41 38 40

In conclusion, our proposed method is capable in meeting its goals when

applied to an empirical dataset. The method identifies common and distinctive

covariates and weights that are interpretable. At the same time, the method is

able to correctly classify both the samples used for fitting the model and new

samples.

3.5 Discussion

A multitude of goals are of interest when building a classification model from

a multiblock dataset. The common and distinctive predictor processes need to be

identified in an interpretable manner while classifying the outcome variable. We

have proposed the method of SCD-Cov-logR that fulfills these goals in a simul-
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taneous manner. We have evaluated the method comparatively against DIABLO;

a multiblock variant of PLS. It was found that the proposed method outperforms

DIABLO in the objectives that the methods attain: quality of classification and re-

trieval of weights that are used to understand the underlying processes. Moreover,

while DIABLO requires prior information for identifying the common and distinc-

tive processes, our proposed method is able to explore these structures without

explicit specification.

In particular, SCD-Cov-logR was found to be considerably better than DI-

ABLO in accurately retrieving the weights matrix. This finding is in line with

existing literature that compares between the methodologies of PLS and PCovR.

Methods based on PLS tend to place heavier focus on prediction of the outcome

variables, as opposed to exploring the structure of the underlying predictor pro-

cesses. In contrast, the weighting paramter α in the PCovR methods helps to attain

a good balance between emphasizing the predictor or the outcome variables. In

the current paper, all of the results were based on the rescaled parameter β tuned

via cross-validation. This suggests that the parameter can be used effectively in a

purely data-driven approach.

SCD-Cov-logR also has weaknesses. Model selection is an inherent challenge

since the method requires many parameters to be tuned to meet its multiple re-

search aims. There are in total 5 parameters to be selected and they all play an im-

portant role in shaping the retrieved model. Adopting the solution recommended

by Vervloet et al. (2016), the current paper suggested a sequential model selec-

tion approach where sets of tuning parameters are chosen through cross-validation

with the other parameters fixed. Models obtained by this approach led to good re-

sults in both simulation experiments and empirical study. We have not visited the

model selection problem of our method in great detail as the main purpose of this

paper lies within the proposal and illustration of the novel method.

Another remark about the model selection procedure is the optimality cri-

terion used for cross-validation. Throughout the paper, we adopted the sum of

squared cross-validation errors concerning the binary outcome variable. This im-

plies that the model selection procedure is conducted only considering the out-

of-sample prediction quality. Since our method is not only used for classification

of the outcome but also exploring the predictor processes, the optimality criterion

for cross-validation can be changed to also include the errors pertaining to the

predictor variables. This choice is in the same spirit of the weighting parameter α;

if the user is interested more in the exploration of the predictor processes, it may

be a viable option to look into such an optimality crterion different from what is

used in this paper.

In our illustration of the toy data example and the simulation study, DIA-
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BLO was fitted in a peculiar manner to allow for derivation of the distinctive and

common covariates. However, in practice, there may be other ways of specifying

the method. For example, a supermatrix of concatenated blocks can be provided

as the only input dataset and a single DIABLO model can be constructed on it 3.

We have explored into such a specification, and found that it results in consis-

tent underperformance compared to SCD-Cov-logR with respect to prediction and

retrieval of population parameters. It also has a tendency to only find common

covariates.

Finally, the method and the current paper suggest several future directions

of research. It would be a natural extension to broaden the method to encompass

generalized linear models. This would allow modelling of outcome variables in

diverse nature such as count data. Furthermore, such an extension would allow

other related research questions to be addressed. For example, within the high-

dimensional multiblock setting, it would be interesting to examine the impact of

using a generalized linear model framework to model the categorical outcome,

as opposed to the discriminant analysis approach adopted for DIABLO where the

categorical outcome variable is simply changed into a dummy matrix and a lin-

ear regression model is fit. Although Lê Cao et al. (2008) compared the two

approaches and reported that they show comparable performance in practice, the

comparison has not been conducted in the multiblock data setting. Our proposed

method SCD-Cov-logR can also be easily adapted into the linear regression ap-

proach using a dummy outcome matrix, if it is found to be useful in certain data

circumstances.

3This would then be a single model of sPLS-DA (sparse partial least squarse discriminant anal-
ysis).
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3.A SPCovR, SCaDS and SCD-CovR

3.A.1 SPCovR

For easier interpretation of the principal covariates and consistency of es-

timates in the high dimensional settings, regularization penalties have been im-

posed on the weights from Equation (3.5) to lead to sparse PCovR (SPCovR;

Van Deun et al., 2018). The method finds sparse weights by minimizing the fol-

lowing objective function:

L(Wk,P
(X)
k ,p(y)) = α

∥∥y −XkWkp
(y)
∥∥2
2

∥y∥22
+ (1− α)

∥∥∥Xk −XkWk(P
(X)
k )⊤

∥∥∥2
2

∥Xk∥22
+ λL |Wk|1 + λR ∥Wk∥22

(3.12)

such that (P
(X)
k )⊤P

(X)
k = IR and with λL ≥ 0, λR ≥ 0 and α ≥ 0. The reg-

ularization parameters are the lasso, with |Wk|1 =
∑

jk,r
|wjkr|, and the ridge

∥Wk∥22 =
∑

jk,r
w2

jkr
, together forming the elastic net penalty (Zou & Hastie, 2005).

The ridge penalty shrinks the magnitude of the estimates and encourages stable

estimation for high-dimensional data, while the lasso penalty is involved in vari-

able selection by shrinking and forcing the estimates to exactly zero. When both

penalties are defined at 0, it can be seen that the PCovR formulation (3.5) is re-

trieved.

3.A.1.1 SCA and SCD-CovR

SPCovR only targets data with a single predictor block and hence do not

address the questions associated with multiple predictor blocks. A joint analysis of

the K predictor blocks can be conducted by imposing a multiblock PCovR model,

based on the SCA model (Kiers & ten Berge, 1989):

XC =XCWC(P
(X)
C )⊤ + E(X)

y =XCWCp
(y) + e(y)

(3.13)
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where XC = [X1, . . . ,XK ] (of size I ×
∑K

k=1 Jk) denotes the supermatrix that

concatenates the predictor blocks. Consequently, WC and P
(X)
C are weight and

loading matrices of size
∑K

k=1 Jk × R. p(y) indicates a vector of R regression coef-

ficients.

When SCA is administered to study the processes underlying the variables

without considering the regression problem, the concatenated weights matrix WC

is examined to understand the nature of the components. In order to allow SCA to

explicitly distinguish common and distinctive processes and provide a sparse and

interpretable solution from high dimensional multiblock datasets, de Schipper and

Van Deun (2018) proposed SCaDS. Regularization penalties are imposed upon the

weights to force certain elements to zero for handier interpretation, while the WC

matrix is further constrained such that certain components are a priori fixed as

being common or distinctive.

Making use of the multiblock PCovR model (3.13) and also combining with

SCaDS, SCD-CovR extends SPCovR to allow multiblock analysis. It predicts the

outcome, while providing sparse weights that capture the common and distinctive

processes in the predictor blocks. SCD-CovR implies minimizing the following

objective function:

L(WC ,P
(X)
C ,p(y)) = α

∥∥y −XCWCp
(y)
∥∥2
2

∥y∥22
+ (1− α)

∥∥∥XC −XCWC(P
(X)
C )⊤

∥∥∥2
2

∥XC∥22
+ λL |WC |1 + λR ∥WC∥22

(3.14)

such that (P(X)
C )⊤P

(X)
C = IR, and subject to zero block constraints on WC that fix

weights that correspond to one or several predictor blocks to zero. This implies

that the component is determined only by predictors of those blocks for which

the weights have not been fixed to zero. Common components are obtained by

not placing such zero block constraints on the component. The elastic net penalty

and the constraints concerning the weights are the same as imposed in SCaDS.

Also, as in SPCovR, the lasso penalty achieves sparseness within the common and

distinctive covariates.

3.B SCD-Cov-logR algorithm

The minimizing solution of (3.7) can be found by iteratively reweighted least

squares which involves formulating the quadratic approximation of the negative

log likelihood given the current estimates of the parameters (Friedman et al.,
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2010b). The negative log likelihood part of the objective function is as the fol-

lowing:

Llogr(WC ,p
(g), p

(g)
0 ) = −

I∑
i

gi(p
(g)
0 + xC

⊤
i WCp

(g))− log(1 + e(p
(g)
0 +xC

⊤
i WCp(g)))

(3.15)

Quadratic approximation of (3.15) given the current estimates of the param-

eters is as the following.

LQlogr(WC ,p
(g), p

(g)
0 ) =

1

2

I∑
i

qi(zi − p
(g)
0 − xC

⊤
i WCp

(g))2 (3.16)

where

qi = p̃i(1− p̃i)

zi = p̃
(g)
0 + xC

⊤
i W̃Cp̃

(g) +
gi − p̃i

p̃i(1 + p̃i)

p̃i = e(
˜

p
(g)
0 +xC

⊤
i W̃C

˜p(g))/(1 + e(
˜

p
(g)
0 +xC

⊤
i W̃C

˜p(g)))

(3.17)

The parameters denoted with the˜symbol are the current parameters. With

the quadratic approximation now replacing the negative log-likelihood in (3.7)

and the rescaled weighting parameter β used instead of α (see Equation 3.8), the

objective function becomes:

L(WC ,P
(X)
C ,p(g), p

(g)
0 ) =

β

2

I∑
i

qi(zi − p
(g)
0 − xC

⊤
i WCp

(g))2

+ (1− β)
I∑
i

∥∥∥xCi − xC
⊤
i WC(P

(X)
C )⊤

∥∥∥2
2

+
R∑
r

λLr |wCr|1 +
R∑
r

K∑
k

λGr

√
Jk
∥∥w(k)

r

∥∥
2
+ λR

∥∥p(g)
∥∥2
2

(3.18)

where qi and zi are defined as in (3.17). The optimization problem in (3.18)

can be solved with an alternating procedure where the loadings P
(X)
C and the re-

gression coefficients p(g), p
(g)
0 are solved for conditional upon fixed values for the

weights WC and vice versa. The sparse group lasso problem for WC is treated

via coordinate descent (Friedman et al., 2010a), while closed-form solutions exist
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for the conditional updates of p(g), p
(g)
0 and P

(X)
C . The derivation of these updating

rules can be found in Appendix (3.C) and (3.D). After each run of conditional esti-

mation of the parameters, the quadratic approximation in (3.18) is updated with

new values of qi and zi calculated with the current parameters. To prevent the

divergence of the coefficients, when the absolute difference between the current

probability p̃i and 1 is less or equal to 10−5, p̃i is fixed at 1. This follows the recom-

mendation of Friedman et al. (2010b) which proposed a framework of combining

regularization with GLM.

A schematic outline of the algorithm is provided in what follows. The opti-

mization procedure that we propose here closely follows those proposed for SCaDS

and SPCovR (de Schipper & Van Deun, 2018; Van Deun et al., 2018). This proce-

dure boils down to solving for all components together (unlike deflation methods

that solve for each component in turn). The alternating routine continues until the

algorithm converges to a stationary point, usually a local minimum. To avoid local

minima problems, we recommend to use multiple random and a rational starting

value based on PCovR.

Algorithm 3.1 SCD-Cov-logR
1: Inputs:

XC and g, number of components R, rescaled weighting parameter β,
regularization parameters λLr, λGr and λR, maximum number of iterations T ,
convergence threshold ϵ ≥ 0

2: Initialize:
WC ←WC

(0), P(X)
C ← P

(X)
C

(0)
, p(g) ← p(g)(0), p0(g) ← p0

(g)(0), L0 ← Initial loss,
Loss difference d← 1, Iteration counter t← 1

3: while t < T or ϵ < d do
4: Update of qi, zi given WC

(t−1), P(X)
C

(t−1)
, p(g)(t−1)

, and p
(g)
0

(t−1)

5: Conditional estimation of WC
(t) given P

(X)
C

(t−1)
, p(g)(t−1)

and p
(g)
0

(t−1)

6: Update of qi, zi given WC
(t), P(X)

C

(t−1)
, p(g)(t−1)

, and p
(g)
0

(t−1)

7: Conditional estimation of P(X)
C

(t)
, p(g)(t) and p

(g)
0

(t)
given WC

(t)

8: Lu ← updated loss given WC
(t), P(X)

C

(t)
, p(g)(t) and p

(g)
0

(t)

9: d← L0 − Lu

10: t← t+ 1
11: L0 ← Lu

12: end while

3.C Estimation of WC

Conditional estimation of WC given the other parameters P(X),p(g) and p
(g)
0

pertains to a sparse group lasso problem. The SCD-Cov-logR objective function
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with the quadratic approximation of the negatlive log-likelihood (3.18) is first

arranged with respect to the weights corresponding to predictor block k and com-

ponent r∗:

L(w
(k)
r∗ ,P

(X)
C ,p(g), p

(g)
0 ) =

β

2

I∑
i

qi(zi − p
(g)
0 −

R∑
r

K∑
l ̸=k

p(g)r x
(l)
i

⊤
w(l)

r −
R∑

r ̸=r∗

p(g)r x
(k)
i

⊤
w(k)

r − p
(g)
r∗ x

(k)
i

⊤
w

(k)
r∗ )

2

+ (1− β)
I∑
i

∥∥∥∥∥xCi −
R∑
r

K∑
l ̸=k

w(l)
r

⊤
x
(l)
i pC

(X)
r −

∑
r ̸=r∗

w(k)
r

⊤
x
(k)
i pC

(X)
r −w

(k)
r∗

⊤
x
(k)
i pC

(X)
r∗

∥∥∥∥∥
2

2

+ λL

∣∣∣w(k)
r∗

∣∣∣
1
+ λG

√
Jk

∥∥∥w(k)
r∗

∥∥∥
2

(3.19)

Taking the derivative with respect to w
(k)
r∗ we get:

− β
I∑
i

qip
(g)
r∗ (Z

(k)
i − p

(g)
r∗ x

(k)
i

⊤
w

(k)
r∗ )x

(k)
i − 2(1− β)

I∑
i

(Y
(k)
i −w

(k)
r∗

⊤
x
(k)
i )x

(k)
i

+ λL∂
∣∣∣w(k)

r∗

∣∣∣
1
+ λG

√
Jk∂

∥∥∥w(k)
r∗

∥∥∥
2

(3.20)

where

Z
(k)
i = zi − p

(g)
0 −

R∑
r

K∑
l ̸=k

p(g)r x
(l)
i

⊤
w(l)

r −
R∑

r ̸=r∗

p(g)r x
(k)
i

⊤
w(k)

r

Y
(k)
i = xC

⊤
i pC

(X)
r∗ −

K∑
l ̸=k

w
(l)
r∗

⊤
x
(l)
i

(3.21)

The subdifferential of
∥∥∥w(k)

r∗

∥∥∥
2

is defined as the following:

∂
∥∥∥w(k)

r∗

∥∥∥
2
=


ŵ

(k)
r∗∥∥∥ŵ(k)
r∗

∥∥∥
2

, if ŵ(k)
r∗ ̸= 0

∈ {u : ∥u∥2 ≤ 1}, if ŵ(k)
r∗ = 0

(3.22)

where u is a vector of equal length as w(k)
r∗ .

The jth element of the subdifferential of ∂
∣∣∣w(k)

r∗

∣∣∣
1

is defined as the following:
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∂
(∣∣∣w(k)

r∗

∣∣∣
1

)
j
=

sign
(
ŵ

(k)
jr∗

)
, if ŵ(k)

jr∗ ̸= 0

∈ {v : |v| ≤ 1}, if ŵ(k)
jr∗ = 0

(3.23)

where v is a scalar.

By equating Equation (3.20) to zero and rearranging, the condition that an

optimal solution satisfies with ŵ
(k)
r∗ = 0 is the following:

∥∥∥∥∥S(
I∑
i

(β qi p
(g)
r∗ Z

(k)
i + 2(1− β) Y

(k)
i ) x

(k)
i , λL)

∥∥∥∥∥
2

≤ λG

√
Jk (3.24)

where S(.) is a element-wise soft-thresholding operator.

In the case that Equation (3.24) is not satisfied and thus ŵ(k)
r∗ ̸= 0, we find the

conditions for an optimal solution for the hth element of the weights concerning

predictor block k and component r∗; w
(k)
hr∗. We first write the objective function

with respect to w
(k)
hr∗.

L(w
(k)
hr∗ ,P

(X)
C ,p(g), p

(g)
0 ) =

β

2

I∑
i

qi(zi − p
(g)
0 −

R∑
r

K∑
l

Jk∑
j ̸=h

p(g)r x
(l)
ij w

(l)
jr −

R∑
r ̸=r∗

K∑
l ̸=k

p(g)r x
(l)
ihw

(l)
hr − p

(g)
r∗ x

(k)
ih w

(k)
hr∗)

2

+ (1− β)
I∑
i

∥∥∥∥∥xCi −
R∑
r

K∑
l

Jk∑
j ̸=h

p(X)
r x

(l)
ij w

(l)
jr −

R∑
r ̸=r∗

K∑
l ̸=k

p(X)
r x

(l)
ihw

(l)
hr − p

(X)
r∗ x

(k)
ih w

(k)
hr∗

∥∥∥∥∥
2

2

+ λL

∣∣∣w(k)
hr∗

∣∣∣+ λG

√
Jk

∥∥∥w(k)
r∗

∥∥∥
2

(3.25)

Taking the derivative with respect to w
(k)
hr∗:

− β
I∑
i

qi p
(g)
r∗ x

(k)
ih (Zi − p

(g)
r∗ x

(k)
ih w

(k)
hr∗)− 2(1− β)

I∑
i

x
(k)
ih (Yi − x

(k)
ih w

(k)
hr∗)

+ λL∂
∣∣∣w(k)

hr∗

∣∣∣+ λG

√
Jk∂

∥∥∥w(k)
r∗

∥∥∥
2

(3.26)

where
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Zi = zi − p
(g)
0 −

R∑
r

K∑
l

Jk∑
j ̸=h

p(g)r x
(l)
ij w

(l)
jr −

R∑
r ̸=r∗

K∑
l ̸=k

p(g)r x
(l)
ihw

(l)
hr

Yi = xC
⊤
i pC

(X)
r∗ −

K∑
l

Jk∑
j ̸=h

x
(l)
ij w

(l)
jr∗ −

K∑
l ̸=k

x
(l)
ihw

(l)
hr∗

(3.27)

The subdifferential of
∥∥∥w(k)

r∗

∥∥∥
2

with respect to w
(k)
hr∗ is provided in Equation

(3.22); it is the hth element of ŵ
(k)
r∗∥∥∥ŵ(k)
r∗

∥∥∥
2

. The subdifferential of ∂
∣∣∣w(k)

hr∗

∣∣∣ is defined as

the following:

∂
∣∣∣w(k)

hr∗

∣∣∣ =
sign

(
ŵ

(k)
hr∗

)
, if ŵ(k)

hr∗ ̸= 0

∈ {v : |v| ≤ 1}, if ŵ(k)
hr∗ = 0

(3.28)

where v is a scalar.

We can equate the derivate to zero to find the optimality conditions for ŵ(k)
hr∗,

which can be summarized by the following:

ŵ
(k)
hr∗ =

S(
∑I

i x
(k)
ih (β p

(g)
r∗ qi Zi + 2(1− β) Yi), λL)

β p
(g)
r∗

2 ∑I
i qix

(k)
ih

2
+ 2(1− β)

∑I
i x

(k)
ih

2
+ λG

√
Jk/

∥∥∥w(k)
r∗

∥∥∥
2

(3.29)

With these conditions, we can set up the following coordinate descent algo-

rithm.

Algorithm 3.2 Coordinate descent for sparse group lasso
1: for r∗ in 1 : R do
2: for k in 1 : K do
3: if

∥∥∥S(∑I
i (β qi p

(g)
r∗ Z

(k)
i + 2(1− β) Y

(k)
i ) x

(k)
i , λL)

∥∥∥
2
≤ λG

√
Jk then

4: ŵ
(k)
r∗ ← 0

5: for h in 1 : Jk do

6: ŵ
(k)
hr∗ ←

S(
∑I

i x
(k)
ih (β p

(g)
r∗ qi Zi+2(1−β) Yi),λL)

β p
(g)
r∗

2 ∑I
i qix

(k)
ih

2
+2(1−β)

∑I
i x

(k)
ih

2
+λG

√
Jk/

∥∥∥w(k)
r∗

∥∥∥
2

3.D Estimation of p(g), p
(g)
0 and P

(X)
C

Closed-form solutions exist for the regression coefficients and the intercept.
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p̂(g) = [(XCWC)
⊤QXCWC + (2/α)λRIR]

−1[(XCWC)
⊤Qz− p

(g)
0 (XCWC)

⊤q]

(3.30)

p̂
(g)
0 = (

I∑
i

qi(zi − xC
⊤
i WCp

(g))) / (
I∑
i

qi) (3.31)

where Q is a diagonal matrix with the ith diagonal element being qi. q and

z are vectors with the elements being qi and zi respectively, which are defined in

(3.17).

The loadings P(X)
C are also obtained via a closed-form solution; P(X)

C = UV⊤

where U and V are found through singular value decomposition of X⊤
CXCWC =

UDV⊤.

3.E SCD-Cov-logR multiclass algorithm

Like for the binary problem, the solution to (3.10) is found by iteratively

reweighted least squares. Partial quadratic approximation can be conducted such

that only parameters that concern the mth category can vary at a time. With the

quadratic approximation replacing the negative log-likelihood in (3.10) and the

rescaled weighting parameter β used instead of α (see Equation 8), the objective

function becomes:

L(WC ,P
(X)
C ,p(g)

m , p0
(g)
m ) =

β

2

I∑
i

qi(zi − p0
(g)
m − xC

⊤
i WCp

(g)
m )2

+ (1− β)
I∑
i

∥∥∥xCi − xC
⊤
i WC(P

(X)
C )⊤

∥∥∥2
2

+
R∑
r

λLr |wCr|1 +
R∑
r

K∑
k

λGr

√
Jk
∥∥w(k)

r

∥∥
2
+ λR

∥∥p(g)
m

∥∥2
2

(3.32)

where

qi = p̃i(1− p̃i)

zi = p̃0
(g)
m + xC

⊤
i W̃Cp̃

(g)
m +

gi − p̃i
p̃i(1 + p̃i)

p̃i = e(p̃0
(g)
m +xC

⊤
i W̃C p̃

(g)
m )/(1 +

M−1∑
m

e(p̃0
(g)
m +xC

⊤
i W̃C p̃

(g)
m ))

(3.33)
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the parameters denoted with the˜symbol are the current parameters. The

loadings are constrained to be column-orthogonal: (P
(X)
C )⊤P

(X)
C = IR. This opti-

mization problem can be solved with an alternating procedure similar to that of

the binary classification. In fact, the conditional estimation of the parameters is

done in the same way as for the binary problem (shown in Appendix 3.C, 3.D) with

a small tweak on the definition of certain quantities. We can first notice that this

objective function with quadratic approximation with respect to category m can

be considered as a binary problem between category m and the baseline category

M . It can be seen that the only difference between the functions for the multiclass

(3.32, 3.33) and the binary (3.17, 3.18) problems is the definition of the current

parameter p̃i. Therefore, from the binary objective function (3.18), computing p̃i

by following (3.33) and replacing the regression coefficients p(g), p
(g)
0 into p

(g)
m , p0

(g)
m

specific for category m would enable us to rely on the same solutions for the con-

ditional updates of the quantities WC ,p
(g)
m , p0

(g)
m and P

(X)
C . The algorithm for the

multiclass problem however cycles over the M − 1 categories on top of the con-

ditional updates of the quantities. After each run of conditional estimation of the

quantities, the quadratic approximation in (3.32) is updated with new values of qi
and zi calculated with the current parameters.

A schematic outline of the algorithm is provided below. The alternating rou-

tine continues until the algorithm converges to a stationary point, usually a local

minimum. To avoid local minima problems, we recommend to use multiple ran-

dom and a rational starting value based on PCovR.
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Algorithm 3.3 SCD-Cov-logR for multiclass classification
1: Inputs:

XC and G, number of components R, rescaled weighting parameter β,
regularization parameters λLr, λGr and λR, maximum number of iterations T ,
convergence threshold ϵ ≥ 0

2: Initialize:
WC ←WC

(0), P(X)
C ← P

(X)
C

(0)
, p(g)

m ← p
(g)
m

(0)
, p0

(g)
m ← p0

(g)
m

(0)
, L0 ← Initial loss,

Loss difference d← 1, Iteration counter t← 1

3: while t < T or ϵ < d do
4: for m← 1 to M − 1 do

5: Update of qi, zi given WC
(t−1), P(X)

C

(t−1)
, p(g)

m

(t−1)
, and p0

(g)
m

(t−1)

6: Conditional estimation of WC
(t) given P

(X)
C

(t−1)
, p(g)

m

(t−1)
and p0

(g)
m

(t−1)

7: Update of qi, zi given WC
(t), P(X)

C

(t−1)
, p(g)

m

(t−1)
, and p0

(g)
m

(t−1)

8: Conditional estimation of P(X)
C

(t)
, p(g)

m

(t)
and p0

(g)
m

(t)
given WC

(t)

9: Lu ← updated loss given WC
(t), P(X)

C

(t)
, p(g)

m

(t)
and p0

(g)
m

(t)

10: d← L0 − Lu

11: t← t+ 1
12: L0 ← Lu

13: end while

3.F The scree test with acceleration factor

conducted to determine the number of

covariates for the toy example dataset
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Figure 3.4. It can be seen that the sharpest change of slopes occurs at four principal

components. Three components are therefore retained in the model.
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3.G Toy example dataset: model selection via

exhaustive grid search of all parameters

Instead of the sequential model selection procedure adopted in the toy exam-

ple dataset (section 3.2.3), we have conducted cross-validation (CV) in which all

of the possible parameters are crossed exhaustively. The ranges of the parameters

considered were the same as in the sequential procedure:

• β: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

• λR: [0.1, 0.5, 1, 3, 5, 10, 30, 50]

• λL: [0.5, 1, 5, 7, 10, 15, 30, 45, 100]

• λG: [0.1, 0.5, 1, 2, 5, 10]

For the number of covariates R, we adopted the range of [1,2,3,4] because PCA on

the predictor data matrix revealed that from the fifth component onwards, the propor-

tion of explained variance is smaller than 5% (this has been depicted in Appendix 3.F).

Crossing all of the possible parameters, we administered 5-fold CV to 15552 models in

total.

The model with the smallest CV error was characterized by the parameters: R =

3, β = 0.6, λR = 0.5, λL = 10, λG = 5. The estimated weights and regression coefficients

are reported in Table 3.7. It can be seen that the estimates are very similar to the ones

found by the model obtained through the sequential approach of CV.
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Table 3.7. Weights and regression coefficients provided by the 3-covariate model with the

smallest cross-validation error

Weights

Block 1
x1 0.420 0 0
x2 0.420 0 0
x3 0.439 0 0
x4 0.486 0 0
x5 0 0 0.330
x6 0 0 0.324
x7 0 0 0.288
x8 0 0 0.261
x9 0 0 0
x10 0 0 0
x11 0 0 0
x12 0 0 0
x13 0 0 0
x14 0 0 -0.021
x15 0 0 0

Block 2
x16 0 0 0.343
x17 0 0 0.361
x18 0 0 0.316
x19 0 0 0.256
x20 0 0.437 0
x21 0 0.429 0
x22 0 0.439 0
x23 0 0.470 0
x24 0 0 0
x25 0 0 0
x26 0 -0.085 0
x27 0 0 0
x28 0 0 0
x29 0 0 0
x30 0 0 0

Logistic regression coefficients

1 -1.272
2 -0.096
3 1.499
intercept -0.206

If we apply the one standard error rule to select the simplest model among those

within 1 SE from the minimum CV error, we would need to make a choice regarding

which parameter to look consider first. The number of covariates R can be considered as

the most influential parameter, followed by the weighting parameter β. Prioritizing these

two parameters, the one standard error rule selects the model: R = 2, β = 0.5, λR =

0.5, λL = 30, λG = 1. Table 3.8 shows the estimates of this 2-covariate model. It can

be seen that the covariate which is distinctive to the second predictor block (D2 in Table

3.1) is excluded from this model. This is sensible because this covariate was defined to

have a very small predictive influence on the outcome variable when generating the data:

population value of the logistic regression weight was set at -0.01. Hence, it is natural

that the exhaustive CV approach that only considers the prediction error could result in
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omitting this covariate. The two covariates extracted are in agreement to the covariates

found by the sequential approach of CV.

Table 3.8. Weights and regression coefficients provided by the 2-covariate model with the

one standard error rule

Weights

Block 1
x1 0.369 0
x2 0.380 0
x3 0.507 0
x4 0.427 0
x5 0 0.345
x6 0 0.311
x7 0 0.265
x8 0 0.212
x9 0 0
x10 0 0
x11 0 0
x12 0 0
x13 0 0
x14 0 0
x15 0 0

Block 2
x16 0 0.337
x17 0 0.378
x18 0 0.302
x19 0 0.206
x20 0 0
x21 0 0
x22 0 0
x23 0 0
x24 0 0
x25 0 0
x26 0 0
x27 0 0
x28 0 0
x29 0 0
x30 0 0

Logistic regression coefficients

1 -1.263
2 1.481
intercept -0.199

3.H Data generation for multiclass toy example

dataset

The data generating setup employed for our simulation study is adapted

slightly such that it can generate more than two categories, in generating the

toy example dataset for the multiclass classification problem. As for the simula-

tion study, two blocks of predictor variables wree generated from three underlying
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covariates; one distinctive covariate per each predictor block and one comon co-

variate. Each predictor block comprised of 15 variables (J = 30 in total), and

I = 1000 observation units were generated. With the population weights and

logistic regression coefficients provied in Table 3.4, the toy example dataset was

generated via the following setup:

T ∼MVN (0,Σ = 502I3)

E ∼MVN (0,ΣE = σ2IJ)

XC ← TW⊤
C + E

zm ← exp(Tp(g)
m )/(1 + exp(

M−1∑
m′

Tp
(g)
m′ )) for m = 1, . . . ,M − 1

zM ← 1/(1 + exp(
M−1∑
m′

Tp
(g)
m′ ))

gim ∼Multinoulli(zim) for m = 1, . . . ,M

(3.34)

where T,Σ and WC are all defined in the same manner as in the simulation

study (see section 3.3.1). The predictors XC are generated by multiplying the

covariate scores matrix with the weights matrix and adding random error. The

diagonal covariance matrix ΣE that governs the variance of error variables E is

specified such that the covariates T account for 50% of variance in XC . p
(g)
m in-

dicates the logistic regression coefficients for the log-odds of the mth category as

opposed to the baseline category M = 3. The statements in the fourth and the

fifth lines together specify the (I = 1000 × M = 3) matrix Z; zim denotes the

probability of the ith observation belonging to mth category, defined according to

the baseline-category logit model (Agresti, 2003). gim is therefore sampled from a

Multinoulli distribution defined by the prescribed probabilities zim.
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3.I Lasso and Group lasso penalty parameters

initially fixed in the simulation study, per each

condition

Dimensions Relevant VAF λG1 λG2 λG3 λL1 λL2 λL3

low D1,D2 0.8 0.5 0.5 0.5 20 10 20

low D1,D2 0.5 0.5 0.5 0.5 30 15 30

low D1,D2 0.2 0.5 0.5 0.5 30 15 30

low D1,C 0.8 0.5 0.5 0.5 30 15 30

low D1,C 0.5 0.5 0.5 0.5 30 15 30

low D1,C 0.2 0.5 0.5 0.5 30 15 30

high D1,D2 0.8 3 3 3 15 7.5 15

high D1,D2 0.5 2 2 2 30 15 30

high D1,D2 0.2 1 1 1 20 10 20

high D1,C 0.8 1 1 1 10 10 10

high D1,C 0.5 1 1 1 30 15 30

high D1,C 0.2 1 1 1 10 10 10

3.J The scree test with acceleration factor

conducted to determine the number of

covariates for the 500 Family dataset
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Figure 3.5. It can be seen that the sharpest change of slopes occurs at three components.

Two components are therefore retained in the model.
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3.K Models constructed from the 500 Family

dataset using the related methods

Table 3.9. Estimates provided by PCR (SCaDS-logR), DIABLO and regularized logistic

regression for the 500 Family dataset.

SCaDS-logR DIABLO LogR

1 2 1 2 b

Mother

Relationship with partners 0 0.243 0 0 0

Argue with partners 0 0.247 0 0 0

Childs bright future 0 0 0 0 0

Activities with children 0 0 0 0 0

Feeling about parenting 0 0.175 0 0 0

Communation with children 0 0.338 0 0 0

Argue with children 0 0.152 0 0 0

Confidence about oneself 0 0.382 0 0 0

Father

Relationship with partners 0 0.097 0 0 0

Argue with partners 0 0.208 0 0 0

Childs bright future 0 0 0 1 0.058

Activities with children 0 0 0 0 0

Feeling about parenting 0 0 0 0 0

Communation with children 0 0 0 0 0

Argue with children 0 0.255 0 0 0

Confidence about oneself 0 0.047 0 0 0

Child

Child self confidence/esteem 0.274 0 0 0 0

Social life and extracurricular 0.333 0 0 0 0

Importance of friendship 0.460 0 0 0 0

Self image 0.360 0 1 0 0.278

Happiness 0.371 0 0 0 0

Confidence about the future 0.275 0 0 0 0
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Variable selection for both outcomes and predictors:

Sparse Multivariate Principal Covariates Regression

Datasets comprised of large sets of both predictor and outcome variables are becoming more
widely used in research. In addition to the well-known problems of model complexity and predictor
variable selection, predictive modelling with such large data also presents a relatively novel and
under-studied challenge of outcome variable selection. Certain outcome variables in the data may
not be adequately predicted by the given sets of predictors. In this paper, we propose the method
of Sparse Multivariate Principal Covariates Regression that addresses these issues altogether by
expanding the Principal Covariates Regression model to incorporate sparsity penalties on both of
predictor and outcome variables. Our method is one of the first methods that perform variable
selection for both predictors and outcomes simultaneously. Moreover, by relying on summary
variables that explain the variance in both predictor and outcome variables, the method offers a
sparse and succinct model representation of the data. In a simulation study, the method performed
better than methods with similar aims such as sparse Partial Least Squares at prediction of the
outcome variables and recovery of the population parameters. Lastly, we administered the method
on an empirical dataset to illustrate its application in practice.

Keywords: Outcome variable selection, Response variable selection, Response selection, Vari-
able selection, Principal Covariates Regression, Dimension reduction

Park, S., Ceulemans, E., & Van Deun, K. (under review).
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4.1 Introduction

Following the advancements of technology for data collection, most research

disciplines are faced with challenges arising from an abundance of data. In deriv-

ing a prediction model, researchers are increasingly encountering a setting where

they handle a bulk of data at both ends of predictor and outcome variables. For

example, Stein et al. (2010) proposed a model that predicts the volume of each

location of the brain (measured by large fMRI data) by numerous predictors from

genome-wide association (GWAS) data. Specific genetic polymorphisms that are

strongly associated with different parts of the brain were explored and identified

therein. Similarly, Mayer, Rahman, Ghosh, and Pal (2018) used genome-wide ex-

pression data in predicting responses of cell lines to several types of drugs. The

study adopted random forests to find subsets of biologically meaningful associa-

tions between transcription rates and responses to drugs. Other examples include

image-on-image regression in which an image is employed to predict another im-

age (Guo, Kang, & Johnson, 2020), or multitrait GWAS where multiple correlated

phenotypic traits are modelled together by genotypic variables (Kim, Zhang, &

Pan, 2016; Oladzad et al., 2019). Studies that investigate associations between

genes (M. Y. Park & Hastie, 2008), or across protein and DNA (Zamdborg & Ma,

2009) are also along these lines.

Predictive modelling in the presence of such large amounts of data presents

two well-known issues. First, a constructed prediction model with many vari-

ables is difficult to interpret due to the sheer number of coefficients; studying the

predictor-outcome relationship becomes complicated. Second, certain predictor

variables may be redundant. In a setting like the fMRI-GWAS study (Stein et al.,

2010) where variables are collected without a specific research question, there is a

need to screen out non-essential predictors that do not have any predictive power.

A related but rarely visited issue is that some of the outcome variables may

also be redundant. They may not have a substantial relationship with any of

the predictors, meaning that they cannot be predicted by the available sets of

predictors. Such outcome variables are expected especially in the context of an

exploratory research setup. For example, in a multitrait GWAS setup comparable

to the aforementioned studies, not all phenotypes may have strong relationships

with the available transcription rates and researchers may want to identify a sub-

set of phenotypes that are relevant to the available genetic predictors. Removal

of unimportant outcome variables in such cases can also be helpful because these

unimportant outcomes may obscure relevant predictive relationships pertaining

to other outcome variables (Fowlkes & Mallows, 1983; Steinley & Brusco, 2008).

Settings that can benefit from the exclusion of unimportant outcome variables are

110



Sparse Multivariate Principal Covariates Regression

increasingly common these days with the growing number of investigations that

incorporate non-targeted and naturally-occurring sources of data; prior informa-

tion concerning predictor-outcome relationship is not available. Throughout the

paper, we refer to these outcome variables that are not predictable by the given

set of predictors as ‘inactive outcomes’, and otherwise as ‘active outcomes’. This

terminology is used in other papers that address outcome variable selection (Hu,

Huang, Liu, & Liu, 2022; Su, Zhu, Chen, & Yang, 2016).

One way to deal with the two abovementioned well-known problems per-

taining to complicated model representation and redundant predictor variables is

the method of Principal Covariates Regression (PCovR; De Jong & Kiers, 1992).

It is a combination of Principal Component Analysis (PCA) and Ordinary Least

Squares (OLS) being applied in fields including chemometrics (Boqué & Smilde,

1999), material science (Helfrecht, Cersonsky, Fraux, & Ceriotti, 2020), health sci-

ence (Taylor, Sullivan, Ellerbeck, Gajewski, & Gibbs, 2019) and clinical psychology

(Nelemans et al., 2019). PCovR introduces ‘principal covariates’; a low number of

summary variables that condense the information in the large volume of predic-

tor variables, akin to principal components in PCA. The outcome variable is then

regressed on the principal covariates, significantly decreasing the number of re-

gression coefficients to be estimated. However, since all of the predictor variables

are involved in constructing the principal covariates, a large set of coefficients con-

necting the predictors with the covariates still has to be estimated. Understanding

the nature of the covariates by inspecting these coefficients therefore becomes

very cumbersome. To this end, PCovR has been extended to incorporate regular-

ization penalties that induce sparseness in these coefficients (e.g. S. Park et al.,

2020; Van Deun et al., 2018). This not only allows the covariates to be easily

interpreted, but also discards the predictors that are redundant.

While PCovR and its sparse extensions accommodate for issues arising from

a large set of predictors, they are primarily designed to address a single outcome

variable. Similarly, whereas methods designed to eliminate redundant predictor

variables have been extensively studied (Tibshirani, 1996; M. Yuan & Lin, 2006;

Zou & Hastie, 2005), regression problems involving variable selection at the level

of outcome variables have not received much attention. There have been many

approaches to regress multivariate outcome variables jointly on the predictors in-

stead of modelling the outcomes individually, but most of these works were con-

fined to identifying predictors that are important for predicting all of the outcome

variables (Luo, 2020; Obozinski, Taskar, & Jordan, 2006; Peng et al., 2010). Simi-

larly, while multivariate methods such as Partial Least Squares (PLS) and Reduced

Rank Regression (RRR) that have their basis on reducing the dimensionality of the

variables have been extended to incorporate sparsity, majority of these extensions
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have only targeted predictor variables (L. Chen & Huang, 2012; Chung & Keles,

2010; Lê Cao et al., 2011). To our knowledge, there has been only a handful of

studies that target outcome variable selection; these include regularized regression

approaches (An & Zhang, 2017; Hu, Huang, et al., 2022), a sparse RRR method

(K. Chen, Chan, & Stenseth, 2012) and a method within a framework of envelope

modelling (Su et al., 2016).

In this paper, we propose the method of Sparse Multivariate Principal Co-

variates Regression (SMPCovR), an extension of PCovR methodology that tackles

the variable selection problem for both predictor and outcome variables. Start-

ing from the PCovR model, sparseness is promoted in both sides of the model;

in constructing the covariates from the predictors and in predicting the outcome

variables based on the covariates. The resulting model is not only sparse and easy

to interpret, but also eliminates redundant predictor variables and inactive out-

come variables. It contributes to the under-studied problem of variable selection

of outcome variables.

The paper is arranged as follows. The next section provides methodological

details of SMPCovR. We begin with a discussion of PCovR since it is the basis of our

current method. A simulation study that comparatively evaluates SMPCovR along

with other methods devised with similar research aims is presented afterwards.

The method is also administered to an empirical dataset for an illustrative pur-

pose, as well as to expand upon the comparison against competitive methods in a

practical data setting. The paper concludes with a disussion. The R implementa-

tion of SMPCovR can be found on Github: https://github.com/soogs/SMPCovR.

The code for generating the results in this paper is also available therein.

4.2 Methods

4.2.1 Notation

The following notation is used throughout the paper: scalars, vectors and

matrices are denoted by italic lowercase, bold lowercase and bold uppercase let-

ters respectively. Transposing is indicated by the superscript ⊤. Lowercase sub-

scripts running from 1 to corresponding uppercase letters denote indexing (i.e.,

i ∈ {1, 2, . . . , I}). Superscripts (X) and (Y ) highlight affiliation with predictor and

outcome variables, respectively. To denote estimates, aˆover the symbol denoting

the population parameter is used. X refers to a I × J matrix containing the stan-

dardized scores of J predictors obtained from I observation units (that is, each

column has mean zero and variance equal to one). Y denotes a I × L matrix of

L continuous outcome variables that are mean-centered and scaled to variance
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equal to one, also observed on the same I observation units.

4.2.2 PCovR

We begin by discussing the method of PCovR and show how the method

extends to the current method of SMPCovR. PCovR (De Jong & Kiers, 1992) is a

combination of PCA and OLS. It models the predictor and outcome variables by

using principal covariates which can be understood as summary variables. These

covariates are linear combination of the predictors which are obtained such that

they explain the variance in the predictor and outcome variables simultaneously.

PCovR decomposes the predictors X and the outcome variables Y as follows:

Y =XWP(Y )⊤ + E(Y )

X =XWP(X)⊤ + E(X)
(4.1)

where W denotes the weights matrix of size J × R: the predictor variables

are multiplied by the weights to construct principal covariates T = XW with wjr

is the weight corresponding to the jth predictor variable and the rth covariate.

It can be seen that both Y and X are modelled on the basis of the covariates

XW. The first line of Equation (4.1) is the model for the outcome variables: P(Y )

refers to the regression coefficients matrix of size L×R with p
(Y )
rl is the regression

coefficient linking the rth covariate with the lth outcome variable. The residuals

pertaining to the outcome variables are denoted by E(Y ). On the other hand, the

second line of the equation gives the model for the predictors. P(X) indicates the

loadings matrix of size J × R; p(X)
rj is the loading that connects the rth covariate

with the jth predictor variable.

The following loss function is minimized when estimating the model param-

eters:

L(W,P(X),P(Y )) = α

∥∥∥Y −XWP(Y )⊤
∥∥∥2
2

∥Y∥22
+ (1− α)

∥∥∥X−XWP(X)⊤
∥∥∥2
2

∥X∥22
, (4.2)

where 0 ≤ α ≤ 1 is a user-specified tuning parameter that expresses the balance

between focussing on the reconstruction of predictors or the prediction of the

outcome variables in deriving the covariates. With α specified as 0, the method

boils down to PCA where principal components are found by only considering the

predictors. When α = 1, the method becomes equivalent to reduced rank regres-

sion (Izenman, 1975; Kiers & Smilde, 2007). Constraints are needed to identify
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a unique solution from (4.2); an orthonormality constraint is usually placed upon

the covariates (T⊤T = (XW)⊤(XW) = I).

The principal covariates can be understood as underlying processes that ex-

plain the relation of the outcome variables to the predictor variables. Thus, it is

often of research interest to interpret the constructed covariates. All of the pa-

rameter sets W, P(X) and P(Y ) can be studied as they offer insights from different

angles. The weights matrix W provides the composition of the covariates as it

prescribes how the predictor variables are combined to form the covariates. The

loadings matrix P(X) shows how the covariates recover back the predictors. Ad-

ditionally, if the covariates are scaled to variance equal to one (T⊤T = II), the

loadings are equivalent to the correlation between the covariates and the predic-

tors. Lastly, the regression coefficients P(Y ) represent how the covariates are used

to predict the outcome variables. Unlike the weights and the loadings matrices, the

regression coefficients concern the link between the covariates and the outcome

variables.

4.2.3 SMPCovR

When large sets of predictor variables and outcome variables are present, in-

specting the PCovR estimates to understand the nature of the covariates becomes

difficult. Also, the dataset may present redundant predictors and inactive out-

comes. The novel method of SMPCovR induces sparseness in the weights W and

regression coefficients P(Y ) so that these issues are resolved within the context of

PCovR.

4.2.3.1 Model and objective function

SMPCovR models the predictor and the outcome variables in the same man-

ner as the PCovR model above yet with the additional constraint that only few

variables make up the covariates and that not all outcome variables are predictable

by (all) covariates. Such a sparse model can be attained by adding penalties to the

objective expressed in (4.2):

L
(
W,P(X),P(Y )

)
=

α

∥Y∥22

∥∥∥Y −XWP(Y )⊤
∥∥∥2
2
+

1− α

∥X∥22

∥∥∥X−XWP(X)⊤
∥∥∥2
2

+
R∑
r

λLr ∥wr∥1 +
R∑
r

λRr ∥wr∥22

+
R∑
r

γLr

∥∥p(Y )
r

∥∥
1
+

R∑
r

γRr

∥∥p(Y )
r

∥∥2
2

(4.3)
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where the loadings associated with the predictors P(X) are constrained to

be column-orthogonal (P(X)⊤P(X) = I) in order to avoid trivial solutions with

very small weights (close to zero) and very large loadings. Just as in the objective

criterion for PCovR, the first and the second terms are sum of squares that concern

the regression problem and the PCA problem, respectively. The two terms are

balanced by specification of the α parameter (0 ≤ α ≤ 1). Note that the constraint

on the covariates employed for PCovR is removed for this objective criterion.

The terms with λLr and λRr respectively refer to the lasso and ridge penalties

for the weights corresponding to the rth covariate, while the terms with γLr and

γRr indicate the lasso and the ridge penalties imposed on the regression coeffi-

cients. While the lasso penalty enforces the coefficients to zero and discards the

variables from the model, the incorporation of the ridge penalty prevents diver-

gence occurring due to covariates being correlated. This combination of the lasso

and ridge penalties is also known as the elastic net penalty (Zou & Hastie, 2005).

When all of the regression coefficients corresponding to an outcome variable are

forced to zero, this outcome variable is modelled by zero and excluded from the

model. Likewise, all of the weights corresponding to a predictor being penalized

to zero removes the predictor variable from the model.

4.2.3.2 Algorithm

Estimates of the SMPCovR parameters can be obtained by alternating least

squares. In turn, one of the parameter sets among W, P(X) and P(Y ) is estimated

conditionally upon fixed values of the others. The elastic net problems for W

and P(Y ) are convex problems, and they are both tackled via coordinate descent

(Friedman et al., 2010a). On the other hand, the conditional problem for P(X)

is known as an Orthogonal Procrustes Problem (Schönemann, 1966); it is not

convex, but has a closed-form solution (ten Berge, 1993). Since each of the es-

timation problems for W, P(X) and P(Y ) can converge at the global optimum of

the conditional (penalized) least squares problem, the resulting alternating least

squares procedure is monotonic. However, there is no guarantee of convergence

to the global optimum for the combined problem (4.3), due its non-convexity. To

avoid local minima, we recommend to use multiple random starting values, along

with rational starting values based on PCovR. Further details on the algorithm for

minimizing the objective function can be found in Appendix 4.A, including the

schematic outline of the algorithm and the derivation of solutions to the condi-

tional updates (Appendices 4.B, 4.C, 4.D).
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4.2.3.3 Model selection

The SMPCovR method entails the following list of tuning parameters that

shape the model construction.

• Number of covariates R

• Weighting parameter α

• Lasso parameters concerning weights λL

• Ridge parameters concerning weights λR

• Lasso parameters concerning regression coefficients γγγL

• Ridge parameters concerning regression coefficients γγγR

We employ k-fold cross-validation (CV) as a standard model selection method

for all of the tuning parameters except for the number of covariates R. Although

a conventional model selection scheme with CV would consider all possible com-

binations of different values for all of the tuning parameters involved, such an ex-

haustive strategy would be computationally intensive, considering that the method

is devised to cater for large sets of both predictor and outcome variables. There-

fore, a sequential approach is adopted where the number of covariates is deter-

mined prior to tuning for the remaining other tuning parameters with CV. Such

a sequential approach has been shown to be a suitable model selection strategy

for the methods that precede SMPCovR: PCovR and sparse PCovR (S. Park et al.,

2020; Vervloet et al., 2016).

The number of covariates R is therefore tuned as the first step of the sequen-

tial approach. PCA is performed on the concatenated data matrix [Y X] to find

a suitable number of principal components. This number of components would

be adopted as the number of covariates R for SMPCovR. A typical approach is

the use of scree plot in which an ‘elbow’ is searched for from a plot that illus-

trates the amount of variance each principal component explains. However, since

this location of the elbow can involve a subjective opinion, the acceleration fac-

tor technique (Raîche et al., 2013) is employed instead. It is an objective method

that finds at which principal component the amount of explained variance changes

most abruptly. It is along the same line as other strategies devised to objectively

search for the elbow, such as the Convex Hull method (Wilderjans, Ceulemans, &

Meers, 2013). We make use of the implementation in the R package “nFactors”

(Raiche et al., 2020).

The subsequent step is to determine the values of α, γγγL and λL simultane-

ously via CV. In doing so, the number of covariates found in the previous step is

used. Also, the ridge parameters λR and γγγR for weights and regression coefficients
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respectively are fixed at a small value. This is because the ridge penalties primar-

ily play the role of preventing divergence, rather than actively shaping the model

structure. For this reason, we also recommend having the parameters fixed at a

small value for the final model-fitting step of SMPCovR. Hence, with R,λR and γγγR

fixed, different ranges for the three tuning parameters α, γγγL and λL are crossed

and all resulting combinations are considered for the CV.

R2
cv criterion for model evaluation via cross-validation

In conducting the CV, we employ an adapted form of R2 to cater for outcome

variable selection. The conventional R2 incorporates the entire set of outcome

variables. Instead, we define a new measure, R2
cv, that computes the R2 from the

CV test set only on the basis of the outcome variables that are active in the model

fitted from the CV training set:

R2
cv = 1−

∥∥∥Ytest
L∗ −XtestŴP̂

(Y )⊤

L∗

∥∥∥2
2

∥Ytest
L∗ ∥22

(4.4)

where Ytest and Xtest refer to the outcome and predictor variables in the

CV test set. The subscript L∗ denotes a subset within the sequence of indices

for outcome variables L∗ ⊆ {1, 2, . . . , L}. It comprises of indices correspond-

ing to outcomes included in the SMPCovR model fitted on the CV training set

(Ytrain,Xtrain). Since an outcome variable is removed from the model if its corre-

sponding row in the estimated regression coefficients matrix P̂(Y ) is a zero-vector,

the indices of non-zero rows of P̂(Y ) make up the set L∗. P̂(Y )
L∗ denotes the subma-

trix of P̂(Y ) with non-zero rows.

The use of the R2
cv criterion therefore omits the outcome variables deemed

inactive by the model fitted on the CV training set. In our experiments, incorporat-

ing the entire set of outcome variables in the computation of the R2 from CV often

resulted in the set of tuning parameters that include all of the outcome variables;

instead, the R2
cv performs well in identifying the active outcome variables (see be-

low Section 4.2.3.4 which provides an illustrative example). One may argue that

this criterion is not suitable for comparing different tuning parameters, because

models characterized by different tuning parameters would comprise of different

sets of active outcome variables. These different sets of active outcomes are then

used to calculate the R2
cv measure to conduct evaluation across different models.

However, we believe that this practice is not very far away from the general ratio-

nale behind CV for variable selection. In a common setting with lasso regression

where variable selection is performed only on the predictors, models comprised

of different sets of predictors are compared against each other. We consider the
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use of R2
cv to be a suitable way to expand upon this practice to compare different

models.

Model selection after the cross-validation procedure

We rely on the one standad error rule (1SE rule; Friedman et al., 2001) to

select the final model after cross-validation. The 1SE rule would favour the model

with the lowest model complexity within 1SE of the model that resulted in the

highest R2
cv. After the CV procedure, we propose to use the sets of tuning param-

eters within the 1SE region to fit the SMPCovR model once again on the entire

dataset, in order to evaluate the model complexity1. The set of tuning parame-

ters that resulted in the smallest number of total non-zero coefficients (weights

and regression coefficients together) is selected within the 1SE region. If multi-

ple models are characterized by the same number of non-zero coefficients, models

with a smaller set of regression coefficients are preferred over those with a smaller

set of weights. This is because we consider outcome variable selection as a distinct

feature offered by SMPCovR; selection of predictor variables can be achieved with

many other tools, including sparse PCovR.

In addition to model complexity, if there are prior expectations concerning

certain outcome variables or research aims regarding the number of active out-

comes, these can also be taken into account. To be concrete, there may be an

outcome variable of particular interest that must be included in the model, or the

research goal may pertain to finding the smallest subset of active outcome vari-

ables. We believe that it is sensible to allow incorporation of such research aims

along with model complexity for the model selection within the 1SE region, be-

cause all of the models that fall within the 1SE region can be seen as adquate

model candidates.

4.2.3.4 Toy example for model selection

In this section we make use of a toy example dataset to demonstrate the

model selection procedure. The dataset is generated according to one of the con-

ditions of the simulation study that follows below. It comprises of 200 predictor

and 20 outcome variables concerning 100 observation units. While three covari-

ates underlie the variables, only 90 predictor and 12 outcome variables are linked

with the covariates. Other remaining predictors and outcomes are redundant; the
1When tuning parameters governing regularization penalties are selected, it is common that

the tuning parameters that are associated with lower levels of complexity are directly chosen,
instead of the additional model-fitting step on the entire dataset. Namely, for lasso regression,
models with higher lasso values are selected within the 1SE region, since it is the only tuning
parameter that defines complexity. However, SMPCovR has three such tuning parameters (λL, γγγL

and α) which is difficult to translate into a single measure of complexity. Therefore, this additional
model-fitting step is proposed.
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covariates do not explain the variance in them. More details of the data generation

setup can be found in the simulation study section.

Prior to the model selection procedure, both predictor and outcome variables

were mean-centered and scaled to variance 1. As the first step of the sequential

model selection approach, PCA was administered to the concatenated set of pre-

dictor and outcome variables. Figure 4.6 in Appendix 4.F displays the variance

explained by each component. The acceleration factor technique revealed that the

rate of change in the variance is the largest at the fourth component, and hence

the number of SMPCovR covariates was determined as three.

With the number of covariates fixed at three, a 5-fold cross-validation was

conducted by crossing the ranges of values of α, γγγL and λL. For this illustra-

tive example, we employed the ranges of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9] for α, all equally distanced sequence of size 20 from 10−5 to 0.5 on the

natural log scale for γγγL and another equally distanced sequence of size 15 from

10−5 to 0.5 on the natural log scale for λL. Ridge parameters λR and γγγR were

fixed constant at 10−7 for the cross-validation. Crossing these ranges for the

three tuning parameters, 9 × 20 × 15 = 2700 models were put forward. The

model with the highest R2
cv value was characterized by the tuning parameters:

R = 3, α = 0.1,λL = 0.00779,γγγL = 0.00744,λR = 10−7,γγγR = 10−7. The model

includes 12 outcome variables out of the total 20, which correctly represents the

true underlying model. Figure 4.1 shows the number of active outcome variables

picked up by the model with varying values of tuning parameters. It can also

be seen that the three tuning parameters together impact the number of active

outcomes included, implying that they should be tuned simultaneously via CV.
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Figure 4.1. The number of outcome variables included by different model configurations.

The dashed line indicates that the true covariates underlie 12 outcome variables out of

the total 20.

There were no other models which resulted in R2
cv within the 1SE. In prac-

tice, the aforementioned tuning parameters would then be selected. However, for

the sake of demonstration of the model selection procedure, we have considered

models that led to R2
cv higher than 2 standard errors below the maximal R2

cv. The

following table provides the tuning parameters of the models within the 2SE.

Table 4.1 shows that the four models do not differ much in the numbers

of outcome variables included. Considering the model complexity, the numbers

of estimated nonzero regression coefficients were also comparable to each other

among the models. However, the number of nonzero weights was much lower

in model 4. Hence, either model 4 or model 3 would be chosen depending on

the research aim; if the goal is to find the least complex model, model 4 with
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Table 4.1. The configurations of the models that fall within the 2 SE region from the

maximum R2
cv. SE denotes the standard error of R2

cv, while ‘Outcome included’ refers

to the number of outcome variables included. The models are arranged in a descending

order of R2
cv.

Model α γγγL λL R2
cv SE Nonzero

weights
Nonzero

reg.
Outcome
included

1 0.1 0.00744 0.00779 0.506 0.016 80 14 12

2 0.8 0.15027 0.00147 0.483 0.032 82 14 12

3 0.2 0.01357 0.00779 0.482 0.014 75 14 12

4 0.3 0.01357 0.01791 0.477 0.030 44 15 13

the smallest number of nonzero parameters would be the choice. However, if one

aims to filter out as many inactive outcome variables as possible, model 3 would

be selected; it is the least complex model among the models with 12 outcome

variables.

4.2.3.5 Related methods

Our proposed method of SMPCovR accommodates three goals: (a) it is a

prediction method for multiple continuous outcome variables, (b) it represents

underlying predictive processes by covariates, and (c) it provides sparse coeffi-

cients at both sides of predictor and outcome variables. This section compares

SMPCovR to other methods that are devised with a similar set of aims.

Regularized multivariate regression

Regularized multivariate regression is a regularized regression method which

handles multiple outcome variables. This could be achieved by fitting regularized

regression models with a group lasso penalty, where all of the regression coef-

ficients pertaining to one predictor variable are grouped (e.g. implemented in

the R package ‘glmnet’; Friedman et al., 2021). The method drops out predic-

tor variables completely from the model, providing a subset of predictors that are

important in predicting all of the outcome variables jointly. Expanding on this

group lasso idea to also conduct variable selection of outcome variables, An and

Zhang (2017) proposed a regression method with double group lasso penalties:

one penalty for the predictors and another for the outcomes. While these methods

impose the penalties on the coefficients, Hu, Huang, et al. (2022) devised a formu-

lation in which the penalty is placed on an indicator matrix that denotes the inclu-

sion of the outcome variables. In this particular method, variable selection is only

performed for the outcome variables. Compared against the SMPCovR method,

while these approaches provide sparse coefficients for a problem with multiple
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outcome variables, they do not employ covariate or factor structures which cap-

ture shared explained variance across multiple predictor or outcome variables.

Sparse PCovR

Sparse PCovR (SPCovR; Van Deun et al., 2018) is an immediate predecessor

of SMPCovR. The method finds sparse weights, but sparseness is not imposed to

the regression coefficients P(Y ). In fact, SMPCovR without the lasso penalty on

the regression coefficients boils down to SPCovR. Although the covariates can be

found considering the multiple outcomes, an entire set of regression coefficients

P(Y ) is estimated which is burdening for model interpretation. This also implies

that inactive outcome variables are not filtered out from the model.

PCovR2

Developed as an extension of PCovR that caters for multiple outcome vari-

ables, PCovR2 (Gvaladze, Vervloet, Van Deun, Kiers, & Ceulemans, 2021) adds

an additional type of covariates to the PCovR model. These extra covariates are

summary variables that compress the multiple outcome variables, and they are

regressed on the original PCovR covariates which summarize the predictor vari-

ables. By introducing these new covariates that combine the outcome variables,

the method provides a succinct representation of predictor-outcome relationship.

Like SMPCovR, PCovR2 is an extension of PCovR targeting for a multivariate

outcome problem. However, the two methods address different research goals

concerning multiple outcome variables. Whereas SMPCovR imposes sparseness

and removes inactive outcomes, PCovR2 condenses the outcome variables into a

more concise representation. Within PCovR2, sparseness is also not induced in the

weights that combine predictor variables into covariates.

Sparse Principal Component Regression

A method called Sparse Principal Component Regression (SPCR; Kawano,

2021; Kawano, Fujisawa, Takada, & Shiroishi, 2015) has also been proposed. It

relies on an objective function that is very similar to SMPCovR. However, SPCR is

devised as a univariate regression problem; it targets only one outcome variable.

While a separate model can be fitted on each outcome variable, this implies that

different sets of covariates would be derived concerning each outcome variable.

Although SPCR imposes sparseness in weights much like SPCovR, the univariate

setup is not in line with the aim of SMPCovR which tries to construct interpretable

covariates that account for a large set of predictor and outcome variables at the

same time.

Sparse PLS

Sparse Partial Least Squares (sPLS; Chung & Keles, 2010; Lê Cao et al.,
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2008) is a sparse extension to PLS, which is a well-known method in the same

spirit as PCovR; it models predictor and outcome variables simultaneously by

introducing summary variables (H. Wold, 1982; S. Wold, Ruhe, Wold, & Dunn,

1984). Just like in PCovR, these summary variables account for variance in both

predictor and outcome variables. However, PLS does not incorporate the bal-

ancing parameter α. Although sPLS can model multiple outcome variables and

performs variable selection for the predictors, it has not been extended to also en-

force sparseness on coefficients that connect the summary variables with the out-

come variables. However, outcome variable selection has been addressed within

the framework of envelope modelling (Su et al., 2016). Envelope modelling2 has

been shown to be connected with PLS; the two methods target the same popula-

tion parameters, but they differ in the method of estimation (Cook, Helland, & Su,

2013). Yet, the method in Su et al. (2016) is only designated for variable selection

for the outcomes, and not for the predictor variables; the authors suggest a prior

subset selection of predictor variables in the case of high-dimensionality. There-

fore, similarly to sPLS, the method does not address the complete set of goals of

SMPCovR.

4.3 Simulation study

While all of the above methods address a subset of aims targeted by SM-

PCovR, we selected SPCovR and sPLS as competing methods to assess the per-

formance of our novel method via a simulation study. Regularized multivariate

regression is not comparable to SMPCovR since it does not include dimension re-

duction. PCovR2 does not impose any sparseness in the coefficients; it does not

perform variable selection to either predictor or outcome variables, which is one of

the main goals of SMPCovR. SPCR is not devised for multiple outcome variables,

so it is infeasible to include SPCR in our experiment. Lastly, to the best of our

knowledge, the envelope method for outcome variable selection (Su et al., 2016)

does not have a publicly available software implementation.

We have therefore conducted a simulation study in which we examine the

performance of SMPCovR, SPCovR and sPLS with respect to the retrieval of un-

derlying processes and the prediction of the multiple outcome variables. These

underlying processes are specified by covariates that underlie the simulated data.

Similar to the toy example in Section 4.2.3.4, the covariates only explain the vari-

ance in subsets of predictor and outcome variables.
2Envelope modelling (Cook, Li, & Chiaromonte, 2010) is a recent branch of methods that

identifies ‘material’ and ‘immaterial’ parts of predictor and outcome variables. A linear model is
constructed only on the basis of the useful ‘material’ parts, which allows efficient estimation and
overcomes problems such as collinearity.
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Owing to the sparsity penalty imposed upon the regression coefficients, we

expect SMPCovR to outperform the other two methods in prediction when some

outcome variables are inactive. By filtering out the inactive variables that are

not related with the underlying covariates, overfitting of these inactive variables

would be avoided. As a consequence, this would result in better prediction quality

of the outcome variables overall, compared to SPCovR and sPLS.

Since the defined covariates underlie both predictor and outcome variables,

the quality of retrieval of the underlying processes can be studied from two an-

gles: (1) covariate-predictor relationships and (2) covariate-outcome relation-

ships. With respect to the covariate-predictor relationships, it is anticipated that

SMPCovR and SPCovR would show comparable performance because they are

equipped with the same set of sparsity penalties on the weights. In contrast,

sPLS is hypothesized to underperform as PLS-based methods have shown to be

less effective in recovering the weights that prescribe the relationships between

covariates and predictors (S. Park et al., 2020). On the other hand, we expect

SMPCovR to provide better recovery of regression coefficients that represent the

covariate-outcome relationships than the other two methods. Owing to the spar-

sity penalty imposed on the regression coefficients, SMPCovR would be able to

discern between the important and unimportant covariate-outcome associations.

4.3.1 Design and procedure

Fixing the number of observations I to 100, the predictor variables were

generated from an underlying model comprised of three covariates. While varying

the number of outcome variables Y to be at either L = 5 or L = 20, we generated

J = 200 predictor variables for the high dimensional setting and J = 30 for the

low dimensional setting. The following setup was used.

T ∼MVN (0,Σ = 502I)

E(X) ∼MVN (0,ΣE(X) = σ2I)

E(Y ) ∼MVN (0,ΣE(Y ) = σ2I)

X← TW⊤ + E(X)

Y ← TP(Y )⊤ + E(Y )

(4.5)

T (size 100× 3) is the covariate scores matrix which is generated from mul-

tivariate normal distribution characterized by the mean vector µ = 0 and the

diagonal covariance matrix Σ with diagonal elements fixed at 502. Therefore, the

three covariates are the same size in variance and are uncorrelated. The weights

matrix W (size J × 3) is defined with 82% and 85% level of sparsity for low and
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high dimensional setups, respectively. Furthermore, it is ensured that the columns

of the weights matrix are orthogonal to each other (W⊤W = I; this constraint is

not included in our objective function; it is used specifically for the data genera-

tion here). Since the covariates are defined to be uncorrelated, the model we use

here can be seen as a PCA decomposition where the weights are equal to loadings.

This is how X is defined by multiplying T and W. The weights matrix defined for

a low dimensional setup can be seen in Table 4.2.

Table 4.2. Weights defined for the low-dimensional setup.

W

1 2 3

0.5 0 0
0.5 0 0
0.5 0 0
0.5 0 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0.354 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0 0.5
0 0 0.5
0 0 0.5
0 0 0.5
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

It can be seen that out of the 30 predictors in the low dimensional setting,

14 predictors are redundant; they are not related with any covariates. In the high

dimensional setting, 110 predictors out of the 200 are defined as being redun-

dant. Similarly, in specifying the regression coefficients P(Y ) (size L × 3), 40% of
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the outcome variables are always defined as inactive; more details regarding the

regression coefficients follow below.

E(X) (size 100× J) and E(Y ) (size 100×L) denote the residual matrices cor-

responding to the predictor and outcome variables, respectively. They are drawn

from multivariate normal distribution with zero mean vector and diagonal co-

variance matrices ΣE(X) and ΣE(Y ), respectively. The two residual matrices are

generated such that they are uncorrelated with each other, and also with the co-

variate scores. The variance of the residual matrices are governed by the design

factors of the simulation study (given below): proportion of variance in X and Y

explained by the underlying covariates. Four data characteristics were manipu-

lated, based on the data generating model provided above. The different levels of

the manipulated factors are given by square brackets.

Study setup
1. Number of predictors J : [200], [30]

2. Number of outcome variables: [5], [20]

3. Proportion of variance in X and Y explained by the covariates: [0.9], [0.5]

The first and the second design factors concern the dimensionality of the

predictor and outcome variables, respectively. The P(Y ) matrices created by the

third design factor are shown below. We show the matrices corresponding to 5

outcome variables; the coefficients were defined in a similar manner for the case

with 20 outcome variables, (provided in Appendix 4.E).



1 2 3

1 0 0

0 1 0

1 1 1

0 0 0

0 0 0



The columns indicate the regression coefficients corresponding to each co-

variate. As aforementioned, 40% of the outcome variables (2 out of 5) are not

linked with any of the covariates. Fully crossing the design factors and generating

20 datasets per condition, 2× 2× 2× 50 = 400 datases were produced. Three dif-

ferent analyses were administered to each of these datasets: SMPCovR, SPCovR

and sPLS.
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4.3.2 Model selection

The model selection procedure for SMPCovR in the simulation study follows

the procedure detailed in Section 4.2.3.4, except for the number of covariates

which is fixed at three, by following the true covariate structure. The tuning pa-

rameters α,λL and γγγL are then chosen at the same time by cross-validation. The

ranges of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] was adopted for α, and equally

distanced sequence of size 7 from 10−5 to 0.5 on the natural log scale for both

λL and γγγL. The ridge parameters γγγR and λR are fixed at 10−7. Crossing these

ranges for the three tuning parameters, 9 × 7 × 7 = 441 models were considered

for each replicate dataset. The R2
cv measure employed for the toy example dataset

was used to evaluate each model by 5-fold CV. As discussed in Section 4.2.3.3, the

1SE rule was used to choose the model. We assumed a research scenario of select-

ing the least complex (least number of total non-zero coefficients) model, among

the models that include the least number of outcome variables. The selected tun-

ing parameters were applied in the final model estimation step, where the ridge

parameters were again fixed at 10−7.

With regards to SPCovR, the number of covariates was fixed at three follow-

ing the true number of covariates. Then, the α parameter and the lasso parameter

concerning the weights were selected together by 5-fold CV. The same range as

used in SMPCovR was considered for α, while equally distanced sequence of size

15 from 10−5 to 0.5 was employed for the lasso parameter. Similar to the pro-

cedure for SMPCovR, the ridge parameters for the weights and the regression

coefficients were fixed constant at (10−7) for both model selection and estimation.

In total, 9× 15 = 135 models were evaluated. The 1SE rule was employed in such

a way that the model with the smallest α and the largest lasso parameter for the

weights was chosen, as they encourage a more sparse model to be found.

Lastly, the number of covariates for sPLS was fixed at three again. Unlike

SMPCovR and SPCovR, the sparsity of the model for sPLS can be directly specified

by providing the number of non-zero coefficients (linking the predictor variables

with the covariates) as input. The number of non-zero coefficients to be included

in the sPLS model was chosen through 5-fold CV. The range of [4, 8, 12, 16, 20,

28] non-zero coefficients per covariate was considered for the low dimensional

setup (63 = 216 models in total), while the range of [25, 40, 50, 75, 80, 100, 120,

125, 150, 160, 175, 200] was employed for the high dimensional setup (123 =

1728 models in total). We used the 1SE rule to pick out the model with the least

number of non-zero coefficients.
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4.3.3 Evaluation criteria

The following three measures were employed to study the performance of

the methods:

1. R2
out: proportion of explained variance in the outcome variables in the out-of-sample

test dataset.

2. Correct weights classification rate: proportion of the elements in W correctly clas-
sified as zero and non-zero elements relative to the total number of coefficients.

3. Correct regression coefficients classification rate: proportion of the elements in P(Y )

correctly classified as zero and non-zero elements relative to the total number of
coefficients.

An independent test set (of 100 observation units) needed for computing the

out-of-sample R2 was generated following the same data generating procedures

as the data used for model-fitting. Unlike the R2
cv measure which was computed

only on the basis of outcome variables included in the model, the R2
out measure

was calculated with respect to all of the outcome variables in the out-of-sample

dataset. This is because the sPLS and SPCovR simply include all of the outcome

variables, unlike SMPCovR:

R2
out = 1−

∥∥∥Yout −XoutŴP̂(Y )⊤
∥∥∥2
2

∥Yout∥22
(4.6)

where Yout and Xout indicate the outcome and predictor variables, respec-

tively, from the out-of-sample data. The correct classification rates concerning the

weights and the regression coefficients represent the method’s ability in retrieving

the underlying processes.
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4.3.4 Results

4.3.4.1 Out-of-sample R2
out

J = 30 J = 200
VAF 0.9 VAF 0.5 VAF 0.9 VAF 0.5

L =
 5

L =
 20

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

Method SMPCovR SPCovR sPLS

Figure 4.2. Boxplots of the out of sample R2
out. Each panel corresponds to one of the 8

conditions.

The figure clearly shows the outperformance of SMPCovR over the other

methods. None of the study design factors led to results pointing in another direc-

tion. The proportion of variance in data explained by the covariates resulted in an

intuitive ‘main effect’; all of the methods performed better with greater proportion

of explained variance.

The outperformance of SMPCovR comes from the fact that the method screens

out the inactive outcome variables, while the other methods include these outcome

variables. This can be understood as a case of overfitting, since the other meth-

ods are modelling inactive outcomes which are only comprised of error variance.

Appendix 4.G reports the R2
out values computed only on the basis of active out-

come variables; it can be seen that the three methods result in similar quality of

prediction for the active outcomes. When the covariates explain 50% of variance
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in the variables, SMPCovR shows slight underperformance. Hence, the strength

of SMPCovR originates from correct identification of active and inactive outcome

variables.

4.3.4.2 Correct weights classification rate

J = 30 J = 200
VAF 0.9 VAF 0.5 VAF 0.9 VAF 0.5

L =
 5

L =
 20

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Method SMPCovR SPCovR sPLS

Figure 4.3. Boxplots of the correct classification rate for the W. Each panel corresponds

to one of the 8 conditions.

Figure 4.3 portrays that the most impactful design factor in the compara-

tive performance with respect to correct identification of the zero versus non-zero

weights is the dimensionality of the predictors. In the low dimensional setting,

SMPCovR and SPCovR resulted in comparable levels of correct classification rate

which are higher than that of sPLS. In contrast, when the number of predictor

variables exceeds the number of observations, the three methods have resulted in

similar classification rates. Nevertheless, across most of the data conditions, it can

be seen that similar levels of classification rates were obtained between the three

methods.

130



Sparse Multivariate Principal Covariates Regression

4.3.4.3 Correct classification rate for regression coefficients

J = 30 J = 200
VAF 0.9 VAF 0.5 VAF 0.9 VAF 0.5

L =
 5

L =
 20

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Method SMPCovR SPCovR sPLS

Figure 4.4. Boxplots of the correct classification rate for the P(Y ). Each panel corresponds

to one of the 8 conditions.

As SMPCovR is the only method among the three with a sparsity penalty on

regression coefficients, it correctly classified the regression coefficients far better

than the other two methods which only provided non-zero regression coefficients.

It appears that the true structure of the regression coefficients is recovered well in

most conditions. In addition, Appendix 4.H shows the rate of correctly classified

outcome variables. It can be seen that the method perfectly discerns between

active and inactive in most of the replicate datasets.

The results conveyed in Figure 4.4 is natural because SPCovR and sPLS do

not impose sparsity on the regression coefficients. However, we inspected the co-

efficients that the two methods provided for the true zero regression coefficients.

The mean absolute discrepancy of the estimated coefficients from zero are re-

ported in Appendix 4.I. It can be observed that the coefficients from the two meth-

ods are quite far away from zero under low dimensionality. For high dimensional
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data, while the mean discrepancy of SPCovR becomes near-zero, sPLS shows high

discrepancy. This finding supports the use of a sparsity penalty on the regression

coefficients, because without it, the methods struggle to derive near-zero values.

4.4 Empirical illustration: Pittsburgh Cold Study

We illustrate the use of SMPCovR by administering the method to an empir-

ical dataset. We also apply SPCovR and sPLS on the same dataset to evaluate the

effectiveness of our proposed method in a pratical setting.

4.4.1 Dataset and pre-processing

We adopted the dataset from the third wave of the Pittsburgh Cold Study

(PCS) which took place from 2007 to 20113. Healthy participants were invited

and administered nasal drops of rhinovirus that causes symptoms of common cold.

Severity of 16 types of symptoms related to cold and flu were self-reported each

day up to five days after the virus exposure. Out of the 16, there were 8 symptoms

that were known to comprise the common cold: headache, sneezing, chills, sore

throat, runny nose, nasal congestion, cough and malaise (Jackson, DOWLING,

SPIESMAN, & BOAND, 1958). Among the other symptoms, fever, muscle ache,

joint ache and poor appetite have been identified as symptoms of flu (Monto,

Gravenstein, Elliott, Colopy, & Schweinle, 2000), while there were 4 other related

symptoms such as chest congestion, sinus pain, earache and sweating. Hence, it

can be expected that the participants are more likely to develop the 8 cold symp-

toms than the other symptoms, as they were exposed to rhinovirus. Furthermore,

187 variables regarding the participants were also collected under various themes

including blood chemistry, health practices and psychosocial states.

The participants are categorized into two groups according to the diagnosis

of cold infection. This diagnosis was conducted by combining the serological test-

ing of blood and illness criteria, and most of the participants were not diagnosed

of cold infection. Therefore, we selected a subset of 46 participants by exclud-

ing the observations with missing values in the variables and to obtain a balance

between the size of two diagnosis groups. Using the symptom variables as the

outcome and the other variables as the predictors, we conduct SMPCovR to target

the regression problem of symptom severity while constructing a model that de-
3The data were collected by the Laboratory for the Study of Stress, Immunity, and Disease

at Carnegie Mellon University under the directorship of Sheldon Cohen, PhD; and were ac-
cessed via the Common Cold Project website (www.commoncoldproject.com; grant number NCCIH
AT006694).
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scribes the underlying predictive processes characterized by subsets of important

predictor and outcome variables.

4.4.2 Model selection

Prior to the model selection and estimation, both predictor and outcome

variables were centered and standardized such that the variance of each variable

was equal to 1. We followed the model selection strategy outlined in Section

4.2.3.4. First, with the acceleration factor technique, the number of covariates was

determined to be two. Appendix 4.J shows the proportion of variance explained

with increasing number of components. The tuning parameters α,λL and γγγL were

selected via 5-fold cross-validation where the ridge parametrs λR and γγγR were

fixed at 10−7. The following ranges of values for the tuning parameters were

employed.

Ranges of tuning parameters for cross-validation
• α: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

• λL: 0 and equally distanced sequence of size 19 from 10−5 to 0.5 on the natural log
scale

• γγγL: 0 and equally distanced sequence of size 19 from 10−5 to 0.5 on the natural log
scale

Crossing these ranges of the tuning parameters, we administered the cross-

validation for 9 × 20 × 20 = 3600 different models. As done in model selection

for the toy example dataset and in the simulation study, the R2
cv measure was used

to determine the quality of prediction for each model. The 1 SE rule included 17

model configurations which are presented in the Table 4.3.

As discussed in 4.2.3.3, we selected the model using the 1SE rule. We as-

sumed here a setup with the aim to select a model that is the least complex,

among the models that contain the least number of outcome variables. Between

models 1, 2 and 4 that are comprised of 10 outcomes, model 4 was selected since

the number of non-zero weights was the lowest.

4.4.3 Results

Table 4.4 presents the weights and regression coefficients found by the cho-

sen model. It first shows that only the first covariate is able to predict the cold

symptoms; the model has excluded the second covariate in predicting the out-

come variables. Out of the 187 predictor variables, 18 predictor variables com-

pose the first covariate. IL-6, IL-8, IL-10 and TNF alpha are concentrations of
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Table 4.3. The configurations of the models that fall within the 1 SE region from the

maximum R2
cv. SE denotes the standard error of R2

cv, while ‘Outcome included’ refers

to the number of outcome variables included. The models are arranged in a descending

order of R2
cv.

Model α γγγL λL R2
cv SE Nonzero

weights
Nonzero

reg.
Outcome
included

1 0.8 0.274 0.000 0.160 0.060 124 10 10

2 0.7 0.150 0.001 0.135 0.030 55 10 10

3 0.8 0.150 0.001 0.134 0.049 62 15 14

4 0.8 0.150 0.004 0.118 0.029 21 10 10

5 0.4 0.000 0.002 0.116 0.017 64 32 16

6 0.5 0.025 0.001 0.113 0.026 91 23 16

7 0.5 0.045 0.004 0.110 0.039 34 15 14

8 0.7 0.082 0.007 0.107 0.018 15 11 11

9 0.9 0.274 0.001 0.105 0.031 66 12 12

10 0.4 0.014 0.001 0.105 0.024 107 23 16

11 0.8 0.082 0.007 0.103 0.032 16 12 12

12 0.4 0.007 0.002 0.103 0.040 65 27 16

13 0.3 0.000 0.004 0.103 0.027 43 32 16

14 0.7 0.082 0.004 0.102 0.032 30 12 12

15 0.3 0.000 0.001 0.102 0.033 122 32 16

16 0.9 0.045 0.007 0.101 0.020 40 17 15

17 0.3 0.000 0.001 0.101 0.040 120 32 16

nasal cytokine. These concentrations were measured each day for five days af-

ter the viral exposure and summed. Among the total 7 variables present in the

data concerning cytokine, these 4 were picked out by the model. The model also

selected Corpuscular Hgb conc (hemoglobin concentration), Non-fasting glucose

and Urea nitrogen among the 29 blood chemistry variables measured before the

viral exposure. Whereas lower levels of hemoglobin appears to result in more

cold-related symptoms, glucose and nitrogen levels seem to have the opposite ef-

fect. # weekdays alcohol refers to the amount of alcohol usually consumed during

weekdays. The alcohol consumption appears to be positively associated with the

cold-related symptoms. This was the only variable chosen among 17 variables

regarding health practices such as smoking, sleeping and physical activity. The

next 6 variables concern measures from various psychosocial assessment scales

measured before the viral exposure. Sadness and fatigue were found to be related

with cold symptoms from the 13 PANAS (Positive and Negative Affect Schedule;

Watson, Clark, & Tellegen, 1988) measures that target mood and affect. While the

ECR (Experiences in Close Relationships; Fraley, Waller, & Brennan, 2000) scale

concerns adult attachment types, TSC (Tucker Social Control Scale; J. S. Tucker,

2002) is about how health behaviours are encouraged by the social environment.
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Table 4.4. Weights and regression coefficients derived by SMPCovR from the PCS dataset.

The weights are only provided for the predictors chosen by the model out of the total

187. ŵ1 and ŵ2 indicate the weights corresponding to the first and second covariates

respectively. The regression coefficients corresponding to all of the outcome variables in

the dataset are provided.

ŵ1

1

IL-6 0.363
IL-8 0.677
IL-10 0.408
TNF alpha 3.262

Corpuscular Hgb conc -0.602
Non-fasting glucose 0.175
Urea nitrogen 0.308

# weekdays alcohol 0.882

PANAS: sadness 1.305
PANAS: fatigue 0.698
ECR: anxiety 0.171
TSC: network size -0.007
Social participation -0.371
Loneliness 0.032

Daily negative affect 0.070
Daily fatigue subscale 1.080
Daily fatigue 0.624
Daily anger 0.396

ŵ2

2

PANAS: joviality -0.036
PANAS: positive -0.084
Psych well-being -1.900

P̂(Y )

1 2

Sneezing 0.066 0
Runny nose 0.049 0
Nasal congestion 0.050 0
Cough 0.081 0
Sore throat 0.047 0

Headache 0 0
Chills 0 0
Malaise 0.023 0
Chest congestion 0.053 0
Sinus pain 0.061 0

Earache 0 0
Muscle ache 0 0
Joint ache 0 0
Sweating 0 0
Fever 0.045 0

Poor appetite 0.063 0

Similarly, social participation and loneliness were results of a self-report before the

viral exposure. Predictors originating from several other assessment scales such as

Perceived Stress Scale (Cohen, Kamarck, Mermelstein, et al., 1994), Emotion Reg-

ulation Questionnaire (Gross & John, 2003) and Family Environment Scale (Moos,

1990) were excluded by the SMPCovR model. Lastly, the daily negative affect, fa-

tigue and anger variables come from daily interviews conducted prior to the viral

exposure. Altogether, the first covariate represents the combined effect of these

physiological and behavioural elements in leading to the various cold symptoms.

Ten symptoms out of the total 16 were indicated to be in relation with the

first covariate. Six out of 8 symptoms characterizing the common cold according

to Jackson et al. (1958)4 were included in the model; it excluded headache and

chills. It is also interesting to see that symptoms typically associated with flu

such as fever and poor appetite are also included (Monto et al., 2000), while the

participants were not exposed to an influenza virus known to cause flu.
4headache, sneezing, chills, sore throat, runny nose, nasal congestion, cough and malaise
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The second covariate which is not relevant in predicting the symptoms is

constructed with three predictor variables that measure positive mood and psy-

chological well-being. However, we found that it explains much more variance in

the predictor variables than the first covariate comprised of 18 variables. While

the two covariates together explained 7.1% of variance in the predictors, the first

covariate took account of only 0.9% while the second covariate explained the re-

mainnig 6.2%.

To evaluate the quality of this model in outcome variable prediction, the R2

measures were computed. We have calculated four different types of R2 measures:

R2
fitall

, R2
fitsub

, R2
loocvall

and R2
loocvsub

. The first two measures were computed on the ba-

sis of in-sample data while the next two measures were results from leave-one-out

CV. The measures with the subscript ‘all’ were computed with respect to all of the

outcome variables in the dataset, while the others with the subscript ‘sub’ were de-

rived on the basis of the subset of 10 outcome variables selected by the SMPCovR

model. Appendix 4.K provides the formulae for these measures. To obtain a com-

parative insight about the quality of the SMPCovR method under the PCS dataset,

we also computed the R2 values using SPCovR and sPLS that were employed in

the simulation study. We extracted two covariates for both methods in order to

match the SMPCovR model. As done in the simulation study, 5-fold CV and the

1SE rule were employed to select the α and the lasso parameters for SPCovR and

the number of non-zero coefficients for sPLS. Appendix 4.L provides the ranges of

tuning parameters adopted to generate the models for the two methods. Table 4.5

reports the four different types of R2 measures computed for the three methods.

Table 4.5. R2 measures attained from the three methods from the PCS data.

SMPCovR sPLS SPCovR

fitall 0.167 0.206 0.266

fitsub 0.267 0.280 0.376

loocvall 0.119 0.052 0.115

loocvsub 0.159 0.028 0.135

It can be seen that SMPCovR resulted in the highest R2
loocv measures which

represent the quality of out-of-sample prediction. While SPCovR showed compara-

ble results with SMPCovR, sPLS fell short by a big margin. While both SPCovR and

sPLS performed well for in-sample prediction with high R2
fit values, the large dis-

crepancy in the values compared to the R2
loocv measures signal possible occurrence

of overfitting. The models constructed by SPCovR and sPLS can be found in Ap-

pendix 4.L. While the SPCovR model found considerably more non-zero weights

(43 and 1 for the two covariates, respectively), the sPLS model was comprised of
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6 and 1 non-zero coefficients, leading to a more sparse model than the SMPCovR

model.

Lastly, we inspected the SMPCovR model by plotting the covariate scores

with the additional grouping information of diagnosis of cold infection (diagnosed

using serological testing and illness criteria). Although this grouping information

was not provided as a predictor, the two groups of cold and no cold can be fairly

distinguished. As portrayed by the regression coefficients shown in Table 4.4, it

appears that the first covariate is much more related with cold diagnosis than the

second covariate. To conclude, the SMPCovR method was able to meet its goals

when analyzing the PCS dataset. It derived a predictive model where some of

the inactive outcome variables are filtered out while summarizing the predictor

processes into interpretable covariates comprised of a small subset of predictor

variables.
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Figure 4.5. Scatterplot of the two covariates found by SMPCovR. The colours represent

the cold diagnosis.

4.5 Discussion

Predictive modelling in the presence of large numbers of predictor and out-

come variables presents multiple challenges. Constructed models feature a huge

number of estimated coefficients, rendering the interpretation infeasible. More-

over, there may be subsets of both predictor and outcome variables that are not

important. Certain predictor variables may be redundant in predicting any of the
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outcome variables, while some outcome variables may not at all be adequately

predicted by the available predictors.

In this paper, we proposed the method of SMPCovR that accommodates for

these issues by relying on PCovR methodology and incorporating sparsity penalties

at both sides of predictors and outcomes. Comparative assessment of the method

against SPCovR and sPLS resulted in SMPCovR showing outperformance in out-

come prediction, achieved by correct exclusion of inactive outcome variables. Our

method also performed comparatively well at retrieving the coefficients that repre-

sent how processes underneath data underlie the predictor and outcome variables.

The PCovR methodology provides an advantageous position in the settings

with large numbers of predictor and outcome variables. The predictors and out-

comes are linked with the reduced dimensions of the covariates, instead of being

directly connected with each other. This reduces the number of estimated coeffi-

cients by far. In total, (J+L)×R coefficients need to be found by SMPCovR, while

J × L coefficients need estimation in a regularized regression setup with predic-

tors and outcomes directly connected. Using the example of the PCS dataset in

section 4.4, SMPCovR model would comprise of (187 + 16) × 2 = 406 coefficients

at maximum, while a regression model can consist of 187× 16 = 2992 coefficients.

By imposing further sparsity penalties on the coefficients, SMPCovR can derive an

even more sparse and concise model representation. Furthermore, the reduction

of the number of coefficients also implies that less number of coefficients need to

be forced to zero to exclude a variable (both predictor and outcome) altogether

from the model. As a consequence, SMPCovR is a prediction method with mul-

tivariate outcomes that conducts variable selection in an effective manner. These

strengths also apply generally to other regression methods based on dimension

reduction such as PLS.

There are limitations to our proposed method. Being characterized with 6

different tuning parameters, model selection is a natural complication. To reduce

the compuational burden of CV, we fixed the ridge parameters to a small value and

employed a sequential model selection approach where the number of covariates

is first chosen prior to tuning for the sparsity parameters. The ridge parameters

were kept small because they play a role of preventing divergence; they do not

exert a big influence in shaping the final model. The sequential approach has been

shown suitable for PCovR and SPCovR (S. Park et al., 2020; Vervloet et al., 2016).

This model selection strategy resulted in good results in both the simulation and

empirical studies. However, we did not conduct an extensive investigation focused

on the model selection approaches due to the scope of our paper.

In a similar vein, the optimality criterion we employed for the CV in the con-

text of outcome variable selection could be a subject of further research. In our
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study, we used the R2
cv measure that only employs the active outcome variables in-

cluded in the model fitted from the CV training set. This approach was effective in

finding the correct subset of active outcome variables5. To the best of our knowl-

edge, the choice on the optimality criterion for a prediction method that performs

outcome variable selection has not yet been addressed in the literature.

Our proposed method is one of the first regression methods that conducts

variable selection in both predictor and outcome variables. With growing availabil-

ity of large datasets and increasing use of data collected without specific research

aims, we believe such methods are becoming more relevant. The literature also

seems to be steering towards this direction, with Hu, Liu, Liu, and Xia (2022) hint-

ing at an adaptation to the objective criterion to allow predictor variable selection

on top of the outcome variable selection offered in Hu, Huang, et al. (2022). We

expect that PCovR and other multivariate methods that leverage from dimension

reduction to bear great potential in taking the lead in this under-studied research

problem.

5In our experiments, we found that the R2
cv also works well even when all of the outcome

variables were defined as being active; the final model chosen included all of the outcomes.
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4.A SMPCovR algorithm

The SMPCovR loss (4.3) can be minimized by an alternating least squares

procedure. A schematic outline of the algorithm is provided in what follows. It

is similar to the procedures proposed to solve SCaDS (de Schipper & Van Deun,

2018), SPCovR (Van Deun et al., 2018) and SSCovR (S. Park et al., 2020). The al-

gorithm involves solving for all covariates together (unlike the deflation approach

in which one covariate is solved in turn). The routine continues until the algo-

rithm converges into a stationary point, usually a local minium. To avoid local

minima problems, we recommend to use multiple random and a rational starting

value based on PCovR.

Algorithm 4.1 SMPCovR
1: Inputs:

X and Y, number of covariates R, weighting parameter α, regularization
parameters for W λLr and λRr, regularization parameters for P(Y ) γLr, and γRr,
maximum number of iterations T , convergence threshold ϵ ≥ 0

2: Initialize:
W←W(0) L0 ← Initial loss,
Loss difference d← 1, Iteration counter t← 1

3: while t < T or ϵ < d do
4: Conditional estimation of P(X)(t), P(Y )(t) given W(t)

5: Conditional estimation of W(t+1) given P(X)(t+1)
and P(Y )(t+1)

6: Lu ← updated loss given W(t+1), P(X)(t+1)
and P(Y )(t+1)

7: d← L0 − Lu

8: t← t+ 1
9: L0 ← Lu

10: end while

4.B Estimation of W

Conditional estimation of W given the other parameters P(X),P(Y ) pertains

to an elastic net regression problem. The SMPCovR objective function (4.3) is first

arranged with respect to the the hth element of the weights corresponding to the

covariate component r∗: whr∗.
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L (whr∗) =
α

∥Y∥22

N∑
i

∥∥∥∥∥yi −
R∑
r

J∑
j ̸=h

xijwjrp
(Y )
r −

R∑
r ̸=r∗

xihwhrp
(Y )
r − xihwhr∗p

(Y )
r∗

∥∥∥∥∥
2

2

+
1− α

∥X∥22

N∑
i

∥∥∥∥∥xi −
R∑
r

J∑
j ̸=h

xijwjrp
(X)
r −

R∑
r ̸=r∗

xihwhrp
(X)
r − xihwhr∗p

(X)
r∗

∥∥∥∥∥
2

2

+ λLr∗ |whr∗|+ λRr∗ w
2
hr∗ + γLr∗

∣∣∣p(Y )
r∗

∣∣∣
1
+ γRr∗

∥∥∥p(Y )
r∗

∥∥∥2
2

(4.7)

Taking the derivative with respect to whr∗ we get:

−2α
∥Y∥22

N∑
i

p
(Y )
r∗

⊤ (
rih − xihwhr∗p

(Y )
r∗

)
xih −

2(1− α)

∥X∥22

N∑
i

(sih − xihwhr∗)xih

+ λLr∗∂ |whr∗ |+ 2λRr∗ whr∗

(4.8)

where

rih = yi

R∑
r

J∑
j ̸=h

xijwjrp
(Y )
r −

R∑
r ̸=r∗

xihwhrp
(Y )
r

sih = p
(X)
r∗

⊤
xi −

J∑
j ̸=h

xijwjr∗

(4.9)

We can equate the derivative to zero to satisfy the optimality conditions for

ŵhr∗, which can be summarized by the following:

ŵhr∗ =
S
(∑N

i

[
2α

∥Y∥22

(
p
(Y )
r∗

⊤
rih +

2(1−α)

∥XC∥22
sih

)
xih

]
, λLr∗

)
∑N

i

(
2α

∥Y∥22

∥∥∥p(Y )
r∗

∥∥∥2
2
+ 2(1−α)

∥XC∥22

)
xih

2 + 2λRr∗

(4.10)

where S(.) is a element-wise soft-thresholding operator. With these condi-

tions, we can set up the following coordinate descent algorithm.

Algorithm 4.2 Coordinate descent for the weights
1: for r∗ in 1 : R do
2: for h in 1 : J do

3: ŵhr∗ ←
S

(∑N
i

[
2α

∥Y∥22

(
p
(Y )
r∗

⊤
rih+

2(1−α)

∥XC∥22
sih

)
xih

]
,λLr∗

)
∑N

i

(
2α

∥Y∥22

∥∥∥p(Y )
r∗

∥∥∥2
2
+

2(1−α)

∥XC∥22

)
xih

2+2λRr∗
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4.C Estimation of P(Y )

Conditional estimation of P(Y ) given the other parameters WC ,P
(X)
C is an

elastic net regression problem. The SMPCovR objective function (4.3) is first ar-

ranged with respect to the regression coefficients corresponding to hth outcome

variable and r∗th covariate:

L
(
p
(Y )
hr∗

)
=

α

∥Y∥22

N∑
i

(
yih −

R∑
r ̸=r∗

xi
⊤wrphr

(Y ) − xi
⊤wr∗p

(Y )
hr∗

)2

+ γLr∗

∣∣∣p(Y )
hr∗

∣∣∣+ γRr∗ p
(Y )
hr∗

2

(4.11)

Taking the derivative with respect to phr∗
(Y ):

−2α
∥Y∥22

N∑
i

xi
⊤wr∗

(
tih − xi

⊤wr∗p
(Y )
hr∗

)
+ γLr∗∂

∣∣phr∗ (Y )
∣∣+ 2γRr∗ p

(Y )
hr∗ (4.12)

where

tih = yih −
R∑

r ̸=r∗

xi
⊤wr∗p

(Y )
hr (4.13)

We can equate the derivative to zero to satisfy the optimality conditions for

p̂
(Y )
hr∗ , which can be summarized by the following:

p̂
(Y )
hr∗ =

S
(∑N

i

(
xi

⊤wr∗
)
t
(r∗)
ih ,

∥Y∥22γLr∗
2α

)
∑N

i (xi
⊤wr∗)

2 +
(
∥Y∥22 /α

)
γRr∗

(4.14)

With these conditions, we can set up the following coordinate descent algo-

rithm.

Algorithm 4.3 Coordinate descent for the regression coefficients P(Y )

1: for r∗ in 1 : R do
2: for h in 1 : L do

3: p̂
(Y )
hr∗ ←

S

(∑N
i (xi

⊤wr∗)t
(r∗)
ih ,

∥Y∥22γLr∗
2α

)
∑N

i (xi
⊤wr∗)

2
+(∥Y∥22/α)γRr∗
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4.D Estimation of P(X)

The loadings P(X) such that P(X)⊤P(X) = IR are obtained via a closed-form

solution; P(X) = UV⊤ where U and V are found through singular value decom-

position of X⊤XW = UDV⊤.

4.E Regression coefficients P(Y ) defined for the case

with 20 outcome variables



1 2 3

1 0 0

1 0 0

1 0 0

1 1 1

0 1 0

0 1 0

0 1 0

1 1 1

0 0 1

0 0 1

0 0 1

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



144



Sparse Multivariate Principal Covariates Regression

4.F The scree test with acceleration factor

conducted to determine the number of

covariates for the toy example dataset
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Figure 4.6. For readability, the plot only displays the proportion of variance for the first 50

components. It can be seen that the sharpest change of slopes occurs at the fourth principal

component. Therefore, the number of SMPCovR covariate is determined as three.

145



Chapter 4

4.G Simulation study: R2
out measure computed only

on the basis of active outcomes

J = 30 J = 200
VAF 0.9 VAF 0.5 VAF 0.9 VAF 0.5

L =
 5
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 20
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Method SMPCovR SPCovR sPLS

Figure 4.7. R2
out only on the basis of active outcomes. Each panel corresponds to one of

the 8 conditions.
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4.H Simulation study: proportion of outcomes

correctly identified as active and inactive by

SMPCovR

J = 30 J = 200
VAF 0.9 VAF 0.5 VAF 0.9 VAF 0.5

L =
 5

L =
 20

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Figure 4.8. Proportion of outcomes correctly identified as active and inactive by SMP-

CovR. Each panel corresponds to one of the 8 conditions.
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4.I Simulation study: discrepancy from zero

regression coefficients from SPCovR and sPLS
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Figure 4.9. Mean absolute discrepancy of the zero regression coefficients. Each panel

corresponds to one of the 8 conditions.
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4.J The scree test with acceleration factor

conducted to determine the number of

covariates for the PCS dataset
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Figure 4.10. It can be seen that the sharpest change of slopes occurs at the third principal

component. Therefore, the number of SMPCovR covariate is determined as two.

4.K The R2 measures computed on the PCS dataset

R2
fitall

, R2
fitsub

, R2
loocvall

and R2
fitsub

employed to evaluate the models fitted on the

PCS dataset were calculated by the following equations.

R2
fitall

is the R2 measure computed on the in-sample data on the basis of all of

the outcome variables. This can be considered as the conventional R2 measure:

R2
fitall

= 1−

∥∥∥Y −XŴP̂(Y )⊤
∥∥∥2
2

∥Y∥22
(4.15)

The R2
fitsub

measure is computed on the in-sample data, however on the basis

of outcome variables selected as being active by the SMPCovR model:

R2
fitsub

= 1−

∥∥∥YL∗ −XŴP̂
(Y )⊤

L∗

∥∥∥2
2

∥YL∗∥22
(4.16)

with the subscript L∗ indicating a subset within the sequence of indices for
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outcome variables L∗ ⊆ {1, 2, . . . , L}. It comprises of indices corresponding to

the active outcomes selected by SMPCovR. As reported in Table 4.4, YL∗ would

comprise of the 10 following outcomes: sneezing, runny nose, nasal congestion,

cough, sore throat, malaise, chest congestion, sinus pain, fever and poor appetite.

Since an outcome variable is removed from the SMPCovR model if its correspond-

ing row in the estimated regression coefficients matrix P̂(Y ) is a zero-vector, the

indices of non-zero rows of P̂(Y ) make up the set L∗. P̂
(Y )
L∗ denotes the submatrix

of P̂(Y ) with non-zero rows.

R2
loocvall

is calculated via leave-one-out CV. All of the outcome variables in the

PCS dataset are incorporated:

R2
loocvall

= 1−

∥∥∥ytest − xtest⊤ŴP̂(Y )⊤
∥∥∥2
2

∥ytest∥22
(4.17)

where ytest and xtest refer to the outcome and predictor variables in the CV

test set (it is a vector, since leave-one-out CV uses one observation unit for each

test set).

Lastly, R2
loocvsub

is also calculated via leave-one-out CV, but on the basis of

active outcome variables selected by the SMPCovR model:

R2
loocvsub

= 1−

∥∥∥ytest
L∗ − xtest⊤ŴP̂

(Y )⊤

L∗

∥∥∥2
2

∥ytest
L∗ ∥22

(4.18)

As for the formula for R2
loocvall

, ytest and xtest refer to the outcome and predic-

tor variables in the CV test set. As for the formula for R2
fitsub

, the subscript L∗ denotes

a subset within the sequence of indices for outcome variables L∗ ⊆ {1, 2, . . . , L}. It

comprises of indices corresponding to the active outcomes selected by SMPCovR.

As reported in Table 4.4, YL∗ would comprise of the 10 following outcomes: sneez-

ing, runny nose, nasal congestion, cough, sore throat, malaise, chest congestion,

sinus pain, fever and poor appetite.

4.L Model selection for SPCovR and sPLS for the

PCS dataset

For SPCovR, the α parameter and the lasso parameter for the weights were

tuned by 5-fold CV. We adopted the sequence [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9] for α. For the lasso parameter, 0 and equally distanced sequence of size 49

from 10−5 to 0.5 on the natural log scale was employed as the range. Crossing the

two ranges, 9 × 50 = 450 different models were evaluated by CV. With regards to

sPLS, the range considered for the number of non-zero coefficients per component
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was the multiples of 6 running from 6 to 180 along with 1 and 187 (minimal and

maximal number of non-zero coefficients). With the number of components fixed

at two, the 5-fold CV was performed for 322 = 1024 total models. After the CV, the

1SE rule was used to select the final model for both methods.
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Table 4.6. Weights derived by SPCovR from the PCS dataset. ŵ1 and ŵ1 (cont.) indicate

the weights corresponding to the first covariate, while ŵ2 refers to the weights concerning

the second covariate.

ŵ1

1

IL-6 0.100
TNF alpha 1.339

Red blood cells 0.025
Absolute
neutrophil count

-0.053

Corpuscular Hgb -0.118
Corpuscular Hgb conc -0.046
Potassium 0.200
Calcium 0.006
Alkaline phosphatase 0.014
Non-fasting glucose 0.161
Urea nitrogen 0.067

# weekdays alcohol 0.324
# weekend days alcohol 0.122
# drinks on weekdays 0.006
PSQI: too hot -0.117

FES: Expressiveness 0.006
Parental
social participation

-0.104

ReCAPS 15 0.007
Neighbourhood physical 0.209
Neighbourhood social -0.001
Perceived SES Mom -0.087

PANAS:guilt -0.178
PANAS: sadness 0.316
PANAS: fatigue 0.296
IPIP: extraversion 0.171
Communal orientation 0.105
TSC: network size -0.133
TSC:
indirect social control

0.182

GS-ISEL 0.194
Negative aspects
of relationships

-0.055

Social participation -0.233
Perceived
community score

0.052

Loneliness 0.072
Perceived stress scale 0.117

ŵ1 (cont.)

1

Leisure activities
at home

-0.190

# days working 0.000
Time spent
in bed awake

-0.084

# days exercise 0.047
# drinks total 0.004
# days alcohol 0.021
Fatigue 0.526
Lively -0.300
Anger subscale 0.170

ŵ2

2

Psych well-being -1.889
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Table 4.7. Regression coefficients derived by SPCovR from the PCS dataset. Each column

corresponds to the coefficients for each covariate.

P̂(Y )

1 2

Sneezing 0.335 -0.044
Runny nose 0.305 -0.041
Nasal congestion 0.327 -0.033
Cough 0.370 0.029
Sore throat 0.289 -0.103

Headache 0.187 -0.044
Chills 0.069 0.082
Malaise 0.232 -0.004
Chest congestion 0.265 0.049
Sinus pain 0.321 -0.053

Earache 0.049 0.003
Muscle ache 0.173 -0.074
Joint ache 0.027 -0.086
Sweating 0.119 0.128
Fever 0.267 0.001

Poor appetite 0.285 0.020

Table 4.6 and 4.7 present the weights and regression coefficients from the

SPCovR model. The model is comprised with 43 and 1 non-zero weights for each

covariate. While only 2 variables were selected from those that concern nasal

cytokine, SPCovR retrieved many more non-zero weights than SMPCovR for the

various within other themes: blood chemistry, health practices, psychosocial as-

sessment scales and daily interviews. Moreover, whereas SMPCovR excluded all

of the predictors regarding childhood experiences, SPCovR included them (such

as Family Environment Scale: Expressiveness). Only 1 predictor was found corre-

sponding to the second covariate. This is also in line with the model derived by

SMPCovR that only found 3 predictors. Lastly, similar to SMPCovR that forced all

of the regression weights concerning the second covariate to zero, SPCovR also

found near-zero values for these coefficients.
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Table 4.8. Weights derived by sPLS from the PCS dataset. ŵ1 and ŵ2 indicate the weights

corresponding to the first and second covariates respectively.

ŵ1

1

TNF alpha 1

ŵ2

2

Daily loneliness 0.033
Daily negative affect & fatigue 0.411
Daily negative affect 0.019
Daily fatigue subscale 0.608
Daily tiredness 0.436
Daily fatigue 0.518

Table 4.9. Regression coefficients derived by sPLS from the PCS dataset. Each column

corresponds to the coefficients for each covariate.

P̂(Y )

1 2

Sneezing -0.200 -0.259
Runny nose -0.245 -0.247
Nasal congestion -0.240 -0.285
Cough -0.341 -0.398
Sore throat -0.316 -0.264

Headache -0.088 -0.224
Chills -0.047 -0.222
Malaise -0.090 -0.308
Chest congestion -0.328 -0.259
Sinus pain -0.404 -0.237

Earache -0.022 -0.394
Muscle ache -0.198 -0.104
Joint ache 0.126 -0.086
Sweating -0.125 0.062
Fever -0.354 0.059

Poor appetite -0.376 -0.253

The weights and regression coefficients found by sPLS are provided in Table

4.8 and 4.9. The model constructed by sPLS is largely different from the SPCovR

and SMPCovR models that are similar among each other. It was also comprised

of much smaller number of non-zero weights. The first covariate only consisted of

TNF alpha, one of the 7 variables regarding nasal cytokine. The second covariate

was associated with 6 variables from daily interviews. With respect to the regres-

sion coefficients, most of them were far away from zero. This was also in line

with our finding in the simulation study, where sPLS did not provide near-zero
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coefficients as estimates for the true zero regression coefficients (see Appendix

4.I).
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Novel results in sparse Principal Component
Analysis relevant for extending Principal

Covariates Regression
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Chapter 5

A critical assessment of sparse PCA (research): Why

(one should acknowledge that) weights are not

loadings

Principal component analysis (PCA) is an important tool for analyzing large collections of
variables. It functions both as a pre-processing tool to summarize many variables into components
and as a method to reveal structure in data. Different coefficients play a central role in these
two uses. One focuses on the weights when the goal is summarization, while one inspects the
loadings if the goal is to reveal structure. It is well known that the solutions to the two approaches
can be found by singular value decomposition; weights, loadings, and right singular vectors are
mathematically equivalent. What is often overlooked, is that they are no longer equivalent in
the setting of sparse PCA methods which induce zeros either in the weights or the loadings. The
lack of awareness for this difference has led to questionable research practices in sparse PCA.
First, in simulation studies data is generated mostly based only on structures with sparse singular
vectors or sparse loadings, neglecting the structure with sparse weights. Second, reported results
represent local optima as the iterative routines are often initiated with the right singular vectors.
In this paper we critically re-assess sparse PCA methods by also including data generating schemes
characterized by sparse weights and different initialization strategies. The results show that relying
on commonly used data generating models can lead to over-optimistic conclusions. They also
highlight the impact of choice between sparse weights versus sparse loadings methods and the
initialization strategies. The practical consequences of this choice are illustrated with empirical
datasets.

Keywords: Sparse principal component analysis, Exploratory data analysis, Dimension reduc-
tion, Sparse weights, Sparse loadings

Park, S., Ceulemans, E., & Van Deun, K. (2023). A critical assessment of sparse PCA (research):

why (one should acknowledge that) weights are not loadings. Behavior Research Methods, 1-20.
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5.1 Introduction

“Principal component analysis (PCA) is probably the most popular multivari-

ate statistical technique and it is used by almost all scientific disciplines. It is also

likely to be the oldest multivariate technique." (Abdi & Williams, 2010, p.433).

Often referred to as the basis for multivariate data analysis (S. Wold, Esbensen,

& Geladi, 1987), the central idea of PCA is to reduce a possibly large set of vari-

ables to a few derived variables - usually called components - which preserve a

maximum amount of information in the data (Jolliffe, 2002). The resulting low-

dimensional representations are mainly used in two ways: they are either used as

a data pre-processing step where the constructed summary scores are subsequently

adopted for regression or classification or as an exploratory tool to detect patterns

and to create attractive visualizations of the data (Gabriel, 1971). PCA produces

two types of coefficients that serve these aims: variable ‘weights’ that define the

transformation from the raw data to the summary scores and ‘loadings’ which re-

flect the strength of association of the raw variables with the low-dimensional rep-

resentations. Although PCA has been presented in several ways, it is well known

that the different PCA solutions are equivalent and that weights and loadings can

both be obtained from the singular value decomposition (SVD) of the data matrix.

With the advent of big data, especially those in which the number of vari-

ables largely exceeds the number of observation units, the use of PCA to reduce

the dimensionality of the data has become more widespread. However, there are

several issues with using PCA in the high-dimensional setting. First, computation

of weights and loadings may suffer from a problem of statistical inconsistency in

high-dimensional data settings (Johnstone & Lu, 2009; D. Shen, Shen, & Marron,

2016). Furthermore, interpreting the summarized scores via inspection of weights

and loadings becomes difficult as PCA computes these coefficients for the entire set

of variables. Traditionally, the burden of interpretation that arises from studying

all of the coefficients had been addressed by rotation to simple structure (Jolliffe,

2002). Yet, rotation followed by neglecting coefficients with small magnitude has

been pointed out to be a rather arbitrary and suboptimal way of selecting variables

(Cadima & Jolliffe, 1995; Trendafilov & Adachi, 2015).

In response to these issues, sparse versions of PCA that reduce the num-

ber of variables involved in the PCA representation have been proposed (Jolliffe,

Trendafilov, & Uddin, 2003; H. Shen & Huang, 2008; Witten, Tibshirani, & Hastie,

2009; Zou et al., 2006). Incorporation of sparsity allows much easier interpre-

tation of the components and restores statistical consistency of the coefficients.

Several other benefits are gained through sparsity including that it addresses the

need - in substantive research - of selecting those variables that are important
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for further investigation (Rasmussen & Bro, 2012) and economic aspects associ-

ated to the cost of measuring (many) variables (d’Aspremont, Ghaoui, Jordan, &

Lanckriet, 2004).

Sparseness of PCA weights and loadings can be obtained in multiple ways.

They can be constrained with respect to the number of estimated non-zero ele-

ments, or penalty terms such as the lasso can be added to them. Several such

constrained or penalized PCA formulations have been proposed in line with differ-

ent objectives for PCA. Yet, whereas the different PCA problems can all be solved

via the SVD, this does not hold for the different sparse PCA methods. Importantly,

weights, loadings and right singular vectors are no longer mathematically equiv-

alent to each other in the sparse setting. However, the difference among these

structures has been largely overlooked, leading to questionable practices in the

sparse PCA literature. First, most simulation studies in the literature restrict them-

selves to data generating schemes with sparseness residing in the right singular

vectors or the loadings, instead of also incorporating models with sparseness in

the weights. Second, it is a common practice to adopt the right singular vectors as

initial values while local optimization procedures are employed for methods that

impose sparsity on weights or loadings. These practices seem to ignore the fact

that these quantities represent different model structures.

Our current paper aims to create awareness for the fact that weights and

loadings are truly different model structures with different roles. We conduct a

simulation study and employ empirical datasets in doing so. In our simulation

study, the focus is on comparing the performance of sparse PCA methods in terms

of criteria that matter for data analysis and explicitly taking into account that

this difference between weights and loadings also resides at the level of the data

generating model. Such a comparison has been made elsewhere (Guerra-Urzola

et al., 2021; Van Deun et al., 2011) but with a somewhat different focus. The

contribution of this work is to shed light on the performance of sparse loadings

versus sparse weights in different data generating contexts by employing sparse

PCA methods that are based on the same model formulation, allow exact control

over the level of sparsity and account for local optima. Moreover, the difference

between sparse loadings and sparse weights methods are also discussed in a more

practical manner using empirical data.

The paper is arranged as follows: in the next section we detail formulations

of PCA and sparse PCA. We highlight that the equality between weights, loadings

and right singular vectors that exists within PCA is lost as the methods transition

into sparse PCA. This is clearly illustrated by a toy example. In a simulation study

we compare the performance of the sparse weights versus sparse loading methods

under different data generation schemes and for different algorithm initialization
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strategies. By employing two different empirical datasets, we present the practical

impact of the choice of sparse PCA formulation and the initialization strategy. The

paper concludes with a discussion. Code used to generate the results reported

in the paper is available on Github: https://github.com/soogs/Sparse-PCA

-Critical-Assessment.

5.2 Methods

After introducing the notation, we will first present the PCA decomposition

and objective with special attention for the different roles played by component

weights and loadings. We will highlight how the model structures (weights, load-

ings, singular vectors) are equal to one another. Then, we will discuss some com-

monly used sparse PCA methods that result from penalizing or constraining the

PCA objective. It will be shown that the model structures are no longer subject to

such equality within sparse PCA.

5.2.1 Notation

Throughout the paper, vectors and matrices will be denoted by bold lower-

case and bold uppercase letters respectively. Lowercase subscripts that run from 1

to the corresponding uppercase letters will be used for indexing: i ∈ (1, 2, . . . , I).

I, J and R denote the total numbers of observation units, variables and com-

ponents, respectively. For example, we will use X to denote the data matrix, in

which the J columns represent the variables and the I rows the observation units;

note that the variables are assumed to be mean centered. Transposed vectors and

matrices will be indicated by the superscript ⊤, therefore I−1X⊤X is the covari-

ance matrix. The Frobenius norm for matrices is denoted as ∥.∥F and the squared

Frobenius norm ∥X∥2F =
∑

i,j x
2
i,j. Vector norms are defined as: ∥.∥1 for ℓ1 norm

(∥x∥1 =
∑

i |xi|) and ∥.∥2 for ℓ2 norm (∥x∥2 =
√∑

i x
2
i ). Card(.) indicates the

cardinality of a matrix or a vector: this is the number of non-zero elements in the

matrix or the vector. The addition of a subscript R to a matrix indicates the first R

columns of the matrix.

5.2.2 Principal Component Analysis

PCA has been presented in several ways that are mathematically equivalent.

(Guerra-Urzola et al., 2021; Jolliffe, 2002). The formulation incorporating both

loadings and weights relies on the following decomposition of the data (Gabriel,

1978; Whittle, 1952; S. Wold et al., 1987):
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X = TRP
⊤
R + E, (5.1)

subject to P⊤
RPR = IR and t⊤r tr′ = 0 for r ̸= r′,

with TR (I ×R) denoting the principal component scores of the observation

units and PR (J × R) the loadings of the variables on the components. E is the

matrix of residuals which is assumed to be orthogonal to TR. These parameters TR

and PR are not unique; TRA and PRA
−1 with an invertible matrix A also suffice

the model equation. The principal component scores are often written out as linear

combination of the variables (TR = XWR) where WR (J × R) matrix is referred

to as weights which are understood analogously to regression weights in regression

analysis1. This can be explicitly expressed in the model: X = XWRP
⊤
R + E with

the same constraints as in (5.1). To obtain the PCA decomposition of the data, a

least squares criterion is used:

T̂R, P̂R = argmin
TR,PR

||X−TRP
⊤
R||2F (5.2)

subject to P⊤
RPR = IR and t⊤r tr′ = 0 for r ̸= r′,

Since TR = XWR, the solution for the weights ŴR falls directly from the

solution for the component scores T̂R via least squares. In addition, the PCA

objective (5.2) expresses the sum of squared errors between the observed data

X and its reconstruction TRP
⊤
R. Hence, the proportion of variance accounted for

(VAF) by the estimated PCA model is computed by: 1−||X−T̂RP̂
⊤
R||2F/||X||2F . This

VAF measure is commonly used as a measure of model fit for PCA or sparse PCA

solutions, and adopted throughout the current paper.

Mathematical equivalence of weights, loadings, and singular vectors

As for the model (5.1), the problem in (5.2) is also not uniquely defined.

Usually this issue is resolved by requiring a principal axis orientation of the prin-

cipal components; they are found such that they successively explain maximum

variance (Hotelling, 1933; Jolliffe, 2002). It is well known that the optimization

problem in (5.2) can be solved via the singular value decomposition (SVD; see

for example Jolliffe (2002)): Let X = USV⊤ with column orthogonal left sin-

gular vectors U and right singular vectors V (U⊤U = II and V⊤V = IJ) and S

a I × J rectangular diagonal matrix with singular values in a decreasing order
1The component weights function as the regression weights in the regression of the rth com-

ponent score vector on the J observed variables. Adachi and Trendafilov (2016) also refers to the
WR matrix as the weights matrix following the same rationale.
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(s11 ≥ s22 ≥ . . . ≥ 0), then the rank R approximation X ≈ URSRV
⊤
R is optimal in

the least squares sense. Hence, adopting T̂R = URSR, P̂R = VR and ŴR = VR

provides the solution to the least squares problem in (5.2) under the set con-

straints. The weights and loadings are both provided by the right singular vectors

and therefore are numerically equal to each other as they have the same value:

pjr = vjr = wjr.

Conceptual difference between weights and loadings

Despite weights and loadings being numerically equivalent, the two struc-

tures have different conceptual roles in the decomposition of data. The component

weights wjr represent the weight that is given to a variable in the linear combina-

tion used to construct the component scores: tir =
∑

j wjrxij. On the other hand,

the loadings pjr represent the strength of association of the components with the

observed variable: xij ≈
∑

r tirpjr; note that this strength of association is not

influenced by the other components because of their orthogonality. Under proper

normalization constraints2, the loadings are equal to the correlation between the

observed variable and the component scores. Although both weight and load-

ing matrices are equal to each other in the numerical sense, understanding their

conceptual difference is important as their mathematical equivalence is lost for

PCA decompositions relying on other constraints and optimization criteria than

the ones presented in (5.1) and (5.2).

5.2.3 Sparse Principal Component Analysis

Sparse forms of PCA can be obtained by imposing sparseness either on the

weights or the loadings in the PCA decomposition (5.1). Several sparse PCA meth-

ods have been proposed that rely on this idea (e.g., Erichson et al., 2020; H. Shen

& Huang, 2008; Witten et al., 2009; Zou et al., 2006). Here, we focus on two

well-known sparse PCA methods that rely on the least-squares approach to the

decomposition, that extract all components simultaneously, and that allow exact

control over the number of zero loadings or weights. These methods are SPCA

(Zou et al., 2006) for the setting with sparse weights and USLPCA (Adachi &

Trendafilov, 2016) for the setting with sparse loadings. Focusing on these two

sparse PCA methods has the benefit that any observed differences in performance

can be attributed to the choice for either sparse weights or loadings, ruling out

alternative explanations such as algorithmic differences or differences in the level

of sparsity.
2This is scaling both the variables and the component scores to unit variance which is common

practice in the social and behavioral sciences and implemented in the PCA procedure of the SPSS
software (IBM Corp., 2020).
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SPCA

Zou et al. (2006) proposed the SPCA criterion, where an elastic net penalty is

placed on the weights from the PCA objective (5.2) in which weights are explicitly

written out:

(ŴR, P̂R) = argmin
WR,PR

∥∥X−XWRP
⊤
R

∥∥2
F
+ λ

R∑
r=1

∥wr∥1 + λ2

R∑
r=1

∥wr∥22 (5.3)

subject to P⊤
RPR = IR,

with λ ≥ 0 a tuning parameter for the lasso penalty; the effect of the penalty

is that it shrinks the weights to zero, some/many of them even exactly so. In

addition to the lasso, also a ridge penalty has been added. Its function is to obtain

stable estimates in case of highly correlated predictors and to allow for more non-

zero coefficients than I (in the setting with J > I).

The estimation of the weights and loadings is based on an alternating rou-

tine that updates the weights conditional upon the loadings and vice versa. The

updating step of the sparse weights is based on the elastic net regression of the

components on the variables. The SPCA procedure treats this problem with LARS-

EN algorithm (Efron et al., 2004; Zou & Hastie, 2005) which allows the desired

number of zero coefficients per component to be exactly specified in computing the

weights3. It is important to note that elastic net regression problems are known

to have difficulties in identifying the true sparse model in the high-dimensional

setting (Jia & Yu, 2010).

USLPCA

Sparsity can also be imposed to the loadings matrix in (5.2). Adachi and

Trendafilov (2016) proposed a sparse PCA method by imposing a cardinality con-

straint on the loadings, leading to the USLPCA criterion4:

(T̂R, P̂R) = argmin
TR,PR

∥∥X−TRP
⊤
R

∥∥2
F

(5.4)

subject to T⊤
RTR = IR and Card(pr) = k.

USLPCA is also based on an alternating optimization procedure between the
3The entire solution path for elastic net can be generated when solved by the LARS algorithm

and thus when the desired number of non-zero predictors are included in the model, the iteration
procedure can be stopped.

4A similar version with sparseness of the loadings obtained by adding a penalty has also been
proposed (sPCA-rSVD; H. Shen & Huang, 2008). In this approach the orthogonality of the com-
ponents is not imposed as the approach uses deflation to extract more than one component.
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loadings and the component scores. The update of the loadings is a constrained

univariate regression where each variable is regressed on each of the components.

This implies that the estimates for the loadings do not suffer from stability issues

in case of high correlations or high-dimensional data. Also, the estimation of the

loadings easily allows the incorporation of a cardinality constraint in a computa-

tionally efficient way.

Local optimality

Unlike PCA formulations that have closed-form solutions based on SVD, iter-

ative estimation procedures are adopted by the SPCA and USLPCA. As both meth-

ods are based on non-convex problems that are solved via an alternating proce-

dure, the obtained solutions are prone to local optima. In their experiment of

USLPCA, Adachi and Trendafilov (2016) reported that the method is sensitive to

local optima characterized by solutions that are distant from the optimal solution.

In order to aim for the global optimum, multiple random starting values should

therefore be considered. Initializing these sparse PCA algorithms only with the

right singular vectors can be problematic since it encourages the convergence to a

local optimum near VR.

Loss of mathematical equivalence

Under both sparse PCA formulations (5.3, 5.4), the equality among weights,

loadings and right singular vectors is lost since SVD is no longer adopted as a direct

solution. While SPCA finds sparse weights and non-sparse loadings, USLPCA finds

sparse loadings. Weights from USLPCA, although not explicitly estimated, are

non-sparse (they can be inferred by regressing the component scores TR on data

X). Hence, within each sparse PCA formulation, the weights and loadings are

different to each other and they are no longer equal to the right singular vectors

of X. Across the two formulations, the weights and loadings estimated via the

SPCA are different from the weights and loadings from the USLPCA.

5.2.3.1 Sparse PCA properties: toy example

In order to clearly illustrate the loss of equality among weights, loadings and

right singular vectors for sparse PCA formulations, we make use of a toy example

in this section. We created a 5 × 3 data matrix X of rank two so the data can be

perfectly reconstructed with R = 2 components. A 2-component PCA model with

sparse loadings underlies X and therefore, the component scores T are column-

orthogonal (T⊤T = I) and the loadings P are sparse as in (5.4):
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

0.63 0.52 0.11

−1.56 −0.88 0.30

0.04 0.83 1.14

1.07 0.80 0.06

−0.18 −1.27 −1.61


X

=



0.31 0.05

−0.78 0.15

0.02 0.57

0.54 0.03

−0.09 −0.81


T

×


2 0

1.41 1.41

0 2


⊤

P⊤

(5.5)

On this toy example dataset, we administered PCA, together with SPCA and

USLPCA. Note that PCA weights and loadings are obtained by the right singular

vectors. The two sparse PCA methods were applied such that one coefficient is

returned sparse per component; this corresponds to the true sparse structure of the

loading matrix in (6.10). The weights for USLPCA were calculated by regressing

the estimated components on the variables. As aforementioned, these methods

adopt the right singular vectors VR of X by default as initial values for the iterative

procedures. However, to account for the issue of local optima, a set of solutions

stemming from 100 random initial values (with elements drawn from U(−1, 1))
were considered. The solution with the lowest value of the least squares loss was

accepted as the final solution. We refer to the default approaches initialized by VR

by SPCA-svd and USLPCA-svd, while the multistart versions are denoted by SPCA-

multi and USLPCA-multi. Table 5.1 presents the solutions provided by the PCA

and sparse PCA. The first column provides the loss values of each solution. Since

the methods are characterized by different objective criteria, these values are only

comparable across different initialization strategies within the same sparse PCA

method. In addition, the last column concerns the model fit: VAF by each of the

components (1−||X−t̂rp̂⊤
r ||2F/||X||2F ) and the total VAF (1−||X−T̂RP̂

⊤
R||2F/||X||2F ).

The VAF values for the sparse PCA methods are computed in the same manner by

replacing the PCA estimates with sparse PCA estimates.
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Table 5.1. Solutions for the PCA and sparse PCA methods. The VAF for each component

and in total is indicated by vaf1,2 and vaftotal, respectively.

Method ŴR P̂R T̂R V AF

PCA (5.2)

loss 0

0.50 0.71

0.71 0

0.50 −0.71


0.50 0.71

0.71 0

0.50 −0.71




0.73 0.37

−1.25 −1.32
1.18 −0.78
1.14 0.71

−1.80 1.01


vaf1 = 2/3
vaf2 = 1/3
vaftotal = 1

SPCA-svd

loss 5.66

 0 0.71

1.41 0

0 −0.71


0.50 0.71

0.71 0

0.50 −0.71




0.73 0.37

−1.25 −1.32
1.18 −0.78
1.14 0.71

−1.80 1.01


vaf1 = 2/3
vaf2 = 1/3
vaftotal = 1

SPCA-multi

loss 5.11

0.83 0

0.56 0.02

0 1.14


 0.82 −0.28

0.57 0.42

−0.01 0.87




0.81 0.13

−1.78 0.33

0.50 1.32

1.34 0.09

−0.86 −1.87


vaf1 = 0.552
vaf2 = 0.448
vaftotal = 1

USLPCA-svd

loss 1.17

0.30 0.26

0.23 −0.10
0.03 −0.39


1.85 0.77

1.85 0

0 −1.85




0.31 0.07

−0.66 −0.44
0.24 −0.52
0.51 0.18

−0.39 0.71



vaf1 = 0.569
vaf2 = 1/3
vaftotal =
0.902

USLPCA-multi

loss 0

 0.38 −0.13
0.18 0.18

−0.13 0.38


 2 0

1.41 1.41

0 2




0.31 0.05

−0.78 0.15

0.02 0.57

0.54 0.03

−0.09 −0.81


vaf1 = 1/2
vaf2 = 1/2
vaftotal = 1

We first study the solutions from PCA. As the loadings and weights are both

derived from the right singular vectors VR, the two are equal to each other. Now

observing the sparse PCA solutions, we can notice that all of the sparse PCA for-

mulations result in different solutions. The variance explained by each component

and by both components collectively is also different across the formulations. The

loss of equality among weights, loadings and right singular vectors is clear; within

and between the sparse PCA formulations, the weight and loading matrices are

not equal to each other, or to the right singular vectors VR. A notable exception
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is the solution obtained by SPCA-svd which found loadings and component scores

identical to those of PCA. This is because X was generated from a 2-component

PCA model without any noise and because SPCA-svd is initialized with the right

singular vectors5. However, as seen in the loss values, this is not the optimal

solution in terms of the optimization criterion.

Our example also illustrates the role of initial values in sparse PCA formula-

tions. Smaller loss was obtained by incorporating multiple starts for initialization.

While the total amount of variance captured by the components was equal across

the two initial value procedures for SPCA, the multistart approach explained more

variance for USLPCA. Moreover, the coefficients attained by different initial value

strategies show large discrepancies; this shows that neglecting the problem of lo-

cal optima is consequential as it may result in lower VAF and inconsistency of

the estimated weights and loadings. Unless the true model underlying the data is

suspected to be characterized by sparse singular vectors, initializing the algorithm

with only the right singular vectors may result in a suboptimal results.

5.2.3.2 Sparse PCA properties: Some pitfalls

The loss of equality among weights, loadings and right singular vectors has

a non-negligible consequence for simulation studies conducted to evaluate the

sparse PCA methods; a data generating model characterized by sparse weights is

disparate from another with sparse loadings or sparse singular vectors, and vice

versa. It also has an important implication with respect to choice of the method in

practical applications. This is evident in the toy example. The true sparse loadings

in (6.10) were only recovered correctly by USLPCA-multi. PCA and SPCA, which

target the right singular vectors and sparse weights respectively, were unable to

recover the true sparse loading structure.

However, in the sparse PCA literature, models comprised of sparse loadings

or sparse singular vectors have been predominantly employed for data generation,

regardless of the structure (weights, loadings and right singular vectors) being

sparsified by the method (e.g. Johnstone & Lu, 2009; H. Shen & Huang, 2008;

Wang & Fan, 2017; Zou et al., 2006). The current literature has therefore largely

overlooked the data generating model with sparse weights for simulation studies.

In papers which propose a sparse PCA formulation with sparse loadings or sparse

singular vectors, excluding the model with sparse weights can be seen as an in-

comprehensive practice. In other works that propose a sparse weights formulation,

neglecting the model with sparse weights for data generation can be considered

erroneous. A further complicating factor is that data generated with the sparse
5For the same reason of generating the data without noise, two zero weights were estimated

for the first component.
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weights model poses a more difficult challenge for sparse PCA methods in retriev-

ing the true parameters than the other two models. This implies that many of the

results in the sparse PCA literature can be expected to be over-optimistic.

5.2.3.3 Data generating models

This section provides the data generating models (DGM) each comprised

with sparse singular vectors, sparse loadings and sparse weights. We also discuss

why the sparse weights model is more challenging to analyze than the other two

models. Data from the model with sparse right singular vectors can be generated

from the model X = URSRV
⊤
R +E where the right singular vectors VR are sparse

and column-orthogonal with norm equal one. This is equivalent to generating data

from a multivariate normal distribution characterized by a zero mean vector and

covariance matrix Σ = VRS
2
RV

⊤
R +ΣE

6 where S2
R denotes the covariance matrix

among components. Note that all off-diagonal elements are equal to zero as the

component scores are orthogonal. This sparse singular vectors model is referred

to as the spiked covariance model (Johnstone, 2001). With the right singular

vectors defined sparse, this model simultaneously comprises sparse weights and

sparse loadings (VR = WR = PR). From the model X = TRP
⊤
R + E with PR the

sparse singular vectors, it follows that XPR = (TRP
⊤
R+E)PR = TR, so PR indeed

comprises the weights that make up the component scores TR.

The DGM with sparse loadings (sparse loadings model7) is derived from

the PCA decomposition (5.1), in which the loadings are defined sparse: X =

TRP
⊤
R+E. The USLPCA formulation (5.4) imposes this model. It is closely related

with the spiked covariance model because it coincides with generating from the

multivariate normal distribution with covariance matrix Σ = PRP
⊤
R +ΣE. In fact,

if PR is further constrained to be column-orthogonal, the sparse loadings model is

equal to the spiked covariance model.

Lastly, to obtain the model with sparse weights (sparse weights model) the

PCA decomposition with the weights written out is adopted (X = XWRP
⊤
R + E)

and sparsity is induced in the weights matrix. This model is implicitly assumed by

the SPCA formulation (5.3). It does not coincide with sparse loadings or spiked

covariance models. In comparison to the two models, the sparse weights model

poses a much more complicated challenge for the sparse PCA methods for two

reasons. First, the component scores XWR are post-multiplied by the loadings PR

in constructing the data. This implies that the sparseness structure in the weights

may not be clearly reflected in the observed data. Second, it suffers from the
6The eigenvectors of the covariance matrix Σ = I−1X⊤X are equal to the right singular vectors

of X.
7Referred to as ‘factor model’ in Fan, Liao, and Mincheva (2013)
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problem of indeterminacy; different W matrices can lead to the same component

scores XWR
8. Appendix 5.A provides an example illustrating this indeterminacy

problem.

The sections above emphasized the difference between weights, loadings and

singular vectors within sparse PCA. Models comprised with any of these sparse

structures are also disparate from each other. In the following section, we evaluate

common sparse PCA methods on the three different sparse PCA models to demon-

strate the consequence of neglecting the difference between these structures and

the models comprised of them.

5.3 Simulation study

We present a critical assessment of the sparse PCA methods by taking into

account 1) the three different data generating models characterized by sparse

weights, sparse loadings and sparse singular vectors and 2) that the sparse PCA

solutions resulting from SPCA and USLPCA are subject to the the problem of local

optima. Each of the generated data sets is analyzed by each of the methods. Both

the effectiveness of the methods at retrieving the true underlying model and at

reconstructing the data are evaluated.

It is expected to be more difficult for the sparse PCA methods to reveal the

underlying model if the data is generated from the sparse weights model, com-

pared to the other two models. We anticipate that the initial value approaches

would lead to different results, as demonstrated by the toy example. We also

expect that the difference in performance between the SVD-based and multistart

approach will be larger for data generated from the sparse weights model, due

to the indeterminacy problem; since multiple different weights matrices can be

viable solutions given the same component scores, the initial values would play a

role in finding the solution that matches with the true parameters. With respect to

the methods’ quality of capturing the variance in the data which can be quantified

by the VAF measure, it is expected that the sparse weights method would perform

better than the sparse loadings method. This is because high levels of sparseness

in the loadings can result in all variable scores being estimated as zero. This vari-

able would not at all be accounted for by the model (all scores on the variable

become equal to zero), resulting in small VAF. Lastly, with regards to retrieving

the true parameters, because SPCA estimates sparse weights and USLPCA sparse

loadings, one may expect the SPCA weights to better recover the true weights
8For example, consider a case where X consists of two variables which are identical to each

other in a one-component setting. For the component scores, as long as the weights sum up to a
particular value, there are infinitely many possible values that these weights can take; the linear
combination Xw would always be identical.
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than the USLPCA loadings and also the USLPCA loadings to better recover the

true loadings than the SPCA weights. For the recovery of the true loadings, this is

a reasonable expectation. However, given the indeterminacy of the weights and

when these are generated under the spiked covariance model, it is more reason-

able to expect the USLPCA loadings to better recover the sparse weights (as in this

setting loadings and weights are equal yet estimation of the loadings is stable un-

like the weights). Nevertheless, it is in general difficult to hold a clear expectation

about SPCA and elastic net as they suffer from problems such as indeterminacy

under high dimensionality.

5.3.1 Design and procedure

Along with the three DGMs, various other data characteristics of the datasets

were also manipulated in order to study the interaction between sparse PCA meth-

ods, data characteristics and DGMs. Fixing the number of components R to two,

we generated datasets via the design below. For each manipulated design factor,

the levels are provided between square brackets.

Study design
1. Data generating model (DGM): [Spiked covariance], [Sparse loadings], [Sparse

weights]

2. Dimensions of X (I × J): [Low-dimensional (100× 50)], [High-dimensional (100×
500)]

3. Level of sparsity in the coefficients matrix: [90%], [50%]

4. Proportion of error variance in X (PEV): [0%], [10%], [50%]

The following provides the scheme used to generate the data from spiked co-

variance and sparse loadings models. We adapted the setups devised in Johnstone

(2001) (spiked covariance) and in Zou et al. (2006) (sparse loadings).
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Algorithm 5.1 Spiked covariance and sparse loadings data generation
1: Xinit ∼ MVN (0J , IJ) where 0J is a zero vector with J elements and IJ is a J × J

identity
matrix. Xinit ∈ RI×J

2: Mean-center columns of Xinit

3: Perform SVD: Xinit =
[
UR URc

]SR

SRc

[VR VRc

]⊤
4: Replace the elements of VR with the smallest absolute values by 0, according to the

level of sparsity
5: if DGM = spiked covariance then
6: Orthogonalize columns of VR, preserving the zero elements
7: else if DGM = sparse loadings then
8: Normalize each column of VR to a unit vector

9: XR ← URSRV
⊤
R

10: Project URc and VRc to spaces orthogonal to UR and VR, respectively
11: Orthogonalize columns of URc and VRc

12: Scale the elements of SRc according to the PEV
13: E← URcSRcV⊤

Rc

14: X← XR +E

UR and VR refer to the first R columns of U and V (left and right singular

vectors), whereas URc and VRc refer to the remaining (J − R) columns, respec-

tively. Similarly, SR and SRc are the first R × R submatrix and the remaining

(J − R) × (J − R) submatrix of S (diagonal matrix with singular values), respec-

tively. By relying on the SVD formulation, the model part (XR = URSRV
⊤
R) and

the error part (E = URcSRcV⊤
Rc) of the final data matrix X can be defined in an

uncorrelated manner. SRc is scaled such that the ratio between ∥XR∥2F and ∥E∥2F
reflects the PEV condition. Additionally, for the sparse loadings model, the true

component scores matrix and the loadings matrix are defined by the following:

TR = UR and PR = VRSR.

The setup used to generate data according to the sparse weights model is

provided in the following. Similar setups have been used in the literature (de

Schipper & Van Deun, 2018; Guerra-Urzola et al., 2021; Van Deun et al., 2011).
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Algorithm 5.2 Sparse weights data generation
1: Xinit ∼ MVN (0J , IJ) where 0J is a zero vector with J elements and IJ is a J × J

identity
matrix. Xinit ∈ RI×J

2: Mean-center columns of Xinit

3: Perform SVD: Xinit =
[
UR URc

]SR

SRc

[VR VRc

]⊤
4: WR ← VR

5: Replace the elements of WR with the smallest absolute values by 0, according to the
level of sparsity

6: Normalize each column of WR to a unit vector
7: Compute PR by performing SVD: PR ← UV⊤ from X⊤

initXinitWR = USV⊤

8: XR ← XinitWRP
⊤
R

9: Project URc and VRc to spaces orthogonal to TR = XRWR and WR, respectively
10: Orthogonalize columns of URc and VRc

11: Scale the elements of SRc according to the PEV
12: E← URcSRcV⊤

Rc

13: X← XR +E

E is defined in the same manner as for Algorithm 1; via the SVD formula-

tion, it is ensured that the model part and the error part are uncorrelated. The

non-sparse loadings matrix PR is computed by solving the least squares prob-

lem with the orthonormality constraint P⊤
RPR = IR. The solution is given by

PR = UV⊤, where U and V are left and right singular vectors of X⊤
initXinitWR

(ten Berge, 1993). This closed-form solution is used in several sparse weights

estimation methods where the loadings matrix is constrained to be orthonormal,

including the SPCA algorithm (Zou et al., 2006).

For all three DGMs, the initial matrix Xinit can also be generated with cor-

relation between the variables instead of using the diagonal covariance matrix.

The results obtained from data generated with uncorrelated Xinit variables are

very similar to the results from correlated Xinit matrix, which are reported in the

Appendix 5.B.

Fully crossing these factors provided in the study design resulted in 3 × 2 ×
2× 3 = 36 conditions, and 50 datasets were generated through the above schemes

according to each condition. For each of the 1800 datasets, 4 analysis methods

which resulted from crossing the following factors were administered.

Analysis methods
1. Sparse PCA method: [SPCA (sparse weights)], [USLPCA (sparse loadings)]

2. Initial value approach: [SVD-based], [Multistart]
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The SPCA algorithm implemented in the R package ‘elasticnet’ was slightly

adapted such that the algorithm can be initiated with starting values other than

the right singular vectors. For the USLPCA procedure we employed our own R

implementation. Both SPCA and USLPCA allow to specify the number of desired

zero elements in the estimated coefficient matrix. Therefore the information of the

true level of sparsity was provided as an input. The right singular vectors VR of

the data X were used as the SVD-based initial values. For the multistart approach,

a set of the right singular vectors of X and 19 other sets of randomly drawn values

from uniform distribution U(−1, 1) were incorporated as initial values. Each set

was employed separately for estimation and the solution with minimum loss value

was selected as the final solution of the multistart approach. In the following

section, the four methods are referred to as SPCA-svd, SPCA-multi, USLPCA-svd

and USLPCA-multi, respectively.

To examine the performance of the 4 methods with respect to retrieving the

true model parameters and to reconstructing the data, three evaluation criteria

were adopted:

Evaluation criteria
1. Zero versus non-zero recovery rate: the number of coefficients correctly estimated

as zero or non-zero elements, divided by the total number of coefficients.

2. Component scores congruence: Tucker congruence computed between the esti-
mated and the true component scores.

3. Proportion of variance accounted for (VAF) by the derived components.

The zero versus non-zero recovery rate is always calculated between the

quantity being defined sparse in the true model and the quantity being estimated

sparse by the method. For example, when USLPCA is used to analyze a dataset

generated from the sparse weights model, the true sparse weights defined is com-

pared against the sparse loadings estimated by USLPCA.

The congruence between the true component scores Ttrue
R and the estimated

scores T̂R is measured by the Tucker congruence statistic ϕ which is defined as:

ϕ =
vec(Ttrue

R )⊤vec(T̂R)√
(vec(Ttrue

R )⊤vec(Ttrue
R ))(vec(T̂R)⊤vec(T̂R))

. (5.6)

5.3.2 Results

5.3.2.1 Zero versus non-zero recovery rate

Figure 5.1 shows the boxplots of the zero versus non-zero recovery rate.

We separated the results according to whether the datasets were generated such
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that the defined underlying components completely account for the variance in

the data (conditions with zero error variance, in the two bottom rows) or not

(10% or 50% of error variance, top rows). The figure first shows that datasets

generated from the sparse weights model resulted in a much lower quality of

zero versus non-zero recovery than the other two DGMs. Even when the defined

components completely explain the variance in the data, the methods resulted in

poor performance under the sparse weights model. In contrast, all of the methods

resulted in perfect recovery of the coefficients under the spiked covariance and the

sparse loadings generation schemes when no error variance was added on top of

the true model structure. With respect to the performance of sparse weights versus

sparse loadings methods, USLPCA showed an overall higher recovery rate than

SPCA. Concerning the initial value approaches, the multistart approach yielded a

higher recovery rate than SVD-based initial values.
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Figure 5.1. Box plots of zero versus non-zero recovery rate. The different columns corre-

spond to the different DGM schemes and sparsity. The rows differ in the level of PEV and

whether the data are low- or high-dimensional. The two top rows refer to results concern-

ing datasets in which the defined components do not fully account for the variance in the

data (error variance added on top of the DGM), while the bottom rows refer to datasets

generated without any error variance.

5.3.2.2 Component scores congruence

Figure 5.2 displays the results on the component scores congruence laid out

in the same format as Figure 5.1. The results are largely in agreement with those

concerning the zero versus non-zero recovery rate of the coefficients; the DGMs

other than the sparse weights model led to good performance, while the meth-

ods struggled on datasets generated from the sparse weights model. Concerning

the spiked covariance model and the sparse loadings model, all of the methods
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performed nearly perfectly in retrieving the component scores, except for SPCA

which led to some poor outlying results when error variance was added on top of

the defined DGM.

Although the methods performed poorly for the sparse weights model com-

pared to the other models, it can be seen that the median Tucker congruence of the

methods were in most cases above 0.9. Components with a congruence value in

between 0.85 and 0.94 are often seen as fairly similar (Lorenzo-Seva & Ten Berge,

2006). Despite the low zero versus non-zero recovery of true weights shown in

Figure 5.1, the component scores were recovered quite well by the methods. This

hints back at the indeterminacy problem of the sparse weights model. Although

the component scores are well recovered, it is difficult for the methods to retrieve

the true weights since there are multiple different weights matrices that can con-

struct very similar component scores. Lastly, the impact of the starting values is

also seen; the multistart approach yielded better results than initializing the meth-

ods with SVD solutions.
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Figure 5.2. Box plots of component scores congruence. The different columns correspond

to the different DGM schemes and sparsity. The rows differ in the level of PEV and whether

the data are low- or high-dimensional. The two top rows refer to results concerning

datasets in which the defined components do not fully account for the variance in the

data (error variance added on top of the DGM), while the bottom rows refer to datasets

generated without any error variance.

5.3.2.3 Proportion of variance accounted for (VAF)

While the two evaluation criteria above reflect the behaviour of the methods

with regards to retrieving the underlying model parameters, VAF pertains to the

degree to which the methods restore the observed data. Figure 5.3 presents these

results. Dimensionality did not lead to differential results for VAF thus aggregated

results are presented. The boxplots show that the most impactful factor for re-

construction quality is the proportion of additional error variance in the observed
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dataset on top of the true components. As more noise is added to the DGM, the

methods exhibit smaller VAF. It is interesting to see that across all of the condi-

tions, the approach of initializing the algorithm did not exert an influence, unlike

in the other evaluation criteria above. While all four methods performed compa-

rably for the spiked covariance model and the sparse loadings model, the USLPCA

methods underperformed compared to SPCA methods for the datasets generated

with sparse weights. Moreover, with this exception of USLPCA being administered

to data from the sparse weights model, the methods have succeeded in capturing

the correct proportion of variance accounted for by the true components. For the

condition with 50% of error variance, the methods have even explained slightly

more variance than the true proportion of variance. This can be seen as a case

of overfitting; on top of capturing the variance defined by the true underlying

components, the methods seem to also explain a small amount of error variance.
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Figure 5.3. Box plots of proportion of variance accounted for. The different columns

correspond to the different DGM schemes and sparsity. The rows differ in the level of PEV

by the different components.
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5.3.3 Discussion of the Results

The results from the simulation study are mainly in line with our expecta-

tions. While the sparse PCA methods resulted in near-optimal performance in

finding back the true parameters under the spiked covariance and sparse loadings

models, they showed much poorer performance under the sparse weights model.

The methods struggled particularly with respect to recovering the true weights.

This finding is quite alarming because it implies that the conclusions being drawn

from the current sparse PCA literature dominated by the spiked covariance and

spiked loadings models may be over-optimistic.

Our results also clearly illustrate the impact of initial values for these sparse

PCA methods. For both evaluation criteria of zero versus non-zero recovery rate

and component scores congruence, the multistart approach resulted in better per-

formance than starting with the right singular vectors. In particular, the differ-

ence in the performance between the initial value approaches was large under

the sparse weights model. Considering that the true model underlying data is un-

known in practice, it is important to adopt multiple starting values for sparse PCA

methods that are characterized by local optima, such as SPCA and USLPCA in our

simulation study.

Finally, our simulation study highlights the difference between the results

obtained by sparse loadings versus sparse weights methods. In our toy example

above, it was shown that the methods lead to different estimates and therefore

different insights about the same dataset. The simulation study extends this dif-

ference towards performance of the methods. It was shown that SPCA with sparse

weights was poorer at zero versus non-zero recovery of parameters under all data

generation schemes than USLPCA with sparse loadings. SPCA resulted in under-

performance compared to USLPCA even when the data was generated from the

sparse weights model. However, SPCA was better suited at deriving components

that explain a large amount of variance in the data if the data were generated

under a sparse weights model and performed nearly as well as USLPCA under

the sparse spiked covariance and loading scheme. This finding implies that the

methods must be chosen carefully in practice.

5.4 Empirical application

In this section we further illustrate the practical impact of the choice be-

tween the sparse weights and sparse loadings methods coupled with initialization

strategies in an empirical setting.
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5.4.1 Big Five dataset IPIP-NEO-120

We adopted a dataset comprised of 120 items of the IPIP-NEO-120 question-

naire. The IPIP-NEO-120 scale is a set of public domain items designed to measure

the Big Five personality traits (Goldberg et al., 1999); each of the personality traits

is measured by 24 items. We downloaded the raw data collected with the ques-

tionnaire which is publicly available from the online repository:https://osf.io/

wxvth/ (Johnson, 2018). The raw data was collected via a large internet sur-

vey conducted for the construction of the questionnaire (Johnson, 2014) in which

619150 subjects participated, and we selected the first 1000 observations of the

data for our sparse PCA analysis to ease the computational burden.

As the questionnaire measures five underlying constructs, we fixed the num-

ber of components to be five. Also following the design of the questionnaire, the

level of sparsity was determined such that 24 non-zero coefficients are estimated

per component. In order to examine the impact of choosing between the sparse

weights and sparse loadings methods and the initial value approaches, we applied

the methods used in the simulation study: SPCA-svd, SPCA-multi, USLPCA-svd

and USLPCA-multi.

The weights from SPCA methods and the loadings from USLPCA methods

were inspected to interpret the found components. Table 5.2 presents the num-

bers of items designed for each of the personality traits which have a non-zero

coefficient for each of the components.
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Table 5.2. Big Five dataset: sparse PCA methods with 24 non-zero coefficients per com-

ponent (O: openness, C: conscientiousness, E: extraversion, A: agreeableness, N: neuroti-

cism). The columns indicate each component while the rows indicate each personality

trait.

SPCA-svd weights

t1 t2 t3 t4 t5

O 20 2 1 1 0
C 0 18 0 1 4
E 0 4 19 4 1
A 4 0 0 17 1
N 0 0 4 1 18

USLPCA-svd loadings

t1 t2 t3 t4 t5

O 19 0 1 4 0
C 0 16 5 1 0
E 1 7 11 0 6
A 3 0 2 19 0
N 1 1 5 0 18

SPCA-multi weights

t1 t2 t3 t4 t5

O 20 2 1 1 0
C 0 18 0 1 4
E 0 4 19 4 1
A 4 0 0 17 1
N 0 0 4 1 18

USLPCA-multi loadings

t1 t2 t3 t4 t5

O 19 3 1 1 1
C 0 18 1 1 0
E 0 3 17 4 2
A 5 0 0 14 3
N 0 0 5 4 18

Table 5.2 presents the similarities between the models constructed by the

sparse weights and the sparse loadings methods. For all four methods, a ma-

jority of the non-zero coefficients on each component correspond to items that

measure the same personality trait. As the items in the scale operationalize the

five-factor model of personality traits (FFM; McCrae & Costa Jr, 2008), the mod-

els found by the four methods seem to nicely reflect the true model behind the

observed items. This goes together with the results in our simulation study where

the sparse weights and the sparse loadings methods were both capable at finding

the underlying structure when low-dimensional data was generated from a spiked

covariance or sparse loadings structure. The FFM resembles these models as the

subsets of 24 items load on the five factors.

The table also shows the role of initial values in these sparse PCA methods.

While all of the non-zero weights found by the two SPCA methods corresponded to

each other, different initial values have led to different models being constructed

for USLPCA. The third component from USLPCA-svd can be interpreted as a mix

between extraversion, conscientiousness and neuroticism, while the third compo-

nent from USLPCA-multi is less diffuse. This demonstrates the impact of initial

183



Chapter 5

value strategies in practice where sparse PCA models are used.

Finally, the findings from the simulation study regarding the proportion of

variance explained by the sparse PCA methods are also echoed with this dataset.

SPCA methods accounted for more variance than USLPCA methods. SPCA-svd

and SPCA-multi models explained 32.3% and 32.3% of variance in the data while

USLPCA-svd and USLPCA-multi fell short at 25.9% and 27.3%.

5.4.2 Autism gene expression data

This dataset concerns gene expression profiles of three groups: 6 male sub-

jects with autism caused by fragile X syndrome (FMR1-FM), 7 male subjects with

autism caused by inherited duplication of 15q11-q13 (dup15q) and 14 non-autistic

control male subjects (Nishimura et al., 2007)9. The dataset consisted of 43893

probe sets measuring the transcription rates of about 20 thousand genes for each

subject. In the original publication, the authors selected a subset of the probes

that are important at discerning the three groups by inspecting the p values de-

rived by univariate ANOVA. The authors continued on by conducting PCA with 3

components on this subset to explore the mechanism underlying the probes.

Building on the original publication, we also conducted ANOVA to obtain

a subset of probes which are strongly related with the group membership of the

subjects. Prior to our analysis, each column of the dataset was mean-centered

and standardized to unit variance. ANOVA resulted in 107 probes with p values

smaller than 0.05. As our current paper discusses sparse PCA, we also sampled

1000 other ‘redundant’ probes among the probes with p values greater than 0.5

and constructed a dataset of 1107 probes. We did not use the entire set of variables

to reduce the computational burden. The four methods SPCA-svd, SPCA-multi,

USLPCA-svd and USPLCA-multi were then administered, in order to study these

differences between the methods in providing the sparse components comprised

of important and redundant probes.

The number of components was fixed at 3 as in Nishimura et al. (2007).

As there are 107 important probes, we administered the methods with 107 non-

zero coefficients per component and studied the returned coefficients10. Unlike

the Big Five dataset above, the data generating model underlying the autism gene

expression dataset is ambiguous; the nature of the mechanisms governing the gene

expressions is unknown. Since it is not possible to compare the retrieved sparse

PCA models with the true structure, we compared the results among themselves.
9The data is publicly available on the NCBI GEO database with the accession code GSE7329.

10As it may also be sensible to distribute the non-zero coefficients evenly across the 3 compo-
nents, we also administered the methods with 36 non-zero coefficients per component. The results
can be found in Appendix 5.C and the conclusions drawn are in line with the results presented
here.
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Table 5.3 presents the proportion of non-zero coefficients that correspond across

each pair of the four methods (above) and the Tucker congruence values between

the component scores computed by the methods (below).

Table 5.3. Autism dataset. Above: proportion of corresponding non-zero coefficients out

of the total 321 (107 non-zero coefficients ×3 components). Below: Tucker congruence

between the component scores.

Proportion of corresponding non-zero coefficients

SPCA-svd SPCA-multi USLPCA-svd

SPCA-multi 0.283
USLPCA-svd 0.461 0.461
USLPCA-multi 0.305 0.452 0.573

Component scores Tucker congruence

SPCA-svd SPCA-multi USLPCA-svd

SPCA-multi 0.685
USLPCA-svd 0.818 0.796
USLPCA-multi 0.629 0.780 0.728

Table 5.3 conveys that the models derived by the four methods are quite dif-

ferent. Within the same formulation of SPCA, only 28.3% of the non-zero weights

found by the multistart approach were also found by employing the starting val-

ues based on SVD. Likewise, 57.3% of the non-zero loadings from the two start-

ing value approaches corresponded to each other for USLPCA. This proportion of

corresponding non-zero coeffcients is also low when comparing weights from the

SPCA methods against loadings from the USLPCA methods. On the other hand, the

congruence values among the components were higher; although largely different

sets of variables were picked up by the different methods, the estimated compo-

nents ended up rather correlated. This is in line with our results from the simula-

tion study where the congruence between the estimated and the true components

were high for the sparse weights model, despite its low zero versus non-zero re-

covery rate. Nevertheless, the congruence scores between the methods concerning

the current autism dataset were all lower than 0.85 which is a value expected for

fairly similar components (Lorenzo-Seva & Ten Berge, 2006). Altogether, these re-

sults imply that the four methods would provide components that are understood

as being different from each other. They reiterate the findings from the simulation

study that showed different performances of the methods depending on the sparse

PCA formulation and the initial value strategies of choice.
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With respect to the proportion of explained variance, SPCA-svd and SPCA-

multi both recovered 36.6% of the data. On the contrary, USLPCA-svd and USLPCA-

multi resulted in 16.3% and 16.4%. Like in the simulation study, the choice be-

tween sparse weights and loadings led to a considerable difference in the amount

of variance explained.

5.5 Conclusion

The contribution provided by this paper concerns an important warning to-

wards the difference between weights and loadings and its implications. Section

5.2 discussed the theoretical difference. It was shown that the weights and the

loadings are not equal to each other or to the right singular vectors within sparse

PCA, making it important for the quantities to be distinguished carefully. We

pointed out that this loss of equality between the quantities is not well reflected

in research employing sparse PCA. Namely, a vast majority of simulation stud-

ies confine themselves to data generating models characterized by sparse singular

vectors or sparse loadings, and most sparse PCA methods initialize the algorithms

with SVD solutions. Through a simulation study, we demonstrated that such prac-

tices paint a wrong picture about the performance of sparse PCA methods. In fact,

reported simulation studies have been dominated by the spiked covariance and

sparse loadings model, also to study methods that estimate sparse weights. Based

on such studies, over-optimistic conclusions have been drawn about the perfor-

mance of the sparse weights method in recovering the underlying zero-nonzero

structure of the data. A related issue is the combination of generating data under

a sparse SVD structure in combination with SVD based starting values; as shown

in the toy example, also the sparse loadings method suffers from recovering the

underlying sparseness structure when sparseness does not reside in singular vec-

tors. The importance of using methods that implement a multi-start initialization

strategy was discussed and shown throughout the paper.

Our paper also touches upon the issue of choosing between sparse weights

and sparse loadings PCA. In practice, in making an informed choice between them,

we consider the research aim as the first aspect to take account of. If it is expected

that the variables are associated to a few underlying components and one wishes

to find a sparse representation of the relationships between the components and

the variables, sparse loadings PCA is suitable. On the other hand, as reported in

our simulation study, if one aims to derive summary scores that account for a great

amount of variance in the variables, sparse weights PCA should be the choice.

Besides the aim of the analysis (summarizing versus exploring the component-

variable associations), often domain-related beliefs regarding the data may deter-
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mine the choice between the sparse loadings and sparse weights model. For ex-

ample, psychological scales are often constructed according to a sparse loadings

model in the sense that the variables (items) are designed to measure particu-

lar latent constructs: the variables are reflective indicators of a latent variable

(Hwang et al., 2021). Personality questionnaire data such as one provided in Sec-

tion 5.4 would serve as an example, or measurements of the construct IQ.

On the other hand, the sparse weights model may be considered appropriate

when the interest is to measure indices of observable constructs (e.g., poverty

index) in a context where such indices are not yet known. This is for exam-

ple of particular interest for the construction of genetic risk scores. Data orig-

inating from sparse weights models would be comprised of variables that lin-

early combine into a component. Economic data containing variables that com-

bine and form an economic index is another example; education level, income,

occupation and other variables link up together to form socioeconomic status

(e.g. Hauser & Warren, 1997; Thomson, 2018). Here, the observed variables form

the component and are therefore often referred to as composite indicators (Hwang

et al., 2021).

Our findings from the datasets generated from the sparse weights model can

appear counterintuitive to existing literature concerning the consistency of sparse

PCA methods. In the data generation, these studies have employed the spiked co-

variance model. Our findings are therefore in agreement with them, as the sparse

PCA methods were very good at correctly revealing the spiked covariance model

or the sparse loadings model. The contribution of our work is showcasing that

when other plausible sparse PCA models underlie data, the sparse PCA methods

may not be as optimal in recovering the data generating model. Note that this

does not imply that these previous studies are irrelevant as they indeed demon-

strate the effectiveness of sparse PCA in the high-dimensionality-low-sample-size

setting where PCA is known to perform poorly.

We conclude with a plea. Simulation studies should not be restricted to

sparse singular vectors or sparse loadings structures, as (A) different models may

underlie data in practice and (B) certain sparse PCA formulations impose a model

structure that do not match these structures. Also, multiple starting values should

be considered along with the solutions of SVD. Many sparse PCA formulations are

characterized by non-convex problems, and limiting the starting values at the SVD

solutions can push the methods to converge into a local optimum. The loss of

equality between weights, loadings and right singular vectors in the context of

sparse PCA should be carefully acknowledged.
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5.A Sparse weights indeterminacy problem

Deriving the true sparse weights from the data is a difficult task because of

the indeterminacy problem of the weights; different WR matrices can construct

the same component scores XWR. For high-dimensional data, this implies that

different sets of variables can be combined to lead to the same component scores.

We provide a small example conveying the problem in this section.

We have generated a small data matrix X of size 3 × 5 from a multivariate

normal distribution characterized by a zero vector of length 5 for the mean and a

5×5 identity matrix for the covariance. After centering and standardizing the vari-

ables, we can extract one component that captures the largest amount of variance

by performing PCA, which provides the following weights and component scores:


−1.37 −1.40 −0.99 −1.36 −1.20

0.37 0.52 1.37 1.01 1.25

0.99 0.88 −0.37 0.35 −0.05



X

×



0.43

0.45

0.41

0.48

0.46


ŵ

=


−2.83

2.02

0.81



t̂

(5.7)

The indeterminacy problem is that there are many solutions for w different

from the one in the above equation that yield the same component scores. This

means that when administering a sparse weights PCA method, any linear combi-

nation of 3 out of the 5 variables can lead to the same component scores. Below

are two such weights:
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
−1.37 −1.40 −0.99 −1.36 −1.20

0.37 0.52 1.37 1.01 1.25

0.99 0.88 −0.37 0.35 −0.05



X

×



0

0

−0.49

1.90

0.62


ŵ

=


−2.83

2.02

0.81



t̂

(5.8)


−1.37 −1.40 −0.99 −1.36 −1.20

0.37 0.52 1.37 1.01 1.25

0.99 0.88 −0.37 0.35 −0.05



X

×



0.60

0.69

1.05

0

0


ŵ

=


−2.83

2.02

0.81



t̂

(5.9)

In a high-dimensional setting where the number of observations is smaller

than the number of variables, retrieving the correct underlying sparse weights

from many possible solutions can therefore be a complicated task. Different sets

of variables can combine into the same component scores.

5.B Simulation study with data generation where

initial data matrix is generated with correlation

This section presents a simulation study employing data generation schemes

that start off with an initial data matrix with correlated variables. Section 5.3.1

provides the motivation behind these additional schemes.

5.B.1 Design and procedure

Fixing the number of components R to two, we generated datasets via the

following design. The levels for the data generating model factor are the only

difference from the study design presented in Section 5.3.1.
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Study design
1. Data generating model (DGM): [Spiked covariance (correlated)], [Sparse loadings

(correlated)], [Sparse weights (correlated)]

2. Dimensions of X (I × J): [Low-dimensional (100× 50)], [High-dimensional (100×
500)]

3. Level of sparsity in the coefficients matrix: [90%], [50%]

4. Proportion of error variance in X (PEV): [0%], [10%], [50%]

The following algorithm provides how the initial data matrix is generated

with correlated variables. Aside from the generation of the initial matrix, the data

generating schemes are the same as the three schemes used in Section 5.3. Hence,

after the generation of the initial matrix, the same steps given in Algorithm 1 and

2 are followed to simulate the data.

Algorithm 5.3 Correlated initial data matrix generation
1: Generate initial loadings matrix Pinit (R× J) from the uniform distribution U(−1, 1).

R and J refer to the number of components and the number of variables, respectively.
2: Replace the elements of Pinit with the smallest absolute values by 0, according to the

level of sparsity (either 90% or 50%)
3: Σ1 = PP⊤

4: Σ2 = Σ2 + D, where D is a diagonal matrix with elements that are very small in
magnitude. This is added to ensure that all of the eigenvalues of Σ2 are positive.

5: Standardize Σ2 such that it becomes a correlation matrix Sinit

6: Xinit ∼MVN (0J ,Sinit) where 0J is a zero vector with J elements
7: if DGM = spiked covariance | sparse loadings then
8: Proceed to step 2 in Algorithm 1
9: else if DGM = sparse weights then

10: Proceed to step 2 in Algorithm 2

Fully crossing the factors in the study design led to 3 × 2 × 2 × 3 = 36

conditions, and 50 datasets were generated through the above schemes according

to each condition. For each of the 1800 datasets, the 4 analysis methods were

administered in the same manner as the above simulation study.
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5.B.2 Results

5.B.2.1 Zero versus non-zero recovery rate
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Figure 5.4. Box plots of zero versus non-zero recovery rate. The different columns corre-

spond to the different DGM schemes and sparsity. The rows differ in the level of PEV and

whether the data are low- or high-dimensional. The two top rows refer to results concern-

ing datasets in which the defined components do not fully account for the variance in the

data (error variance added on top of the DGM), while the bottom rows refer to datasets

generated without any error variance.
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5.B.2.2 Component scores congruence
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Figure 5.5. Box plots of component scores congruence. The different columns correspond

to the different DGM schemes and sparsity. The rows differ in the level of PEV and whether

the data are low- or high-dimensional. The two top rows refer to results concerning

datasets in which the defined components do not fully account for the variance in the

data (error variance added on top of the DGM), while the bottom rows refer to datasets

generated without any error variance.
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5.B.2.3 Proportion of variance accounted for (VAF)
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Figure 5.6. Box plots of proportion of variance accounted for. The different columns

correspond to the different DGM schemes and sparsity. The rows differ in the level of PEV

by the different components.

Compared to Figures 5.1, 5.2 and 5.3 from the simulation study in Section

5.3, it can be seen that throughout the three evaluation criteria that the new

scheme with correlated initial data matrix leads to very similar results. The con-

clusions drawn are identical; the sparse weights model offers a much more com-

plicated challenge for the sparse PCA methods in recovering the underlying true

weights. Across all DGMs, SPCA methods underperform compared to USLPCA

methods in identifying the zero-nonzero structure in the parameters.

5.C Autism gene expression data analysis with 36

non-zero coefficients per component

Since three components are extracted by sparse PCA from a dataset with 107

important probes out of the total 1107 probes, it may also be sensible to estimate
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the 36 non-zero coefficients per component. This would evenly distribute the 107

important probes across the three components. As done above, the results ob-

tained from the different sparse PCA methods were compared against each other.

Table 5.4 presents the proportion of non-zero coefficients that correspond across

each pair of the four methods (above) and the Tucker congruence values between

the component scores computed by the methods (below).

Table 5.4. Autism dataset. Above: proportion of corresponding non-zero coefficients out

of the total 108 (36 non-zero coefficients ×3 components). Below: Tucker congruence

between the component scores.

Proportion of corresponding non-zero coefficients

SPCA-svd SPCA-multi USLPCA-svd

SPCA-multi 0.231
USLPCA-svd 0.204 0.185
USLPCA-multi 0.074 0.056 0.417

Component scores Tucker congruence

SPCA-svd SPCA-multi USLPCA-svd

SPCA-multi 0.772
USLPCA-svd 0.816 0.736
USLPCA-multi 0.613 0.625 0.817

Table 5.4 conveys a message very much in line with the results obtained from

107 non-zero coefficients per component (Table 5.3). The four models construct

different models. Only 23.1% of the non-zero weights found by SPCA-svd and

SPCA-multi corresponded to each other. Likewise, 18.5% of the non-zero loadings

obtained from USLPCA-svd were also obtained from USLPCA-multi. The propor-

tion of corresponding non-zero coeffcients are also low when considering other

pairs of methods. Component scores’ congruence values were all lower than 0.85

which is also in line with Table 5.3. The components extracted by the four methods

would be interpreted as being different from each other.

With respect to the proportion of explained variance, SPCA-svd and SPCA-

multi both recovered 36.6% of the data. Estimating a smaller number of non-

zero weights did not decrease the amount of explained variance, compared to the

model found above with 107 non-zero weights per component. This is in line

with previous findings in the literature that showed that high levels of sparsity

in weights can still explain large amount of variance (de Schipper & Van Deun,

2021). In contrast, USLPCA-svd and USLPCA-multi resulted in 6.5% and 7.4%. As
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in the simulation study and also for the results above, the sparse loadings methods

expalin a considerably lower amount of variance than the sparse weights methods.
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Optimal penalized Principal Component Analysis

using cardinality as a sparsity-inducing penalty

Sparse principal component analysis (PCA) is well-accepted in many areas as a means to
perform dimension reduction in an interpretable and consistent manner from a high-dimensional
dataset. Among various sparse PCA approaches, those that rely on penalization to obtain sparse
solutions have been widely used due to their computational tractability and scalability. However,
one of the main criticisms of these penalized PCA methods in the literature is that their perfor-
mance is assessed via numerical experiments without a theoretical guarantee of obtaining optimal
solutions. This paper considers a penalized PCA problem with cardinality as a sparsity-inducing
penalty. A minorization-maximization scheme is proposed to solve the problem, and it is shown
theoretically that the resulting solution is a local optimum. While local optimality is guaranteed
under the condition that the smallest eigenvalue of the covariance matrix is greater than 1, we
provide a simple procedure that safeguards the condition for any dataset, including those in high
dimensionality. Numerical experiments involving a synthetic dataset and an empirical dataset are
conducted to demonstrate the implication of this condition in practice.

Keywords: Sparse PCA, Penalized PCA, Optimality, Cardinality, Minorization-maximization

Park, S., & Guerra-Urzola, R. (in prepration).
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6.1 Introduction

Sparse PCA has been an active topic in the literature to gain interpretabil-

ity and consistency in PCA solutions, especially in the setting of high-dimensional

data. Although imposing a constraint on the cardinality of the solution seems to be

a natural choice for attaining the sparse solution, adding a cardinality constraint

results in an NP-hard problem which is intractable (Natarajan, 1995). To address

this impracticality, relaxations that consider sparsity-inducing penalties have been

used to achieve sparsity in the PCA solution. We refer to this kind of methods

as penalized PCA. Despite the advantages concerning computational tractability,

scalability and statistical properties (see e.g. Guerra-Urzola et al., 2022), penal-

ized PCA methods in the literature have a shortcoming that they provide heuristic

solutions without a theoretical guarantee of optimality.

Whilst sparse PCA problems have been formulated in different ways, this pa-

per focuses on the formulation with variance maximization where the variance of

the derived components are maximized (e.g. d’Aspremont et al., 2004; Journée,

Nesterov, Richtárik, & Sepulchre, 2010), rather than the formulation with least

squares where the squared error is minimized between the original data and the

PCA-reconstructed data (e.g. H. Shen & Huang, 2008; Zou et al., 2006). Under the

variance maximization formulation, several penalties have been proposed to in-

duce specific sparse structures in the solution. The most common sparsity-inducing

penalties are the l0 and l1 norms. Representative works to solve the penalized PCA

problem, using the norms l0 and l1, include the well-known iterative GPower algo-

rithm (Journée et al., 2010) and an alternating optimization scheme presented by

Richtárik, Jahani, Ahipaşaoğlu, and Takáč (2021). On the other hand, Sriperum-

budur, Torres, and Lanckriet (2011a) proposed a broad majorization-minimization

approach to the sparse generalized eigenvalue problem considering an approxima-

tion of the l0 norm as a sparsity-inducing penalty1.

This paper studies a penalized PCA problem based on variance maximization

and cardinality as a sparsity-inducing penalty. We consider the problem

max
w∈B

w⊤Σw − α∥w∥0, (6.1)

with α > 0 a denoting penalty parameter, Σ = X⊤X is the covariance matrix

with X ∈ RI×J is the data set, ∥w∥0 denotes the number of nonzero elements in

w, and B = {x ∈ RJ : ∥x∥ ≤ 1} is the unit Euclidean ball. We use a minorization-

maximization (MM) method to solve problem 6.1, and show that it achieves a lo-

cally optimal solution to problem (6.1). Local optimality is attained by our method
1For a comprehensive review of penalized PCA method see (Guerra-Urzola et al., 2022, 2021)
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under the condition that the smallest eigenvalue of Σ is greater than 1. We show

that this condition can be met for any data set by employing a simple procedure to

transform the Σ matrix. The procedure can also ensure the condition to be met for

high-dimensional data sets where Σ is positive semidefinite. To our knowledge, a

few methods have studied the necessary optimality conditions (Sriperumbudur et

al., 2011a), but none have proved optimality.

The remainder of the paper is as follows. Section 6.2 presents the minorization-

maximization method and convergence analysis. In Section 6.3, we illustrate the

implications of convergence conditions in a numerical setting. Finally, Section 6.4

provides a conclusion. Next, we collect our notation for the convenience of our

readers.

Notation. Matrices are denoted by bold uppercase, the transpose of a matrix

by the superscript ⊤ (e.g., A⊤), vectors by bold lowercase and scalars by lowercase

italics, and we use capital letters for the last value of a running index (e.g., j

running from 1 to J). Given a vector x ∈ RJ , its j-th entry is denoted by xj.

The ∥x∥0 denotes the number of non-zero elements in x. The l1 norm is defined

by ∥x∥1 =
∑J

j=1 |xj|, and the Euclidean norm (l2 norm) by ∥x∥ = (
∑J

j=1 x
2
j)

1/2.

Given a matrix X ∈ RI×J , its rows i and columns j are indicated by xi,j, and

∥X∥2F =
∑I

i=1

∑J
j=1 |xi,j|2 denotes the squared Frobenius norm. N refers to the set

of all natural numbers.

6.2 Theoretical Framework

We use a minorization-maximization (MM) scheme in Sect. 6.2.1, the solu-

tion of which is given by an iterative thresholding algorithm in Sect. 6.2.2. We

present some convergence analysis in Sect. 6.2.3 and show that our method con-

verges to a local optimum solution of the problem (6.1).

6.2.1 Minorization-Maximization (MM)

Suppose that we want to maximize the function F . The MM principle in-

volves minorizing F by a surrogate function G. Consider an iterative algorithm

that leads to a sequence {xt}t≥0 by the following:

xt+1 ∈ argmax
x

G(x,xt). (6.2)

The function G minorizes the objective function F if it satisfies the following two

conditions (Lange, Hunter, & Yang, 2000):
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F (xt) = G(xt,xt)

F (x) ≥ G(x,xt),

which are known as the tangency condition and the domination condition, respec-

tively.

The MM principle entails iteratively maximizing the minorizing function

G(x,xt+1) instead of the objective function F (x). The solution xt+1 that maxi-

mizes G(x,xt) increases the objective: F (xt+1) ≥ F (xt). This is the result of the

following inequalities.

F (xt+1) ≥ G(xt+1,xt) ≥ G(xt,xt) = F (xt), (6.3)

where the first inequality is the result of the domination condition, and the second

inequality holds since G(x,xt) is maximized at x = xt+1.

The MM principle has seen success in various domains (see Nguyen (2017)).

It is also relevant in the PCA setting. Whereas Sriperumbudur et al. (2011a) used

an MM algorithm for the penalized PCA problem, the classical power method to

solve the largest eigenvalue of a positive semidefinite matrix can also be derived

from the MM perspective (Lange, 2016).

6.2.2 MM implementation for Problem (6.1)

For clarity, let us define the objective of problem (6.1) as C(w) = w⊤Σw −
α∥w∥0. We propose the following minorizing function S over B × B as

S(w, z) = w⊤Σw − α∥w∥0 − (w − z)⊤(Σ− I)(w − z) (6.4)

Observe that S(w, z) ≤ C(w) and S(w,w) = C(w) for all w, z ∈ B. Then,

the update of w, in iteration t+ 1, is given by

wt+1 ∈ argmax
w∈B

S(w,wt), (6.5)

and stopping when wt+1 = wt.

6.2.2.1 Iterative Hard Thresholding

We now show that the update presented in Equation (6.5) is equivalent to an

iterative hard-thresholding rule. Let us consider the lagrangian of problem (6.5)
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as

L(w, µ) =S(w,wt)− µ(w⊤w − 1)

=w⊤Σw − α∥w∥0 − (w −wt)⊤(Σ− I)(w −wt)− µ(w⊤w − 1)

=w⊤w + 2w⊤(Σ− I)wt − α∥w∥0 − µ(w⊤w − 1)−wt⊤(Σ− I)wt

Then, the KKT-conditions are given by:

(Σ⊤
j w

t − wt
j)− (µ− 1)wj = 0, ∀j ∈ [J ]

w⊤w ≤ 1

µ ≥ 0

µ(w⊤w − 1) = 0

with the solution

ŵ =
(Σ− I)wt

∥(Σ− I)wt∥
. (6.6)

It can be observed, by replacing ŵ back in the Lagrangian and analyzing it component-

wise, that the maximum is attained at ŵ = Uα([Σ−I]wt)
∥Uα([Σ−I]wt)∥ , where Uα is defined

component-wise as

Uα(y)j =

0 if
y2j
∥y∥ < α

yj if
y2j
∥y∥ ≥ α

. (6.7)

We propose the algorithm 6.1 to find an optimal solution to problem (6.1).

Algorithm 6.1 Iterative hard thresholding
1: Inputs:

Σ,w0

2: Outputs:
w∗

3: while wt+1 ̸= wt do
4: wt+1 = Uα([Σ−I]wt)

∥Uα([Σ−I]wt)∥

5: end while

6.2.3 Convergence Analysis

We now conduct a convergence analysis of the solution achieved using the

MM scheme in Equation (6.5). We begin by showing in Lemma 6.2.1 that the

sequence generated by Algorithm 6.1 increases and converges in value.
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Lemma 6.2.1. Let w0 ∈ B. Let {wt}t≥1 be the sequence generated using the MM
scheme in Equation (6.5) starting at w0. Then limt→∞ S(wt,wt−1) and limt→∞C(wt)

exist.

Proof. By the definition of C and S, we have the following:

C(wt+1) ≥C(wt+1)− ∥(Σ− I)1/2(wt+1 −wt)∥2

=S(wt+1,wt)

≥S(wt,wt)

=C(wt)

≥S(wt,wt−1),

where the second inequality is due to the update formula in Equation (6.5), and

the last inequality follows the same reasoning as the first equality. Therefore, the

sequences {S(wt+1,wt)}t≥1 and {C(wt)}t≥1 do not decrease. Additionally, these

sequences are bounded above by {max w⊤Σw s.t. w ∈ B}, the maximum eigen-

value of the matrix Σ. This implies the desired result.

Given the relation S(w,w) = C(w), it is natural in the proposed MM scheme

to stop when wt+1 = wt. In Lemma 6.2.2, we show the sufficient condition to

guarantee that the use of the MM scheme in Equation (6.5) converges and meets

this stopping criterion wt+1 = wt.

Lemma 6.2.2. Let Σ be such that its minimum eigenvalue is greater than 1. Let w0 ∈
B and {wt}t≥1 be the sequence generated using the MM scheme in Equation (6.5)

starting at w0. Then, limt→∞ ∥wt+1 −wt∥ = 0.

Proof. Let σmin > 1 be the minimum eigenvalue of the matrix Σ, and C∗ =

limt→∞C(wt). To show this lemma, we show that the series
∑∞

t=1 ∥wt+1 −wt∥2 is

bounded. To show boundedness, we use that 0 < σmin − 1 ≤ ∥(Σ−I)1/2(wt+1−wt)∥2
∥(wt+1−wt)∥2

for all t. This implies that

∥(wt+1−wt)∥2 ≤ 1

σmin − 1
∥(Σ− I)1/2(wt+1−wt)∥2 ≤ 1

σmin − 1
[C(wt+1)−C(wt)].

The last inequality comes from the inequalities in the proof of Lemma 6.2.1. Sum-

ming up both sides of the previous inequality over t, we have

∞∑
t=1

∥wt+1 −wt∥2 ≤ 1

σmin − 1
[C∗ − C(w0)]

which proves the desired result.
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The main assumption on Lemma 6.2.2 is that σmin > 1. This assumption

seems unrealistic in practice, especially when dealing with high-dimensional data

where the matrix Σ is positive semidefinite and thus σmin = 0. Nevertheless,

this complication can be circumvented by implementing Algorithm 6.1 using Σ̂ =

Σ + τI instead of Σ, which has always σ̂min > 1 when τ > 1. It can be easily

observed that when w⊤w = 1, solving problem (6.1) using Σ̂ is equivalent to use

Σ as follows.

w∗ ∈ argmax
w∈B

w⊤Σw − α∥w∥0 + τ1

⇔ argmax
w∈B

w⊤Σw − α∥w∥0 + τw⊤w

⇔ argmax
w∈B

w⊤(Σ+ τI)w − α∥w∥0. (6.8)

This easy ‘trick’ is frequently used to guarantee that Σ is convex by shifting the

eigenvalues to be positive (Journée et al., 2010; G. X. Yuan, Ho, & Lin, 2011).

Let the support supp(w) ≡ {j|wj ̸= 0} be the set of indexes with a nonzero

element in w. Lemma 6.2.2 implies that the support of the sequence generated

using Algorithm 6.1 stabilizes, that is, it is the same after some N . This is stated

in Corollary 6.2.3.

Corollary 6.2.3. Let Σ be such that its minimum eigenvalue is greater than 1. Let
w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Equa-
tion (6.5) starting at w0. Then there exists N ∈ N such that, for all t > N ,
supp(wt+1) = supp(wt).

Proof. Let σmax > 1 be the maximum eigenvalue of the matrix Σ. If wt
j ̸= 0, we

have from Equation (6.7) that

wt
j
2
=

(Uα([Σ− I]⊤j w
t−1))2

∥Uα([Σ− I]wt−1)∥2
=

([Σ− I]⊤j w
t−1)2

∥Uα([Σ− I]wt−1)∥2
≥
([Σ− I]⊤j w

t−1)2

∥[Σ− I]wt−1∥2

wt
j
2∥[Σ− I]wt−1∥ ≥

([Σ− I]⊤j w
t−1)2

∥[Σ− I]wt−1∥
≥ α

wt
j
2
(σmax − 1) ≥α

wt
j
2 ≥ α

σmax − 1

(6.9)

Now, let us consider any ϵ such that 0 < ϵ < α/(σmax−1). From Lemma 6.2.2, there

exists N ∈ N such that for any t > N , ∥wt+1−wt∥2 ≤ ϵ. If supp(wt+1) ̸= supp(wt),
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there exists j ∈ supp(wt \ supp(wt+1)), which implies that ∥wt+1 −wt∥2 ≥ α
σmax−1

from Equation (6.9). This is a contradiction.

From Corollary 6.2.3 and Equation (6.6), it can be observed that when the

support stabilizes, algorithm 6.1 is equivalent to applying the Power method on

the matrix Σ − I. Then, the desired result follows. We use this to show that the

solution provided by Algorithm 6.1 is a local optimum of problem (6.1). This is

stated in Theorem 6.2.5.

6.2.3.1 Local Optimizer

To finalize this section, we show that any solution obtained from Algorithm

6.1 is a local optimum of problem (6.1).

Proposition 6.2.4. Let Σ be such that its minimum eigenvalue is greater than 1.
Let w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Equa-
tion (6.5) starting at w0 and ending at w∗. Let d ∈ B be a feasible direction of
problem (6.1). Then supp(w∗) ⊆ supp(w∗ + δd) for any 0 < δ <

√
α/(σmax − 1)

with σmax the maximum eigenvalue of Σ.

Proof. Let us consider j ∈ supp(w∗) \ supp(w∗ + δd). Let us take any 0 < δ <√
α/(σmax − 1). Then, it follows that

δ2 = ∥w∗ + δd−w∗∥2 ≥ |w∗
j + δdj − w∗

j |2 = |w∗
j |2 ≥

α

σmax − 1
.

The second equality comes from the assumption that j ∈ supp(w∗)\ supp(w∗+δd)

and the last inequality from Equation (6.9). Therefore, there is no j ∈ supp(w∗) \
supp(w∗ + δd), which implies the desired result.

Theorem 6.2.5. Let Σ be such that its minimum eigenvalue is greater than 1. Let
w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Equa-
tion (6.5) starting at w0 and ending at w∗. There exists δ > 0 such that

C(w∗) ≥ C(w∗ + δd)

for any feasible direction d ∈ B.

Proof. Let σmax be the maximum eigenvalue of the matrix Σ. Let us consider

any δ such that 0 < δ <
√

α/(σmax − 1). From Proposition 6.2.4, it holds that

supp(w∗) ⊆ supp(w∗ + δd). If supp(w∗) = supp(w∗ + δd), w∗ is the solution of

the Power method when the support stabilizes (see Corollary 6.2.3). Then, it is a

global optimum, and the result follows.
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Now, if supp(w∗) ⊂ supp(w∗ + δd), it holds that ∥w∗ + δd∥0 > ∥w∗∥0. Then,

taking

δ2σmax + 2δσmax ≤ c and c = α(∥w∗ + δd∥0 − ∥w∗∥0), we have that

α(∥w∗ + δd∥0 − ∥w∗∥0) ≥δ2d⊤Σd+ 2δd⊤Σw∗

w∗⊤Σw∗ + α(∥w∗ + δd∥0 − ∥w∗∥0) ≥w∗⊤Σw∗ + δ2d⊤Σd+ 2δd⊤Σw∗

w∗⊤Σw∗ − α∥w∗∥0 ≥w∗⊤Σw∗ + δ2d⊤Σd+ 2δd⊤Σw∗ − α∥w∗ + δd∥0
w∗⊤Σw∗ − α∥w∗∥0 ≥(w∗ + δd)⊤Σ(w∗ + δd)− α∥w∗ + δd∥0

C(w∗) ≥C(w∗ + δd)

The second inequality is due to the Cauchy–Schwarz inequality:

d⊤Σw∗ = (Xd)⊤(Xw∗) ≤ ∥Xd∥∥Xw∗∥ ≤ σmax,

In both cases, we show that δ exists.

6.3 Numerical Examples

In Lemma 6.2.2, we showed that the step size in Algorithm 6.1 converges

when the minimum eigenvalue (σmin) of the matrix Σ is larger than 1. Here we

illustrate this finding by administering our method on a simulated dataset and

an empirical dataset, both for which the condition is not satisfied. We illustrate

that Algorithm 6.1 does not converge for these specific datasets, and how the

divergence problem can be overcome by the aforementioned transformation of

data in Equation (6.8).

6.3.1 Synthetic Dataset

By relying on the eigenvalue decomposition, we generated a Σ matrix from

one eigenvector with a defined sparse structure:
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

−0.302

0

0

0.302

−0.905



v1

[
5

]

σ1



−0.302

0

0

0.302

−0.905



⊤

v⊤
1

=



0.455 0 0 −0.455 1.364

0 0 0 0 0

0 0 0 0 0

−0.455 0 0 0.455 −1.364

1.364 0 0 −1.364 4.091



Σ

(6.10)

By defining only the first eigenvalue (σ1 = 5), the remaining 4 eigenvalues

are defined as zero. Therefore, the smallest eigenvalue of the matrix Σ would be

σmin = 0. Then, implementing Algorithm 6.1, with penalty parameter α = 0.7, in

this particular setting the sequence diverges; see Figure 6.1.
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Figure 6.1. Divergence for the simulated Σ. The objective function is displayed in (a),

while (b) shows the l2 norm of the difference between the iterates.

Now, we illustrate that with a transformed matrix Σ̂ = Σ + τI, with τ > 1,

Algorithm 6.1 converges (Figure 6.2) under the same set of parameters. Note that

the accumulation point w∗ in this case is also identical to the defined eigenvector

v1 (Figure 6.3).
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Figure 6.2. Convergence with the transformation on the simulated data
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Figure 6.3. Series of wt compared to the true eigenvector v1. Each line in the left panel

represents each element of wt.

6.3.2 Empirical Dataset

We imported the ‘16S data’, which relate to microbiomes in the human body.

It refers to measurements from three different regions of the body (namely, oral,

skin, and stool) that present the greatest diversity in the microbial community.

The dataset is characterized by 1674 measurements from 162 observation units.

We imported the dataset from the R package ‘mixOmics’ (Rohart, Gautier, Singh,

& Cao, 2017).

We perform the eigenvalue decomposition on the Σ matrix, which results in

σmax = 0.603 < 1. This implies σmin < 1. With the penalty parameter α = 0.001,

we found that Algorithm 6.1 did not converge in 100000 iterations; Figure 6.4

shows the objective in problem (6.1) in iterations from t = 800 to t = 1000. The

plots corresponding to the complete set of the first 1000 iterations are provided in

the Appendix 6.A (Figure 6.6).
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Figure 6.4. Divergence for the 16S data. The plots portray the method from iteration 800

to iteration 1000.

Although Figures 6.4 and 6.6 show that the objective C(w) continues to

increase, it can be seen that the l2 norm between the solutions does not decrease

over iterations. On the other hand, the sequence converges successfully when

administered to the transformed matrix Σ̂, with the same initial vector and penalty

parameter. Figure 6.5 shows that convergence is achieved in 96 iterations.
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Figure 6.5. Convergence with the transformation on the 16S data

6.4 Conclusion

In this paper, we considered the penalized PCA with the l0 norm as a sparsity-

inducing penalty and proposed a minorization-maximization (MM) scheme that

achieves a locally optimal solution to the penalized PCA problem. Although some

previous work has proposed methods that meet the necessary optimality condi-

211



Chapter 6

tions (Guerra-Urzola, Van Deun, Vera, & Sijtsma, 2023; Sriperumbudur, Torres,

& Lanckriet, 2011b), this is the first to prove optimality in the context of penal-

ized PCA. Based on the MM principle, we derived an iterative method that has

convergence guarantees under the condition that the minimum eigenvalue of the

covariance matrix is greater than one. We also proposed a simple transforma-

tion of the covariance matrix that ensures the condition, illustrating the practical

implications of the condition by the use of a synthetic and empirical dataset.

For future work, it would be worthwhile to study the optimality conditions in

using other types of penalties. It would be along the lines of the work of Guerra-

Urzola et al. (2023) that provided the necessary optimality conditions for a general

form of penalty within penalized PCA. Additionally, the condition regarding the

minimum eigenvalue of the covariance matrix would also be an interesting topic

of research. As the same condition was also found for an alternating method

Guerra-Urzola et al. (2023), which is different from our approach, it appears that

the condition may be applicable to penalized PCA problems in general.
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6.A 16S data: divergence plots for 1000 iterations
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Figure 6.6. Divergence for the 16S data
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Discussion

This chapter provides a review on the research conducted within the dis-

sertation. It starts with an overview of the dissertation, followed by a discus-

sion of practical issues to consider when using the proposed methods. Thereafter,

drawbacks concerning model selection procedures and data generation strategies

employed throughout the dissertation are presented. Lastly, future directions for

further extending the PCovR methods with respect to computational feasibility are

suggested.

7.1 Overview

Part I of this dissertation presented adaptations of PCovR suitable for large

and high-dimensional data from multiple sources. In Chapter 2, we introduced a

regression method (SCD-CovR) that effectively represents the predictive common

and distinctive processes by a sparse and interpretable covariate model. Its recov-

ery of the predictive processes was better than a preceding PCovR method that

does not account for the multiblock data setup. At the same time, compared to

the multiblock extension of PLS, SCD-CovR performed better at prediction of the

outcome. By fusing with logistic regression, the method was further expanded to

address a classification problem in Chapter 3 (SCD-Cov-logR). Our method was

found to be substantially better than a classifier based on PLS at both classifi-

cation of the outcome and capturing of relevant predictive processes. Whereas

SCD-CovR identified the common and distinctive covariates by imposing the zero

block constraints which inflates the computational load, the group lasso penalty

was employed in SCD-Cov-logR instead to find the two types of covariates. While

the first two chapters only addressed a single outcome variable, we looked to-

wards a data problem also comprised with multiple outcome variables in Chapter

4. Another PCovR extension (SMPCovR) that filters out outcome variables which
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cannot be adequately predicted by the available predictor variables was put for-

ward therein. In the presence of such outcome variables, the prediction quality of

our novel method was found to be better than previous methods based on PCovR

and PLS that do not exclude redundant outcome variables. SMPCovR serves as

one of the first tools that performs variable selection for predictor and outcome

variables simultaneously. In Part II, we zoomed into problems within sparse PCA

in pursuit of potential directions of sparse PCovR research. Due to the close link

shared between PCA and PCovR, findings in this part of the dissertation have

meaningful implications for PCovR extensions proposed in Part I. Chapter 5 ad-

dressed issues concerning the consequences of imposing sparsity - either on the

loadings or the weights - in the PCA problem. We suggested that existing ex-

periments on sparse PCA have been incomprehensive. Alongside, we found that

PCA with sparse weights is more unstable in identifying the true underlying sparse

structure than PCA with sparse loadings, which is a finding directly applicable to

sparse PCovR methods. Lastly, an iterative algorithm that solves a sparse PCA

problem with guarantees for local optimality was introduced in Chapter 6. To

our knowledge, it is the first work that proves local optimality for the sparse PCA

formulation at hand. The method presented in Chapter 6 entails a different algo-

rithmic approach from the methods in Part I. The sparse PCA problem in Chapter

6 is a maximization problem tackled by the minorization-maximization principle

which results in an iterative thresholding algorithm to find the sparse solution. On

the other hand, the objective criteria considered in Part I are minimization prob-

lems approached by alternating least squares and eventually the sparse solutions

are obtained by coordinate descent algorithms.

7.2 Practical considerations

While the effectiveness of the proposed methods at addressing the challenges

of predictive modelling with high-dimensional multiblock data has been shown in

the chapters in Part I, there are data settings in practice under which the methods

are not expected to be well-behaved or functional. In this section, we provide

practical guidelines concerning data in using the methods.

7.2.1 Levels of measurement

The methods cater for both continuous and categorical outcome variables.

Chapters 2 and 3 have targeted the two types of measurement, respectively. At the

moment, the multivariate outcome setting can only be tackled with continuous

outcome variables (Chapter 4). However, extending the classification method in
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Chapter 3 to a setting with multiple outcome variables would be a straightforward

step.

With respect to the predictor variables, the methods in this dissertation only

accommodate for continuous variables. Nevertheless, categorical predictors can

be dummy-coded into a indicator matrices. This is the principle behind multiple

correspondence analysis (Abdi & Valentin, 2007) and PCAmix (Chavent, Kuentz-

Simonet, Labenne, & Saracco, 2014), which are generalizations of PCA for cate-

gorical variables and for both categorical and continuous variables, respectively. In

this case of using indicator matrices, each column would represent a class within

a categorical variable. Therefore, a group lasso penalty can be imposed on the

entire set of columns pertaining to the variable, instead of the lasso penalty which

would filter a single column.

7.2.2 Number of blocks

While the methods in Chapters 2 and 3 target multiple blocks of predictor

variables, Chapter 4 that takes account of multiple outcome variables only aims for

a single block of predictors. However, the extension to multiple predictor blocks

is a simple step to include a group lasso penalty to the weights. The setting with

multiple blocks of outcome variables has not been considered in this dissertation,

and it may be an interesting future direction.

The methods can account for a number of predictor blocks that ranges from

one to many. In the case with more than two blocks, covariates in relation to a

single block would be referred to as being distinctive, while those associated with

predictor variables from multiple but not all blocks would be defined as being

“locally common”, and lastly covariates that are linked with predictors from all

of the blocks would be known as “globally common”. These terminologies were

proposed by Måge et al. (2019).

7.2.3 Dimensionality

The numbers of variables and observations impact the efficacy of the meth-

ods with regards to how well the true population parameters are recovered by the

estimated coefficients. The methods in this dissertation were not examined in an

asymptotic context where the number of variables grows towards infinity while

the number of observations is fixed, and vice versa. However, there are insights

from existing studies on PCA and sparse PCA that can be borrowed to infer about

the asymptotic properties of the our methods. These studies employ the concept

of “consistency” which represents how close the population parameters and the
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estimated coefficients are; when the coefficients perfectly reflect the population

parameters, the method is considered consistent.

D. Shen et al. (2016) have established a framework of asymptotic properties

of PCA that encompassees previous asymptotic results on PCA. They reported that

PCA is consistent if (a) the dataset is in low dimensionality or (b) the variance of

the first component in population is considerably larger than the following com-

ponents (even if the dataset is high-dimensional). Asymptotic studies on sparse

PCA extend these conditions for consistency. On top of being consistent for the

conditions above, it was found that if the number of non-zero population param-

eters is small, sparse PCA is consistent even if the dataset is high-dimensional and

the difference in variance between the first and the following components is small

(D. Shen, Shen, & Marron, 2013). To be concrete, a small number of non-zero

population parameters refers to a small number of true population PCA weights

that are non-zero, which can be examplified by a setting where only a few predic-

tor variables have true linkages with a component.

Although the PCovR extensions in this dissertation are closely related with

PCA and sparse PCA, there are issues to be considered when inferring about our

methods from these asymptotic results. The literature on asymptotic properties

of sparse PCA is focussed on sparse PCA with sparse loadings, while the meth-

ods in this dissertation takes an approach with sparse weights. As highlighted in

Chapter 5, imposing sparsity on the loadings as opposed to the weights has con-

sequences; one of which is that sparse weights PCA and sparse loadings PCA are

disparate methods that derive different results. Computation of sparse weights

is a regression problem often under high dimensionality unlike the problem for

sparse loadings which is univariate (or low-dimensional). However, an asymptotic

study on elastic net regression (used to solve for sparse weights for Chapters 2

and 4) reported that the estimates can be consistent under high dimensionality if

the number of observations is large enough in relation to the number of non-zero

population parameters (Jia & Yu, 2010).

To sum up, the performance of the methods in this dissertation in recovering

the population parameters from high-dimensional data is expected to improve

with (a) diminishing number of non-zero population parameters, (b) growing

difference in the variance of the first population component as opposed to the

following components, (c) growing number of observations and (d) diminishing

number of variables. While (a) and (b) seem to have bigger roles, information

regarding these aspects is rarely available in practice. Yet, we believe that these

studies inform us that there are high-dimensional settings where the methods in

this dissertation are anticipated to show good recovery of population parameters.

Nevertheless, it should be noted that a clear picture of consistency of our PCovR
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extensions will only be attained with an asymptotic investigation.

7.3 Drawbacks

7.3.1 Model selection

The PCovR extensions presented in the current dissertation involve many

model parameters. Taking the example of Sparse Common and Distinctive Co-

variates Logistic Regression (SCD-Cov-logR) presented in Chapter 3, there are five

different types of parameters to be tuned: number of covariates, lasso and group

lasso parameters for weights and ridge parameter for logistic regression coeffi-

cients. For each type of parameter, a range of different values must be considered,

leading to a very large number of models to be evaluated via cross-validation.

This entails a heavy burden of computation. In this dissertation, we employed

two strategies as a possible remedy. Firstly, in Chapters 2 and 3, the computa-

tional load was reduced by relying on the sequential model selection procedure.

Instead of conducting the cross-validation on the exhaustive set composed of all

combinations of the model parameters, the parameters were tuned in turn, while

fixing the remaining parameters at constant. Having been recommended as a vi-

able approach for PCovR in the previous literature (Vervloet et al., 2016), it has

also performed well in our experiments. Secondly, in Chapter 4, in addition to the

sequential procedure to first select the number of covariates, we fixed the ridge

parameters at a small near-zero value, instead of tuning them. The total num-

ber of model parameters considered for model selection was therefore reduced,

further decreasing the computational intensiveness. We chose to fix the ridge pa-

rameters considering that the role of ridge penalty is to prevent overfitting and

divergence, rather than shaping the model structure. This model selection strat-

egy also showed good recovery of the true underlying structures. However, both

of these strategies present a risk to miss the optimal model, since they are based

on the rationale of not employing the entire set of possible models given the pa-

rameter ranges. These strategies can be considered as decisions made amidst an

inevitable trade-off between computational load and optimal tuning of the model.

Another weakness with regards to model selection present in this disserta-

tion is that cross-validation is the only method of model selection employed. While

there are many other model selection tools applicable to the PCovR methods we

proposed, a notable strategy is index of sparseness (Gajjar, Kulahci, & Palazoglu,

2017; Trendafilov, 2014). It jointly takes into account of in-sample model fit and

level of sparsity in selecting a model. A big advantage of index of sparseness is

that it is not computationally intensive. Unlike n-fold cross-validation that re-
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quires n repetitions of estimation per model configuration, the model has to be

estimated only once for index of sparseness. Despite this strength, previous re-

search on sparse multiblock component analysis methods found mixed results.

Whereas Gu, Schipper, and Van Deun (2019) compared several model selection

strategies and concluded with the recommendation for index of sparseness, the

component analysis method they focused on imposed the sparsity on loadings. A

similar study on model selection has also been carried out for a method with sparse

weights, but it was concluded that cross-validation is a better approach than index

of sparseness (and other model selection strateigies) for deriving a model that re-

flects the true underlying processes (de Schipper & Van Deun, 2021). We selected

cross-validation since the methods in the current dissertation are based on sparse

weights. In considering an alternative model selection strategy, perhaps research

in an innovative direction could help achieve the leap in striking a better balance

between model optimality and computational intensiveness. A hybrid approach

that combines index of sparseness and stability selection (which is a popular alter-

native to cross-validation) suggested by (Gu et al., 2019) could be an example.

7.3.2 Data generation

One of the core messages conveyed in Chapter 5 is that sparse PCA research

should incorporate data generating models with sparse weights and sparse load-

ings, rather than being confined to models based on sparse singular vectors. Yet,

the simulation studies conducted in Chapters 2, 3 and 4 have solely employed the

data generating model with sparse singular vectors. Admittedly, this practice is

incomprehensive and ignores other relevant data generating models. However,

it was a choice made considering the scope of the papers; which was to pro-

pose the novel methods. An extensive study that focuses on testing the proposed

PCovR methods on these other data generating models would be well-fitting as the

next step. This investigation could be more valuable if it includes other variants

of PCovR, as previous research on PCovR has only incorporated the model with

sparse singular vectors.

7.4 Future directions

7.4.1 Computational feasiblity and sparse loadings

As the methods proposed in this dissertation are methods suited for large and

high-dimensional datasets, they involve heavy computational burden. To provide

an indication, a laptop equipped with a four-core Intel i5-10210U processor (base

clock speed of 2.11 GHz) and 8GB of RAM was used to fit the SMPCovR model
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presented in Chapter 4 to two datasets that appeared in the previous chapters. On

the Pittsburgh Cold Study (PCS) data with 187 predictors, 16 outcomes from 46

observations, the SMPCovR model reported in Section 4.4.1 was fitted a hundred

times, resulting in 0.729 seconds per run on average. However, the weights matrix

in this model was very sparse (about 94% sparsity) which tends to be less burden-

ing. By decreasing the lasso parameter and keeping all other parameters constant,

a SMPCovR model with about 50% sparsity in weights took 1.587 seconds on av-

erage. The Autism dataset employed in Chapter 5 consists of 1107 variables and

27 observations without a distinction of predictors and outcomes. We took the first

30 variables as outcomes and the remaining 1077 as predictors, and fitted the SM-

PCovR model with parameters such that the weights matrix would be about 94%

sparse. From the 100 runs, the average time taken was 29.111 seconds. Lastly,

SMPCovR model with about 50% sparsity in weights took 49.192 seconds on av-

erage. In Chapter 4, the model selection strategy for the PCS data evaluated 3600

different models with 5-fold cross-validation; the method was therefore adminis-

tered 18000 times. Even if we assume that each run would take 0.729 seconds

for PCS data and 29.111 seconds for the Autism data, such a model selection pro-

cedure would take a little more than 3.5 hours and 6 days, respectively. In this

time-consuming setting, users would be encouraged to consider narrower ranges

of tuning parameters which complicates finding the optimal model.

Although the implementation has been done in Rcpp which significantly

speeds up the estimation process compared to only relying on R, there is certainly

room for improvement. Setting aside the computational strategies for speed-up

such as parallel computing, one straightforward direction that the PCovR method-

ology for multiblock data can take is to impose the sparsity on the loadings instead

of the weights. While no sparse PCovR methods have yet been posed with sparse

loadings, benefits brought about by the sparse loadings approach can be inferred

from sparse PCA literature that compared it against the sparse weights approach

(see for example Chapter 5 or Guerra-Urzola et al. (2021)). Conditional esti-

mation of the sparse loadings becomes a univariate (or low-dimensional) regres-

sion problem which involves substantially less computational strain than sparse

weights estimation which is often a high-dimensional regression problem. Al-

though the sparse loadings approach has been found to fall short in the amount

of variance explained compared to the sparse weights approach, it would be a

worthwhile direction towards sparse multiblock PCovR with better computational

feasibility.
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7.4.2 Novel formulations for sparse PCovR

In the same vein, future directions in PCovR could capitalize on the active

research carried out within sparse PCA to propose novel extensions. The sparse

PCA problem has been a longstanding topic which has been reformulated in a

variety of ways. While some formulations take the approach of a minimization

problem (e.g. Zou et al., 2006), others have been proposed as a maximization

problem (e.g. d’Aspremont et al., 2004; Jolliffe et al., 2003; Journée et al., 2010).

Existing sparse PCA methods also differ in the way of estimating multiple com-

ponents: the block approach that solves for multiple components at once (e.g.

Adachi & Trendafilov, 2016) and the deflation approach that extracts one compo-

nent at a time (e.g. H. Shen & Huang, 2008). Lastly, there have been several ways

for the methods to induce sparsity on the coefficients. Some penalized the coef-

ficients (e.g. d’Aspremont, Bach, & El Ghaoui, 2008), whereas others imposed a

constraint on the number of non-zero coefficients (e.g. X. T. Yuan & Zhang, 2013).

Following this categorization, the PCovR methods in Chapters 2, 3 and 4 rely on

a minimization problem which adopts the block approach to find sparse weights

by penalization. Studies by Zou and Xue (2018) and Guerra-Urzola et al. (2021)

can be referred to as overviews for the various sparse PCA methods. Although

there has not been a comprehensive investigation which looks into all of these

sparse PCA methods regarding their performance on computational feasibility and

the quality of estimated coefficients, generalized power method tackling a maxi-

mization problem (Journée et al., 2010) has been found effective in the selective

comparison conducted by Guerra-Urzola et al. (2021). Therefore, composing and

tackling a maximization problem for sparse PCovR may be an interesting topic

of future investigation; pursuit of developments in sparse PCA appears to be a

promising strategy to bring improvements to the PCovR methods.
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Summary

Many research fields of today enjoy the unprecedented availability of large

data collected from different sources concerning the same observation units. For

example, a block of questionnaire data regarding health practices and another

block of gene expression data are jointly analyzed to study the onset of lung cancer.

In studying the predictive mechanisms giving rise to an outcome, such joint data

(known as multiblock data) offer a distinct opportunity to identify mechanisms

characterized by a combination of variables from different data sources. It is only

possible to pinpoint the interaction between smoking and a certain genetic sus-

ceptibility as a determinant of lung cancer by employing a multiblock data setup.

Multiblock data analysis hence helps obtaining a comprehensive understanding of

an outcome by finding these mechanisms of multi-source nature.

However, identifying such mechanisms in relation to multiple blocks is far

from easy. They are known to take a subtler manifestation in the data compared

to other mechanisms that are solely rooted in individual data bocks. This problem

is especially pronounced when the data blocks are large and heterogeneous from

each other. Moreover, there are issues pertaining to multiblock data that com-

plicate the construction of predictive models. Multiblock datasets often contain

a large number of predictor variables that are highly correlated with each other,

or unimportant to the research question. Presence of these predictors disallows

stable estimation of model coefficients and renders the derived models to consist

of an excessive number of coefficients which are impractical to inspect. Addition-

ally, there are challenges concerning the outcome variable; some data problems

involve a continuous outcome, while others a categorical outcome. There may

also be data settings comprised with multiple outcome variables.

In proposing novel methods that address these challenges, we employed

principal covariate regression (PCovR) as a basis. PCovR is a method that summa-

rizes the predictor variables into ‘principal covariates’ that account for the predic-

tion of the outcome variables. We put forward extensions of PCovR by making the

following adaptations. First, the problems of unimportant and highly correlated

predictors were tackled by introducing regularization penalties when deriving the

covariates. Second, the covariates were modified such that they are distinguished

into two types: those that are uniquely in relation with single data blocks (distinc-

tive covariates) and others that associate with multiple blocks jointly (common

covariates). This distinction enables capturing of the mechanisms chracterized by
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a mixture of variables from multiple blocks. Third, we devised three variants of the

PCovR extension to target the aforementioned outcome variable settings. For ex-

ample, our method was combined with logistic regression to address a categorical

outcome.

Chapter 2 presents the extension of PCovR for a multiblock setting. While

this method targeted a regression problem, it was directly adapted into a classifi-

cation problem in Chapter 3. The two methods showed competitive performance

in outcome prediction and retrieving the true predictive mechanisms compared to

methods with the same set of goals. Whereas Chapters 2 and 3 only addressed a

single outcome variable, Chapter 4 tackled a setting with multiple outcome vari-

ables. A method that performs variable selection for both predictor and outcome

variables simultaneously was devised therein. In looking out for ways in which

PCovR can be improved to better suit large and multiblock data, topics within

sparse principal component analysis (PCA) were visited in Chapters 5 and 6. This

is because sparse PCA serves as the basis for the PCovR extensions in this disserta-

tion. An algorithm for sparse PCA that guarantees local optimality of the solutions

has been proposed in Chapter 5, hinting at the future step for extending PCovR.

Lastly, the overlooked consequences of introducing sparsity to PCA were studied

in Chapter 6. It was found that imposing the sparsity on the weights leads to more

unstable results than when the loadings are made sparse, which is a result that has

a direct implication in extending PCovR. Altogether, this dissertation puts forward

novel PCovR methods that allow unlocking the potential within multiblock data

and points out where future opportunities may lie in the next line of research.
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