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Abstract

The partial correlation coefficient (PCC) is used to quantify the linear relation-

ship between two variables while taking into account/controlling for other var-

iables. Researchers frequently synthesize PCCs in a meta-analysis, but two of

the assumptions of the common equal-effect and random-effects meta-analysis

model are by definition violated. First, the sampling variance of the PCC can-

not assumed to be known, because the sampling variance is a function of the

PCC. Second, the sampling distribution of each primary study's PCC is not nor-

mal since PCCs are bounded between �1 and 1. I advocate applying the Fish-

er's z transformation analogous to applying Fisher's z transformation for

Pearson correlation coefficients, because the Fisher's z transformed PCC is

independent of the sampling variance and its sampling distribution more

closely follows a normal distribution. Reproducing a simulation study by Stan-

ley and Doucouliagos and adding meta-analyses based on Fisher's z trans-

formed PCCs shows that the meta-analysis based on Fisher's z transformed

PCCs had lower bias and root mean square error than meta-analyzing PCCs.

Hence, meta-analyzing Fisher's z transformed PCCs is a viable alternative to

meta-analyzing PCCs, and I recommend to accompany any meta-analysis

based on PCCs with one using Fisher's z transformed PCCs to assess the

robustness of the results.
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Highlights

What is already known
• The assumptions of the equal-effect and random-effects meta-analysis model

are by definition violated when partial correlation coefficients are meta-
analyzed

• Meta-analyses based on partial correlation coefficients are biased
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What is new
• Meta-analyzing Fisher's z transformed partial correlation coefficients is a

viable alternative when meta-analyzing partial correlation coefficients
• Meta-analysis based on Fisher's z transformed partial correlation coefficient

had the lowest bias and root mean square error compared to meta-analyzing
partial correlation coefficients in the simulation study design of Stanley and
Doucouliagos's study. Moreover, coverage rates of meta-analysis based on
Fisher's z transformed partial correlation coefficient were close to the nomi-
nal coverage rate.

Potential impact for RSM readers outside the authors' field
• Researchers conducting a meta-analysis based on partial correlation coeffi-

cients are recommended to accompany a meta-analysis based on Fisher's
z transformed partial correlation coefficient to study the robustness of the
results

1 | INTRODUCTION

Partial correlation coefficients (PCC) are commonly used
in meta-analyses to synthesize studies on the relationship
between two continuous variables while controlling for
the effect of other variables. Van Aert and Goos1 studied
the statistical properties of two estimators of the sampling
variance of the PCC. The estimating equation of the first
estimator is (see Olkin and Siotani2 and chapter 4 of
Anderson3)

s21 ¼
1� r2p

� �2

df
: ð1Þ

where rp is the estimated PCC and df refers to the
degrees of freedom that are N�M�1 with N being the
total sample size and M the number of independent vari-
ables in a linear regression model. This estimating equa-
tion is the large-sample approximation of the sampling
variance of the PCC where the true PCC is replaced by
rp. The second estimating equation of the sampling vari-
ance of the PCC is4

s22 ¼
1� r2p
df

: ð2Þ

This estimating equation is derived conditional on the
true PCC being equal to zero. Van Aert and Goos1

showed in an analytical study that s21 is less biased than
s22 for different values of the true PCC and different sam-
ple sizes.

Stanley and Doucouliagos5 (henceforth S&D) con-
ducted a simulation study to examine the effect of

including s21 and s22 as part of the weights in the random-
effects meta-analysis model. The conclusion of their sim-
ulation study is in the title of their paper: “Correct SEs
can bias meta-analysis,” so using s21 yielded more biased
results in the meta-analysis than s22. S&D

5 attribute this
larger bias to larger differences in the inverse variance
weights when s21 is used compared to s22. That is, the pri-
mary studies in the meta-analysis get more equal weights
when s22 is used compared to s21. These results corroborate
previous research6,7 that using unit weights in a random-
effects meta-analysis model had comparable or better sta-
tistical properties than inverse variance weights.

Meta-analyzing PCCs as S&D did in their simulation
study and as is commonly done in practice8–13 violates
the assumptions of the commonly used equal-effect
(a.k.a. fixed-effect or common-effect) and random-effects
meta-analysis models.14 The assumption of known sam-
pling variances is by definition violated for PCCs, because
the estimate rp is in the estimating equation of the sam-
pling variance. An additional consequence of this is that
the sampling variance of the PCC is dependent on rp, and
this is ignored in the meta-analysis models. Note that this
assumption is also violated for other popular effect size
measures (e.g., Pearson correlation coefficients, Cohen's
d, Hedges' g, and log odds ratios). Another assumption of
the meta-analysis models, that is by definition violated
when PCCs are used as effect size measure, is that the
sampling distribution of each primary study's effect size
follows a normal distribution. PCCs are bounded
between �1 and 1, so the violation of this normality
assumption becomes more severe the more the true PCC
differs from zero.

The goal of this paper is to advocate the use of
another approach to meta-analyze PCCs by meta-
analyzing the Fisher's z transformed PCCs. This approach
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is especially preferred over meta-analyzing PCCs for the
conditions with a large true PCC that S&D included in
their simulation study. Fisher's z transformation for PCCs
is included in the next section of the paper, and it is
explained why this approach is more in line with the
assumptions of the meta-analysis models. Section 3
reproduces the simulation study of S&D where the meta-
analysis based on Fisher's z transformed PCCs has been
added. The last section of this paper is a discussion that
also contains recommendations for applied researchers.

2 | META-ANALYZING FISHER'S z
TRANSFORMED PCCS

The procedure for applying Fisher's z transformation to
PCCs is analogous to the Fisher's z transformation for
Pearson correlation coefficients, because the probability
density function of the PCC is the same as of the Pearson
correlation coefficients except for the degrees of free-
dom.15 The degrees of freedom are different, because
these are corrected for the number of control variables in
the linear regression model. A Fisher's z transformed
PCC can be computed with (see Fisher15 and section 4.3
of Anderson3)

tanh�1 rp
� �¼ 0:5� log

1þ rp
1� rp

� �
, ð3Þ

and its sampling variance is equal to

s23 ¼
1

N�3� M�1ð Þ : ð4Þ

When Fisher's z transformed PCCs are meta-
analyzed, the (average) effect size estimate is commonly
transformed to a PCC to facilitate interpretation using

tanh Fzð Þ¼ e2�Fz �1
e2�Fz þ1

ð5Þ

where Fz is the meta-analytic estimate based on the Fish-
er's z transformed PCCs.

Meta-analyzing Fisher's z transformed PCCs is more
in line with the assumptions of the meta-analysis models
compared to meta-analyzing PCCs. The Fisher's
z transformation is a variance-stabilizing transformation,
so the sampling variance estimated with s23 does not
depend on the Fisher's z transformed PCC. Moreover, the
Fisher's z transformed PCC also more closely follows a
normal distribution than the PCC, and this is especially
the case if the true PCC is different from zero. However,
it has to be noted that the assumptions of known

sampling variance and that the sampling distribution of
each primary study's effect size follows a normal distribu-
tion are still violated when meta-analyzing Fisher's
z transformed PCCs. The estimating equation s23 is a
large-sample approximation and the sampling distribu-
tion of the Fisher's z transformed PCCs only approxi-
mately follows a normal distribution, but these
approximations are considered to be accurate even for
small sample sizes.16,17

3 | REPRODUCING SIMULATION
STUDY BY STANLEY AND
DOUCOULIAGOS

S&D5 briefly mentioned the option for meta-analyzing
Fisher's z transformed PCCs rather than PCCs: “For the
sake of robustness or if in doubt, it [is] always wise to
convert partial correlations to Fisher's z” (p. 519). How-
ever, they did not include a meta-analysis based on Fish-
er's z transformed PCCs in their simulation study while
the selected conditions with a true PCC being substan-
tially different from zero (i.e., 0.7071 and 0.3162) are not
advantageous to meta-analyzing PCCs. The large true
PCC causes a large negative correlation between the sam-
pling variance and the PCC and the sampling distribution
of each primary study's effect size strongly deviates from
a normal distribution for a true PCC of this size. I repro-
duced the simulation study of S&D and added random-
effects meta-analysis based on Fisher's z transformed
PCCs to the simulations.1 The simulation study was
reproduced using R29 (Version 4.2.3). R code of the simu-
lation study is available at https://osf.io/ubqfg.

Table 1 presents the results of reproducing the simu-
lation study of S&D. The results based on s21 and s22 are
similar to those reported in S&D except for small differ-
ences due to Monte-Carlo error. The results of the meta-
analyses based on Fisher's z transformed PCCs are in the
columns “Fisher's z.” Bold values indicate the approach
that was the least biased, had the lowest root mean
square error (RMSE), or where its coverage was closest to
the nominal coverage rate of 0.95 for a particular condi-
tion. Bias and RMSE was always the lowest for meta-
analyses based on Fisher's z transformed PCCs. Coverage
of meta-analyses based on Fisher's z transformed PCCs
was close to 0.95 for all conditions. As expected, coverage
of s21 and s22 especially deviated from the nominal cover-
age rate if the true PCC was large (i.e., ρ¼ 0:7071) and
yielded coverage rates closer to 0.95 if the true PCC was
closer to zero (i.e., ρ¼ 0:1104). To conclude, these results
show that meta-analyzing Fisher's z transformed PCCs
had better statistical properties than meta-analyzing
PCCs for the conditions in this simulation study.
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4 | DISCUSSION

PCCs are frequently meta-analyzed without applying the
Fisher's z transformation. Assumptions of the meta-analysis
model are by definition violated when PCCs are meta-
analyzed, because the sampling distribution of each primary
study's effect size does not follow a normal distribution and
the sampling variance cannot assumed to be known as it is
a function of the PCC. An alternative for meta-analyzing
PCCs is to apply Fisher's z transformation. Fisher's
z transformed PCCs approximately follow a normal distribu-
tion and its sampling variance is independent of the PCC,
so meta-analyzing Fisher's z transformed PCCs is more in
line with the assumptions of the meta-analysis model.

I reproduced the simulation study of S&D and show
that meta-analyses based on Fisher's z transformed PCCs
are less biased and have lower RMSE than meta-analyses
based on PCCs for all included conditions. Moreover, the
meta-analyses based on Fisher's z transformed PCCs also
yielded coverage rates of the confidence intervals that
were close to the nominal coverage rate. Hence,
meta-analyzing Fisher's z transformed PCCs are a viable
alternative for meta-analyzing PCCs. I recommend to
accompany any meta-analysis based on PCCs with one
using Fisher's z transformed PCCs to study the robustness
of the results. This is especially valuable if the true PCC

is expected to be substantially different from zero or
between-study variance in true effect sizes is expected to
be large. In these cases, large PCCs in the primary studies
are likely to be observed which is less in line with the
assumptions of the meta-analysis model.

There is, however, debate about whether the Fisher's
z transformation should be applied to Pearson correlation
coefficients,30–34 and this likely generalizes to PCCs as
well given the close similarities between the two effect
size measures. One of the main points of the debate is
how to simulate from the distribution of true effect sizes
and what the mean of this distribution is. The difficulty
here is that true correlations can be outside the parame-
ter space (smaller than �1 or larger than 1). Proposed
solutions for this are simulating Fisher's z transformed
Pearson correlation coefficients as true effect sizes,
resampling a true Pearson correlation coefficient if it is
outside the parameter space, and setting true Pearson
correlation coefficients outside the parameter space to
highly negative or positive correlations.35–37 The differ-
ences in statistical properties of meta-analyses based on
untransformed or Fisher's z transformed Pearson correla-
tion coefficients depend on the procedure for simulating
the true correlations. Future research is needed to sort
out when meta-analyzing untransformed or transformed
Pearson correlation coefficients/PCCs is preferred.

TABLE 1 Results of reproducing the simulation study of Stanley and Doucouliagos.5

Design Bias RMSE Coverage

ρ n s21 s22 Fisher's z s21 s22 Fisher's z s21 s22 Fisher's z

0.7071 25 0.0456 0.0236 0.0079 0.0480 0.0280 0.0170 0.1444 0.8458 0.9267

0.7071 50 0.0223 0.0110 0.0036 0.0245 0.0151 0.0109 0.4112 0.9440 0.9419

0.7071 100 0.0111 0.0054 0.0018 0.0133 0.0090 0.0075 0.6601 0.9750 0.9469

0.7071 200 0.0054 0.0026 0.0008 0.0074 0.0057 0.0051 0.8172 0.9869 0.9557

0.7071 400 0.0028 0.0013 0.0005 0.0045 0.0038 0.0036 0.8839 0.9911 0.9532

0.3162 25 0.0351 0.0177 0.0065 0.0464 0.0338 0.0284 0.7302 0.8985 0.9501

0.3162 50 0.0179 0.0083 0.0029 0.0265 0.0208 0.0189 0.8336 0.9373 0.9557

0.3162 100 0.0088 0.0039 0.0013 0.0158 0.0135 0.0129 0.8992 0.9510 0.9564

0.3162 200 0.0045 0.0021 0.0008 0.0102 0.0093 0.0091 0.9266 0.9558 0.9564

0.3162 400 0.0023 0.0011 0.0004 0.0068 0.0065 0.0064 0.9419 0.9606 0.9591

0.1104 25 0.0127 0.0059 0.0021 0.0362 0.0324 0.0309 0.9067 0.9367 0.9533

0.1104 50 0.0073 0.0034 0.0016 0.0228 0.0212 0.0206 0.9283 0.9502 0.9606

0.1104 100 0.0031 0.0011 0.0002 0.0149 0.0144 0.0142 0.9465 0.9546 0.9585

0.1104 200 0.0017 0.0007 0.0002 0.0102 0.0100 0.0099 0.9506 0.9557 0.9564

0.1104 400 0.0007 0.0002 0.0000 0.0072 0.0071 0.0071 0.9521 0.9542 0.9548

Note: Values in bold indicate the approach with the least biased, lowest root mean square error (RMSE), or coverage rate that was closest to the nominal
coverage rate of 0.95 for a particular condition.
Abbreviations: Fisher's z, meta-analysis based on Fisher's z transformed partial correlation coefficients and sampling variance estimated with Equation (4).; s21,
sampling variance estimated with Equation (1); s22, sampling variance estimated with Equation (2).
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Future research is also needed to study the statistical
properties of methods to test and correct for small-study
effects when PCCs are the effect size measure of interest.
Examples of these methods are Egger's test38 (a.k.a. funnel
plot asymmetry test [FAT]) and PET-PEESE.39 These
methods include the (square root of the) sampling vari-
ances in a meta-regression model to test or correct for a
relationship between the effect size and the precision of
the primary studies. Publication bias is one out of many
potential causes of small-study effects (see Egger et al.38

and Sterne et al.40 for an overview). The Type-I error rate
of Egger's test will be inflated and PET-PEESE is biased7 if
PCCs are meta-analyzed, because of the dependence
between the PCCs and their sampling variances. Hence,
methods to test and correct for small-study effects are
recommended to be applied using Fisher's z transformed
PCCs, because the methods are then not affected by the
sampling variance being a function of the Fisher's
z transformed PCC. This issue has also been noted for
other effect size measures such as Cohen's d, Hedges' g,
log odds ratio40–43 and modifications of Egger's test have
been proposed such that there is no relationship between
the effect size and sampling variance.44–46

To summarize, I illustrated that meta-analyzing Fish-
er's z transformed PCCs is a viable alternative to meta-
analyzing PCCs. Meta-analyzing Fisher's z transformed
PCCs had better statistical properties using the simulation
study design of S&D. Moreover, it is more in line with the
assumptions of the meta-analysis model than when meta-
analyzing PCCs. I recommend to always accompany a
meta-analysis based on PCCs with one using Fisher's
z transformed PCCs to study the robustness of the results.
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ENDNOTE
1 One could disagree with some of the decisions that were made in
the design of the simulation study of S&D. For example, S&D gen-
erated the data using the equal-effect meta-analysis model in the
simulation study but analyzed these data with the random-effects
meta-analysis model. S&D also used the DerSimonian and Laird
estimator for estimating the between-study variance in true effect
size and not the nowadays recommended restricted maximum
likelihood or Paule–Mandel/empirical Bayes estimators.18–20

When studying the coverage in the context of a random-effects
meta-analysis as S&D did, it is also good practice to compute con-
fidence intervals using the Knapp–Hartung/Sidik-Jonkman
adjustment.21–24 This adjustment makes less strong assumptions
than the random-effects meta-analysis model with respect to
whether the sampling variances and between-study variance are
known and yields more accurate coverage rates in simulation
studies.25–28 Nevertheless, I decided to exactly reproduce the sim-
ulation study by S&D to allow for a direct comparison between
the results reported in S&D and in this paper.
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