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Abstract
Outcome reporting bias (ORB) refers to the biasing effect caused by researchers selectively reporting outcomes within a study
based on their statistical significance. ORB leads to inflated effect size estimates in meta-analysis if only the outcome with the
largest effect size is reported due to ORB. We propose a new method (CORB) to correct for ORB that includes an estimate
of the variability of the outcomes’ effect size as a moderator in a meta-regression model. An estimate of the variability
of the outcomes’ effect size can be computed by assuming a correlation among the outcomes. Results of a Monte-Carlo
simulation study showed that the effect size in meta-analyses may be severely overestimated without correcting for ORB.
Estimates of CORB are close to the true effect size when overestimation caused by ORB is the largest. Applying the method
to a meta-analysis on the effect of playing violent video games on aggression showed that the effect size estimate decreased
when correcting for ORB. We recommend to routinely apply methods to correct for ORB in any meta-analysis. We provide
annotated R code and functions to help researchers apply the CORB method.

Keywords Outcome reporting bias · Meta-analysis · Meta-regression · Researcher degrees of freedom

Introduction

There is ample evidence that findings reported in the psycho-
logical literature are biased. For example, the vast majority
of published studies in psychology report statistically signifi-
cant findings (Fanelli, 2010, 2012; Sterling et al., 1995)while
the average low statistical power of studies in the psycholog-
ical literature would imply that most studies should yield
non-significant findings (Bakker et al., 2012; Cohen, 1990).
Moreover, 100 key findings in psychology were recently
replicated to study the replicability of psychological science
in the Reproducibility Project: Psychology (Open Science
Collaboration, 2015), and effect sizes of the replicated studies
were substantially smaller than those of the original studies
(correlation coefficient 0.197 vs. 0.403).

The most prominent explanation for the overrepresenta-
tion of statistically significant effect sizes in the literatuThere
are no conflicts of interest or competingre is the tendency of
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editors and reviewers to more positively evaluate statistically
significant studies (with a p-value below the α-level) com-
pared to non-significant studies, but researchers also appear
less inclined to submit statistically non-significant studies for
publication (Cooper et al., 1997; Coursol & Wagner, 1986).
The failure to publish studies without a statistically signif-
icant effect size, also known as publication bias, is widely
understood to create bias in the literature. Additional sources
of bias might emerge if researchers are motivated (or feel
pressuredby apublication system that is still strongly focused
on statistical significance) to analyze their data in such a way
that it yields a statistically significant effect size. Importantly,
multiple analysis approaches are often valid and defensible
(Steegen et al., 2016). For instance, 29 analysis teams were
asked in a so-called many analyst project to analyze the same
data to answer the research questionwhether referees in foot-
ball are more likely to give dark skinned players a red card
than white skinned players (Silberzahn & Uhlmann, 2015;
Silberzahn et al., 2018). The results obtained by the analysis
teams varied widely with odds ratio as observed effect size
varying from 0.89 to 2.93. Moreover, no analysis approach
was deemed to be the best approach and multiple approaches
were evaluated as defensible according to the analysis teams
who peer reviewed each other’s analysis.
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The leeway researchers have to make decisions in the
process of setting up a study, analyzing data, and reporting
the results are often called researcher degrees of freedom or
p-hacking if this leeway is purposively used to obtain sta-
tistical significance (Simmons et al., 2011; Wicherts et al.,
2016). John et al., 2012 studied the self-admission rate and
defensibility of 10 researcher degrees of freedom related to
analyzing data in a sample of 2,000 psychologists employed
at universities in the United States. The researcher degree of
freedom that was most admitted (63.4%) was “in a paper,
failing to report all of a study’s dependent measures” and
the vast majority of researchers who admitted it deemed this
decision to be defensible (1.84, standard deviation 0.39 on
a scale ranging from 0 = not defensible to 2 = defensible).
A replication of this study in Italy revealed that the preva-
lence of admitting not reporting all dependent measures was
slightly lower albeit substantial (47.9%, Agnoli et al. 2017).

Selectively reporting dependent measures will bias the lit-
erature, especially if only statistically significant measures
are reported. Selectively reporting dependent measures is
referred to as outcome reporting bias or outcome switching in
medical research. Outcome reporting bias (ORB) is defined
as the bias caused by reporting of outcomes/dependent mea-
sures that “is driven by the significance and/or direction of the
effect size” (Copas et al., 2014). Publication bias is closely
related to ORB, but publication bias refers to the suppression
of an entire study from being published whereas ORB is the
suppression of outcomes being reported in a study. Recent
research by Rodgers and Pustejovsky (2021) and Fernández-
Castilla et al. (2021) showed that publication bias tests cannot
be applied to test for ORB. The effect sizes of the outcomes
within a primary study are dependent whereas existing pub-
lication bias methods assume independence.

Direct evidence for ORB has especially been obtained in
the literature on medical research (e.g., Lancee et al., 2017;
Rankin et al., 2017;Wayant et al., 2017). A systematic review
(Dwan et al., 2008; Dwan et al., 2013) identified five arti-
cles that studied ORB (Chan, Hróbjartsson, et al., 2004a;
Chan, Krleža-Jerić et al., 2004b; Elm et al., 2008; Ghersi,
2006; Hahn et al., 2002). All articles studied ORB by com-
paring the outcomes that were listed in protocols with the
outcomes actually being reported in the final publication.
The overarching conclusion based on these five studies is
that selective reporting of outcomes is prevalent and that sta-
tistically significant outcomes are more likely to be reported
than non-significant outcomes. For example, Chan, Krleža-
Jerić et al., 2004b and Chan, Hróbjartsson, et al., 2004a
studied ORB by comparing protocols approved by Danish
ethical committees and funded by the Canadian Institutes
of Health Research and concluded that 50% and 31% of
efficacy and 65% and 59% of harm outcomes were not suffi-
ciently reported in the final publication for being included in a
meta-analysis. Moreover, the odds of statistically significant

outcomes being reported in the final publication was more
than twice as large as those of non-significant outcomes.

Qualitative research revealed that common reasons for not
reporting all outcomes are that the results are deemed unin-
teresting, a too small sample size for a particular outcome,
and space limitations by the journal (Smyth et al., 2011). Fur-
thermore, not reporting all outcomes may also be instigated
by reviewers and/or editors who request to only report par-
ticular outcomes. Some researchers also indicated that they
were unaware of the negative consequences of not report-
ing all outcomes, which is no surprise given the literature on
hindsight biases combined with findings highlighting poor
statistical intuitions (Bakker et al., 2016; Tversky & Kahne-
man, 1971).

Research on ORB is more limited in the literature on psy-
chological research, most likely because of the common lack
of transparent practices like data sharing and preregistrations
(Hardwicke et al., 2022), whichwould enablemeta-scientific
studies of ORB. Franco et al., 2016 compared the protocols
of 32 psychology experiments with the final publication that
ended up in the literature. Fewer outcomes were reported in
72% of the final publications than were listed in the protocol.
LeBel et al. (2013) studied ORB by emailing correspond-
ing authors of articles published in prominent psychology
journals and asking them whether they had fully disclosed
information about the included outcomes as well as data
exclusions, sample size, and conditions. Between 20% and
87.2% of the authors indicated to not have reported all the
outcomes in their final publication. O’Boyle et al. (2017)
compared hypotheses that were tested in dissertations with
the corresponding publications. Their results also provide
evidence for ORB, because 44.9% of the reported hypothe-
ses in dissertations were statistically significant compared to
65.9% in the publications implying that the results of hypoth-
esis tests were selectively reported.

Multiple methods have been developed to correct for
ORB in a meta-analysis (Bowden et al., 2010; Hutton &
Williamson, 2000; Jackson et al., 2005). The method devel-
oped by Copas and colleagues (Copas et al., 2014, 2019) is
the recommended method by the Outcome Reporting Bias
in Trials (ORBIT) team. This method requires researchers
to first classify all the studies in the meta-analysis according
to the risk of bias. For the studies at high risk of bias, it is
assumed that outcomes were measured but failed to pass the
statistical significance threshold and were not reported. The
log likelihood function of either the equal-effect or random-
effectsmodel is extended to correct forORBby incorporating
the probability of outcomes in high risk of bias studies being
not statistically significant. Drawbacks of this method are
that each primary study in a meta-analysis has to be classi-
fied according to the risk of bias and it relies on the strong
assumption that outcomes were not reported in any study that
is at high risk for bias. Another approach is to extend exist-
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ing publication bias methods to a multivariate meta-analysis
model such that they allow formultiple correlated effect sizes
within a primary study. Rodgers and Pustejovsky (2021) and
Fernández-Castilla et al. (2021) extended existing publica-
tion tests by implementing these in amultilevelmeta-analysis
model or using robust variance estimation.

The goal of this paper is to introduce a new meta-analytic
method that can be used as a sensitivity analysis to correct
effect size forORB.The introduced “Correcting forOutcome
Reporting Bias” (CORB)method is a meta-regression analy-
sis (Borenstein et al., 2009; Raudenbush, 2009) that includes
as a moderator the effect size variability in the outcomes’
effect size of a primary study. The rationale of CORB is
that primary studies with a large variability in the outcomes’
effect size are more prone to bias, and that we can correct
for this bias by including this variability as a moderator in a
meta-regression model. CORB corrects for the bias in effect
size estimates caused by ORB by regressing out the effect of
researchers choosing to report desirable outcomes among a
set of outcomes based on statistical significance or effect size.
Meta-analysts are generally familiar with meta-regression
analysis, so CORB is easy to understand and straightforward
to apply. CORB is different from the method proposed by
Copas and colleagues (Copas et al., 2014, 2019), because it
does not require classifying the risk of bias of the primary
studies. Moreover, CORB models ORB directly rather than
extending existing publication bias methods by allowing for
multiple correlated effect sizes within a primary study by
using a multilevel meta-analysis model or robust variance
estimation.

The outline for the remainder of the paper is as follows.We
first describe relevant meta-analysis models and introduce
our newCORBmethod to correct forORB in ameta-analysis.
Subsequently, we describe a Monte-Carlo simulation study
to examine the statistical properties of the proposed method.
We illustrate the method using a meta-analysis on the effect
of playing violent video games on aggressive cognition and
end with a conclusion and discussion section.

Meta-analysis models

Random-effects model

The random-effects model assumes that k independent effect
size estimates (i.e., yi , i=1, …, k) on the same relationship
are included in a meta-analysis. The statistical model can be
written as (Borenstein et al., 2009; Raudenbush, 2009)

yi = θi + εi ,

where θi consists of the mean μ of the distribution of true
effects and the random effect μi indicating the difference

between μ and the ith primary study’s true effect. Fur-
thermore, εi is the study specific sampling error. Common
assumptions are thatμi ∼ N (0, τ 2)where τ 2 is the between-
study variance in true effect size and εi ∼ N (0, σ 2

i ) where
σ 2
i is the sampling variance of the ith primary study’s effect

size estimate. This sampling variance is estimated in practice
and then assumed to be known. The μi and εi are assumed
to be mutually independent. Note that the random-effects
model simplifies to an equal-effect model (also known as
fixed-effect model) if τ 2 = 0.

Random-effects meta-regressionmodel

Theestimate ofμ isusually the primary interest of researchers.
However, the estimate of τ 2 for assessing whether the
primary study’s true effect sizes are different is of equal
importance (Higgins et al., 2009). Between-study variance
in true effect size can be explained by adding moderator
variables to the random-effects model. This random-effects
meta-regression model (also known as mixed-effects model)
can bewritten as (Borenstein et al., 2009; Raudenbush, 2009)

yi = β0 + β1xi1 + ... + βq xiq + μi + εi , (1)

where β0 is the intercept and β1 up to βq are the regression
coefficients of moderators xi1 up to xiq , respectively. The
same distributional assumptions as for the random-effects
model apply, but τ 2 is now the residual between-study vari-
ance in true effect size.

Multivariate random-effects meta-analysis

The random-effectsmodel and random-effects meta-regression
model both assume that the sampling errors (i.e., εi ) are inde-
pendent. A violation of this assumption occurswhenmultiple
effect sizes are computed based on the same sample. For
example, the independence assumption is violated in a meta-
analysis on general proficiency if effect sizes for both math
and reading proficiency are computed in the primary studies
and both are included in the meta-analysis. The multivari-
ate random-effects meta-analysis takes this dependence into
account, and its statistical model can be written as (Gleser &
Olkin, 2009; Hedges & Olkin, 1985)

yi j ∼ MV N (θi j ,Si )

where MV N denotes the multivariate normal distribution,
yi j is the effect size estimate of the jth outcome in the ith
primary study with j=1, …, p outcomes, θi j is the true effect
size of the jth outcome in the ith primary study, and Si is the
within-study variance-covariance matrix of the ith primary
study with the sampling variance of the outcomes’ effect
size estimates on the diagonal of Si and their covariances
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off-diagonal. Elements of Si are again estimated in practice
and then assumed to be known.

The θi j may be different for each study in the multivariate
random-effects model,

θi j ∼ MV N (μ j ,�)

where μ j is the mean of the distribution of true effects of
outcome j and � is the between-study variance-covariance
matrix with the between-study variance in the outcomes’
true effect sizes on the diagonal of � and their covariances
off-diagonal. The multivariate random-effects meta-analysis
model simplifies to a multivariate equal-effect meta-analysis
if all elements of � are equal to zero.

Multivariate random-effects meta-regressionmodel

Multivariate random-effectsmeta-analysis can also be extended
to allow for the inclusion of moderators in a so-called multi-
variate random-effects meta-regression model. The primary
study’s true effect sizes then become a regression equa-
tion analogous to extending the random-effects model to the
random-effects meta-regression model. That is, the marginal
multivariate random-effects meta-regression model is (e.g.,
Houwelingen et al., 2002; Jackson et al., 2013)

yi j ∼ MV N (Xiβββ,Si + �) (2)

whereXi is the design matrix of the i th study consisting of p
rows and q +1 columns andβββ is a q +1 vector of regression
coefficients.

The new CORBmethod to correct
for outcome reporting bias

Basic idea

Extreme ORB implies that only the outcome with the largest
effect size gets reported and all other outcomes remain unre-
ported. We illustrate the overestimation of true effect size
caused by extreme ORB by varying the number of outcomes
and the correlations among the outcomes in a simulation.
Data were generated assuming a true effect size of ρ = 0
and sample size of 40. Correlation coefficients were esti-
mated between one variable and all outcome variables, and
the largest correlation coefficient was stored. This proce-
dure was repeated 100,000 times and the average correlation
across all repetitions was computed.

Figure 1 shows the overestimation caused by extreme
ORB as a function of the number of outcomes (x-axis) and
the correlation among the outcomes (lines in Fig. 1). Fig-
ure 1 illustrates that the overestimation caused by ORB is

Fig. 1 Overestimation of true effect size (Pearson correlation coef-
ficient) caused by outcome reporting bias for varying values of the
correlations (r ) among the outcomes and the number of outcomes. These
results were based on a sample size of 40 and true effect size equal to
ρ = 0. R code of this figure is available at https://osf.io/umnaq/

the largest if the outcomes are independent and the num-
ber of outcomes is large (maximum overestimation 0.228).
The overestimation is zero if the correlation among outcomes
is r = 1, because all estimated correlation coefficients are
then identical. Hence, overestimation decreases as the corre-
lation among the outcomes increases, because the variability
in observed effect size estimates decreases as a function of
the correlation among the outcomes.

The CORB method uses the variability among outcomes
to correct for ORB. That is, we propose to include a measure
of the variability of the outcomes’ effect size (e.g., variance
or standard deviation of these effect sizes) as a modera-
tor in a meta-regression model. This can be either included
in the random-effects meta-regression model in (1) in case
all studies report one outcome or the multivariate random-
effects meta-regressionmodel in (2) if multiple outcomes are
reported in a study. The rationale behind CORB is that the
intercept of such a meta-regression analysis is an estimate
corrected for ORB, because the intercept is the effect size
estimate where the variability of the outcomes equals zero.
Hence, the method’s correction for ORB is the largest if the
outcomes are independent (i.e., highly variable outcomes’
effect sizes) and the method does not correct for ORB if the
outcomes are perfectly correlated (i.e., no variability among
outcomes’ effect size).

The rationale behind the method is akin to Egger’s regres-
sion test (Egger et al., 1997) and PET-PEESE (Stanley &
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Doucouliagos, 2014) where a measure of a primary study’s
precision is included as a moderator in the random-effects
meta-regression model to test and correct for small-study
effects. Small-study effects refer to the tendency of small
primary studies to be accompanied with large effect sizes,
and publication bias is one of the possible causes for these
small-study effects (Egger et al., 1997; Sterne et al., 2005).
These methods to correct and test for small-study effects, in
contrast to CORB, assume that the effect size of a single out-
come has been computed and reported for each study. These
methods focus on the relationship between the effect size
and the variability in the effect size between studies whereas
CORB focuses on the variability of outcomes within studies.

An important assumption of CORB is that the true effect
size of the outcomes within a primary study are the same.
This implies that all θi j are assumed to be equal to each
other in the ith primary study. This assumption of equal
true effect size within a primary study is not an unrealis-
tic assumption as multiple scales usually exist to measure a
single construct. Multiple test batteries, for example, exist to
measure IQ. Moreover, existing scales are frequently modi-
fied by, for example, removing items, (e.g., Elson et al., 2014;
Flake & Fried, 2020), which also creates multiple outcomes
that are likely measuring the same construct. The effect size
based on the initial unmodified scale is one outcome and the
effect size(s) based onmodified versions of the scale are other
outcomes. The assumption of equal true effect size within a
primary study also aligns with the notion that selecting an
outcome a priori is arbitrary so that no prior reasons exist to
choose between the outcomes but rather that the researchers
choose an outcome based on what is observed in the data. A
violation of this assumption biases the effect size estimation
of CORB. However, the correction of effect size estimates
by CORB is conservative in case of a violation, because the
additional variability that is caused by the within-study vari-
ance in true effect sizes is not taken into account. Note that
the true effect size between studies can be either fixed or
random in the multivariate meta-analysis model.

Estimating variability of the outcomes’ effect size

A key element of the proposed method is the estimation
of the variability of the outcomes’ effect size. We describe
four options for estimating this variability using the observed
effect sizes in a primary study, an estimator of the popula-
tion variance, an estimator of the variance of the difference
between two correlated effect sizes, and a bootstrap proce-
dure. Estimating this variability using the latter three options
requires information about the correlation among the out-
comes. This requirement is not uncommon for meta-analysis
methods as the correlation among outcomes is, for instance,
also needed in the multivariate meta-analysis model. This

correlation is usually not reported in all primary studies
(Hedges et al., 2010), so it has to be based on the primary
studies that report this correlation or a guesstimate (i.e., well-
informed guess). A third solution to deal with this unknown
correlation is to try different correlations as a sensitivity anal-
ysis to assess the impact of varying this correlation.

Observed effect size

The most straightforward way to estimate the variability of
the outcomes’ effect size is to compute the variance of the
reported effect sizes of the outcomes. This is not feasible in
cases of extreme ORB where only the effect size of a sin-
gle outcome is reported. Nevertheless, situations may occur
where more than one outcome is reported while at the same
time ORB resulted in not reporting all outcomes. An advan-
tage of this approach is that no information is needed about
the correlation among the outcomes. Obviously, this option
is also feasible when the raw data of the primary studies are
available to the meta-analyst.

Estimator of the population variance

The second option for estimating the variability is estimat-
ing the population within-study variance of the outcomes’
effect size. For each primary study, the outcomes’ effect size
is assumed to follow a multivariate normal distribution, so
taking the expectation of the variance from a single draw of
the multivariate normal distribution provides us with an esti-
mator of the population variance. If we assume an equal true
effect size of the outcomes, equal sampling variance of the
outcomes, and equal correlations between the outcomes, the
estimator of the population variance is equal to (seeAppendix
A for the full derivation)

E

[ 1
p

p∑
j=1

(
yi j − ȳi

)2] = σ 2
i (1 − r)

where ȳi is the mean effect size estimate of the p outcomes
in the ith primary study. This estimator of the population
variance is the sampling variance minus the covariance of
the multivariate normal distribution and is only a function of
the variance of the outcomes’ effect size and the correlation.
Hence, the number of outcomes not reported in a primary
study is not needed to estimate this variance.

It is important to emphasize that the results of Egger’s
regression test (with the sampling variance as moderator)
and PEESE are equivalent to CORB with the estimator of
the population variance as moderator if all studies contribute
a single effect size to the meta-analysis and the correlation
between outcomes (i.e., r) is assumed to be the same across
studies. Egger’s regression test and PEESE then regress the
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study’s effect size estimate on its sampling variance (i.e., σ 2
i )

and CORB regresses the effect size estimate on the sampling
variance multiplied by a constant.

Variance of the difference of outcomes’ effect size

Another measure of the variability of the outcomes’ effect
size is the variance of the difference of outcomes’ effect size
(hereafter referred to as difference scores). We derive this
variance for Fisher-z transformed correlations as the effect
size measure, because this effect size measure is also used
in our Monte-Carlo simulation study and the example where
we illustrate CORB.We, however, also provide this variance
for raw mean differences in the supplemental materials at
https://osf.io/my829/.

The variance of the difference scores for Fisher-z trans-
formed correlations is derived by first transforming the
observed Pearson correlation coefficient to Fisher-z trans-
formed correlations (denoted by f z; Fisher (1921)). This
transformation is preferred over analyzing Pearson correla-
tion coefficients directly, because it stabilizes the variance
and f z-correlations approximately follow a normal distri-
bution (Borenstein, 2009; Schulze, 2004). We derive the
variance of the difference of two overlapping f z-correlations
That is, we derive the variance of the difference scores
between f z-correlations of variables l and h ( f zlh) and l
and m ( f zlm). This variance is equal to (see Appendix B for
the full derivation)

Var
[
f zlh − f zlm

]
= 2

N − 3
− 2

r(1 − 2ρ2) − 1
2ρ2(1 − 2ρ2 − r2)

(1 − ρ2)2(N − 3)

where N is the total sample size, ρ is the population Pearson
correlation between variables l and h and l andm, and r is the
estimated Pearson correlation between variables h and m.

Parametric bootstrap

A parametric bootstrap can also be used to estimate the
variability of the outcomes’ effect size (Efron & Tibshirani,
1993). That is, we generate outcomes’ effect size under the
multivariate random-effects (or equal-effect) meta-analysis
model where the within-study variance-covariance matrix Si
is constructed using the observed effect size, sample size,
and assumed value for r by placing the sampling variance
of the observed effect size estimates on the diagonal of Si
and their covariances off-diagonal. Subsequently, we com-
pute the variance of the sampled effect sizes. This procedure
is B times repeated and the mean of these B variances is the
estimate of the variance of the outcomes’ effect size.

Outcome reporting bias index

A meta-regression model with the variability of the out-
comes’ effect size estimates as moderator provides an
estimate corrected for ORB (intercept) as well as a slope
coefficient for the included moderator. This estimated slope
coefficient is indicative of the severity of ORB, and it can
readily be interpreted in terms of the effect size measure used
in the meta-analysis. A large coefficient reflects that there is
a strong relationship between the observed effect size esti-
mates and the variability of the outcomes’ effect size. This
implies that large effect sizes go along with highly variable
outcomes as is expected in case of severe ORB.

We recommend researchers to apply CORB using the
effect size measure that is initially used in the meta-analysis.
However, transforming the effect sizes can be useful for
creating an ORB index. Such an ORB index can be cre-
ated that allows for comparing the severity of ORB across
meta-analyses by first standardizing the observed effect size
estimates andmoderator such that these have amean of 0 and
variance of 1. Applying CORB based on these standardized
variables, provides an ORB index indicating the severity of
ORB that is straightforward to interpret. The estimated slope
coefficient is analogous to a Pearson correlation coefficient1,
so large positive scores on the ORB index are indicative of
severe ORB. The rules-of-thumb proposed by Cohen (1988)
for interpreting the magnitude of a Pearson correlation coef-
ficient can be used for interpreting the ORB index as well.

Monte-Carlo simulation study

We studied the statistical properties of CORB and compared
those to the properties of the (multivariate) random-effects
model by means of aMonte-Carlo simulation study.We sim-
ulated datawith Pearson correlation coefficient and rawmean
differences as effect size measures, but we only describe
the simulation procedure for generating Pearson correla-
tion coefficients and its results in the paper as correlation
coefficients are more common in organizational research. A
description of the data generating procedure and the results
of the simulations with raw mean differences as the effect
size measure are available in the supplemental materials at
https://osf.io/my829/. Results of the simulation study using

1 The estimated coefficient is not exactly equal to a Pearson correlation
coefficient, because ameta-analysis generally weighs effect sizes by the
inverse of the variances. The ORB index is exactly equal to a correlation
coefficient if the sameweights are used for each effect size in a univariate
meta-analysis.
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raw mean difference as the effect size measure were compa-
rable to those based on the Pearson correlation coefficients
that we report here.

Method

We simulated data under the multivariate random-effects
model where we assumed equal true effect size per outcome
within a primary study (i.e., θi j = θi ). For each primary
study in the meta-analysis, Pearson correlation coefficients
were always computed between variable l and one of the p
outcomes. The true correlation between variable l and the
p outcomes was denoted by ρ. Before a true correlation ρ

was simulated, it was first transformed to a Fisher-z score
(i.e., fz) using the Fisher-z transformation (Fisher, 1921) as
meta-analysis models generally assume that the distribution
of true effect size in a meta-analysis follows a normal dis-
tribution (e.g., Jackson & White, 2018). A primary study’s
true effect size θi was then sampled from N ( f z, τ 2). This
true effect size θi was a Fisher-z score that was subsequently
transformed to a Pearson correlation coefficient using the
Fisher-z transformation.

We sampled individual participant data from a multivari-
ate normal distribution with mean 0 and variance-covariance
matrix that was computed using the generated θi , the correla-
tion between the outcomes (r), and the variance of the scores
in the population.We repeated the procedure above in the rare
cases where the variance-covariancematrix was non-positive
semi definite caused by a low r in combination with a large θi
due to large between-study variance in true effect size. The
generated data were used to compute Pearson correlation
coefficients between variable l and the p outcomes. Pear-
son correlation coefficients were also transformed to Fisher-z
scores to obtain the observed effect size estimates yi j . The
estimated within-study variance-covariance matrix Si was
computed with sampling variances equal to those of Fisher-
z scores (i.e., 1/(N − 3)) and covariances computed using
equation (10) in Steiger (1980a). The procedure above was
repeated if the estimated within-study variance-covariance
matrix Si was non-positive semi definite.

Each Pearson correlation coefficient between variable l
and the p outcomes was tested for being different from zero
using the t-test

t = ri j

√
N − 2

1 − r2i j

where ri j is the Pearson correlation coefficient between vari-
able l and the jth outcome in the ith primary study. A
one-tailed p-value was obtained by comparing the observed
t-statistic with a Student’s t-distribution with N − 2 degrees
of freedom. A Pearson correlation coefficient was statisti-

cally significant if its p-value was lower than α = .025.
We selected α = .025 to resemble common practice of
researchers to test a two-tailed hypothesis with α = .05 but
only report results in the predicted direction.

Two different reporting behaviors by researchers were
included in the Monte-Carlo simulation study. The first
behavior reflected researchers who always report at least the
outcome in a primary study with the lowest p-value. The sec-
ond behavior refers to researchers who always report at least
the first outcome that is statistically significant where the
order of the outcomes is random. The outcome with the low-
est p-value is reported if none of the outcomes is statistically
significant. This second behavior resembles a researcher who
tests outcomes in a random order and stops testing hypothe-
ses if a statistically significant finding has been observed. In
case of extreme ORB, the only outcome that was reported in
a primary study was either the outcome with the lowest p-
value or the first statistically significant outcome depending
on the researchers’ reporting behavior. Less severe ORBwas
simulated by also reporting the initially excluded outcomes
in a primary study if a random draw from the binomial dis-
tribution with probability 1 − orb was equal to one where
orb determined the severity of ORB. The above outlined data
generating procedurewas repeated till k primary studieswere
generated.

The generated effect sizes yi j were combined using amul-
tivariate random-effects meta-analysis where the true effect
sizes were assumed to be the same within-study and random
between-studies. That is, the multivariate random-effects
meta-analysis was fitted using the “rma.mv()” function of
the R package “metafor” (version 2.4-0, Viechtbauer, 2010)
with as “random” argument “1 | study” where the object
“study” indicates from which study an observed effect size
comes from. Si was used as the primary study’s within-study
variance-covariancematrix.We included nine differentmeta-
analysis models in the Monte-Carlo simulation study. The
first one was the multivariate random-effects meta-analysis
model that does not correct for ORB. The other eight meta-
analysis models were different types of CORB using the
methods introduced earlier for estimating the variability of
outcomes’ effect size. Four used the estimated variance as
moderator and four used the standard deviation (i.e., square
root of the estimated variance) as moderator. Note that the
variance and standard deviation of the observed outcomes’
effect sizes are usually not readily available to the meta-
analyst, but these models were included to examine the
statistical properties of CORB in the ideal situation.

Estimators of the population variance, variance of the dif-
ference scores, and bootstrap procedure required a value for
r. The true value of r was used for computing the variabil-
ity of the outcomes to examine the statistical properties of
the models in the ideal situation. However, we also con-
ducted a sensitivity analysis to studywhether themodelswere
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sensitive tomisspecifications of r (see results section and sup-
plemental materials at https://osf.io/my829/). The estimator
of the variance of the difference scores and bootstrap proce-
dure also required a value for ρ. We used the mean of the
observed outcomes’ effect size in the ith primary study as
an estimate for ρ. This was the best estimate of ρ based on
the available data, because we assumed that the outcomes’
true effect sizes were the same in each ith primary study.
Moreover, we believe it resembles how researchers would
approach this in practice where ρ is also unknown.

We assessed the bias and mean squared error (MSE) in
estimation of ρ by the models included in the Monte-Carlo
simulation study. The variance of the individual participant
data in the population was fixed to 1. Values for the true
effect size ρ were 0 and 0.3 to reflect no and a medium
effect according to the rules of thumb by Cohen (1988). The
number of primary studies in themeta-analysis (k)was varied
between 10 and 40 where 40 studies is close to the average
number of 38.7 primary studies in meta-analyses published
in Psychological Bulletin (van Erp et al., 2017), and 10 was
included to study the statistical properties of the proposed
method in meta-analysis that are representative for medical
research (e.g., Gerber et al., 2007). A vector of sample sizes
was used (20, 60, 100, 140, 180) that was repeated k/5 times
to keep the average sample size the same for different values
of k. The between-study variance τ 2 was selected in such
a way that the I 2-statistic (i.e., proportion of total variance
that can be attributed to between-study variance in true effect
size, Higgins & Thompson, 2002) was equal to 0, 0.25, 0.5,
0.75, and 0.9. The number of outcomes (dv) was 2, 4, and 6,
and the correlation between these outcomes r was 0.3, 0.5, or
0.9.2 The severity of ORB was either orb = 1 or 0.5 where
1 implied extreme ORB and 0.5 that initially not reported
effect sizes have a probability of 0.5 to be included in the
meta-analysis. We also studied the statistical properties of
the included methods in the absence of ORB (i.e., orb = 0)
for a selection of the conditions (ρ = 0 and k = 10) to study
whether the methods distort the meta-analytic results in case
of no ORB.

We programmed the Monte-Carlo simulation study in R
(version 4.0.1, Team, 2021) and ran 5,000 replications. The
total number of samples in the parametric bootstrap was

2 We initially also included the condition r = 0.1, but it turned out that
this often resulted in a non-positive semi definite variance-covariance
matrix when generating the individual participant data. This occurred
especially in combination with ρ = 0.3 and large between-study vari-
ance in true effect size. The primary study’s true effect size θi can then
be large due to the large between-study variance and the fact that observ-
ing a large θi in combination with r = 0.1 is unlikely. The problem of a
non-positive semi definite variance-covariancematrixwas less apparent
for larger values of r. We reported how often non-positive semi definite
within-study variance-covariance matrices were obtained in the results
section.

set to 1,000, and the nearest positive definite within-study
variance-covariance matrix was computed using the algo-
rithm of Higham (2002) if the matrix was non-positive semi
definite in the bootstrap procedure. The R package “metafor”
(version 2.4-0, Viechtbauer, 2010) was used for fitting the
(multivariate) random-effectsmeta-analysismodel, “MASS”
(version 7.3-51.6, Venables & Ripley, 2002) was used for
generating data from a multivariate normal distribution, and
“parallel” (Team, 2021), “Rcpp” (version 1.0.4.6, Eddel-
buettel, 2013), and “RcppArmadillo” (version 0.9.880.1.0,
Eddelbuettel & Sanderson, 2014) were used to speed up the
computations. The R package “papaja” (Aust &Barth, 2020)
was used for writing the paper. R code of the Monte-Carlo
simulation study is available at https://osf.io/fykju/.

Results

We report the results of the Monte-Carlo simulation study of
all conditions of r, the number of outcomes, the I 2-statistic,
andρ in combinationwith k = 10,orb = 1, and the reporting
behavior where at least the effect size with the lowest p-value
was reported in this section. We selected these conditions to
show that the proposed method can correct for ORB in the
most extreme and challenging conditions. We discuss how
the results were affected by the other conditions of ρ, orb,
and reporting behavior at the end of this section. All results
are available in the supplemental materials at https://osf.io/
my829/.

Non-positive semi definite variance-covariance matrices
were needed for generating individual participant data and
as within-study variance-covariance matrices when apply-
ing the multivariate random-effects model and the bootstrap
procedure. The maximum proportion of non-positive semi
definite variance-covariance matrices for generating individ-
ual participant data was 0.067. The maximum proportion of
non-positive semi definite within-study variance-covariance
matrices was less than 0.001 and 0.105 for applying the
multivariate random-effects model and bootstrap procedure,
respectively. Moreover, the median proportion of non-
positive semi definite variance-covariance matrices used for
data generation and applying themultivariate random-effects
model equaled 0 and was less than 0.0001 for the boot-
strap procedure. Hence, it is unlikely that the non-positive
semi definite variance-covariancematrices have distorted the
results.

Effect size estimation

Figure 2 shows the results with respect to estimation of ρ for
k = 10. The conditions of r are varied between the panels in
the rows of Fig. 2 and the conditions of dv are varied between
the panels in the columns. Each plot shows the I 2-statistic on
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Fig. 2 Effect size estimation of the random-effects model (RE) and
random-effects meta-regression model with as moderator the variance
(Var.) and standard deviation (St. dev.) of the observed outcomes’ effect
sizes, an estimate of the population variance (Pop. var.) and standard
deviation (Pop. st. dev.), variance of the difference scores (Var. dif.)
and standard deviation of the difference scores (St. dev. dif.), and the

variance (Bootstrap var.) and standard deviation (Bootstrap st. dev.)
obtained with a parametric bootstrap based on 1,000 samples. The
results in this figure belong to the condition ρ = 0, orb = 1, k = 10, and
reporting behavior where the effect size with the lowest p-value was
reported

the x-axis and the average effect size estimate across all repli-
cations in the Monte-Carlo simulation study on the y-axis.
Black lines with open bullets refer to average estimates of the
random-effects model. Red lines refer to average estimates
of meta-regression models with the variance as moderator
and green lines refer to average estimates of models with
the standard deviation as moderator. Different estimates of
the variability among outcomes’ effect size are indicated by
using different symbols. Finally, a horizontal dashed black
line denotes the average true effect size.

Bias of the random-effects model (with a maximum bias
of 0.127 for the condition I 2-statistic = 0.9, r = 0.3, and dv =
6) was the largest for all conditions included in Fig. 2. Bias
of the random-effects model increased as the heterogeneity
in true effect size increased (except for condition r = 0.9 and
dv = 4). Models with variance as moderator systematically
overestimated the effect size, but this bias was less severe
than bias of the random-effects model. Models with standard

deviation as moderator yielded accurate effect size estima-
tion. The positive bias of the random-effects model and the
models with variance as moderator increased as a function
of dv and decreased as a function of r. This was as expected,
because it is most likely to observe a severely overestimated
effect size in a study where dv is large and r is low.

The use of the observed variance or standard deviation
of the outcomes’ effect size, the population variance estima-
tor, the difference scores, or the bootstrap procedure yielded
similar results. However, the models with standard deviation
as moderator that were obtained by the bootstrap procedure
and difference scores were negatively biased for I 2-statistic
= 0.9 (maximum negative bias of -0.016 for the condition r
= 0.5 and dv = 6). This was caused by the way the standard
deviation was computed in these models. Both the bootstrap
procedure and the difference scores require as input ρ, which
is unknown. We used the mean of the reported correlation
coefficients within a primary study as the estimate for ρ, but

123



Behavior Research Methods

Fig. 3 Effect size estimation of the random-effects model (RE) and
random-effects meta-regression model with as moderator the variance
(Var.) and standard deviation (St. dev.) of the observed outcomes’ effect
sizes, an estimate of the population variance (Pop. var.) and standard
deviation (Pop. st. dev.), variance of the difference scores (Var. dif.)
and standard deviation of the difference scores (St. dev. dif.), and the

variance (Bootstrap var.) and standard deviation (Bootstrap st. dev.)
obtained with a parametric bootstrap based on 1,000 samples. The
results in this figure belong to the condition ρ = 0.3, orb = 1, k = 10,
and reporting behavior where the effect size with the lowest p-value
was reported

this estimator of ρ was positively biased due to ORB. This
resulted in negative bias of the average effect size in these
models. The model that used the standard deviation based
on the population variance estimator showed less bias in the
average effect size, because this estimator of the variance is
not a function of ρ.

Figure 3 shows the bias in effect size estimation for
ρ = 0.3. Overestimation was the largest for the random-
effects model followed by models with the variance and
standard deviation as moderator. However, models with the
standard deviation as moderator no longer accurately esti-
mated the effect size. For I 2-statistic = 0.9, the estimated
effect size was generally less biased with the variance rather
than standard deviation as moderator (except for r = 0.5 in
combination with either dv = 4 or 6). Especially models with
the standard deviation based on the bootstrap procedure and

difference scores substantially underestimated the effect size
(maximum bias -0.097 for the difference scores in condition
r = 0.9 and dv = 6).

Mean squared error

Figure 4 presents theMSE of effect size estimation for ρ = 0
using the same layout as of Figs. 2 and 3.MSE of all methods
increased if dv and heterogeneity were increased and r was
decreased. The random-effects model was generally among
the methods with the smallest MSE and had the smallest
MSE if I 2-statistic = 0.9 and r = 0.9. This implied that bias
in effect size estimation of the random-effects model was
compensated by the smaller variance to yield a smallerMSE.
There was hardly any difference in MSE between models
that used the variance as moderators. These models yielded
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Fig. 4 Mean squared error x 10,000 (MSE) of effect size estimation
of the random-effects model (RE) and random-effects meta-regression
model with as moderator the variance (Var.) and standard deviation
(St. dev.) of the observed outcomes’ effect sizes, an estimate of the
population variance (Pop. var.) and standard deviation (Pop. st. dev.),
variance of the difference scores (Var. dif.) and standard deviation of

the difference scores (St. dev. dif.), and the variance (Bootstrap var.)
and standard deviation (Bootstrap st. dev.) obtained with a parametric
bootstrap based on 1,000 samples. The results in this figure belong to
the condition ρ = 0, orb = 1, k = 10, and reporting behavior where the
effect size with the lowest p-value was reported

the lowest MSE for the condition r = 0.3 and dv = 6. MSE
of models with the standard deviation as moderator were
the largest and generally comparable. However, MSE of the
model using the standard deviation of the observed effect size
was smaller than of the other three models with the standard
deviation as moderator.

Figure 5 shows the MSE of effect size estimation for ρ =
0.3. MSE of all methods decreased by increasing the true
effect size. The patterns in the results were highly similar
compared to the results of ρ = 0, but the differences between
the methods’ MSE were smaller.

Other conditions

We summarize the results of the conditions only reported
in the supplemental materials (https://osf.io/my829/) in this
section. Increasing the number of studies to k = 40 hardly
affected bias, but showed that MSE of the random-effects

modelwas no longer the lowest except for the conditionswith
r = 0.9 in combination with dv = 2 or 4. MSE of the models
with variance as moderator were highly comparable and had
the lowest MSE in the majority of conditions. These results
implied that themethod that corrects for ORBbenefitedmore
from increasing the number of effect sizes in a meta-analysis
than the random-effects model.

Reporting the first statistically significant effect size
instead of the one with the lowest p-value had only a minor
impact on effect size estimation in conditions with ρ = 0.
This was caused bymany of the effect sizes not being statisti-
cally significant ifρ = 0 and both reporting behaviors ending
up with reporting the effect size with the lowest p-value. The
overestimation of the random-effects model and the models
with the variance as moderator decreased if the first statisti-
cally significant effect size was reported in combination with
ρ = 0.3,whereasmodelswith the standard deviation asmod-
erator underestimated the effect size in these conditions.MSE
hardly changed across the two reporting behaviors except for
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Fig. 5 Mean squared error x 10,000 (MSE) of effect size estimation
of the random-effects model (RE) and random-effects meta-regression
model with as moderator the variance (Var.) and standard deviation
(St. dev.) of the observed outcomes’ effect sizes, an estimate of the
population variance (Pop. var.) and standard deviation (Pop. st. dev.),
variance of the difference scores (Var. dif.) and standard deviation of

the difference scores (St. dev. dif.), and the variance (Bootstrap var.)
and standard deviation (Bootstrap st. dev.) obtained with a parametric
bootstrap based on 1,000 samples. The results in this figure belong to
the condition ρ = 0.3, orb = 1, k = 10, and reporting behavior where
the effect size with the lowest p-value was reported

the MSE of the random-effects model being comparable to
the MSE of models with variance as moderators for the con-
dition where the first statistically significant effect size was
reported in combination with k = 40, orb = 1, and ρ = 0.3.

Less severe ORB (orb = 0.5) resulted in effect size esti-
mates of all models close to the true effect size if ρ = 0.
For ρ = 0.3, models with the standard deviation as moder-
ator yielded a negative bias especially if I 2-statistic = 0.9.
The maximum negative bias was -0.121 for the model with
the standard deviation based on the difference scores for the
condition r = 0.9, dv = 6, and k = 40. MSE of all models
was comparable for conditions with orb = 0.5 and 1. Bias
in effect size estimates of all models was also minimal in
case of no ORB (orb = 0). MSE of the multivariate random-
effects model was now the lowest in all conditions and again

the highest for the model with the standard deviation as
moderator.

Conclusions and recommendations

The Monte-Carlo simulation study showed severe overesti-
mation caused by ORB when the effect size was estimated
with the random-effects model. Hence, we recommended to
always accompany the results of the (multivariate) random-
effects model with a method to correct effect size for ORB
if ORB is expected to be present. We generally recommend
to use the standard deviation as moderator if the researcher’s
main focus is on estimating effect size and to use the vari-
ance as moderator if a researcher wants the estimator with
the lowest MSE.
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A caveat here is that estimates became underestimated
if the standard deviation was used as moderator and the
true effect size was of medium magnitude (ρ = 0.3) in
combination with large between-study heterogeneity. Hence,
researchers better use the variance as moderator if a medium
true effect size in combination with large between-study het-
erogeneity is expected. In case the magnitude of the true
effect size and the extent of between-study heterogeneity is
unclear, we recommend to apply and report results of models
with both the standard deviation and variance as moderators.
Differences between the options for estimating the variability
in the outcomes’ effect size were generally small. However,
we recommend to estimate the variability using the estima-
tor of the population variance, because it does not require an
estimate of ρ, can be used for any effect size measure, and is
a computationally faster procedure than the bootstrap.

We used the true correlation between the outcomes in our
Monte-Carlo simulation study, but this correlation is usually
unknown. Hence, we also conducted a sensitivity analysis
to assess whether the results of the models were affected by
misspecification of the correlation between the outcomes.We
reran the simulations for the condition ρ = 0, k = 10, dv =
4, r = 0.5, orb = 1, and reporting behavior where the study
with the lowest p-value got reported, but now misspecified
the correlation between the outcomes by setting it equal to
0.3 and 0.9. The results of these simulations showed that the
modelswere hardly affected bymisspecifying the correlation
between the outcomes (see supplemental materials at https://
osf.io/my829/ for the results), which is a desirable property
of any sensitivity analysis.

Example

We illustrate CORB by applying it to a meta-analysis on the
effect of playing violent video games on aggression. ORB
is expected to be a concern in this research field as there is
a high degree of flexibility in the measurement of aggres-
sion outcomes (Elson et al., 2014; Hilgard et al., 2019; e.g.,
Przybylski&Weinstein, 2019). Themeta-analysis byAnder-
son et al. 2010) studied the effect of playing violent video
games on aggressive affect, aggressive behavior, aggressive
cognition, and physiological arousal. We apply CORB to the
40 experiments3 included in the meta-analysis with aggres-

3 Anderson et al. 2010 report in their Table 5 that the full sample
meta-analysis with aggressive cognition as outcome consists of 48
experiments. We used the cleaned data by Hilgard et al. (2019) for
our analyses who aggregated effect sizes within a study, and therefore
meta-analyze 40 rather than 48 experiments.

sive cognition as outcome. The effect size measure of these
primary studies are Pearson correlation coefficients.

CORB was applied to these data using the variance and
standard deviation obtained with the estimator of the pop-
ulation variance, the difference scores, and the bootstrap
procedure. Only one outcome variable was reported per
study, so we could not use the variance or standard devia-
tion of the observed effect size as moderator in CORB. The
“puniform” package (van Aert, 2022) contains easy-to-use
functions to estimate the population variance, the variance
of the difference scores, and the variance using the bootstrap
procedure. The “var_pop()” function can be used to estimate
the population variance for any effect size measure. Dedi-
cated functionswere developed for estimating the variance of
the difference scores (“var_dif_fis()” and “var_dif_rmd()”)
and applying the bootstrap procedure (“var_boot_fis()” and
“var_boot_rmd()”) for Fisher-z correlation and rawmean dif-
ference as effect size measure.

The “var_pop()” function requires as input the sampling
variance of a primary study’s effect size estimate as well
as r. The function “var_dif_fis()” requires as input the sam-
ple size, r, and ρ and “var_boot_fis()” requires as input the
observedPearson correlation coefficient of the primary study,
N, and r. Information on the sampling variance, sample size,
and observed Pearson correlation coefficient is available in
this meta-analysis. We used three different levels for r (0.5,
0.7, and 0.9) as a sensitivity analysis and the observed Pear-
son correlation coefficient for ρ to match the procedure in
the Monte-Carlo simulation study. R code of this analysis is
available at https://osf.io/rpqus/.

Table 1 shows the results of applying CORB and the
random-effects model to the meta-analysis on the effect of
playing violent video games on aggressive cognition. Only
the results of r = 0.7 are presented in Table 1, because the
results of r = 0.5 and 0.9 were highly similar and therefore
only included in the supplemental materials at https://osf.
io/my829/. The average effect size estimate of the random-
effects model that does not correct for ORB was 0.200 and
significantly different from zero (z = 10.431, p < .001).
ApplyingCORBwith the variance asmoderator yielded aver-
age effect size estimates between 0.153 and 0.158 that were
all statistically significant. Using the standard deviation as
moderator in CORB resulted in average effect size estimates
between0.091 and0.114 thatwere not statistically significant
or only marginally significant. The ORB index of all mod-
els (last column of Table 1) was close to 0.5 indicating that
there was a large correlation between the observed effect size
and variability of the outcome’s effect size. To conclude, cor-
recting for ORB using CORB showed that the average effect
size became closer to zero but was still at least a small effect
according to the rules of thumb by Cohen (1988).
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Table 1 Results of applying the
random-effects (RE)
meta-analysis model and CORB
to the meta-analysis on the
effect of violent video games on
aggressive cognition. Results of
the variance and standard
deviation (St. dev.) based on the
estimator of the population
variance, difference scores, and
bootstrapping are presented

Estimate (95% CI) Test of no effect ORB index

RE 0.200 (0.163;0.236) z=10.431; p < 0.001 -

Pop. estimator Variance 0.158 (0.101;0.214) z=5.386; p < 0.001 0.505

St. dev. 0.114 (0.001;0.224) z=1.972; p=0.049 0.466

Dif. scores Variance 0.153 (0.100;0.204) z=5.675; p < 0.001 0.572

St. dev. 0.091 (-0.014;0.195) z=1.694; p=0.09 0.547

Bootstrap Variance 0.155 (0.103;0.206) z=5.788; p < 0.001 0.563

St. dev. 0.095 (-0.010;0.198) z=1.777; p=0.075 0.541

Note: Correlation between outcomes was assumed to be equal to r = 0.7; between-study variance in the
random-effects meta-analysis model was estimated using restricted maximum likelihood estimation; CI =
confidence interval; two-tailed p-values are reported

Conclusion and discussion

ORB is a pervasive problem in psychological research
(Franco et al., 2016; John et al., 2012) that yields overes-
timated effect size estimates in primary studies. Combining
these primary studies in a meta-analysis results in an over-
estimated meta-analytic effect size estimate as well. The
meta-analytic reporting standards (MARS, Appelbaum et
al. 2018) of the American Psychological Association and
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA, Moher et al., 2009) both advise
researchers to address the risk of biases such as ORB in
any meta-analysis. However, the risk of bias is not rou-
tinely examined inmeta-analyses published in psychological
research (Hohn et al., 2019).

The lack of attention for assessing the risk of bias in gen-
eral andORB in particular within psychology is likely caused
by current methods being difficult to apply. For instance, the
method that is nowadays recommended by the ORBIT team
to correct for ORB requires researchers to classify the risk of
bias in each primary study. This is currently not frequently
done in meta-analyses published within psychology.We pro-
posed the CORB method that is easier to apply as it does
not require such a classification. The method can be used
as a sensitivity analysis to estimate the average effect size
by including the variability of the outcomes’ effect size as a
moderator in a (multivariate) random-effectsmeta-regression
model. A major advantage of the method is that it is intuitive
and easy to apply, because most researchers are familiar with
meta-regression.

Results of aMonte-Carlo simulation study revealed severe
overestimation of the random-effects meta-analysis if ORB
was severe. Hence, we recommend to always accompany the
results of the random-effects or equal-effect model with a
method to correct for ORB if ORB is expected to be present.
Effect size estimation of CORB with the standard deviation
as moderator was accurate in the conditions where overesti-

mation caused by ORB was the largest (true effect equal to
zero, small correlation among the outcomes, large number of
outcomes, and only the outcome with the largest effect size
was reported). However, CORB with the standard deviation
asmoderator generally had largerMSE especially if the num-
ber of studies in ameta-analysis was small. In those cases, we
found underestimation of effect size if the true effect size was
of medium magnitude. Hence, we recommend researchers
expecting a medium true effect size to use the variance as
moderator in CORB if an estimator is desiredwith less uncer-
tainty (i.e., smaller MSE), because it had a smaller MSE in
the simulations. If a researcher is completely unsure about
the magnitude of the true effect, we recommend to apply and
report the results of the method with both the standard devi-
ation and variance as moderator. In case a researcher is also
interested in other moderating variables, we recommend to
include the moderator quantifying the variability of the out-
comes’ effect size together with the other moderators. This
allows for interpreting the effect of a moderator while con-
trolling for the other included moderators.

A limitation of the proposed method is that the correla-
tion is needed between the outcomes in the primary studies.
This information is often not readily available (Hedges et al.,
2010), so we usually have to rely on a guesstimate of this
correlation coefficient or use different values for this cor-
relation coefficient in a sensitivity analysis. It is important
to emphasize that misspecifying this correlation coefficient
will bias the results of CORB.However, a smallMonte-Carlo
simulation to study the robustness of CORB to misspecifi-
cation of the correlation between the outcomes showed that
the method’s results were hardly affected by misspecifica-
tions. This is in line with previous research that showed that
the meta-analytic estimate of a multivariate meta-analysis is
not very sensitive to misspecifying the correlation between
outcomes in case of complete data (Ishak et al., 2008; Riley,
2009). However, the robustness of CORB to misspecifying
the correlation between the outcomes also needs to be stud-
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ied for other effect size measures than Pearson correlation
coefficients such as raw mean differences.

Future research may focus on extending CORB such that
the strong assumptions of homogeneous true effect size of
the outcomes within a primary study and the same correla-
tion between outcomes can be relaxed. This will increase the
flexibility of CORB and makes it more widely applicable.
Another opportunity for future research is that CORB opens
doors for simultaneously correcting for publication bias and
ORB. This is of utmost importance as publication bias meth-
ods do not perform well if researcher degrees of freedom are
present in the primary studies (Carter et al., 2019; van Aert et
al., 2016). Including the variability of outcomes’ effect size
as a moderator in a publication bias method such as a selec-
tion model approach (Hedges & Vevea, 2005; van Aert &
van Assen, 2022) or PET-PEESE (Stanley & Doucouliagos,
2014) is a promising approach to simultaneously correct for
publication bias and ORB in a meta-analysis.

Another interesting avenue for future research is that
the developed method can serve as a starting point for
a general framework to correct for the biasing effects of
researcher degrees of freedom in primary studies. The devel-
oped method can, in theory, correct for all researcher degrees
of freedom that cause overestimation of effect size as long as
variability in the outcomes’ effect size can be estimated. That
is, the bias of many researcher degrees of freedom is caused
by variability in the outcomes’ effect sizes in combination
with selective reporting of the outcomes. For example, fail-
ing to report all of a primary study’s conditions is another
frequently used researcher degree of freedom according to
John et al. (2012) and Agnoli et al. 2017). The conditions in
an experiment are then selectively reported rather than the
outcomes. This potentially also yields overestimated effect
size if, for instance, the experimental condition is compared
to multiple control conditions and only the control condition
resulting in the largest mean difference with the experimen-
tal condition gets reported. The developed method can also
correct for this overestimation by including the variability of
the outcomes’ effect size that is caused by selectively report-
ing conditions as a moderator in a meta-regression model.
Another example is when researchers are running the analy-
ses on multiple subsets of the sample and selectively report
the results of a single subset. This also causes additional
variability in the outcome’s effect sizes that can be taken into
account.

To conclude, we have proposed the easy to apply CORB
method to correct the effect size for ORB in a meta-analysis.
CORB was able to correct for bias in conditions where over-
estimation caused by ORB was the largest. To facilitate its
use, we included R functions required to apply CORB in
the “puniform” package. We hope that the development of
CORB draws attention to the prevalent problem of ORB and

that it will be routinely used to correct for ORB in meta-
analyses.
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Appendix A

We derive the estimator of the population variance of a single
draw fromamultivariate normal distribution in this appendix.
The expectation of the population variance is equal to

E

[ 1

p − 1

p∑
j=1

(
yi j − ȳi

)2] = 1

p − 1

(
E

[ p∑
j=1

y2i j

]
− 1

p
E

[( p∑
j=1

yi j
)2])

.

(3)

The expectation of the first term on the right hand side of (3)
equals

E

[ p∑
j=1

y2i j

]
=

p∑
j=1

(
θ2i j + σ 2

i j

)
(4)

123

https://osf.io/preprints/metaarxiv/bn8vd/
https://osf.io/wzmh9/
https://osf.io/wzmh9/
https://github.com/Joe-Hilgard/Anderson-meta/blob/master/cleaned_data.txt
https://github.com/Joe-Hilgard/Anderson-meta/blob/master/cleaned_data.txt
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Behavior Research Methods

where σ 2
i j is the jth diagonal element of the within-study

variance-covariance matrix Si, which is the true variance of
the jth outcome’s effect size. The expectation of the second
term on the right hand side equals

E

[( p∑
j=1

yi j
)2] = E

[ p∑
j=1

p∑
q=1

yi j yiq
]

=
( p∑

j=1

θi j

)2 +
p∑

j=1

p∑
q=1

σi jq (5)

where σi jq refers to the element in the jth row and qth column
of the within-study variance-covariance matrix Si of the ith
primary study, which is the covariance between the effect
size of outcome j and q. Hence, the last term of (5) is the
sum of all elements of Si.

Substituting equations (4) and (5) into (3) yields

E

[ 1

p − 1

p∑
j=1

(
yi j−ȳi

)2] = 1

p − 1

[ p∑
j=1

θ2i j+
p∑

j=1

σ 2
i j−

1

p

( p∑
j=1

θi j

)2− 1

p

p∑
j=1

p∑
q=1

σi jq

]
.

Upon assuming equal true effect size of the outcomes (i.e.,
θi j = θi ), equal sampling variance of the outcomes (i.e.,
σ 2
i j = σ 2

i ), and equal covariances between the outcomes

(i.e., σi jq = r
√

σ 4
i ), this simplifies to

E

[ 1

p − 1

p∑
j=1

(
yi j − ȳi

)2] = 1

p − 1

[
pθ2i + pσ 2

i − 1

p

(
pθi

)2 − 1

p

p∑
j=1

p∑
q=1

σi jq

]

= 1

p − 1

[
pσ 2

i − 1

p

(
pσ 2

i + (p2 − p)r
√

σ 4
i

)]

= 1

p − 1

[
(p − 1)σ 2

i − (p − 1)r
√

σ 4
i

]

= σ 2
i (1 − r).

Appendix B

We derive the variance of the difference between two Fisher-
z transformed correlation coefficients in this appendix. The
two Fisher-z transformed correlations are overlapping such
that one correlation is based on variables l and h and the other
correlation on variables l and m. This variance is equal to

Var
[
f zlh − f zlm

]
= Var

[
f zlh

]
+ Var

[
f zlm

]
− 2Cov

[
f zlh , f zlm

]

where f zlh and f zlm refer to the Fisher-z transformed
correlation coefficients of variables l and h and l and m,
respectively.

The first two terms of the equation above, Var
[
f zlh

]
and

Var
[
f zlm

]
, are equal to 1/(N −3), because we assume that

both Fisher-z transformed correlation coefficients are based
on the same sample and that the variables l, h, and m do

not contain missing data. The third term, Cov
[
f zlh, f zlm

]
,

has been derived before (e.g., Dunn & Clark, 1969; Steiger,
1980a, 1980b). Let σlh,lm be the covariance of two over-
lapping Fisher-z transformed correlations (see equation (10)
in Steiger (1980a) with slightly adapted notation to avoid a
notational conflict)

σlh,lm = 	lh,lm

(1 − ρ2
lh)(1 − ρ2

lm)(N − 3)

where ρlh and ρlm are the true Pearson correlations between
variables l and h and l and m, and 	lh,lm is N times the
covariance of the Pearson correlations between variables l
and h and l andm. 	lh,lm is computed with (see equation (3)
in Steiger (1980a))

	lh,lm = ρhm(1 − ρ2
lh − ρ2

lm) − 1

2
(ρlhρlm)(1 − ρ2

lh − ρ2
lm − ρ2

hm).

Under the assumptions that ρlh = ρlm = ρ and ρhm = r ,

Var
[
f zlh− f zlm

]
is obtained by combining the terms above

Var
[
f zlh − f zlm

]
= 1

N − 3
+ 1

N − 3
− 2

r(1 − ρ2 − ρ2) − 1
2 (ρρ)(1 − ρ2 − ρ2 − r2)

(1 − ρ2)(1 − ρ2)(N − 3)

= 2

N − 3
− 2

r(1 − 2ρ2) − 1
2 ρ2(1 − 2ρ2 − r2)

(1 − ρ2)2(N − 3)
.
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