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Abstract

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real
matrices whose ijth entry (for i /= j ) is nonzero whenever {i, j} is an edge in G and is zero otherwise. This
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and uses it to bound the minimum rank for numerous families of graphs, often enabling computation of the
minimum rank.
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Shaun M. Fallat, research supported in part by an NSERC research grant (sfallat@math.uregina.ca); Chris Godsil
(cgodsil@uwaterloo.ca); Willem Haemers (haemers@uvt.nl); Leslie Hogben (lhogben@iastate.edu); Rana Mikkel-
son (ranam@iastate.edu); Sivaram Narayan (sivaram.narayan@cmich.edu); Olga Pryporova (olgav@iastate.edu); Irene
Sciriha (irene.sciriha-aquilina@um.edu.mt); Wasin So (so@math.sjsu.edu); Dragan Stevanović (dragance@pmf.
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1. Introduction

A graph is a pair G = (V , E), where V is the set of vertices (usually {1, . . . , n} or a subset
thereof) and E is the set of edges (an edge is a two-element subset of vertices); what we call a
graph is sometimes called a simple undirected graph. In this paper each graph is finite and has
nonempty vertex set. The order of a graph G, denoted |G|, is the number of vertices of G.

If F is a field, the set of symmetric matrices over F will be denoted by Sn(F ). For such a
matrix, the graph of A, denotedG(A), is the graph with vertices {1, . . . , n} and edges {{i, j}: aij /=
0, 1 � i < j � n}. Note that the diagonal of A is ignored in determining G(A).

The set of symmetric matrices of graph G (over R) is defined to be

S(G) = {A ∈ Sn(R):G(A) = G}.
More generally, the set of symmetric matrices over F of G is S(F, G) = {A ∈ Sn(F ):G(A) =
G}.

The minimum rank of a graph G (over R) is defined to be

mr(G) = min{rank(A): A ∈ S(G)}.
More generally, the minimum rank over F is mrF (G) = min{rank(A): A ∈ S(F, G)}. Over R,
the positive semidefinite minimum rank of G is defined to be

mr+(G) = min{rank(A): A ∈ S(G), A positive semidefinite}.
Clearly

mr(G) � mr+(G).

For A ∈ Rn×n, the corank of A is the nullity of A and the maximum nullity (or maximum
corank) of a graph G (over R) is defined to be

M(G) = max{corank(A): A ∈ S(G)}.
More generally, the maximum nullity overF isMF (G) = max{corank(A): A ∈S(F, G)}. Clearly

mrF (G) + MF (G) = |G|.
The minimum rank problem (of a graph) is to determine mr(G) (or mrF (G)) for any graph

G. See [8] for a survey of known results and discussion of the motivation for the minimum rank
problem; an extensive bibliography is also provided there. In Section 3 of this paper we establish
the minimum rank/maximum nullity of several families of graphs; see Table 1 for a list. As far as
we know all of these results are new with the exception of 3.17 which was established earlier by
one of the coauthors of this paper, but had not been published. The information in this table is also
available on-line in the form of a minimum rank graph catalog [1], and will be updated routinely.
In Section 2, we discuss the use of zero forcing sets to bound M(G) from above and introduce
the graph parameter Z(G). Section 4 contains a discussion of graphs for which Z(G) = M(G)

and an example where Z(G) > MF (G) for all F .
A path is a graph Pn = ({v1, . . . , vn}, E) such that E = {{vi, vi+1}: i = 1, . . . , n − 1}. A

cycle is a graph Cn = ({v1, . . . , vn}, E) such that E = {{vi, vi+1}: i = 1, . . . , n − 1} ∪ {{vn, v1}}.
The length of a path or cycle is the number of edges. A complete graph is a graph Kn =
({v1, . . . , vn}, E) such that E = {{vi, vj }: 1 � i < j � n}. A graph (V , E) is bipartite if the
vertex set V can be partitioned into two nonempty subsets U, W , such that every edge of E has one
endpoint in U and one in W . A complete bipartite graph is a bipartite graph Kp,q = (U ∪ W, E)

such that |U | = p, |W | = q and E = {{u, w}: u ∈ U, w ∈ W }.
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Table 1
Summary of minimum rank and maximum nullity results established in this paper−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Result # G Order M(G) mr(G)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3.1 Qn (hypercube) 2n 2n−1 2n−1

3.2 Tn (supertriangle) 1
2 n(n + 1) n 1

2 n(n − 1)

3.3 Ks �Pt st s s(t − 1)

3.7 Ps �Pt st min{s, t} st − min{s, t}
3.13 Ps �Pt st s + t − 1 (s − 1)(t − 1)

3.8 Cs �Pt st min{s, 2t} st − min{s, 2t}
3.9 Möbius ladder 2n 4 2n − 4
3.11 Ks �Kt st st − s − t + 2 s + t − 2
3.12 Cs �Kt , s � 4 st 2t (s − 2)t

3.14 Kt ◦ Ks, t � 2 st + t st − 1 t + 1
3.15 Cn, n � 5 n n − 3 3
3.17 T , T a tree (with |T | = n), n n − 3 3

n � 4, T /= K1,n−1
3.18 L(Kn) 1

2 n(n − 1) 1
2 (n2 − 3n + 4) n − 2

L(G) (with |G| = n) if n − 2
3.20 G has a Hamiltonian path
3.21 or contains Kk,n−k as a

subgraph (1 < k < n − 1)
3.24 L(T ), T a tree and |T | − 1 � − 1 |T | − �

�= # pendent vertices of T

3.26 Petersen 10 5 5
3.28 4-Antiprism 8 4 4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 1. Cs �P2 and C4 �Pt .

The following graph operations are used to construct families of graphs:

• The complement of a graph G = (V , E) is the graph G = (V , E), where E consists of all
two-element sets from V that are not in E.

• The line graph of a graph G = (V , E), denoted L(G), is the graph having vertex set E, with
two vertices in L(G) adjacent if and only if the corresponding edges share an endpoint in G.
Since we require a graph to have a nonempty set of vertices, the line graph L(G) is defined
only for a graph G that has at least one edge. See Fig. 7 in Section 3 for a picture of a line
graph of a tree.

• The Cartesian product of two graphs G and H , denoted G �H , is the graph with vertex set
V (G) × V (H) such that (u, v) is adjacent to (u′, v′) if and only if (1) u = u′ and vv′ ∈ E(H),
or (2) v = v′ and uu′ ∈ E(G). In G �Pt with the vertex v0 being an endpoint of the path Pt ,
the subgraph induced by the vertices {(u, v0): u ∈ V (G)} is called an endpoint copy of G. Fig.
1 shows examples of Cs �P2 and C4�Pt ; the latter has an endpoint copy of C4 colored black.
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• The strong product of two graphs G and H , denoted G �H , is the graph with vertex set
V (G) × V (H) such that (u, v) is adjacent to (u′, v′) if and only if (1) uu′ ∈ E(G) and vv′ ∈
E(H), or (2) u = u′ and vv′ ∈ E(H), or (3) v = v′ and uu′ ∈ E(G). See Fig. 5 in Section 2
for a picture of Ps �Pt .

• The corona of G with H , denoted G ◦ H , is the graph of order |G‖H | + |G| obtained by
taking one copy of G and |G| copies of H , and joining all the vertices in the ith copy of H

to the ith vertex of G. See Fig. 4 in Section 2 for a picture of C5 ◦ K2. Note that G ◦ H and
H ◦ G are usually not isomorphic (in fact, if |G| /= |H |, then |G ◦ H | /= |H ◦ G|).

The nth hypercube, Qn, is defined inductively by Q1 = K2 and Qn+1 = Qn �K2. Clearly
|Qn| = 2n. The nth supertriangle, Tn, is an equilateral triangular grid with n vertices on each
side (see Fig. 4 in Section 2 for a picture). The order of Tn is 1

2n(n + 1). The Möbius ladder is
obtained from Cn �P2 by replacing one pair of parallel cycle edges with a crossed pair (see Fig.
6 in Section 3).

We need a few additional definitions. A graphG′ = (V ′, E′) is a subgraph of graphG = (V , E)

if V ′ ⊆ V, E′ ⊆ E. The subgraph G[R] of G = (V , E) induced by R ⊆ V is the subgraph with
vertex set R and edge set {{i, j} ∈ E | i, j ∈ R}. The result G[V \ {v}] of deleting a vertex v is
also denoted by G − v.

An induced subgraph G′ of a graph G is a clique if G′ has an edge between every pair of
vertices of G′ (i.e., G′ is isomorphic to K|G′|). A set of subgraphs of G, each of which is a clique
and such that every edge of G is contained in at least one of these cliques, is called a clique
covering of G. The clique covering number of G, denoted by cc(G), is the smallest number of
cliques in a clique covering of G. We have:

Observation 1.1 [6,8]. Since a matrix obtained from a clique covering as a sum of rank 1 matrices
is positive semidefinite

mr(G) � mr+(G) � cc(G).

If F is an infinite field then mrF (G) � cc(G), and this is true for every field if every pair of
distinct cliques in a minimal clique covering intersect in at most one vertex.

Furthermore, it is known [6] that if G is chordal, then mr+(G) = cc(G), whereas mr(G) is
often less than cc(G) for chordal graphs.

The matrix Gram(v1, . . . , vn) = [gij ] ∈ Rn×n defined by gij = 〈vi , vj 〉, i, j ∈ {1, 2, . . . , n}
is called the Gram matrix of the vectors v1, v2, . . . , vn ∈ Rd . Note that any Gram matrix is positive
semidefinite.

The Colin de Verdière-type parameter ξ can be useful in computing minimum rank or maximum
nullity (over the real numbers). A symmetric real matrix M is said to satisfy the Strong Arnold
Hypothesis provided there does not exist a nonzero symmetric matrix X satisfying:

• MX = 0.
• M ◦ X = 0.
• I ◦ X = 0,

where◦denotes the Hadamard (entrywise) product and I is the identity matrix. For a graphG, ξ(G)

is the maximum nullity among matrices A ∈ S(G) that satisfy the Strong Arnold Hypothesis. It
follows that ξ(G) � M(G).
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A contraction of G is obtained by identifying two adjacent vertices of G, and suppressing any
loops or multiple edges that arise in this process. A minor of G arises by performing a series of
deletions of edges, deletions of isolated vertices, and/or contraction of edges. A graph parameter
ζ is minor monotone if for any minor G′ of G, ζ(G′) � ζ(G). The parameter ξ was introduced
in [3], where it was shown that ξ is minor monotone. It was also established that ξ(Kn) = n − 1
and ξ(Kp,q) = p + 1 (under the assumptions that p � q, 3 � q).

The main goal of this paper is the calculation of M(G) for many families of graphs. Prior
to this work M(G) was known for a very limited number of graphs on an arbitrary number of
vertices. Our technique is to establish tight upper and lower bounds on M(G).

In Section 2, we introduce the new graph parameter Z(G), the minimum size of a zero forcing
set. We show that Z(G) is an upper bound for MF (G) for any field F . Somewhat surprisingly,
M(G) = Z(G) for most graphs for which M(G) is known, for example for all graphs with fewer
than seven vertices. Moreover, for the families of graphs in Table 1, Z(G) is easily found.

In Section 3, we establish tight lower bounds for M(G). Our main tools are explicit con-
structions of matrices A in S(G) with corank(A) = M(G), the lower bound ξ(G) � M(G)

coupled with minor monotonicity, and the lower bound obtained via Observation 1.1. The bound
ξ(G) � M(G) is for the real field only, and some of the other techniques used rely on properties
of the real numbers. Consequently, the results in Table 1 are stated just for the real field, although
a few of the actual results are established in more general settings.

In Section 4, we give an example of a graph for which MF (G) < Z(G) for every field F , intro-
duce the parameter mz(G) = |G| − Z(G) and make a few observations that are more conveniently
expressed in terms of mz(G), and establish Z(G) = M(G) for a few additional graphs.

In Section 5, we give some extensions to combinatorially symmetric matrices, and in Section
6 we make concluding remarks.

2. Zero forcing sets and the graph parameter Z(G)

What we now call zero forcing sets have been used previously on an ad hoc basis to bound
M(G) from above (see for example [11]). Here we discuss the use of this technique, including
exhibiting zero forcing sets for several families of graphs, and introduce the graph parameter
Z(G) as the minimum size of a zero forcing set.

Definition 2.1

• Color-change rule:
If G is a graph with each vertex colored either white or black, u is a black vertex of G, and
exactly one neighbor v of u is white, then change the color of v to black.

• Given a coloring of G, the derived coloring is the result of applying the color-change rule until
no more changes are possible.

• A zero forcing set for a graph G is a subset of vertices Z such that if initially the vertices in
Z are colored black and the remaining vertices are colored white, the derived coloring of G is
all black.

• Z(G) is the minimum of |Z| over all zero forcing sets Z ⊆ V (G).

For example, an endpoint of a path is a zero forcing set for the path. In a cycle, any set
of two adjacent vertices is a zero forcing set. More examples of zero forcing sets are given
below.
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The derived coloring (of a specific coloring) is in fact unique, since any vertex that turns black
under one sequence of applications of the color-change rule can always be turned black regardless
of the order of color changes. This can be proved by an induction on the number of color changes
necessary to turn the vertex black, but since for our purposes the uniqueness of the derived coloring
is not necessary, we do not supply the details.

The underlying idea is that a black vertex is associated with a coordinate in a vector that is
required to be zero, while a white vertex indicates a coordinate that can be either zero or nonzero.
Changing a vertex from white to black is essentially noting that the corresponding coordinate is
forced to be zero if the vector is in the kernel of a matrix in S(G) and all black vertices indicate
coordinates assumed to be or previously forced to be 0 (cf. Proposition 2.3). Hence the use of the
term “zero forcing set”.

The support of a vector x = [xi], denoted supp(x), is the set of indices i such that xi /= 0.

Proposition 2.2. If F is a field, A ∈ Fn×n, and corank(A) > k, then there is a nonzero vector
x ∈ ker(A) vanishing at any k specified positions. In other words, if W is a set of k indices, then
there is a nonzero vector x ∈ ker(A) such that supp(x) ∩ W = ∅.

Proof. Let 1 � i1 < i2 < · · · < ik � n and let

Vk = {x ∈ Fn: xi1 = xi2 = · · · = xik = 0}.
Then dim Vk = n − k. Let N = ker(A). Then

dim(Vk ∩ N) = dim Vk + dim N − dim(Vk + N) > n − k + k − n = 0,

since dim N = corank(A) > k and dim(Vk + N) � dim(F n) = n. Therefore,Vk ∩ N /= {0}. �

Let G be a graph on n vertices, and let u be a vertex of G. Write v ∼ u if v is adjacent to u,
and v�u if v /= u and v is not adjacent to u. Then if A ∈ S(F, G) and x ∈ Fn

(Ax)u = auuxu +
∑
v∼u

auvxv +
∑
v�u

auvxv = auuxu +
∑
v∼u

auvxv.

Proposition 2.3. Let Z be a zero forcing set of G = (V , E) and A ∈ S(F, G). If x ∈ ker(A) and
supp(x) ∩ Z = ∅, then x = 0.

Proof. If Z = V , there is nothing to do, so suppose Z /= V . Since Z is a zero forcing set we must
be able to perform a color change. That is, there exists a vertex u colored black (xu is required
to be 0) with exactly one neighbor v colored white (so xv is not yet required to be 0). Upon
examination, the equation (Ax)u = 0 reduces to auvxv = 0, which implies that xv = 0. Similarly
each color change corresponds to requiring another entry in x to be zero. Thus x = 0. �

Proposition 2.4. Let G = (V , E) be a graph and let Z ⊆ V be a zero forcing set. Then MF (G) �
|Z|, and thus MF (G) � Z(G) for any field F.

Proof. Assume MF (G) > |Z|, and let A ∈ S(G) with corank(A) > |Z|. By Proposition 2.2,
there is a nonzero vector x ∈ ker(A) that vanishes on all vertices in Z. By Proposition 2.3, x = 0,
a contradiction. �
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Fig. 2. Two types of zero forcing sets shown on K3 �C4.

The next proposition provides an upper bound for the parameter Z for any Cartesian product.
Fig. 2 illustrates Proposition 2.5 for K3 �C4.

Proposition 2.5. For any graphs G, H, Z(G �H) � min{Z(G)|H |, Z(H)|G|}.

Proof. The set of vertices associated with (the same) zero forcing set in each copy of G is a zero
forcing set for G �H , so Z(G �H) � Z(G)|H |. Similarly, Z(G �H) � Z(H)|G|. �

Corollary 2.6. Z(G �Pt) � min{|G|, Z(G)t}.

Corollary 2.7. Z(Qn) � 2n−1.

Proof. This follows from the fact that Qn = Qn−1 �K2 and Corollary 2.6. �

Corollary 2.8. Z(G �Ct) � min{Z(G)t, 2|G|}.

Corollary 2.9. Z(G �Kt) � min{Z(G)t, |G|(t − 1)}.

In the case of Ks �Kt there is a better bound than that in Corollary 2.9.

Proposition 2.10. Z(Ks �Kt) � st − s − t + 2.

Proof. The set of all vertices of one copy of Ks and zero forcing sets for all but one of the
remaining copies of Ks form a zero forcing set of size s + (s − 1)(t − 2) = st − s − t + 2 for
Ks �Kt . This is illustrated in Fig. 3. �

Observation 2.11. The n vertices on one edge of Tn are a zero forcing set for Tn and thus
MF (Tn) � Z(Tn) � n for any field F. See Fig. 4.

Proposition 2.12. Z(G ◦ H) � Z(H)|G| + Z(G)|H | − Z(G)Z(H). In particular, for t � 2,

Z(Kt ◦ Ks) � st − 1.

Fig. 3. Zero forcing set for K4 �K3.
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Fig. 4. Zero forcing sets for supertriangle Tn and corona C5 ◦ K2.

1,1 1,2 1,3

2,1

s,1

1,t

3,1

2,2 2,3

3,2 3,3

Fig. 5. Zero forcing set for Ps �Pt .

Proof. Consider the corona G ◦ H . Choose a minimal zero forcing set ZG for G. Construct a zero
forcing set for G ◦ H (that consists entirely of vertices of copies of H ) as follows: Let Z con-
sist of all the vertices in the copies of H associated with the vertices in ZG, and for each of the
|G| − Z(G) remaining copies of H , choose a zero forcing set of size Z(H). This is illustrated in
Fig. 4, where G = C5, Z(C5) = 2, H = K2, and Z(H) = 1. Clearly the order of Z is Z(G)|H | +
(|G| − Z(G))Z(H). The copies of H that are all black will change the vertices in ZG black. This
zero forcing set then turns at least one more vertex v in G black. Then all the vertices of the copy of
H adjacent to v can be turned black by the zero forcing set in this copy of H . Repeat this process
as needed (i.e., change a vertex of G to black, then change its copy of H to black, etc.). Thus

Z(G ◦ H) � Z(H)|G| + Z(G)|H | − Z(G)Z(H).

The statement Z(Kt ◦ Ks) � st − 1 is immediate for t � 2 unless s = 1, in which case the bound
Z(K1)|Kt | + Z(Kt)|K1| − Z(Kt)Z(K1) = 1(t − 1) + t (1) − (t − 1)1 = t rather than t − 1. In
this case, a zero forcing set can be obtained by using all but one of the copies of K1, so in fact,
Z(Kt ◦ K1) � t − 1. �

Observation 2.13. The graphPs �Pt is shown in Fig. 5 andZ = {(1, j): 1 � j � t} ∪ {(i, 1): 1 �
i � s} is a zero forcing set. Thus Z(Ps �Pt) � s + t − 1.

3. Minimum rank and maximum nullity of graphs

In this section, we determine the minimum rank of several families of graphs and several
regular graphs.



1636 AIM Minimum Rank Group / Linear Algebra and its Applications 428 (2008) 1628–1648

Theorem 3.1. For the hypercube,M(Qn) = 2n−1 = Z(Qn). This is the value of maximum nullity
over any field of characteristic not 2 that contains

√
2 or any field of characteristic 2.

Proof. Let F be a field that contains
√

2. We recursively define two sequences of matrices. Let

H1 =
[

1 1
1 1

]
and L1 =

[
0 1
1 0

]
.

Given Ln−1, define

Hn =
[
Ln−1 I

I Ln−1

]
and Ln = 1√

2

[
Ln−1 I

I −Ln−1

]
.

Then G(Hn) = Qn. By induction, L2
n = I . Since[

I 0
−Ln−1 I

] [
Ln−1 I

I Ln−1

]
=

[
Ln−1 I

0 0

]
,

rank(Hn) = 2n−1.

For a field of characteristic 2, we recursively define one sequence of matrices. Let H1 =
[

1 1
1 1

]
.

Given Hn−1, define

Hn =
[
Hn−1 + I I

I Hn−1 + I

]
.

Then G(Hn) = Qn. By induction, H 2
n = 0. Since[

I 0
Hn−1 + I I

] [
Hn−1 + I I

I Hn−1 + I

]
=

[
Hn−1 + I I

0 0

]
,

rank(Hn) = 2n−1.
Therefore, in either case, mrF (Qn) � 2n−1, and thus MF (Qn) � 2n−1. Then

2n−1 � MF (Qn) � Z(Qn) � 2n−1,

by Corollary 2.7 (and Proposition 2.4). �

Proposition 3.2. For the supertriangle Tn, M(Tn) = n = Z(Tn) and mr(Tn) = 1
2n(n − 1) =

cc(Tn).

Proof. By Observation 2.11, M(Tn) � Z(Tn) � n. We can cover Tn by 1
2n(n − 1) copies of K3,

so by Observation 1.1, mr(Tn) � cc(Tn) � 1
2n(n − 1). Since M(Tn) + mr(Tn) = 1

2n(n + 1), all
inequalities are equalities. �

Note that in the proof of Proposition 3.2 we have also shown that mr(Tn) = mr+(Tn).

3.1. The minimum rank of products

Proposition 3.3. M(Ks �Pt) = s = Z(Ks �Pt).

Proof. From Corollary 2.6, M(Ks �Pt) � Z(Ks�Pt) � s. Note that Ks+1 is a minor of Ks �Pt

(contract all vertices except the vertices of one endpoint copy of Ks into one vertex). Thus,
s = ξ(Ks+1) � ξ(Ks �Pt) � M(Ks �Pt). �
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Proposition 3.3 need not be valid over the field Z2, as the next example shows.

Example 3.4. With appropriate ordering of the vertices, any matrix in SZ2(K3 �K2) is of the

form

⎡
⎢⎢⎣

d1 1 1 1 0 0
1 d2 1 0 1 0
1 1 d3 0 0 1
1 0 0 d4 1 1
0 1 0 1 d5 1
0 0 1 1 1 d6

⎤
⎥⎥⎦ and computation using all 64 possible (d1, . . . , d6) shows the

minimum rank is 4. This follows also from Theorem 32 in [4].

We will use a technique involving Kronecker products to construct matrices with the desired
corank for several graphs (cf. [9, Section 9.7]). This technique is particularly well-suited to graphs
that are formed from Cartesian products.

If A is an s × s real matrix and B is a t × t real matrix, then A ⊗ B is the s × s block matrix
whose ij th block is the t × t matrix aijB. The following results are standard.

Observation 3.5. Let G be a graph on s vertices, let H be a graph on t vertices, let A ∈ S(G)

and B ∈ S(H). Then A ⊗ It + Is ⊗ B ∈ S(G �H).
If x is an eigenvector of A for eigenvalue λ and y is an eigenvector of B for eigenvalue μ, then

x ⊗ y is an eigenvector A ⊗ It + Is ⊗ B for eigenvalue λ + μ.

Theorem 3.6. If |G| � t, then M(G �Pt) = |G| = Z(G �Pt).

Proof. Let |G| = s. From Corollary 2.6, M(G �Pt) � Z(G �Pt) � s.
Choose A ∈ S(G) with s distinct eigenvalues, denoted λ1, . . . , λs with associated eigen-

vectors x1, . . . , xs (such an A exists by Gershgorin’s Theorem). Then there exists B ∈ S(Pt )

having eigenvalues −λ1, . . . ,−λs, μs+1, . . . , μt (see [10] and the references therein). Denote
eigenvectors for these eigenvalues by y1, . . . , yt . ThenA ⊗ It + Is ⊗ B has at least s eigenvectors,
namely xi ⊗ yi , i = 1, . . . , s, for eigenvalue 0 = λi + (−λi), so M(G �Pt) � s. �

Corollary 3.7. M(Ps �Pt) = min{s, t} = Z(Ps �Pt).

Theorem 3.8. M(Cs �Pt) = min{s, 2t} = Z(Cs �Pt).

Proof. That M(Cs �Pt) � Z(Cs �Pt) � min{s, 2t} follows from Corollary 2.6.
Let k = � s

2�. Let A be the matrix obtained from the adjacency matrix of Cs by changing the sign

on two symmetrically placed ones. Then the (distinct) eigenvalues of A are λi = 2 cos π(2i−1)
s

,

i = 1, . . . , k, each with multiplicity 2, except that if s is odd, λk = −2 has multiplicity 1. Since
A is a real symmetric matrix, each eigenvalue of multiplicity 2 has 2 independent eigenvectors;
for eigenvalue λi , denote these vectors by xi , zi (if s is odd there is no zk).

For any distinct real numbers μ1, . . . , μt , we can choose B ∈ S(Pt ) having eigenvalues
μ1, . . . , μt . Let r = min{k, t}, and chooseB ∈ S(Pt )having eigenvaluesμi = −λi, i = 1, . . . , r

with eigenvectors yi . Then A ⊗ It + Is ⊗ B has at least min{s, 2t} eigenvectors for eigenvalue
0, namely xi ⊗ yi , zi ⊗ yi , i = 1, . . . , r (if s = 2k − 1 < 2t , so r = k, the eigenvectors are
xi ⊗ yi , i = 1, . . . , k and zi ⊗ yi , i = 1, . . . , k − 1).

Thus M(Cs �Pt) � min{s, 2t}. �
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Fig. 6. Zero forcing set for Möbius ladder.

Proposition 3.9. If G is the Möbius ladder on 2n vertices where n � 3, then M(G) = 4 = Z(G).

Proof. A zero forcing set of four vertices for the Möbius ladderG is shown in Fig. 6, soM(G) � 4.
For n = 3, G = K3,3, and more generally, K3,3 is a minor of G. Since ξ(K3,3) = 4, M(G) �
4. �

Theorem 3.10. For any graph G with at least one edge and any t � 2, M(G �Kt) � M(G)(t −
1) + ζ, where ζ is the maximum multiplicity of a nonzero eigenvalue in a matrix A ∈ S(G) such
that rank(A) = mr(G).

Proof. Choose A ∈ S(G) with eigenvalue 0 of multiplicity M(G) and λ /= 0 of multiplic-
ity ζ . Since A is a real symmetric matrix, eigenvalue 0 has independent eigenvectors xi , i =
1, . . . , M(G), and eigenvalue λ has independent eigenvectors zj , j = 1, . . . , ζ . We can choose
B ∈ S(Kt ) having eigenvalues 0 with multiplicity t − 1 with independent eigenvectors yk, k =
1, . . . , t − 1 and −λ of multiplicity 1 with eigenvector w. Then A ⊗ It + Is ⊗ B has at
least M(G)(t − 1) + ζ eigenvectors for eigenvalue 0, namely xi ⊗ yk, i = 1, . . . , M(G); k =
1, . . . , t − 1, and zj ⊗ w, j = 1, . . . ζ , so M(G �Kt) � M(G)(t − 1) + ζ . �

Corollary 3.11. For s, t � 2,M(Ks �Kt) = st − s − t + 2 = Z(Ks �Kt),and mr(Ks �Kt) =
s + t − 2.

Proof. From Theorem 3.10 and Proposition 2.10

st − s − t + 2 = (s − 1)(t − 1) + 1 � M(Ks �Kt) � Z(Ks�Kt) � st − s − t + 2. �

Corollary 3.12. For s � 4, M(Cs �Kt) = 2t = Z(Cs �Kt).

Proof. For Cs, s � 4, ζ = 2, so

2(t − 1) + 2 = 2t � M(Cs �Kt) � Z(Cs �Kt) � Z(Cs)t = 2t. �

Proposition 3.13. M(Ps �Pt) = s + t − 1 = Z(Ps �Pt) and mr(Ps �Pt) = (s − 1)(t − 1) =
cc(Ps �Pt).

Proof. By Observation 2.13, M(Ps �Pt) � Z(Ps �Pt) � s + t − 1. We can cover Ps �Pt by
(s − 1)(t − 1) copies of K4 so by Observation 1.1, mr(Ps �Pt) � cc(Ps �Pt) � (s − 1)(t − 1).
Since M(Ps �Pt) + mr(Ps �Pt) = st , all inequalities are equalities. �

Note that in the proof of Proposition 3.13 we have also shown that mr(Ps �Pt) = mr+(Ps �Pt).
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Proposition 3.14. For t � 2, M(Kt ◦ Ks) = st − 1 = Z(Kt ◦ Ks) and mr(Kt ◦ Ks) = t + 1 =
cc(Kt ◦ Ks).

Proof. From Proposition 2.12, M(Kt ◦ Ks) � Z(Kt ◦ Ks) � st − 1. The Kt and the t copies of
Ks+1 consisting of each Ks and its neighbor form a clique cover, so mr(G) � cc(Kt ◦ Ks) �
t + 1. Since M(Kt ◦ Ks) + mr(Kt ◦ Ks) = st + t , all inequalities are equalities. �

Note that in the proof of Proposition 3.14 we have also shown that mr(Kt ◦ Ks) = mr+(Kt ◦
Ks).

3.2. The minimum rank of complements

Proposition 3.15. If n � 5, then mr(Cn) = 3.

Proof. If n � 5, then Cn contains an induced P4, and therefore, Cn does too. So mr(Cn) � 3.
Embed Cn as a regular polygon on the unit circle in R2 and let u1, . . . , un be the vectors

representing the vertices. Let B be the Gram matrix of these vectors. Then bi,i+1 = cos(2π/n)

and if 1 < |i − j | < n − 1 then bi,j < bi,i+1. Now rank(B) = 2 so B − cos(2π/n)J has rank at
most three, and G(B − cos(2π/n)J ) = Cn. Thus mr(Cn) � 3. �

An orthogonal representation of a graph G = (V , E) in Rd is a function ϕ: V → Rd such that
ϕ(u) and ϕ(v) are orthogonal if and only if u and v are nonadjacent vertices. If ϕ: V → Rd is
an orthogonal representation, then the Gram matrix of the vectors ϕ(u) is a positive semidefinite
matrix in S(G). Hence if ϕ: V → Rd is an orthogonal representation of G, then mr+(G) is less
than or equal to d (in fact, mr+(G) is equal to the smallest d such there exists an orthogonal
representation ϕ: V → Rd ).

Theorem 3.16. For any tree T , mr+(T ) � 3.

Proof. We prove by induction on the order of T the following statement: T = (V , E)

has an orthogonal representation ϕ: V (T ) → R3 such that ϕ(v) and ϕ(w) are linearly
independent for any pair of distinct vertices v, w of T . The case where T has only one vertex
is clear.

Assume now that the statement holds for every tree with at most n − 1 vertices. Let T be a
tree with n vertices. Let v be a leaf of T . Since T − v has n − 1 vertices, there is an orthogonal
representation ϕ: V (T − v) → R3 such that ϕ(u) and ϕ(w) are linearly independent for every
two distinct vertices u, w. For each vertex u of T − v, let Lu be the plane orthogonal to ϕ(u).
Let w be the vertex adjacent to v in T . Choose a vector x in Lw which is not in Lu for all
u ∈ V (T − v − w) and not a multiple of ϕ(u) for u ∈ V (T − v − w). Extend ϕ to V (T ) by
defining ϕ(v) = x. Then ϕ: V (T ) → R3 is an orthogonal representation of T such that ϕ(u) and
ϕ(z) are linearly independent for any distinct vertices u, z of T . �

Corollary 3.17. Let T be a tree of order n � 3. Then

mr(T ) =
{

3, if P4 is an induced subgraph of T ;
1, otherwise.



1640 AIM Minimum Rank Group / Linear Algebra and its Applications 428 (2008) 1628–1648

Proof. For any tree T , mr(T ) � 3, since mr(T ) � mr+(T ).
Let |T | = n. If T contains an induced P4, T does too. So mr(T ) � 3. If P4 is not induced in

T , any two vertices are connected by a path of length at most two, and so T = K1,n−1. Since
K1,n−1 = Kn−1 ∪ K1, mr(K1,n−1) = 1. �

3.3. The minimum rank of line graphs

Given a graph G = (V , E), an orientation Gτ assigns to each edge {u, v} exactly one of the
two arcs (u, v), (v, u). The incidence matrix of an orientation Gτ is the |V | × |E|{0, ±1}-matrix
D(Gτ ) = [dve] having rows indexed by the vertices and columns indexed by the oriented edges
of G and

dve =
⎧⎨
⎩

0, if v /∈ e,

1, if ∃w, e = (w, v),

−1, if ∃w, e = (v, w).

If G is connected, rank(D(Gτ )) = |G| − 1 [9, Theorem 8.3.1].

Theorem 3.18. mr(L(Kn)) = n − 2.

Proof. Forn = 2,L(K2) = K1 and mr(K1) = 0 = n − 2. Forn = 3,L(K3) = K3 and mr(K3) =
1 = n − 2. For n = 4, L(K4) = K2,2,2 and mr(K2,2,2) = 2 = n − 2 [5].

So now assume n � 5. The vertices of L(Kn) will be the unordered pairs from {1, . . . , n}. The
subgraph induced by a neighborhood of a vertex in L(Kn) is isomorphic to Kn−2 �P2, which
has minimum rank n − 2 by Proposition 3.3. Thus mr(L(Kn)) � n − 2.

For the upper bound, let D denote the incidence matrix of an orientation of Kn−1. Then
rank(D) = n − 2. Consider the matrix

M =
[
In−1 − 1

n−1Jn−1 D

DT DTD

]
.

The matrix partition corresponds to the pairs (edges) that contain 1, and those that do not; it is
straightforward to check that M ∈ L(Kn). Since DTJn−1 = 0

[
I 0

−DT I

] [
In−1 − 1

n−1Jn−1 D

DT DTD

]
=

[
In−1 − 1

n−1Jn−1 D

0 0

]
.

Since all the columns of In−1 − 1
n−1Jn−1 and of D are orthogonal to the all 1s vector

rank(M) = rank

([
In−1 − 1

n − 1
Jn−1D

])
� n − 2,

so mr(L(Kn)) � n − 2. �

It is well known, and straightforward that if H is a subgraph of G (not-necessarily induced),
then L(H) (the line graph of H ) is an induced subgraph of L(G). If G has n vertices, then G is
obviously a subgraph of Kn, hence L(G) is an induced subgraph of L(Kn). By Theorem 3.18 we
have:
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Corollary 3.19. mr(L(G)) � n − 2.

On the other hand, if G contains Pn as a subgraph (in other words, G has a Hamiltonian path)
then L(G) contains L(Pn) = Pn−1 as an induced subgraph. Since mr(Pn−1) = n − 2 we have:

Corollary 3.20. If G has n � 2 vertices and contains a Hamiltonian path, then mr(L(G)) =
n − 2.

Since the majority of graphs on n vertices have a Hamiltonian path (if n is large enough),
Corollary 3.20 provides a large class of graphs with known minimum rank.

For the complete bipartite graph Kk,n−k with 1 < k < n − 1, the minimum rank of the line
graph also attains the maximum value n − 2, because L(Kk,n−k) is isomorphic to Kk �Kn−k ,
which has minimum rank n − 2 by Corollary 3.11. Thus we have:

Corollary 3.21. If G contains Kk,n−k as a subgraph (with 1 < k < n − 1), then mr(L(G)) =
n − 2.

Note that this corollary also implies that mr(L(G)) = n − 2 if G is a complete multipartite
graph with more than two classes.

We now turn our attention to line graphs of trees; for such line graphs Corollary 3.20 gives the
actual value only if G = Pn. If T is the star K1,n−1 then L(T ) = Kn−1, hence mr(L(T )) = 1.
In fact, for a tree T it follows from Corollary 3.24 below that mr(L(T )) = n − 2 if and only if
T = Pn (with n � 2).

An example of a tree and its corresponding line graph is shown in Fig. 7. In this example L(T )

consists of four cliques, one clique for each non-pendent vertex of T . Furthermore, these cliques
intersect only at vertices. This holds in general.

A connected graph is nonseparable if it does not have a cut-vertex. A block of a graph is a
maximal nonseparable subgraph. A graph is block-clique (also called a 1-chordal) if every block
is a clique. A block-clique graph can be built by adding one block at a time via union, where the
intersection consists of a single vertex. Clearly the clique cover number of a block-clique graph
is the number of blocks. A pendent clique of a block-clique graph G such that cc(G) � 2 is a
clique containing exactly one cut-vertex of G.

Observation 3.22. A graph is the line graph of a tree if and only if it is block-clique and no vertex
is contained in more than 2 blocks. The number of blocks is the number of non-pendent vertices
of the tree.

Fig. 7. A tree T and its line graph L(T ).
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Fig. 8. A zero forcing set for L(T ).

Proposition 3.23. Let F be a field, and let G be a block-clique graph of order at least 2 such that
no vertex is contained in more than 2 blocks. Then mrF (G) = cc(G) and MF (G) = Z(G).

Proof. Since the blocks intersect only in vertices, mrF (G) � cc(G). We establish the following
two statements by induction on cc(G):

1. If WG is the set of vertices of G that are not cut-vertices, then |WG| = |G| − cc(G) + 1.
2. A zero forcing set Z for G can be obtained by choosing all but one of the vertices of WG

(see Fig. 8).

Both statements are clearly true for cc(G) = 1 (since |G| � 2). Assume true for all graphs
H such that cc(H) < cc(G). Choose a pendent clique K of G and denote the cut-vertex of
K by v. The subgraph H of G induced by V (G) \ V (K) ∪ {v} is a block-clique graph with
cc(H) = cc(G) − 1. Note that v ∈ WH , since v is in only one clique of H .

Then by hypothesis, |WH | = |H | − cc(H) + 1, and

|WG| = |WH | − 1 + |K| − 1 = |H | − cc(H) + 1 − 1 + |K| − 1 = |G| − cc(G) + 1.

To obtain a zero forcing set for G consisting of all but one of the vertices in WG, select the
zero forcing set ZH consisting of all non-cut-vertices of H except v. Then any set consisting of
ZH and all vertices of K except v and one other vertex of K is a zero forcing set for G, because
by applying the color-change rule to the vertices in H , v can be changed to black, and then the
last vertex of K can be changed to black.

Since mrF (G) � cc(G) = |G| − |WG| + 1, MF (G) � Z(G) � |WG| − 1, and mrF (G) +
MF (G) = |G|, all inequalities are equalities. �

A zero forcing set for the line graph of the tree T in Fig. 7 is shown in Fig. 8.

Corollary 3.24. Let F be a field, let T be a tree on n vertices with � pendent vertices,
and let L(T ) be the line graph of T . Then mrF (L(T )) = n − � and MF (L(T )) = � − 1 =
Z(L(T )).

3.4. The minimum rank of certain regular graphs

Next we determine the minimum rank/maximum nullity of some well-known regular graphs.
A graph G is strongly regular with parameters (n, k, a, c) if |G| = n, G is k-regular, every pair of
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Fig. 9. Zero forcing set for the Petersen graph.

Fig. 10. Zero forcing set for the 4-antiprism.

adjacent vertices has a common neighbors, and every pair of nonadjacent vertices has c common
neighbors.

Proposition 3.25. Let G be a strongly regular graph. Then M(G) �
⌊ |G|

2

⌋
.

Proof. The adjacency matrix AG of a strongly regular graph G has exactly three eigenvalues, one
of which is k and has multiplicity 1 [9, Section 10.2]. For λ the eigenvalue of maximal multiplicity
m, AG − λI has corank m, and clearly m �

⌈ |G|−1
2

⌉ = ⌊ |G|
2

⌋
. �

Note that C5 is strongly regular with parameters (5, 2, 0, 1) and K3 �K3 is strongly regular
with parameters (9, 4, 1, 2) (these are both Paley graphs). Since M(C5) = 2, C5 achieves equal-
ity of the bound in Proposition 3.25, which implies that a translation of the adjacency matrix
realizes minimum rank/maximum nullity. However, K3 �K3 does not, since by Corollary 3.11,
M(K3 �K3) = 5 > 4 = ⌊ 9

2

⌋
.

Proposition 3.26. Let P denote the Petersen graph shown in Fig. 9. Then M(P) = 5 = Z(P )

and mr(P ) = 5.

Proof. The five vertices on the outer cycle form a zero forcing set, so M(P) � Z(P ) � 5. The
Petersen graph is strongly regular with parameters (10, 3, 0, 1), so by Proposition 3.25,M(P) � 5.
Thus we have M(P) = 5 and mr(P ) = 5. �

Lemma 3.27 [12]. ξ(Q3) = 4.

Proposition 3.28. Let G8 denote the 4-antiprism shown in Fig. 10. Then M(G8) = 4 = Z(G8)

and mr(G8) = 4.
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Proof. A zero forcing set of four vertices for the 4-antiprism is shown in Fig. 10, so M(G8) �
Z(G8) � 4. Note thatQ3 is a minor of the 4-antiprism G8 (by deleting four edges), and ξ(Q3) = 4.
So 4 � ξ(G8) � M(G8). �

4. Graphs for which Z(G) = M(G)

In the previous sections we have shown that M(G) = Z(G) for most of the graphs in Table
1, and we will establish this equality for the remaining graphs listed there. We noted in Section
2 that M(G) = Z(G) for G = Pn and G = Cn, and this equality is also true for G = Kn and
G = Kp,q (use any set of n − 1 vertices and any set omitting exactly one vertex from each of
the bipartition sets as zero forcing sets). However, not every graph satisfies M(G) = Z(G). For a
graph, such as K3,3,3, where M(G) < M(S(F, G)) for some field F (Z2 in the case of K3,3,3),
necessarily M(G) < Z(G). The next example shows Z(G) can be strictly greater than M(G)

even when M(G) is field independent.

Example 4.1. Consider the corona C5 ◦ K1 (sometimes also called the penta-sun) shown in Fig.
11. The set {6, 7, 8} (shown) is a zero forcing set (as is {6, 7, 9} and others), but there is no
smaller zero forcing set, so Z(C5 ◦ K1) = 3, but M(C5 ◦ K1) = 2 by cut-vertex reduction (over
any field); see [2] for details.

We now establish M(G) = Z(G) for several additional families of graphs. A path cover of a
tree T is a set of vertex disjoint paths occurring as (induced) subgraphs of T that cover all the
vertices of T . A minimum path cover of T is a path cover having the fewest possible paths among
all path covers of T . The path cover number of T , P(T ), is the number of paths in a minimum
path cover of T . For any tree T , M(T ) = P(T ) [13]. Note that there are algorithms for finding
a minimum path cover (and hence P(T ) and M(T )), e.g., [8]. As shown in [7], for any field F ,
MF (T ) = M(T ).

Proposition 4.2. For any tree T , MF (T ) = Z(T ).

Proof. A zero forcing set Z for T can be obtained by choosing a minimum path cover and selecting
one endpoint of each path in the minimum path cover. That such a Z is a zero forcing set can be
shown by induction on P(T ). It is clearly true for P(T ) = 1. Assume true for all trees T such
that P(T ) < P (T1). Choose a minimum path cover for T1, let Z be a set consisting of one end
point of each path in the minimum path cover (hereafter called black endpoints) and identify a
path P1 in the minimum path cover that is joined to the rest of T1 by only one edge uv not in P1,
and say v ∈ V (P1). Then by applying the color-change rule repeatedly starting at the black end-
point of P1, all vertices from the black endpoint through v are colored black. Now the path P1 is

4

10

1

23

9 5 6

78

Fig. 11. Zero forcing set for the corona C5 ◦ K1.



AIM Minimum Rank Group / Linear Algebra and its Applications 428 (2008) 1628–1648 1645

irrelevant to the analysis of the tree T1 − V (P1), so by the induction hypothesis, the black end-
points of the remaining paths are a zero forcing set for T1 − V (P1), and all vertices not in P1,
including u, can be colored black. Hence the remainder of path P1 can also be colored black and
Z is a zero forcing set for T1. �

We have verified the following by direct computation (the values of M(G) = Z(G) are listed
in the on-line catalog [1]).

Proposition 4.3. If |G| � 6, then Z(G) = M(G).

For a graph G = (V , E), define mz(G) = |G| − Z(G). Notice that mz(G) � mrF (G) for
every graph G and every field F , and mz(G) = mrF (G) is equivalent to Z(G) = MF (G).

Proposition 4.4. If H is an induced subgraph of G, then mz(H) � mz(G).

Proof. Let Z be a zero forcing set of H with |Z| = Z(H). Then Z ∪ (V (G) \ V (H)) is a zero
forcing set for G. Hence Z(G) � |Z| + |G| − |H |. From this it follows that |H | − Z(H) �
|G| − Z(G). Hence mz(H) � mz(G). �

The class of graphs G with mz(G) � k can therefore be characterized by a collection (possibly
infinite) of forbidden induced subgraphs. Note that Z itself is not monotone on induced subgraphs,
as can be seen trivially by deleting a vertex of degree 2 from a path, or in the next example, where
G − v remains connected.

Example 4.5. Consider the graph G with zero forcing set of size 2 shown in Fig. 12. The deletion
of vertex v leaves a tree, and so Z(G − v) = M(G − v) = P(G − v) = 3.

Proposition 4.6. Let H be an induced subgraph of G. If mrF (H) = mrF (G) and mrF (H) =
mz(H), then mz(G) = mrF (G).

Proof. This follows from mrF (G) = mrF (H) = mz(H) � mz(G) � mrF (G). �

Proposition 4.7. For any tree T , mr(T ) = mz(T ).

Proof. Let n = |T |. Suppose P4 is an induced subgraph of T . Since mr(P4) = mz(P4) = 3 and
mr(T ) = 3, Proposition 4.6 tells us that mr(T ) = mz(T ). If P4 is not an induced subgraph and n �
3, then T = K1,n−1 and mr(T ) = 1 = mz(T ). If n � 2, the result follows by direct computation
(Proposition 4.3). �

v

Fig. 12. A graph G having Z(G − v) > Z(G).
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Proposition 4.8. For any cycle Cn, mr(Cn) = mz(Cn).

Proof. By Proposition 4.3, it suffices to consider the case that n � 6. Because mr(Cn) = 3 and
Cn contains a P4, Proposition 4.6 tells us that mr(Cn) = mz(Cn). �

Proposition 4.9. If G has n � 3 vertices and contains a Hamiltonian path, contains a subgraph
Kk,n−k with 1 < k < n − 1, or G = Kn, then mr(L(G)) = mz(L(G)).

Proof. In each of these three cases, L(G) contains an induced subgraph H such that mz(H) =
mr(H) = mr(L(G)). If G = Kn, H = Kn−2 �K2; if G contains a Hamiltonian path, H = Pn−1;
if G contains Kk,n−k, H = Kk�Kn−k . Thus by Proposition 4.6, mr(L(G)) = mz(L(G)). �

The following theorem has now been established.

Theorem 4.10. For each of the following families of graphs, Z(G) = M(G):

1. Any graph G such that |G| � 6.

2. Kn, Pn, Cn.

3. Any tree T .

4. All the graphs listed in Table 1.

5. Maximum corank of not-necessarily symmetric matrices

A matrix A is combinatorially symmetric if aij /= 0 if and only if aji /= 0. A combinatorially
symmetric matrix has a symmetric zero–nonzero pattern. For such a matrix, the graph of A,
denoted G(A), is the graph with vertices {1, . . . , n} and edges {{i, j}: aij /= 0, 1 � i < j � n}.
(Whenever we write G(A), we are assuming A is combinatorially symmetric.) Let

NF (G) = max{corank(A): A ∈ Fn×n,G(A) = G}.
The proofs of Propositions 2.2–2.4 did not use the symmetry of the matrix, so they remain

valid for all matrices (not-necessarily symmetric) that have a given graph.

Proposition 5.1. Let A ∈ Fn×n, G(A) = G, and Z ⊆ V (G) be a zero forcing set for G. If x ∈
ker(A) and supp(x) ∩ Z = ∅, then x = 0.

Proposition 5.2. Let G = (V , E) be a graph and let Z ⊆ V be a zero forcing set. Then for any
A ∈ Fn×n such that G(A) = G, corank(A) � |Z|, and thus NF (G) � Z(G) for any field F.

Given a graph G = (V , E) with vertex set V = {1, 2, . . . , n}, let H(G) be the set of all
Hermitian n × n matrices A = [aij ] such that for i �= j , aij �= 0 if and only if ij ∈ E. There is
no restriction on the diagonal entries of A. We define

hmr(G) = min{rank(A)|A ∈ H(G)}.
As is the case for symmetric matrices, the sum of the minimum rank and maximum nullity is

the order of the graph:

min{rank(A): A ∈ Cn×n,G(A) = G} + NC(G) = |G|.
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Fig. 13. The graphs dart and �.

Since any matrix A ∈ H(G) has G(A) = G, hmr(G) � min{rank(A): A ∈ Cn×n,G(A) = G}.
Thus NC(G) � |G| − hmr(G) and so mz(G) � hmr(G). In [5], the following theorem is proved
(� and dart are shown in Fig. 13).

Theorem 5.3. Let G be a graph. Then the following are equivalent:

1. hmr(G) � 2.

2. G is (P4, �, dart, P3 ∪ K2, 3K2)-free.

Theorem 5.4. A graph G has mz(G) � 2 if and only if G is (P4, �, dart, P3 ∪ K2, 3K2)-free.

Proof. Since mz(P4) = 3, mz(�) = 3, mz(dart) = 3, mz(P3 ∪ K2) = 3, and mz(3K2) = 3, a
graph G with mz(G) � 2 is (P4, �, dart, P3 ∪ K2, 3K2)-free.

Conversely, if G is (P4, �, dart, P3 ∪ K2, 3K2)-free, then mz(G) � hmr(G) � 2. �

6. Conclusion and open questions

We consider the following to be the main results of this paper:

• The introduction of Z(G) and its systematic application to many families of graphs to obtain
upper bounds for MF (G) for any field F .

• Obtaining sharp lower bounds for M(G) (over the real field) for many families of graphs,
thereby establishing the results in Table 1.

We conclude with the following questions:
Question 1. What is the class of graphs G for which MF (G) = Z(G) for some field F ?

As Question 1 is surely difficult, we list the following sub-questions:

Question 1a. For the class of graphs for which MF (G) is field independent, what is the
subclass of graphs with M(G) = Z(G)?

Question 1b. What is the class of graphs G for which M(G) = Z(G)?

Question 1c. What are sufficient conditions in order that MF (G) = Z(G) for some field
F ?

Question 1d. What are sufficient conditions in order that MF (G) < Z(G) for every field
F ?

Question 2. For those graphs with MF (G) < Z(G) for every field F (or for a subclass of these
graphs), is there a graph theoretic parameter Y such that MF (G) � Y (G) < Z(G)?

It would also be of interest to develop additional techniques for establishing lower bounds for
MF (G) that are independent of the real field and apply them to the classes of graphs in Table
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1, and to determine for which of these classes of graphs MF (G) is field independent. Note that
Example 3.4 shows that MF (K3 �K2) depends on the field.
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