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Abstract: A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured
silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol
via protonolysis of the Ti–Cl bond; and (ii) a tethering method by elimination of ethanol using
triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems
have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM,
observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight
changes in the textural features of the materials after functionalization with the metallodrugs.
A complete biological study has been carried out using the synthesized materials exhibiting
moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B)
and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against
normal cell lines. In addition, the cells’ metabolic activity was modified by a 24-h exposure in a
dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory
interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling,
even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor
production, something which has not previously been observed for these systems.

Keywords: nanostructured silica; titanocene; cytotoxicity; anticancer; tumor necrosis factor;
TNFR1 modulation

1. Introduction

Since the discovery of cisplatin (cis-diamminedichloridoplatinum (II)) by Rosenberg and
coworkers [1], a wide variety of metal complexes for medicinal applications, such as diagnosis or
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therapy, have been designed [2,3]. The expansion in this area has mainly been motivated by the
recurrent problems that metallodrugs present in cancer therapy, notably, the high number of side
effects [4], low stability of the metal-based drugs in biological media [5], and the development of
resistance by the cells treated with these compounds [6]. Thus, the search for novel chemotherapeutic
metal-based drugs has been focused on complexes with central atoms, such as Fe, Ru, Ga, Au, Sn, and
Ti, which have received wide attention as plausible alternatives to the use of platinum metallodrugs in
cancer treatment [2].

In most of the studies of metal-based drugs in anticancer therapy, the cytotoxicity is normally
correlated with the structure of the complex. However, in many cases, metallodrugs change their
structure in the previous steps of passive or active transportation to the cell and membrane crossing,
leading to a transformation of the coordination sphere of the metal and/or decomposition of the
complex which makes them act more as a prodrug than, specifically, as a drug [7]. In this context,
the use of encapsulators or carrier vehicles for the protection of the actives species and subsequent
delivery to cancer cells is an approach of current interest for the scientific community [8,9]. A wide
variety of nanostructured systems have been used to encapsulate metallodrugs and have been tested
in anticancer chemotherapy both in vitro and in vivo [8]. One of the most interesting scaffolds
for metallodrug-loading is nanostructured mesoporous silica which, loaded with titanium [9–15],
tin [16,17], or other metallodrugs [8], has been shown to be highly effective against cancer cell lines.

The problems of metallodrugs associated with the development of multidrug resistance (MDR)
are one of the main obstacles in the successful chemotherapeutic treatment of cancer [18]. It usually
occurs with prolonged treatment of cancer and may lead to recurrence of the tumor and a decrease of
the efficacy of other chemotherapeutic agents. Thus, it is very important to understand the biological
targets of the metallodrugs and metallodrug-functionalized nanostructured materials in order to
elucidate the mechanism of cell death promoted by these systems and how they are associated
or not with MDR [18]. In this context, nanomedicinal strategies are currently being used to treat
multidrug-resistant tumors [19].

In the search for novel more efficient alternative metallodrugs in cancer treatment, principally
trying to overcome the problems associated with the use of metal-based drugs in chemotherapy, our
group has reported pioneering work in the preparation of metallodrug-functionalized nanostructured
materials based on nanostructured mesoporous silica functionalized with titanocene and organotin
compounds which have been tested in vitro against several cancer cell lines [20]. Our previous
studies have shown that these materials usually enhance the cytotoxic action of the metallodrug
and act as “non-classical” drug-delivery systems, namely, they do not need the release of the
metallodrug to be cytotoxic, acting as the entire nanoparticulated system [8]. We have observed that
the metallodrug-functionalized silica-based nanostructured materials usually induce a higher metal
prodrug uptake than their corresponding non-encapsulated metallodrug. This higher uptake leads
to a greater cytotoxic activity and to a completely different mechanism of cell death [14]. In addition,
we have observed that the dynamics of apoptotic morphological and functional changes is modified
when the active titanium metallodrug species are incorporated into nanostructured silica-based
systems as they induce the programmed cell death in tumor cell populations by impairing the
damaged DNA repair mechanisms and by upregulation of intrinsic and extrinsic apoptotic signaling
pathways [14]. Titanocene derivatives and titanocene-functionalized nanostructured systems have
also proven to be active against various tumor cell lines, including cancers of the digestive system,
by triggering apoptosis [14], the programmed cell death. From a mechanistic point of view, both the
extrinsic and the intrinsic pathways of apoptosis can be targeted by titanocenes [21].

Looking for new mechanistic insights into metallodrug-functionalized nanostructured systems,
one should bear in mind that the tumor necrosis factor alpha (TNF-α) has an important biologic
function in apoptotic and inflammatory processes, exerted mainly by binding the tumor necrosis factor
receptor 1 (TNFR1) [22]. In the extrinsic apoptotic pathways, the TNF-dependent mechanism requires
an increased cell surface expression of TNFR1 [23], activation of mitogen activated protein kinases
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and caspases. TNFR1 activates the apoptotic signaling through nuclear factor-kappaB (NF-kappaB)
and other mechanisms and induces cell death in colon tumor cells [24] and hepatic carcinoma [25].
Thus, more studies involving the tumor necrotic factors are needed to completely understand their
role in cancer treatment.

In this context, we have prepared and characterized a series of cytotoxic titanocene derivatives
which have been immobilized onto SBA-15 using two different synthetic protocols. The mesoporous
silica-based material SBA-15 was chosen for its optimal properties as drug adsorbent [8] which are
based on its textural properties which include large specific surface area, very uniform pore sizes
(of around 6.5 nm), high textural porosity, high surface-to-volume ratio, and good thermal stability.
The cytotoxic activity of these materials has been tested against three human hepatic carcinoma
(HepG2, SK-Hep-1, Hep3B) and three human colon carcinoma (DLD-1, HT-29, COLO320) cell lines
in vitro. In addition, we have evaluated the in vitro antitumor activity of four titanocene-functionalized
materials, analyzing their cytotoxicity, the cellular metabolic activity alteration, and the modulation
of the proinflammatory chemokines. The mechanistic study shows that the cells metabolic activity
was modified by a 24-h exposure in a dose-dependent manner. Furthermore, despite not having a
significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly
modulated the tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations, mainly
by upregulation of the TNFR1 receptor production. To the best of our knowledge, this is the first
example reported in the literature of upregulation of TNFR1 production by titanium-functionalized
nanostructured materials.

2. Results and Discussion

2.1. Synthesis and Characterization of Metallodrug-Functionalized Nanostructured Materials

A simple grafting reaction of three simple titanocene derivatives with different substituents,
namely, [Ti(η5-C5H5)2Cl2] (1), [Ti(η5-C5H5)(η5-C5H4Pri)Cl2] (2), and [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2]
(3) on dehydrated (treated for 24 h at 150 ◦C under vacuum) SBA-15, has been carried out to give the
corresponding materials SBA-15/[Ti(η5-C5H5)2Cl2] (S1), SBA-15/[Ti(η5-C5H5)(η5-C5H4Pri)Cl2] (S2),
and SBA-15/[Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (S3) (Scheme 1). For the grafting of the compounds, two
different functionalization reactions were used. The first consisted in the treatment of dehydroxylated
SBA-15 with solutions of the corresponding titanocene complex in toluene at 110 ◦C. The Ti/SiO2 ratio
of the reaction was always 7%. The second method is a tethering reaction of a titanocene derivative
containing triethoxysilyl fragments [Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (4) with SBA-15 to give
the material SBA-15/[Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (S4). The latter reaction proceeded by
the elimination of ethanol and formation of the corresponding silylated material with formation of
Si–O–Si bonds (Scheme 1). All materials S1–S4 were characterized by various techniques and the
results were compared with those of the starting material SBA-15.

2.1.1. X-ray Fluorescence

The functionalization reactions were carried out using a theoretical 7% of wt % Ti (Ti/SiO2).
The X-ray fluorescence data showed wt % Ti for functionalized materials S1–S4 of 1.41%, 1.32%, 1.33%,
and 6.47%, respectively (Table 1). In the case of materials S1–S3 the functionalization reactions yielded
a low incorporation of titanium in the material. This low functionalization rate is most probably
because the initial dehydrated SBA-15 had a low number of hydroxyl groups due to its treatment
under vacuum at high temperature, consequence of which there is only limited reaction between the
chlorido ligands of the titanocene complexes with the silanol groups of the SBA-15. These reactions
usually lead to µ-oxo surface species (Scheme 1) which are the most abundant functionalization
species, however, a very small quantity of titanocene complexes may also be adsorbed inside the pores
of SBA-15. This low titanocene-functionalization rate is in agreement with previous studies of our
group on SBA-15 materials [10] which have shown a maximum loading of metallocene complexes on
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SBA-15, of ca. 2% of metal, even when starting from high Ti/SiO2 ratios of up to 5% [10]. This low
functionalization was attributed both to the saturation of the surface and to the weak basicity of both
chlorido ligands of the titanocene complexes and the Si–OH groups of SBA-15 [10].

The reaction of [Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (4) with SBA-15 led to the elimination
of one of the 3-mercaptopropyltriethoxysilane ligands and ethanol. The functionalization
of the materials was achieved by the binding of the triethoxysilyl groups to SBA-15 via
formation of new Si–O–Si bonds. Nevertheless, formation of Ti–O–Si bonds due to the
elimination of one of the thiolato ligands bound to the titanium center also occurred
(Scheme 1). Thus, S4 consists of a mixture of titanocene-functionalized species formed by
“Cp2Ti(O-SBA-15)2” (Figure 1A), “Cp2Ti{SCH2CH2CH2Si(OEt)2O-SBA-15}(O-SBA-15)” (Figure 1B),
and “Cp2Ti{SCH2CH2CH2Si(OEt)2O-SBA-15}2” species (Figure 1C). Elemental analysis data obtained
by X-ray fluorescence showed a very good functionalization rate of S4, 6.47 wt % Ti (Table 1). It is
clearly seen that the functionalization rate by using titanocene complexes with triethoxysilyl moieties
is much higher and is in agreement with previous reports from our group [12].
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Figure 1. Functionalization species: (A) by the elimination of ethanol groups; (B) by the elimination of
ethanol groups and a thiolate ligand, which leads to the formation of a Ti–O–Si bond; and (C) by the
elimination of both thiolate ligands, which leads to the formation of two Ti–O–Si ligands. The figure
also represents the proposed release species in simulated body fluid.
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Table 1. Percentage of Ti grafted on the silica support.

Material Theoretical wt % Ti Experimental wt % Ti 1 Experimental mmol of Ti/g Material

S1 7 1.41 0.869
S2 7 1.32 0.869
S3 7 1.33 0.869
S4 7 6.47 1.739

1 Determined by X-ray fluorescence.

2.1.2. Powder X-ray Diffraction

All the synthesized materials were characterized by XRD. Their diffractograms show typical
reflections for hexagonally-ordered mesoporous materials. Unmodified SBA-15 showed a well-resolved
pattern at low 2θ values with an intense (100) diffraction peak at 0.93◦ and another peak of lower
intensity at 1.84◦, assigned to the (110) Miller plane (Figure 2). This system can be indexed as a
hexagonal lattice with d-spacing values of 73.6 and 14.77 Å, respectively (Table 2).

Table 2. XRD (X-ray diffraction) data of SBA-15, S1–S4.

Material SBA-15 S1 S2 S3 S4

Miller index 100 110 100 110 100 110 100 110 100 110
Interplanar distance (Å) 73.59 14.77 74.33 14.83 72.09 14.71 73.37 14.71 74.56 14.94

2θ (◦) 0.93 1.84 0.92 1.83 0.95 1.85 0.93 1.83 0.91 1.81
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Figure 2. XRD diffraction patterns of SBA-15, S1–S4.

After functionalization with the titanocene derivatives, no notable changes were observed in the
XRD pattern and position of the diffraction peaks (Figure 2). However, a clear decrease of intensity
was observed due to the partial blocking of the dispersion centers of the material by the titanocene
derivatives. In all cases, the diffraction pattern of S1–S4 can be indexed as a hexagonal lattice with
d-spacing values of ca. 73 Å (Table 2). These results suggest that the structural order of the synthesized
material is maintained after functionalization with the titanocene derivatives.
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2.1.3. N2 Adsorption-Desorption Isotherms

All the synthesized materials S1–S4 were also characterized by nitrogen adsorption/desorption
isotherms, observing the formation of type IV isotherms (according to the IUPAC classification [26,27])
which have an H2b hysteresis loop corresponding to a typical mesoporous material (Figure 3).
The complete adsorption data are summarized in Table 3.
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Table 3. Physical parameters of SBA-15, S1–S4 measured by N2 adsorption-desorption isotherms.

Materials
SBET Total Pore Volume DP (BJH) 1 d100 Wall Thickness 2 VP

(m2/g) (cm3/g) (Å) (Å) (Å) (cm3/g)

SBA-15 857 0.88 71.5 73.6 13.5 0.88
S1 792 0.83 69.8 74.33 16.02 0.83
S2 850 0.90 42.1 72.09 41.14 0.90
S3 793 0.85 42.9 73.37 41.82 0.85
S4 520 0.59 46.1 74.56 39.99 0.59

1 Barrett, Joyner and Halenda; 2 Wall thickness was calculated using the following equation: Wall thickness =
2d100√

3
− BJH average pore diameter.

The isotherms show that the BET surface area (SBET) of unmodified SBA-15 is ca.
860 m2/g and after functionalization with the titanocene derivatives (S1–S4) slightly decreases.
Capillary condensation of nitrogen within the uniform mesoporous structure was observed in all
materials at a relative pressure (P/P0) of ca. 0.4, although the inflection position shifted slightly toward
lower relative pressures after functionalization. In addition, BJH average pore diameter decreases
for S1–S4 compared with that of unmodified SBA-15 while the wall thickness significantly increases.
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This phenomenon confirms a reduction in pore size in functionalized materials which is probably
because the titanocene derivatives are located inside the pore of the mesoporous system.

When analyzing the pore size distributions of the all the synthesized materials, a homogeneous
narrow distribution is observed (see Figure S1 of supporting information), indicating the high degree
of homogeneity of the materials. Thus, taking into account all the adsorption data, one can envisage
that the titanium complexes loaded in the mesoporous materials are located in the pores of the system.

2.1.4. Solid-State NMR Spectroscopy

The 13C CP MAS spectra of materials S1–S4 (Figure 4) have been recorded and showed the signals
of the different carbon atoms of the supported titanocene compounds. Specifically, the spectrum of
S1 shows a set of two broad signals at ca. 210 ppm corresponding to the Cp ligands of supported
[Ti(η5-C5H5)2Cl2]. The spectrum of S2 shows two sets of signals, one composed of four signals between
0 and 55 ppm which corresponds to the aliphatic carbon atoms of the isopropyl group of supported
[Ti(η5-C5H5)(η5-C5H4Pri)Cl2] and the second made up of two signals at ca. 120–130 ppm assigned
to the carbon atoms of the cyclopentadienyl rings. The spectrum of S3 also shows two groups of
signals for the different carbon atoms of the supported complex [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (3);
firstly, two signals between 0 and 25 ppm corresponding to the carbon atoms of the methyl groups
of SiMe3 and, secondly, a group of signals between 100 and 150 ppm due to the carbon atoms of the
cyclopentadienyl groups. Finally, the spectrum of material S4 showed three signals of low intensity
between 0 and 30 ppm assigned to the three carbon atoms of the alkylic chain of the thiolato ligand,
two broad signals at ca. 20 and 60 ppm corresponding to the carbon atoms of the ethoxy fragments and
a set of three signals between 100–200 ppm due to the carbon atoms of the cyclopentadienyl ligands of
the titanocene derivative [Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2].
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29Si MAS NMR spectra of SBA-15 and materials S1–S4 (Figure 5) were also recorded.
The spectrum of the non-functionalized SBA-15 shows the signals corresponding to the silicon
atoms with hydroxyl bound groups [Si(OSi)2(OH)2] (Q2, at −91.5 ppm), the signal of [Si(OSi)2(OH)]
(Q3, at −100.6 ppm) and the resonance of [Si(OSi)2] (Q4, at −110 ppm). After incorporation of the
titanium-based metallodrugs, slight modifications of the intensity of Q3 and Q2 signals were observed
which is a consequence of the functionalization by the titanocene compounds as previously reported
in other studies [10–12]. It is important to note, that, although material S3 is functionalized with a
titanocene complex with a trimethylsilyl group, the signal of the silicon atoms of this group was not
observed, probably because of the low degree of functionalization and the high number of silicon
atoms of the silica matrix (SBA-15) which obscure the appearance of the resonance of the silicon
atom of SiMe3. This phenomenon was previously observed by us in other studies [11]. Interestingly,
the spectrum of S4 showed, in addition to the Q2, Q3, and Q4 signals, two new peaks of low intensity
were recorded at approximately −48 and −55 ppm which have been assigned to T2 ((SiO)2SiOH–R)
and T3 ((SiO)3Si–R) sites of silica, respectively [10–12].
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2.1.5. Thermogravimetry

All the synthesized materials SBA-15 and S1–S4 were characterized by thermogravimetric
studies (see Figure S2 of supplementary material). The TGA curves show an initial loss of mass of
approximately 5% due to adsorbed water on the SBA-15. In addition, in the titanocene-functionalized
materials (S1–S4) a second loss of mass is observed between 250 and 550 ◦C which is due to the
degradation process of the grafted titanocene derivative (exothermic process). The weight losses are of
about 5–7% for materials S1–S3 while, in S4, this is much higher (ca. 15%) and confirms the higher
functionalization rate of this material compared with S1–S3.
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2.1.6. IR and UV Spectroscopy

UV-VIS spectra of the synthesized materials S1–S4 were recorded and compared with that of
unmodified SBA-15. The latter shows a broad peak at 250 nm while functionalized materials S1–S4
show a shoulder between 290 and 370 nm which is due to the incorporation of the different titanocene
derivatives (see Figure S3 of supplementary materials).

In addition, the FTIR spectrum of SBA-15 shows several characteristic bands; a broad band
between ca. 3450 and 3200 cm−1, which was assigned to O–H stretching of the silanol groups of
the material and the adsorbed water molecules, a broad strong band at ca. 1100 cm−1 due to the
siloxane (Si–O–Si) groups, a stretching band at ca. 900 cm−1 of the Si–O bonds of the silanol groups,
and an additional band at ca. 1630 cm−1 assigned to the deformation vibrations of adsorbed water
molecules. Materials S1–S4 presented weak intensity bands for aliphatic and aromatic C–H stretching
vibrations between 3000 and 2800 cm−1 and a shoulder at ca. 1550 assigned to the vibrations of the
cyclopentadienyl ligands (see Figure S4 of supplementary materials).

2.1.7. SEM and TEM

All the synthesized materials have been characterized by scanning electronic microscopy
(SEM), in order to determine the morphology of the nanostructured systems. According to the
micrographs, there were no significant differences between the non-functionalized SBA-15 and the
titanocene-functionalized materials S1–S4. The unmodified SBA-15 shows uniform morphology of
nanostructured rods (with narrow distribution of particle size of ca. 850 nm long and 400 nm width).
The SEM images also show that after functionalization with the titanocene derivatives and formation
of materials S1–S4 (Figure 6), morphology and particle size do not change significantly, indicating that
the functionalization step does not influence the particle shape and size.

In addition, functionalized materials S1–S4 have been characterized by transmission electronic
microscopy (TEM). Figure 7 shows the transmission electron micrograph (TEM) images of SBA-15
functionalized materials S1–S4 which present a highly-ordered structure with hexagonally-ordered
porous parallel channels.
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2.2. Qualitative Study of the Interactions with DNA

It is well-known from the accepted mechanism of action of titanocene derivatives that DNA is
one of the possible biological targets of materials S1–S4 in their cellular action [21]. In this context,
the absorption spectra of material S1 in the presence of various increasing concentrations of DNA has
been recorded as a model simulating the behavior of these systems with DNA (Figure 8).

Figure 8 shows that increasing concentrations of DNA leads to increases of the absorbance of
the suspensions and a very slight blue shift of the peaks (hypsochromic effect) which indicate a
possible adsorption of the DNA on the surface of the studied particles forming ground state adducts
DNA-particle as reported previously by us [13] and another group [28]. Thus, electrostatic interactions
between S1 and DNA are proposed to be responsible for the adsorption of DNA.

Materials 2018, 11, x FOR PEER REVIEW  10 of 20 

 

 

Figure 7. TEM images of S1–S4. 

2.2. Qualitative Study of the Interactions with DNA 

It is well-known from the accepted mechanism of action of titanocene derivatives that DNA is 
one of the possible biological targets of materials S1–S4 in their cellular action [21]. In this context, 
the absorption spectra of material S1 in the presence of various increasing concentrations of DNA 
has been recorded as a model simulating the behavior of these systems with DNA (Figure 8).  

Figure 8 shows that increasing concentrations of DNA leads to increases of the absorbance of the 
suspensions and a very slight blue shift of the peaks (hypsochromic effect) which indicate a possible 
adsorption of the DNA on the surface of the studied particles forming ground state adducts DNA-
particle as reported previously by us [13] and another group [28]. Thus, electrostatic interactions 
between S1 and DNA are proposed to be responsible for the adsorption of DNA. 

200 300 400 500 600 700 800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
S1

 DNA 0.02
 DNA 0.03
 DNA 0.04
 DNA 0.05
 DNA 0.06
 DNA 0.08

Ab
so

rb
an

ce

λ (nm)
 

Figure 8. Binding study of S1 upon increasing concentrations of DNA. Figure 8. Binding study of S1 upon increasing concentrations of DNA.



Materials 2018, 11, 224 11 of 20

2.3. Cell Growth Inhibition

The cytotoxicity of the materials was evaluated on three hepatic and three colorectal cell lines.
Among hepatic cell lines, in HepG2 no genetic mutation has yet been identified; the Hep3B
hepatocellular carcinoma is positive for the presence of Hepatitis B viral DNA and SK-Hep1 is
metastatic, BRAF- and cyclin-dependent kinase inhibitor 2A (CDKN2A)-mutant cell line. In colon
cancer cell lines: HT-29 is derived from a primary colon carcinoma, bearing several mutations: on BRAF
(member of RAS family), Adenomatous polyposis coli (APC), phosphatidylinositol-4,5-bisphosphate
3-kinase (PIK3CA), SMAD4 and TP53 genes; Colo320 has APC and TP53 mutations; DLD-1 cells are
APC-, TP53-, PIK3CA-, and K-RAS mutant. The genetic burden of the chosen cell lines made them an
appropriate model for the in vitro testing of the materials. The colorimetric MTT cytotoxicity testing
revealed a moderate inhibitory potential of the compounds after 24 h of treatment (Table 4).

Our cytotoxic study shows that even though the Ti functionalization rate of the materials is
relatively low, the cytotoxic nature of the hybrid materials is significant. These results are in agreement
with previous studies in the field carried out by our research group [10–17].

Thus, in all cancer cell lines, S3 and S4 showed a superior cytotoxicity than S1 and S2 (one-way
ANOVA, Bonferroni post-test, in the 95% confidence interval). Surprisingly, in Hep2G cells (which
do not bear mutations), the growth inhibition was the weakest among all cell lines with the EC50

values being quite large, above the limit where the compounds can be considered as cytotoxic. Even so,
the activity of S4 was significantly higher than all the other compounds. In Hep3B, SK-Hep-1, DLD-1
the activity of S3 and S4 was comparable and significantly different from S1 and S2. In HT-29 cells the
cytotoxicity of S4 was higher than that of S3; in COLO320 cells the inhibition was weak and in this
cell line S3 showed the highest activity. According to these results, the cytotoxic activity found for
materials S1–S4 are due to the particle action and not to the release of titanocene compounds or the
non-functionalized materials (unmodified SBA-15 particles), as they both have been previously tested
against similar cancer cell lines showing negligible cytotoxic activity [10,11,13].

An additional study against normal human cells LIV (normal human hepatic cell line) and BJ
(CRL-2522, normal skin fibroblast cell line) was carried out as a model of non-malignant human cells,
in order to determine the potential selectivity of the cytotoxic action of the synthesized materials on
cancer cell lines. Previous studies showed the analogy between tumor colon cells and BJ fibroblasts
toxicity [29]. Thus, due to their high proliferation rate, BJ cells are usually susceptible to toxic
compounds and very sensitive to extrinsic and intrinsic stressors constituting a valuable standard for
testing the toxicity of therapeutic agents in vitro when colon cancer is in study. In addition, several
reports have already highlighted the importance of the skin fibroblast model in the determination of the
selectivity of therapeutic agents [30,31]. The toxicity study carried out using the selected normal human
cell lines for materials S1–S4 showed that their inhibitory effect is below those observed for the tumor
cells (higher EC50 values), without exception. The cytotoxicity of S1–S4 was compared with that of the
antitumor drug oxaliplatin, widely used in colorectal and liver pathology [32]. The antitumor action of
oxaliplatin was generally better than that of S1–S3 titanocene-loaded nanostructures, except against
the highly proliferative HT-29 cells, with multiple mutations, where all titanocene-based materials
are more active than the standard cytotoxic drug. Moreover, S4 inhibitory activity was significantly
higher than that of oxaliplatin (Table 4) in Hep3B hepatic tumor cells and DLD-1 colon carcinoma.
Furthermore, the ratio of the normal cells EC50 to tumor cells EC50, or the in vitro selectivity of S1–S4
is above 1 for each material. The largest ratios were calculated for S4 and S3, being much higher than
those of oxaliplatin showing, therefore, a higher selectivity for the titanocene-functionalized materials.
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Table 4. Half maximal effective concentrations (EC50) of the mesoporous nanoparticles S1–S4 against
human tumor and normal cells in vitro; median values obtained from three independent measurements;
SD represent the standard deviation in the 95% confidence interval.

Cell Line

EC50 [µg/mL]

Material/Compound

S1 S2 S3 S4 Oxaliplatin

HepG2 613.3 ± 29.8 769.7 ± 25.7 556.8 ± 40.9 403.3 ± 20.8 338.9 ± 11.6
Hep3B 298.0 ±15.7 145.3 ± 27.2 78.9 ± 4.2 66.9 ± 3.9 96.1 ± 12.4

SK-Hep-1 235.3 ± 26.2 272.7 ± 38.4 95.5 ± 8.9 79.5± 9.3 68.3 ± 8.0
DLD-1 438.6 ± 39.1 227.4 ± 16.2 157.5 ± 25.7 94.2 ± 10.3 142.5 ± 45.9 [33]
HT-29 155.3 ± 18.4 165.7 ± 12.3 129.1 ± 10.8 85.6 ± 5.8 209.0 ± 13.2 [33]

COLO320 662.0 ± 21.2 470.8 ± 34.9 306.8 ± 9.7 393.4 ± 12.7 88.6 ± 0.5
LIV 757.2 ± 193.2 >1000 >1000 >1000 217.1± 6.9
BJ >1000 >1000 958.0 ± 168.8 658.5 ± 231.6 252.4 ± 11.8

2.4. Effect on Intracellular Metabolic Activity

The intracellular reducing potential of tumor populations was evaluated using Alamar Blue
fluorescent staining. The same concentrations were used as in the viability testing. In all cell lines, the
tendency was a decrease in metabolic rate following the treatment with S1–S4 (Table 5). For material
S4 the reducing effect was evident in all cell lines except the HepG2 cell line. S2 was able to inhibit the
metabolic activity of four cell lines, while S1 inhibited the metabolic activity only in three.

Table 5. Influence of S1–S4 on the metabolic activity of the tumor cell populations, expressed as linear
regression of the changes in reducing potential within a 24-h exposure. The deviation of the slope from
0 is an indicator of the cellular metabolic decline, and it is significant when p < 0.05.

Cell Line Deviation from 0 Material S1 Material S2 Material S3 Material S4

HepG2 Hillslope −749.6 ± 481.2 −352.2 ± 292.4 −534.3 ± 425.7 −1066 ± 328.2
p value 0.1416 0.2483 0.2299 0.0058

Hep3B Hillslope −1048 ± 145.2 −1267 ± 23.2 −1436 ± 167.0 −1462 ± 185.3
p value < 0.0001 < 0.0001 < 0.0001 0.0002

SK-Hep-1 Hillslope −1215 ± 236.1 −1326 ± 234.2 −1876 ± 358.2 −1116 ± 308.6
p value 0.0001 < 0.0001 0.0001 0.0028

DLD-1
Hillslope −360.9 ± 209.1 −719.3 ± 129.1 −916.2 ± 216.6 −1400 ± 319.7
p value 0.0610 0.0063 0.0106 0.0005

HT-29
Hillslope −1082 ± 278.3 −1066 ± 286.3 −2063 ± 277.8 −1263 ± 212.1
p value 0.0013 0.0019 < 0.0001 < 0.0001

COLO320
Hillslope −369.0 ± 227.8 −278.8 ± 188.4 −683.7 ± 112.0 −1195 ± 236.5
p value 0.1276 0.1612 < 0.0001 0.0002

2.5. Effect on Inflammatory Processes

The action of S1–S4 caused no significant changes in interleukin-1α (IL-1α) concentrations in
treated cells’ supernatants.

Our study confirmed that the hepatic cells are IL-1 secretor cell lines [34], and their basal IL-1α
concentration was significantly higher those of colon carcinoma cells, which normally need IL-1α
addition to be guided towards immune activation (Figure 9). Nevertheless, previous studies indicated
that the cancer cells directly produce the proinflammatory IL-1α [35], a molecule with a dual role in
tumor progression. Among hepatic cell lines, only in SK-Hep-1 was there a significant increase in
IL-1α concentration following S1 and S4 treatment (two-way analysis of variance, p < 0.05). In colon



Materials 2018, 11, 224 13 of 20

carcinoma, S4 significantly inhibited IL-1α in DLD-1 cells, while in HT-29 cell line an overexpression
was observed. S1–S3 influence on IL-1αwas not considerable.Materials 2018, 11, x FOR PEER REVIEW  13 of 20 
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2.6. TNFR1

Another parameter of interest for the cell growth inhibitory effect is the tumor necrosis factor
alpha (TNF-α). Following its quantitative evaluation in the cell culture supernatants, the statistical
analysis does not indicate substantial differences between the treated and untreated cells TNF-α
concentration, or among the different materials analyzed (data not shown). Therefore, the soluble
form of TNF receptor1 (TNFR1) was assessed, since a recent study has highlighted the importance
of this molecule in tumor cells death pathways [36]. TNFR1 displayed significant changes after the
cells treatment with S1–S4, at EC50 concentrations for each cell line. The basal TNFR1 values in
the cell media supernatants of untreated cells were, as expected, different in every population since
they derived from different tumor types and they have distinct histology (Figure 10). After the 24-h
in vitro treatment, S1 displayed no significant effect on the soluble TNFR1 production. When the
treatment with S2 was applied, TNFR1 concentration decreased in HepB3, HT-29, and COLO320 cells
(one-way analysis of variance, p < 0.05). Contrarily, S3 augmented the TNFR1 production in one
hepatic (SK-Hep1) and all colon cell lines (DLD-1, HT-29, COLO320). S4 also increased the receptors
concentration in two hepatic (Hep3B, SK-Hep1), and two colon cell lines (DLD-1, HT-29).
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It is known that the extrinsic apoptotic cell death pathway is initiated by TNFR1 signaling [37], and
the promotion of proapoptotic TNFR1 can suppress cancer cell growth [24] and the selective activation
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of TNFR1. No mathematical correlation was found between IL-1 and TNFR1 values. In all cell lines,
where the S3 and S4 augmented the proapoptotic TNFR1 in a significant manner, the metabolic
activity of the cells was significantly reduced (Table 5). Initial in vivo studies showed that titanocene
derivatives are able to cause necrosis in tumor cells [38]. However, subsequent studies indicated other
titanocene-driven cell death mechanisms based on apoptosis and paraptosis [21]. Bearing in mind that
TNFR1 is an apoptosis inducer and it is also capable of initializing cell death by necroptosis through
TNFR1 [39], nanostructured materials S1–S4 are probably implicated in both apoptotic and necrotic
cell death processes in the liver or colon cancer cell populations.

2.7. Study of the Titanium Release

In order to gain more insights on the action of titanocene-functionalized materials, release of
titanium for S1 was studied under simulated physiological conditions (pH = 7.4). Thus, simulated
body fluid (pH = 7.4) was added to S1 and the suspension was incubated at 37 ◦C in a water bath
for 1, 6, 24, 48, and 96 h. The suspensions were then centrifuged and the remaining material was
analyzed by X-ray fluorescence showing almost the same wt % Ti as that before the treatment under
physiological conditions (wt % Ti of between 1.11 and 1.21%, Table 6). This indicates that the release of
titanocene derivative in these experiments was minimal and not significant enough to be considered as
the responsible phenomenon that causes the cytotoxic activity of the materials. Therefore, as observed
previously, the cytotoxic activity of functionalized material S1 is most probably due to the particle
action and not to the release of the titanium metallodrug.

Table 6. Release studies of material S1 in simulated body fluid.

t (h) wt % Ti in S1 Release (%) in S1 wt % Ti in S4 Release (%) in S4

0 1.26 0 6.47 0
1 1.12 11 6.10 6
6 1.14 9 5.83 10
24 1.18 6 5.12 21
48 1.21 4 4.77 26
96 1.19 5 4.48 31

However, release studies carried out under the same conditions for material S4 in simulated body
fluid showed a substantial titanium release after 96 h of ca. 30% of the loaded titanium. As explained
before, S4 consists of a mixture of titanocene-functionalized moieties formed by “Cp2Ti(O-SBA-15)2”
species (Figure 1A), “Cp2Ti{SCH2CH2CH2Si(OEt)2O-SBA-15}(O-SBA-15)” fragments (Figure 1B), and
“Cp2Ti{SCH2CH2CH2Si(OEt)2O-SBA-15}2” species (Figure 1C) from which only species B does not
have Ti–O–Si bonds but Ti–S bonds which can be hydrolyzed under physiological conditions to release
titanium containing soluble species to the medium, as was actually observed in the release experiments
(Table 6). Therefore, cytotoxic action of material S4 may be due to a dual activity from the released
soluble titanium-containing species and the particle action.

3. Materials and Methods

3.1. General Conditions

All reactions were performed using standard Schlenk tube techniques in an atmosphere of
dry nitrogen. Solvents were distilled from the appropriate drying agents and degassed before use.
The reagents used in the preparation of the corresponding metallocene complexes, such as
cyclopentadiene dimer, [TiCl4(THF)2], Na(C5H4Pri), TEOS, and Pluronic 123, were purchased
from Sigma Aldrich (Tres Cantos, Spain) and used directly without further purification.
3-Mercaptopropyltriethoxysilane was purchased from Fluorochem Ltd. (Derbyshire, UK) and used
without further purification.
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3.2. General Conditions on the Synthesis and Characterization of the Titanocene Complexes

Li{C5H4(SiMe3)}, [Ti(η5-C5H5)2Cl2] (1) and [Ti(η5-C5H5)Cl3] were prepared according to
the procedures from the literature [40]. The previously-reported titanocene complexes
[Ti(η5-C5H5)(η5-C5H4Pri)Cl2] (2) and [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (3) were prepared by the
reaction of [Ti(η5-C5H5)Cl3] and Na(C5H4Pri), or Li{C5H4(SiMe3)} (1:1) in THF, respectively.
For the synthesis of [Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (4) a slight modification of our reported
procedure [12] was carried out. A solution of 3-mercaptopropyltriethoxysilane (1.43 g, 6.02 mmol)
in toluene (25 mL) was added dropwise over 15 min to a solution of [Ti(η5-C5H5)2Cl2] (0.75 g, 3.01
mmol) in toluene (15 mL) at room temperature. The reaction mixture was stirred for 2 h, subsequently
NEt3 (0.87 mL, 6.02 mmol) was added dropwise. The reaction mixture, which then turned violet, was
heated to 80 ◦C for 3 h. The mixture was then cooled to room temperature, decanted and filtered
and the filtrate concentrated (5 mL) and cooled to −30 ◦C to give purple microcrystals of the title
complex which were isolated by filtration. 1H and 13C{1H} NMR spectra were recorded on a Varian
Mercury FT-400 spectrometer and referenced to the residual deuterated solvent. Microanalyses were
carried out with a Perkin-Elmer 2400 microanalyzer. IR spectra (KBr pellets were prepared in a
nitrogen-filled glove box) were recorded on a Nicolet Avatar 380 FTIR spectrometer (Thermo Fisher
Scientific Company, Waltham, MA, USA) in the range 400–4000 cm−1.

3.3. General Conditions for the Characterization of the Materials

1H, 13C-CP MAS, and 29Si MAS NMR spectra were recorded on a Varian-Infinity Plus
spectrometer (Varian Inc., Palo Alto, CA, USA) at 400 MHz operating at a 100.52 MHz proton
frequency (4 µs 90◦ pulse, 4000 transients, spinning speed of 6 MHz, contact time 3 ms, pulse delay
1.5 s). X-ray diffraction (XRD) patterns of the silicas were obtained on a Philips diffractometer
(Philips, Amsterdam, The Netherlands), model PW3040/00 X’Pert MPD/MRD, at 45 KV and
40 mA, using Cu Kα with a wavelength of λ = 1.5418 Å. Ti and S wt % determination by X-ray
fluorescence were carried out with an X-ray Phillips MagiX fluorescence spectrophotometer (Philips,
Amsterdam, The Netherlands) with an X-ray source of 1 kW and a Rh anode in a helium atmosphere.
The quantification method is able to analyze from 0.0001% to 100% titanium and sulfur. The thermal
stability of the modified mesoporous silicas was studied using a Setsys 18 A (Setaram, Caluire,
France) thermogravimetric analyzer, using a 100 µL platinum crucible. A synthetic air atmosphere
was used and the temperature was increased from 25 ◦C to 800 ◦C at a speed of 10 ◦C per minute.
N2 gas adsorption-desorption isotherms were performed using a Micromeritics TriStar 3000 analyzer
(Micromeritics, Norcross, GA, USA). Scanning electron micrographs and morphological analysis were
carried out on a Philips XL30 ESEM (Philips, Amsterdam, The Netherlands) with an energy dispersive
spectrometry system (EDS). The samples were treated with a sputtering method with the following
parameters: sputter time 100 s, sputter current 30 mA, film thickness 20 nm using a BAL-TEC SCD 005
sputter coater (Capovani, New York, NY, USA). Conventional transmission electron microscopy (TEM)
was carried out on a Philips TECNAI 20 (Philips, Amsterdam, The Netherlands), operating at 200 kV.

3.4. Synthesis of SBA-15

The synthesis of SBA-15 was carried out using the experimental procedure reported by
Zhao et al. [41]. In a typical synthesis, TEOS 98% aqueous solution (102 g, 0.480 mol) was added
dropwise to a stirring solution containing the Pluronic 123 surfactant (48.4 g), 360 mL of Milli-Q
water, and 1342 mL of HCl 2 M at 35 ◦C and 1000 rpm. After the TEOS addition, the reaction was
stirred (1000 rpm) at 35 ◦C for 20 h. During this time, a white solid was formed in the reaction
solution. Stirring was then stopped and the temperature was increased to 80 ◦C and maintained for
24 h in order to complete the ageing process. Afterwards, the solution was filtered under vacuum and
the resulting white solid abundantly washed with Milli-Q water to remove soluble impurities and
the remaining surfactant. After washing, a drying process (at 100 ◦C during 6 h) and a subsequent
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calcination process (during 24 h at 500 ◦C) were carried out in a muffle oven. After the calcination
process, 27.25 g of a fine white powder of SBA-15 was obtained.

3.5. Synthesis of SBA-15/[Ti(η5-C5H5)2Cl2] (S1)

A solution of [Ti(η5-C5H5)2Cl2] (1) (391 mg, 1.57 mmol) (to obtain a theoretical level of 7%
Ti/SiO2) in toluene (100 mL) was added to dehydroxylated SBA-15 (1.00 g) and the mixture was stirred
overnight at 110 ◦C. The slurry was filtered through fritted discs and the solid residue washed with
toluene (5 × 200 mL). The resultant solid was dried under vacuum at room temperature for 16 h to
give a light brown free flowing powder.

3.6. Synthesis of SBA-15/[Ti(η5-C5H5)(η5-C5H4Pri)Cl2] (S2)

The synthesis of material S2 was carried out in identical manner to that of S1.
[Ti(η5-C5H5)(η5-C5H4Pri)Cl2] (2) (458 mg, 1.57 mmol) and dehydroxylated SBA-15 (1.00 g).

3.7. Synthesis of SBA-15/[Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (S3)

The synthesis of material S3 was carried out in identical manner to that of S1.
[Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (S3) (505 mg, 1.57 mmol) and dehydroxylated SBA-15 (1.00 g).

3.8. Synthesis of SBA-15/[Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (S4)

The synthesis of material S4 was carried out in identical manner to that of S1.
[Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (S4) (1.03 g, 1.57 mmol) and dehydroxylated SBA-15 (1.00 g).

3.9. Ti-Release Studies

The titanium release of the materials in biological conditions was carried out in a body
simulated fluid. This consists of a pH 7.4 buffer prepared according to previously reported
procedures [42]. In duplicate, 20 mL of simulated body fluid was added to 225 mg of the
studied materials. These suspensions were incubated at 37 ◦C in a water bath for 1, 6, 24, 48, and
96 h. Afterwards, the suspension was centrifuged at 2000 rpm during 5 min and subsequently filtered.
The solid was washed with Milli-Q water (3 × 5 mL) and dried at 80 ◦C during 16 h, to eliminate the
adsorbed water. The solid was then analyzed by X-ray fluorescence.

3.10. DNA-Binding Studies

Fish sperm-deoxyribonucleic acid (FS-DNA) was purchased from Aldrich (St. Louis, MO, USA).
The stock solution of FS-DNA was prepared by dissolving an appropriate amount of FS-DNA in
tris buffer (pH = 7.4) and storing at 4 ◦C in the dark. The concentration of the DNA stock solution
(2.4× 10−4 M) was determined from the UV absorption spectrum at 260 nm using the molar absorption
coefficient ε260 = 6600 M−1·cm−1. The purity of the DNA was checked by the measurement of the
ratio of the absorbance at 260 nm to that at 280 nm. The resulting ratio indicated that the DNA was
sufficiently free from protein [43,44]. UV absorption spectroscopy experiments were conducted
by adding different concentrations of DNA 0.02–0.08 mol/L (nucleotide) to suspensions of S1–S4
(0.5 mg/mL in a mixture ethanol/Tris buffer). The final suspensions were shaken during 30 min
at 35 ◦C and used immediately for the measurements. The changes in the absorbance observed in
the spectra were not due to the experimental error, because baseline corrections were applied for all
measurements. All measurements were performed at room temperature with an Analytik Jena Specord
200 spectrophotometer (Analytik Jena, Jena, Germany) between 200 and 600 nm.

3.11. Biological Studies

The testing was performed on three hepatic, three colon, and two normal human cell lines in vitro.
The HepG2 hepatocyte carcinoma, DLD-1 colon adenocarcinoma, HT-29 and COLO320 colorectal
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adenocarcinoma were obtained from the European Collection of Authenticated Cell Cultures (ECACC),
through the Sigma Aldrich Company, St. Louis, MO, USA. The BJ (CRL-2522) normal skin fibroblast cell
line was acquired from the American Type Culture Collection (ATCC, Manasses, VA, USA). The Hep3B
hepatocellular carcinoma and the SK-Hep-1 human hepatic adenocarcinoma cell line were a generous
gift from Dr. Ciprian Tomuleasa from the University of Medicine and Pharmacy “Iuliu Hatieganu”;
the cells provenance is the ATCC. The LIV human normal hepatic cells were isolated, characterized [45]
and deposited previously by Dr. Ciprian Tomuleasa to PIO: Platform for interdisciplinary research in
oncology of the The Oncology Institute “I. Chiricuta”.

Four cell lines presented genetic mutations, according to ATCC (source: ATCC® CELL LINES BY
Gene Mutation [46]), being aggressive, highly proliferative tumor cells. SK-Hep-1 display the BRAF
and CDKN2A mutations; the COLO320 cells has the APC and TP-53 mutations; DLD-1 is KRAS-,
APC-, TP53- and PIK3CA-mutant, while HT-29 displays five major mutations with significance in the
evolution of the disease: APC, TP53, PIK3CA, BRAF and SMAD4.

The cell culture media were: Eagle’s MEM for HepB3, SK-Hep-1, HepG2 and BJ; RPMI-1640 for
DLD-1 and COLO320, McCoy’s 5 for HT-29 and a 1:1 mixture of high-glucose DMEM:Ham’s F-12 for
LIV cells. All media were supplemented with 10% fetal calf serum and for HepG2 and LIV as well
with 1% non-essential amino acids solution. The cells were proliferated on cell culture flasks (Nunclon
Easy Flask from Nunc, through Thermo Fisher Scientific Company, Waltham, MA, USA) at 37 ◦C and
5% CO2 and harvested at 70–80% confluence using 0.25% Trypsin-0.053 mM EDTA solution. The only
exception was COLO320, which is non-adherent and can be removed from the plate without enzyme.
All media, supplements, and reagents were purchased from Sigma Aldrich.

For viability testing, the cells were plated on 96-well microplates, 1.5 × 104 cells/200 µL per well,
while, for Elisa testing, the cells were seeded on 12-well plates, 1.2 × 105 cells/1500 µL. The cells
treatment begun at 24 h after the plating, to ensure a good adherence and the commencement
of proliferation.

For in vitro testing, S1–S4 were grinded in a glass mortar, and dissolved in phosphate-buffered
saline solution (PBS, from Sigma Aldrich), to obtain stock solutions (stable suspensions) of 10 mg/mL.
Serial dilutions were prepared in the 1–10,000 µg/mL concentration range. As reference, we used
untreated cells, and as blank, PBS solution. The cells treatment was made with a proportion of 1:20
active material in cell culture media: 10:200 µL in the 96-well plates, and 75:1500 µL in the 12-well plates.
As positive control, the cytotoxic drug oxaliplatin was used (Oxaliplatin 5 mg/mL, from Actavis Group
PTC, Hafnarfiroi, Iceland).

To evaluate the cell growth inhibition MTT (from Sigma Aldrich) colorimetric testing was
used; three independent measurements were made, in triplicate. The inhibitory effect against the
non-adherent COLO320 cells was measured with the water-soluble MTS dye to avoid repeated
centrifugations of the cell culture plate; the reagent was CellTiter 96 aqueous one solution cell
proliferation assay, from Promega, Madison, WI, USA. The proliferating capacity was assessed using
Alamar blue dye, by fluorescence, as described before [47]. Alamar Blue is a resazurin-based reagent
from Invitrogen, acquired through Thermo Fisher Scientific, Waltham, MA, USA.

The soluble interleukin-1 alfa (IL-1α) and tumor necrosis factor receptor 1A (TNFR1) was
determined quantitatively by the ELISA method, using kits from R&D Systems, Minneapolis, MN, USA.
To quantify the tumor necrosis factor alpha (TNF-α) secreted by the cells, we employed the TNF-alfa
Human ELISA kit from Hycult Biotech, Uden, Netherlands, and the procedures were completed
following the manufacturer’s instructions.

4. Conclusions

Different titanocene derivatives have been immobilized onto nanostructured SBA-15 using
simple grafting via protonolysis of the Ti-Cl bond to give SBA-15/[Ti(η5-C5H5)2Cl2] (S1),
SBA-15/[Ti(η5-C5H5)(η5-C5H4Pri)Cl2] (S2), and SBA-15/[Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (S3).
In addition, a tethering reaction of a titanocene derivative containing triethoxysilyl fragments
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[Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (4) with SBA-15 was carried out to give the material
SBA-15/[Ti(η5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (S4). All materials were characterized by different
methods observing the incorporation of the titanocene derivatives mainly inside the pores of
the SBA-15-based systems. S1–S3 showed lower titanium content than S4 confirming that the
functionalization rates are higher when using ligands with triethoxysilyl fragments. The cytotoxicity
of the materials S1–S4 was evaluated on different hepatic and colorectal cell lines observing that in all
cell lines, S3 and S4 showed higher cytotoxicity than S1 and S2 and better selectivity than oxaliplatin.

HT-29 and DLD-1 colon cell populations, both bearing the APC, TP53, and PIK3CA mutations,
are indicators of poor prognosis in colorectal pathology. Therefore, these promising results regarding
the in vitro cytotoxicity of S4 may be a premise for further studies on this material. In addition,
S3 and S4 are able to induce cell growth inhibition by interfering with the metabolic activity of
the cell and through TNFR1 modulation, a phenomenon that has not been described until now for
metallodrug-functionalized nanostructured systems.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/11/2/224/s1, Figure
S1. Pore size distributions of the all the synthesized materials where a homogeneous narrow distribution is
observed; Figure S2. Thermogravimetric analysis of materials SBA-15, S1–S4; Figure S3. UV-VIS spectra of
titanocene dichloride, SBA-15, and S1–S4; Figure S4. FTIR spectra of titanocene dichloride, SBA-15, and S1–S4.
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Korać, A.; Golić, I.; Pérez-Quintanilla, D.; et al. Organotin(IV)-Loaded Mesoporous Silica as a Biocompatible
Strategy in Cancer Treatment. Angew. Chem. Int. Ed. 2014, 53, 5982–5987. [CrossRef] [PubMed]
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Evaluation of functionalized mesoporous silica SBA-15 as a carrier system for Ph3Sn(CH2)3OH against the
A2780 ovarian carcinoma cell line. Dalton Trans. 2016, 45, 18984–18993. [CrossRef] [PubMed]

18. Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in
Cancer: An Overview. Cancers 2014, 6, 1769–1792. [CrossRef] [PubMed]

19. Dong, X.; Mumper, R.J. Nanomedicinal strategies to treat multidrug-resistant tumors: Current progress.
Nanomedicine 2010, 5, 597–615. [CrossRef] [PubMed]

20. Ellahioui, Y.; Prashar, S.; Gómez-Ruiz, S. Anticancer Applications and Recent Investigations of Metallodrugs
Based on Gallium, Tin and Titanium. Inorganics 2017, 5, 4. [CrossRef]

21. Cini, M.; Bradshaw, T.N.; Woodward, S. Using titanium complexes to defeat cancer: The view from the
shoulders of titans. Chem. Soc. Rev. 2017, 46, 1040–1051. [CrossRef] [PubMed]

22. Yeruva, L.; Elegbede, J.A.; Carpera, S.W. Methyl jasmonate decreases membrane fluidity and induces
apoptosis via tumor necrosis factor receptor 1 in breast cancer cells. Anticancer Drugs 2008, 19, 766–776.
[CrossRef] [PubMed]

23. Fairclough, L.C.; Stoop, A.A.; Negm, O.H.; Radford, P.M.; Tighe, P.J.; Todd, I. Tumour necrosis factor receptor
I blockade shows that TNF-dependent and TNF-independent mechanisms synergise in TNF receptor
associated periodic syndrome. Eur. J. Immunol. 2015, 45, 2937–2944. [CrossRef] [PubMed]

24. Yun, H.M.; Park, K.R.; Kim, E.C.; Han, S.B.; Yoon, D.Y.; Hong, J.T. IL-32α suppresses colorectal cancer
development via TNFR1-mediated death signaling. Oncotarget 2015, 6, 9061–9072. [CrossRef] [PubMed]

25. Wang, H.; Liu, J.; Hu, X.; Liu, S.; He, B. Prognostic and Therapeutic Values of Tumor Necrosis Factor-Alpha
in Hepatocellular Carcinoma. Med. Sci. Monit. 2016, 22, 3694–3704. [CrossRef] [PubMed]

26. Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T.
Reporting physisorption data for gas/solid systems with special reference to the determination of surface
area and porosity. Pure Appl. Chem. 1985, 57, 603–620. [CrossRef]

27. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W.
Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution
(IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [CrossRef]

http://dx.doi.org/10.2174/0929867323666161024153459
http://www.ncbi.nlm.nih.gov/pubmed/27781943
http://dx.doi.org/10.1002/chem.200900151
http://www.ncbi.nlm.nih.gov/pubmed/19370742
http://dx.doi.org/10.1039/B919269G
http://dx.doi.org/10.1039/b920051g
http://www.ncbi.nlm.nih.gov/pubmed/20179853
http://dx.doi.org/10.1016/j.jinorgbio.2011.09.033
http://www.ncbi.nlm.nih.gov/pubmed/22112846
http://dx.doi.org/10.1002/chem.201400300
http://www.ncbi.nlm.nih.gov/pubmed/24715574
http://dx.doi.org/10.1021/om5012209
http://dx.doi.org/10.1002/anie.201400763
http://www.ncbi.nlm.nih.gov/pubmed/24828572
http://dx.doi.org/10.1039/C6DT03519A
http://www.ncbi.nlm.nih.gov/pubmed/27847952
http://dx.doi.org/10.3390/cancers6031769
http://www.ncbi.nlm.nih.gov/pubmed/25198391
http://dx.doi.org/10.2217/nnm.10.35
http://www.ncbi.nlm.nih.gov/pubmed/20528455
http://dx.doi.org/10.3390/inorganics5010004
http://dx.doi.org/10.1039/C6CS00860G
http://www.ncbi.nlm.nih.gov/pubmed/28124046
http://dx.doi.org/10.1097/CAD.0b013e32830b5894
http://www.ncbi.nlm.nih.gov/pubmed/18690087
http://dx.doi.org/10.1002/eji.201545769
http://www.ncbi.nlm.nih.gov/pubmed/26202849
http://dx.doi.org/10.18632/oncotarget.3197
http://www.ncbi.nlm.nih.gov/pubmed/25909160
http://dx.doi.org/10.12659/MSM.899773
http://www.ncbi.nlm.nih.gov/pubmed/27739418
http://dx.doi.org/10.1351/pac198557040603
http://dx.doi.org/10.1515/pac-2014-1117


Materials 2018, 11, 224 20 of 20

28. Kathiravan, A.; Renganathan, R. Photoinduced interactions between colloidal TiO2 nanoparticles and calf
thymus-DNA. Polyhedron 2009, 28, 1374–1378. [CrossRef]

29. Sablina, A.A.; Chumakov, P.M.; Kopnin, B.P. Tumor Suppressor p53 and Its Homologue p73α Affect Cell
Migration. J. Biol. Chem. 2003, 278, 27362–27371. [CrossRef] [PubMed]

30. Jones, C.F.; Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 2009, 61,
438–456. [CrossRef] [PubMed]

31. Dolznig, H.; Rupp, C.; Puri, C.; Haslinger, C.; Schweifer, N.; Wieser, E.; Kerjaschki, D.; Garin-Chesa, P.
Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon
tumor cell and stromal fibroblast interaction. Am. J. Pathol. 2011, 179, 487–501. [CrossRef] [PubMed]

32. Gheorghe-Cetean, S.; Cainap, C.; Oprean, L.; Hangan, A.; Virag, P.; Fischer-Fodor, E.; Gherman, A.; Cainap, S.;
Constantin, A.M.; Laszlo, I.; et al. Platinum derivatives: A multidisciplinary approach. J. BUON 2017, 22,
568–577. [PubMed]

33. Miklášová, N.; Fischer-Fodor, E.; Mikláš, R.; Kucková, L.; Kožíšek, J.; Liptaj, T.; Soritau, O.; Valentová, J.;
Devínsky, F. Synthesis and characterization of new biologically active palladium(II) complexes with
(1E,6E)-1,7-bis(3,4-diethoxyphenyl)-1,6-heptadiene-3,5-dione. Inorg. Chem. Commun. 2014, 46, 229–233.
[CrossRef]

34. Doyle, M.V.; Brindley, L.; Kawasaki, E.; Larrick, J. High level human interleukin 1 production by a hepatoma
cell line. Biochem. Biophys. Res. Commun. 1985, 130, 768–773. [CrossRef]

35. Voronov, E.; Apte, R.N. IL-1 in Colon Inflammation, Colon Carcinogenesis and Invasiveness of Colon Cancer.
Cancer Microenviron. 2015, 8, 187–200. [CrossRef] [PubMed]

36. Chopra, A.S.; Kuratnik, A.; Scocchera, E.W.; Wright, D.L.; Giardina, C. Identification of novel compounds
that enhance colon cancer cell sensitivity to inflammatory apoptotic ligands. Cancer Biol. Ther. 2013, 14,
436–449. [CrossRef] [PubMed]

37. Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288.
[CrossRef] [PubMed]

38. Köpf-Maier, P.; Köpf, H. Antitumor metallocenes: New developments and toxicologic features. Anticancer Res.
1986, 6, 227–233. [PubMed]

39. Fischer, R.; Kontermann, R.E.; Maier, O. Targeting sTNF/TNFR1 Signaling as a New Therapeutic Strategy.
Antibodies 2015, 4, 48–70. [CrossRef]

40. Cardoso, A.M.; Clark, R.J.H.; Moorhouse, S. Reactions of trimethylsilylcyclopentadiene derivatives with
titanium, niobium, and tantalum halides. J. Chem. Soc. Dalton Trans. 1980, 7, 1156–1160. [CrossRef]

41. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.; Stucky, G. Nonionic Triblock and Star Diblock Copolymer and
Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures.
J. Am. Chem. Soc. 1998, 120, 6024–6036. [CrossRef]

42. Horcajada, P.; Rámila, A.; Pérez-Pariente, J.; Vallet-Regí, M. Influence of pore size of MCM-41 matrices on
drug delivery rate. Microporous Mesoporous Mater. 2004, 68, 105–109. [CrossRef]

43. Marmur, J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 1961, 3,
208–218. [CrossRef]

44. Reichmann, M.E.; Rice, S.A.; Thomas, C.A.; Doty, P. A Further Examination of the Molecular Weight and
Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc. 1954, 76, 3047–3053. [CrossRef]

45. Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.;
Pall, E.; Aldea, M.; et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the
chemoresistance of hepatocellular carcinoma-derived cancer cells. J. Gastrointest. Liver Dis. 2012, 21, 187–196.

46. Cell Culture Guides. Available online: https://www.atcc.org/~/media/PDFs/Culture%20Guides/Cell_
Lines_by_Gene_Mutation.ashx (accessed on 03 June 2017).

47. Fernández, B.; Oyarzabal, I.; Fischer-Fodor, E.; Macavei, S.; Sánchez, I.; Seco, J.M.; Gómez-Ruiz, S.;
Rodríguez-Diéguez, A. Multifunctional applications of a dysprosium-based metal–organic chain with
single-ion magnet behaviour. CrystEngComm 2016, 18, 8718–8721. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.poly.2009.02.040
http://dx.doi.org/10.1074/jbc.M300547200
http://www.ncbi.nlm.nih.gov/pubmed/12750388
http://dx.doi.org/10.1016/j.addr.2009.03.005
http://www.ncbi.nlm.nih.gov/pubmed/19383522
http://dx.doi.org/10.1016/j.ajpath.2011.03.015
http://www.ncbi.nlm.nih.gov/pubmed/21703426
http://www.ncbi.nlm.nih.gov/pubmed/28730758
http://dx.doi.org/10.1016/j.inoche.2014.06.006
http://dx.doi.org/10.1016/0006-291X(85)90482-6
http://dx.doi.org/10.1007/s12307-015-0177-7
http://www.ncbi.nlm.nih.gov/pubmed/26686225
http://dx.doi.org/10.4161/cbt.23787
http://www.ncbi.nlm.nih.gov/pubmed/23377828
http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x
http://www.ncbi.nlm.nih.gov/pubmed/18954521
http://www.ncbi.nlm.nih.gov/pubmed/3707060
http://dx.doi.org/10.3390/antib4010048
http://dx.doi.org/10.1039/dt9800001156
http://dx.doi.org/10.1021/ja974025i
http://dx.doi.org/10.1016/j.micromeso.2003.12.012
http://dx.doi.org/10.1016/S0022-2836(61)80047-8
http://dx.doi.org/10.1021/ja01640a067
https://www.atcc.org/~/media/PDFs/Culture%20Guides/Cell_Lines_by_Gene_Mutation.ashx
https://www.atcc.org/~/media/PDFs/Culture%20Guides/Cell_Lines_by_Gene_Mutation.ashx
http://dx.doi.org/10.1039/C6CE01810F
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Synthesis and Characterization of Metallodrug-Functionalized Nanostructured Materials 
	X-ray Fluorescence 
	Powder X-ray Diffraction 
	N2 Adsorption-Desorption Isotherms 
	Solid-State NMR Spectroscopy 
	Thermogravimetry 
	IR and UV Spectroscopy 
	SEM and TEM 

	Qualitative Study of the Interactions with DNA 
	Cell Growth Inhibition 
	Effect on Intracellular Metabolic Activity 
	Effect on Inflammatory Processes 
	TNFR1 
	Study of the Titanium Release 

	Materials and Methods 
	General Conditions 
	General Conditions on the Synthesis and Characterization of the Titanocene Complexes 
	General Conditions for the Characterization of the Materials 
	Synthesis of SBA-15 
	Synthesis of SBA-15/[Ti(5-C5H5)2Cl2] (S1) 
	Synthesis of SBA-15/[Ti(5-C5H5)(5-C5H4Pri)Cl2] (S2) 
	Synthesis of SBA-15/[Ti(5-C5H5)(5-C5H4SiMe3)Cl2] (S3) 
	Synthesis of SBA-15/[Ti(5-C5H5)2{SCH2CH2CH2Si(OEt)3}2] (S4) 
	Ti-Release Studies 
	DNA-Binding Studies 
	Biological Studies 

	Conclusions 
	References

