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Abstract

The problem of changing the dynamics of an existing DC motor control system without

the need of making internal changes is considered in the paper. In particular, this

paper presents a method for incorporating fractional-order dynamics in an existing DC

motor control system with internal PI or PID controller, through the addition of an

external controller into the system and by tapping its original input and output signals.

Experimental results based on the control of a real test plant from MATLAB/Simulink

environment are presented, indicating the validity of the proposed approach.

Keywords: Fractional calculus; Fractional PID control; SISO control; Process

control; Controller tuning; DC motor; Servo system

1. Introduction

Fractional calculus offers novel modeling tools for the analysis of dynamical sys-

tems. In particular, memory-like, hereditary, or self-similarity phenomena arising in
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physical systems are better described by models based on noninteger differential equa-

tions [1, 2]. In control engineering fractional process models have been proposed and

successfully applied to describe certain systems [3, 4]. The fractional-order PID con-

troller has been proposed in [5] and further studied in [6]. Such a controller has more

tuning freedom and a wider region of parameters that may stabilize the plant under

control. It has been confirmed that fractional-order PID controllers offer superior per-

formance than their integer-order counterparts; in particular, in application to servo

system control [7, 8, 9]. Tuning methods for FOPID controllers were presented in,

e.g., [8, 10, 11, 12, 13, 14].

It is a known fact that the majority of industrial control loops are of PI/PID type [15].

It is therefore of significant interest to study the problem of enhancing conventional

PID controllers by introducing additional dynamical properties arising from making

use of fractional-order integrators and differentiators. However, introducing changes

into existing control loops may require termination of an industrial process and thereby

potentially result in production losses. Integrating a fractional-order controller into a

working loop in a non intrusive way is therefore beneficial, and forms the main moti-

vation of the present paper.

In this work, the following problem is addressed. A DC motor control system

is considered described by a conventional first-order plus dead time (FOPDT) plant

represented by P (s) and having the general form

P (s) =
Km

sTm + 1
e−Lms, (1)

where it is assumed without loss of generality that Km, Lm, Tm > 0, and a controller

represented by C(s) which could either be a classical proportional-integral (PI)

CPI(s) = KP +
KI

s
, (2)

or proportional-integral-derivative (PID) controller

CPID(s) = KP +
KI

s
+KDs, (3)

whereKP ,KI ,KD > 0 are also assumed within a unity-feedback system. By combin-

ing the plant (1) and one of the controllers in (2) or (3), it can be seen that step and fre-
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quency responses will follow integer-order dynamics since the resulting denominator

polynomial of the total transfer functions is governed by an integer-order polynomial.

The objective of the control algorithm proposed in this paper is to change the dy-

namics of the entire DC motor control system by incorporating fractional-order dynam-

ics and eliminating the original influence of the classical PI or PID controllers, without

making internal changes into the system. In particular, the objective is to make the

entire system follow certain fractional-order dynamics. The latter can be achieved by

using a fractional-order PID (FOPID) controller designed subject to particular specifi-

cations.

The contribution of this paper is as follows. First, the proposed retuning algorithm

is described. Next, the design of a suitable FOPI or FOPID controller for an industrial

process is detailed. The complete algorithm is then applied to a real-life model of

an industrial object—a modular servo system—thereby indicating the validity of the

proposed method through real-time experiments.

The novelty of the paper lies in experimental verification of the retuning method

thereby expanding the results achieved only through simulations in [16]. Similar prac-

tical results are not known from prior art. Our earlier contribution [17] focuses on a

different application of the retuning algorithm for a different type of plant. In this work,

the choice of the experimental setup is based on the finding [7] that fractional-order

controllers provide superior control characteristics compared to conventional ones in

case of servo control.

The structure of the paper is as follows. In Section 2 the reader is introduced to

basic concepts of fractional-order modeling. The proposed control architecture and

tuning algorithm are detailed in Section 3. The description of the real-life servo system

is given in Section 4, where, in addition, the dynamic model of the velocity control

process is identified, and conventional PI and PID controllers are designed following

a set of classical tuning rules. The application of the retuning method is illustrated in

Section 5. Finally, conclusions are drawn in Section 6.
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2. BriefIntroductiontoFractional-order ModelingandControl

Fractionalcalculusisageneralizationofintegrationanddifferentiationtothenon-

integerorderoperatoraDα
t,whereaandtdenotethelimitsoftheoperation[8].The

continuousintegro-differentialoperatoroforderα∈Risdefinedinthefollowingway

aDα
t =






dα/dtα α>0,

1 α=0,

t́

a
(dτ)−α α<0.

(4)

InthispaperweconsiderCaputo’sdefinitionofthefractionaloperatorwhichis

givenby

C
0Dα

tf(t)=
1

Γ(m−α)

ˆt

0

f(m)(τ)

(t−τ)α−m+1
dτ, (5)

wherem−1<α< m,m∈N,α∈R+.Thereasonforadoptingthisdefinitionis

thepracticalapplicabilitythereof,sinceitoffersphysicallycoherentmeaningofinitial

conditionswhensolvingcorrespondingfractionaldifferentialequations[1].

Assumingzeroinitialconditions,theLaplacetransformofthefractionalderivative

in(5)isgivenby ˆ∞

0

e−st
0Dα

tf(t)dt=sαF(s). (6)

Thus,afractional-ordertransferfunctionwithadelay maybeconsideredinthes-

domainsuchthat

G(s)=
bmsβm +bm−1sβm 1 +···+b0sβ0

ansαn +an−1sαn 1 +···+a0sα0
e−Ls, (7)

whereitisusualtotakeβ0= α0=0,inwhichcasethestaticgainofthesystemis

givenbyK =b0/a0.

Inreal-lifeapplicationsapproximationsoffractional-orderoperatorsareoftenused.

Inthiswork,Oustaloup’sapproximationmethodisconsidered.Itisdescribedin[18].

Themethodallowsonetoobtainaband-limitedapproximationofafractional-order

differentiatororintegratorintheformsα ≈H(s),whereα∈(−1,1)⊂RandH(s)

isaconventionalcontinuous-timelinearsystem.Thefollowingapproximationparam-

etersareconsidered:filterorderN suchthattheresultinginteger-ordermodelorderis

2N+1,andfrequencybandlimits(ωb,ωh).Thecontinuous-timerepresentationcanbe

usedfordigitalfilterimplementationbyapplyingaproperdiscretizationmethod[19].
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3. New Control Architecture and Tuning Algorithm

Consider an ordinary unity-feedback control system consisting of a controller C(s)

and plant P (s). The controller C(s) is assumed to be either of PI or PID type tuned to

stabilize the plant. The feedback control system therefore follows the rules of integer-

order differential equations. The objective is to plug in an external fractional-order

controller CR(s) into the existing control system in such a way that the dynamics of

the overall system follows the rules governed by fractional-order differential equations.

The control architecture with an external controller incorporated into an existing feed-

back control system is shown in Fig. 1. The results of this paper are partially based on

results in [20], where a retuning method for a conventional integer-order PI/PID was

studied. The extension of these results for FO controllers brings about a considerable

amount of benefit due to additional tuning flexibility and the ability to satisfy more de-

sign specifications such as the often desired iso-damping property of the control loop.

The external fractional-order controller CR(s) captures the input and output signals of

the original feedback control system and feeds a corrective signal in addition to the

input signal into the feedback control system [16, 21]. The effect of a double feedback

configuration in Fig. 1 is equivalent to a simple unity-gain feedback control system

with the controller

C∗(s) = (CR(s) + 1)C(s) (8)

as shown in Fig. 2.

3.1. Retuning Control Architecture

Let us consider the FOPDT plant in (1). In what follows, several propositions

related to the suggested control system retuning architecture are provided.

Proposition 1 (from PI to PIλ). Consider the original integer-order PI controller in

(2). Let CR1(s) be a controller of the form

CR1 (s) =
K1s

α + (K0 −KP ) s−KI

KP s+KI
, (9)
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Figure 1: The retuning architecture where an external controller CR(s) is added into the system without

compromising the internal connection of the original closed-loop system

Figure 2: Equivalent architecture of Fig. 1 after application of block diagram algebra. The combination of

CR(s) and C(s) results in an equivalent controller C∗(s) as described in Eq. (8)

6



where the coefficients are KP ,KI ,K1,K0 > 0 and the order is −1 < α < 1. The

resulting PIλ controller from a classical PI controller with parameters KP ,KI > 0

has the following coefficients:

K∗P = K0, (10)

and

K∗I = K1. (11)

The order of fractional-order integration is

λ = 1− α. (12)

Proof. Incorporating (2) and (9) into (8) yields

C∗(s) = (CR1(s) + 1)C(s)

=
K1s

α + (K0 −KP ) s−KI +KP s+KI

KP s+KI

(
KP s+KI

s

)
= K0 +

K1

s1−α
= K∗P +

K∗I
sλ

. (13)

Therefore, it can be seen from (13) that (10), (11), and (12) hold true [16]. �

Proposition 2 (from PI to PIλDµ). Consider the original integer-order PI controller

in (2). Let CR2(s) be a controller of the form

CR2 (s) =
K2s

β +K1s
α + (K0 −KP ) s−KI

KP s+KI
, (14)

where the coefficients are KP ,KI ,K2,K1,K0 > 0, and the orders are −1 < α < 1

and 1 < β < 2. The resulting PIλDµ controller from a classical PI controller with

parameters KP ,KI > 0 has the following coefficients:

K∗P = K0, (15)

K∗I = K1, (16)

and

K∗D = K2. (17)

The order of fractional-order integration is

λ = 1− α, (18)
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while fractional-order differentiation is

µ = β − 1. (19)

Proof. Incorporating (2) and (14) into (8) yields

C∗(s) = (CR2(s) + 1)C(s)

=
1

KP s+KI
×
(
K2s

β +K1s
α + (K0 −KP ) s−KI

+ KP s+KI)

(
KP s+KI

s

)
= K0 +

K1

s1−α
+K2s

β−1 = K∗P +
K∗I
sλ

+K∗Ds
µ. (20)

Therefore, it can be seen from (20) that (15), (16), (17), (18), and (19) hold true [16].

�

Proposition 3 (from PID to PIλDµ). Consider the original integer-order PID con-

troller in (3). Let CR3(s) be a controller of the form

CR3(s) =
K2s

β +K1s
α −KDs

2 + (K0 −KP ) s−KI

KDs2 +KP s+KI
, (21)

where the coefficients are KP ,KI ,KD,K2,K1,K0 > 0, and the orders are −1 <

α < 1 and 1 < β < 2. The resulting PIλDµ controller from a classical PID controller

with parameters KP ,KI ,KD > 0 has the following coefficients:

K∗P = K0, (22)

K∗I = K1, (23)

and

K∗D = K2. (24)

The order of fractional-order integration is

λ = 1− α, (25)

while fractional-order differentiation is

µ = β − 1. (26)
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Proof. Incorporating (3) and (21) into (8) yields

C∗(s) = (CR3(s) + 1)C(s)

=
1

KDs2 +KP s+KI

×
(
K2s

β +K1s
α −KDs

2 + (K0 −KP ) s−KI

+ KP s+KI)

(
KDs

2 +KP s+KI

s

)
= K0 +

K1

s1−α
+K2s

β−1 = K∗P +
K∗I
sλ

+K∗Ds
µ. (27)

Therefore, it can be seen from (27) that (22), (23), (24), (25), and (26) hold true [16].

�

In what follows, the retuning algorithm is summarized and the details pertaining to

the design of suitable FOPI/FOPID controllers are provided.

3.2. Summary of the Retuning Algorithm

1. Identify the type of fractional-order controller to be used, i.e., PIλ or PIλDµ,

based on the desired control requirements. The choice of whether a PIλ or

PIλDµ controller shall be used depends on the number and types of criteria to be

satisfied and the model of the plant. Discussion on the different types of robust-

ness criteria such as phase margin and gain crossover frequency specifications,

robustness to gain variations (iso-damping property), low-frequency noise and

good output disturbance rejection are presented in [8].

2. Solve for the coefficients of the overall controller C∗(s) using any method

based on the plant’s model and robustness criteria to be satisfied. For ro-

bustness, tuning methods for PIλ controllers can be found in [13, 22, 23], while

methods for tuning PIλDµ controller can be found in [24, 25]. The description

of the toolset used to design a suitable FOPID controller in the context of this

work is provided in Subsection 3.3.

3. Calculate the parameters of CR(s). The formulas from Propositions 1–3 are

as follows: Eqs. (10)–(12) for PI to PIλ retuning, Eqs. (15)–(19) for PI to PIλDµ

retuning, and Eqs. (22)–(26) for PID to PIλDµ retuning.
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Figure 3: FOMCON toolbox structure

3.3. FOPID Controller Design

In this work, for the purpose of controller design FOMCON (“Fractional-order

Modeling and Control”) toolbox for MATLAB/Simulink is used [26, 27]. In the fol-

lowing, a brief description of the FOMCON toolbox and the modules thereof that are

applied in this work is provided.

The structure of the toolbox is given in Fig. 3. There are currently four main mod-

ules: the main system analysis module (toolbox core), system identification module,

control design module and fractional-order system implementation module. The focus

is on the following particular tools:

• Time domain identification;

• Fractional-order control design based on constrained optimization.

The time-domain identification module allows one to obtain generalized models of

the studied process or system in the form (7). Therefore, one can also use it to identify

conventional models, such as the FOPDT model in (1).

Having acquired a model using the identification module, the FOPID optimization

tool can be applied for accomplishing the task of model-based control design. The tool

itself was inspired by [8, 28] and is thoroughly described in [14, 29].

The general procedure of FOPID controller design may be summarized by the fol-

lowing steps:
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• Depending on the plant characteristics, determine the correct frequency range

for approximation. Oustaloup filters are always used due to their flexibility [8].

• Obtain an initial feasible parameter set for the fractional-order PID controller;

• Choose controller gain/exponent constraints by taking the dynamical character-

istics of the plant into account;

• Choose control system constraints based on frequency domain analysis of the

open loop;

• Decide whether you want to use Simulink for system simulation, and if so, spec-

ify the correct control saturation values of the actuator.

Next, the choice of an appropriate performance metric is required (four are provided:

ISE, IAE, ITSE, and ITAE). The selection of this parameter depends on the desired

dynamical properties of the control loop [30]. Limiting the number of iterations can

help determine whether the initial parameter selection can ultimately lead to a feasible

result.

In this work, the following control system design specifications are considered:

• Phase margin ϕm and the corresponding crossover frequency ωc;

• Robustness to gain variations [31], which requires the phase response of the open

loop control system to be flat at ωc, i.e.,

d

dω
(argC(jω)P (jω))

∣∣∣∣
ω=ωc

= 0. (28)

This section is concluded by stressing the importance of the actuator saturation problem

in real-life systems. From the point of view of linear system theory, frequency-domain

specifications given above are only valid when the closed-loop control system oper-

ates without control law saturation. However, achieving a system without saturation by

limiting controller gains is not favorable since it may reduce set-point tracking perfor-

mance and, in general, contradicts the goals of optimal control [32]. Hence, the authors

of this work allow actuator saturation in the context of the given problem, but verify

the performance of the resulting control system.
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Figure 4: The INTECO DC motor platform used for the experiments

4. DC Motor Platform Experimental Setup

In this work, the following particular configuration of the INTECO modular servo

system [33] is considered as shown in Fig. 4, in which the objective is to control the

angular velocity of the DC motor. This modular experimental platform consists of the

following components: a tachogenerator, a 24V DC motor, an inertia load, a magnetic

brake, an encoder, and a gearbox. The servo system may be interfaced with the MAT-

LAB/Simulink environment through a specific PCI board, where data is collected from

the encoder and tachogenerator, and is sent to the power drive box, which controls the

DC motor.

In order to identify the model of the system, one may use the FOMCON identifica-

tion tool. As a result, a conventional FOPDT model is obtained, i.e., the power α in sα

is close to one. In addition, the time delay is found to be insignificant. The following

model was identified:

P (s) =
166.3714

0.83907s+ 1
. (29)

This model is used in all subsequent system simulations. A special model was also

fitted to the response with an experimentally set time delay of 0.1 seconds resulting in

P (s) =
166.1038

0.75507s+ 1
e−0.1s. (30)

The reason for doing this is the following. The addition of the delay term is necessary

in order to enable the computation of the conventional and fractional-order PI and

PID controllers. Further discussion in relation to the system’s mathematical model

identification is presented in [34].
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The original feedback control system is in the form of a unity-feedback system,

where the controller is either PI or a PID controller. The parameters of the original PI

and PID controllers will be used as part of the retuning process, which is illustrated in

the examples found in Section 5. Initially it is assumed that the existing PI and PID

controller design is based on Ziegler-Nichols tuning method [35]. The rationale behind

choosing this particular method is that it is one of the most popular methods for tuning

industrial PID control loops [15]. Therefore, it is expected that a lot of existing loops

have already been tuned according to this method. Obviously it is possible to obtain a

much better result by studying each particular control problem in detail and applying,

e.g., optimization based control design techniques even with classical PID controllers.

However, in the context of this work these particular techniques are extended to satisfy

more design specifications by means of using FOPID controllers. Hence it is natu-

ral to assume that using the FOPID retuning method with existing PID control loops

tuned according to conventional rules such as the Ziegler-Nichols method will result in

significant improvement of control quality and performance.

The tuning method of classical PI (2), and PID (3) controllers for a FOPDT system

with quarter-decay ratio Lm/Tm ≤ 1, as detailed in [36, pp. 30, 78], is as follows:

KP = 0.9Tm/(KmLm) = 0.0409 and KI = T/(3.7KmL
2
m) = 0.1229 for classical

PI, and KP = 2Tm/(KmLm) = 0.0909, KI = T/(KmL
2
m) = 0.4546 and KD =

Tm/Km = 0.0045 for classical PID. The numerically simulated step responses and

control signals for (29) with classical PI and PID controllers are shown in Figs. 5 and

6, while the actual experimental step responses and control signals are shown in Figs.

7 and 8. These two figures each present three responses considering that the motor

system parameter Km is a varying parameter with a tolerance of ±25%, resulting in

the range Km ∈ [124.7786, 207.9642]. Such setup was made to show the effectiveness

of the fractional-order controllers on robustness applications in the next section.

From Figs. 7 and 8, one can see that the damping property of the entire feed-

back control system is not uniform, i.e., the step response overshoots vary with large

amounts from around 120 rad/s to around 150 rad/s, with a step command of 100 rad/s.

The classical PI and PID controllers were not able to address this type of situation as

evidently shown in open-loop frequency responses in Figs. 9 and 10, in which the
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Figure 5: Simulated step responses and control signals of the original feedback control system with a classical

PI controller. Experimentation was done with 0.75Km, 1.0Km, and 1.25Km as numerator parameters of

(29)

0 1 2 3 4 5 6 7 8
0

50

100

150

200

Ve
lo

ci
ty

 [r
ad

/s
]

 

 
Reference
Kgv=0.75
Kgv=1
Kgv=1.25

0 1 2 3 4 5 6 7 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

C
on

tro
l l

aw
 u

(t)

 

 
Kgv=0.75
Kgv=1
Kgv=1.25

Figure 6: Simulated step responses and control signals of the original feedback control system with a classical

PID controller. Experimentation was done with 0.75Km, 1.0Km, and 1.25Km as numerator parameters

of (29)
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Figure 7: Hardware experimentation step responses and control signals of the original feedback control

system with a classical PI controller. Experimentation was done with 0.75Km, 1.0Km, and 1.25Km as

numerator parameters of (29)
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Figure 9: Open-loop frequency response of the original feedback control system with a classical PI controller

and plant gain of 1.0Km

rate-of-change of the phase value at the cross-over frequency is not zero; that is, the

requirement in (28) is not satisfied. In case of the PID controller, one can also ob-

serve rapid control law oscillations due to the derivative component gain. This is not

acceptable in a real application.

5. Experimental Retuning Results

For the retuning examples, the following PIλ controller is considered

C∗FOPI (s) = 0.054972 +
0.055043

s0.6631
(31)

with the specifications ϕm = 87 and ωcg = 12 rad/s, and the PIλDµ controller

C∗FOPID (s) = 0.005 +
0.021235

s0.8
+ 0.0014588s0.5 (32)

with the specifications ϕm = 97.3◦ and ωcg = 2.5 rad/s. The controllers were ob-

tained using the method described in Section 3.3 with the model in (29) taken as basis

for model-based design. The tuning is accomplished offline, and the difference in de-

sign specifications—phase margin and crossover frequency—arises from the desire to

obtain particular nominal step responses in each case.
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Figure 10: Open-loop frequency response of the original feedback control system with a classical PID con-

troller and plant gain of 1.0Km

Figs. 11 and 12 present the simulated step responses of the system with the appli-

cation of PIλ and PIλDµ controllers, respectively. It can be seen that the iso-damping

property of the system is valid given that the variation of overshoots of the step re-

sponses is reasonably small. In fact, this variation coincides with corresponding linear

simulations without modeling the actuator saturation effect. From frequency domain

analysis, the iso-damping property can be seen in the phase response which has a slope

of zero at the phase margin, as shown in Figs. 13 and 14 for PIλ and PIλDµ controllers,

respectively.

5.1. Example 1: From PI to PIλ

In this example, it is assumed that the PIλ controller to be incorporated has the

form (31) with K∗P = 0.054972, K∗I = 0.055043, and λ = 0.6631. Evaluating

(10)–(12) yields the values K0 = K∗P = 0.054972, K1 = K∗I = 0.055043, and

α = 1−λ = 0.3369. From (9), the resulting external controller can now be determined
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Figure 11: Simulated step responses and control signals of the original feedback control system with the

PIλ controller. Experimentation was done with 0.75Km, 1.0Km, and 1.25Km as numerator parameters

of (29)
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Figure 12: Simulated step responses and control signals of the original feedback control system with the

PIλDµ controller. Experimentation was done with 0.75Km, 1.0Km, and 1.25Km as numerator parameters

of (29)

18



−60

−40

−20

0

20

40

60

80

M
ag

ni
tu

de
 (d

B)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−135

−90

−45

0

Ph
as

e 
(d

eg
)

Bode Diagram
Gm = Inf ,  Pm = 87.1 deg (at 12 rad/s)

Frequency  (rad/s)

Figure 13: Open-loop frequency response of the original feedback control system with a PIλ controller and

plant gain of 1.0Km
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Figure 14: Open-loop frequency response of the original feedback control system with a PIλDµcontroller

and plant gain of 1.0Km
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as

CR1 (s) =
K1s

α + (K0 −KP ) s−KI

KP s+KI

=
0.055043s0.3369 + 0.028072s− 0.055043

0.0269s+ 0.055043
. (33)

5.2. Example 2: From PI to PIλDµ

In this example, it is assumed that the PIλDµ controller to be incorporated has

the form (32) with K∗P = 0.005, K∗I = 0.021235, K∗D = 0.0014588, λ = 0.8 and

µ = 0.5. Evaluating (15)–(19) yields the values K0 = K∗P = 0.005, K1 = K∗I =

0.021235, K2 = K∗D = 0.0014588, α = 1 − λ = 0.2, and β = µ + 1 = 1.5. From

(14), the resulting external controller is the following one:

CR2 (s) =
K2s

β +K1s
α + (K0 −KP ) s−KI

KP s+KI

=
0.0014588s1.5 + 0.21235s0.2 − 0.0539s− 0.1229

0.0409s+ 0.1229
. (34)

5.3. Example 3: From PID to PIλDµ

In this example, it is assumed that the PIλDµ controller to be incorporated has

the form (32) with K∗P = 0.005, K∗I = 0.021235, K∗D = 0.0014588, λ = 0.8, and

µ = 0.5. Evaluating (22)–(26) yields the values K0 = K∗P = 0.005, K1 = K∗I =

0.021235, K2 = K∗D = 0.0014588, α = 1 − λ = 0.2, and β = µ + 1 = 1.5. From

(21), the resulting external controller is the following one:

CR3 (s) =
K2s

β +K1s
α −KDs

2 + (K0 −KP ) s−KI

KDs2 +KP s+KI

=
0.0014588s1.5 + 0.21235s0.2 − 0.0045s2 − 0.0859s− 0.4546

0.0045s2 + 0.0909s+ 0.4546
. (35)

5.4. Retuning Algorithm Implementation and Real-Time Control Results

The algorithm is implemented in MATLAB/Simulink environment following the

control architecture in Fig. 1. Oustaloup’s recursive filter is used for realization of
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fractional-order controllers in (33)–(35). The following continuous-time approxima-

tions were obtained in MATLAB with N = 5, ωb = 0.001, and ωh = 1000:

C̃R1 =
C̃R11

C̃R12

, C̃R2 =
C̃R21

C̃R22

, C̃R3 = − C̃R31

C̃R32

, (36)

where

C̃R11 = 0.34406(s+ 676.3)(s+ 196.4)(s+ 58.54)(s+ 17.86) (37)

×(s+ 5.323)(s+ 1.48)(s+ 0.3988)(s+ 0.1086)

×(s+ 0.03002)(s+ 0.008387)(s+ 0.002356)(s− 3.046),

C̃R12 = (s+ 659.4)(s+ 187.8)(s+ 53.49)(s+ 15.23) (38)

×(s+ 4.338)(s+ 3.005)(s+ 1.236)(s+ 0.3519)

×(s+ 0.1002)(s+ 0.02854)(s+ 0.008129)(s+ 0.002315),

and

C̃R21 = 0.25015(s− 1496)(s+ 604.9)(s+ 271.1)(s+ 172.1) (39)

×(s+ 67.89)(s+ 48.88)(s+ 18.22)(s+ 13.76)

×(s+ 5.113)(s+ 1.32)(s+ 1.254)(s+ 0.3891)

×(s+ 0.3366)(s+ 0.111)(s+ 0.09463)(s+ 0.03162)

×(s+ 0.02675)(s+ 0.009006)(s+ 0.007578)

×(s+ 0.002565)(s+ 0.002148)(s2 + 6.629s+ 11.11),

C̃R22 = (s+ 730.5)(s+ 605.1)(s+ 208.1)(s+ 172.3) (40)

×(s+ 59.26)(s+ 49.08)(s+ 16.88)(s+ 13.98)

×(s+ 4.806)(s+ 3.981)(s+ 3.005)(s+ 1.369)

×(s+ 1.134)(s+ 0.3899)(s+ 0.3229)(s+ 0.111)

×(s+ 0.09197)(s+ 0.03162)(s+ 0.02619)(s+ 0.009006)

×(s+ 0.00746)(s+ 0.002565)(s+ 0.002125),
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and finally

C̃R31 = (s+ 724.4)(s+ 605.1)(s+ 205.8)(s+ 172.4) (41)

×(s+ 57.78)(s+ 49.17)(s+ 4.495)(s+ 4.225)

×(s+ 1.365)(s+ 1.151)(s+ 0.3897)(s+ 0.326)

×(s+ 0.111)(s+ 0.09262)(s+ 0.03162)(s+ 0.02633)

×(s+ 0.009006)(s+ 0.00749)(s+ 0.002565)

×(s+ 0.002131)(s2 + 29.03s+ 214.3)

×(s2 + 20.47s+ 110.9),

C̃R32 = (s+ 730.5)(s+ 605.1)(s+ 208.1)(s+ 172.3) (42)

×(s+ 59.26)(s+ 49.08)(s+ 16.88)(s+ 13.98)

×(s+ 11.09)(s+ 9.106)(s+ 4.806)(s+ 3.981)

×(s+ 1.369)(s+ 1.134)(s+ 0.3899)(s+ 0.3229)

×(s+ 0.111)(s+ 0.09197)(s+ 0.03162)

×(s+ 0.02619)(s+ 0.009006)(s+ 0.00746)

×(s+ 0.002565)(s+ 0.002125).

Experimental results obtained from the motor platform with the retuning controllers

given above are shown in Figs. 15 and 16. PID control loop retuning ultimately leads

to equivalent PIλ or PIλDµ control loops, therefore only two sets of experiments are

considered, as equivalent configurations generate results that are very similar.

6. Conclusions

In this paper, retuning heuristics were implemented with the objective of incorpo-

rating fractional-order dynamics in an existing integer-order DC feedback control sys-

tem. It was shown that an external controller CR(s) could be designed, implemented

and incorporated into the feedback control system by just obtaining the input and out-

put signals without any changes in the configuration of the original DC motor system.
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Figure 15: Experimental step responses and control signals of the original feedback control system with

the PIλ controller with retuning controller CR1. Experimentation was done with 0.75Km, 1.0Km and

1.25Km as numerator parameters of (29) on a DC motor system
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Figure 16: Experimental step responses and control signals of the original feedback control system with

the PIλDµ controller with retuning controllers CR2 and CR3. Experimentation was done with 0.75Km,

1.0Km and 1.25Km as numerator parameters of (29) on a DC motor system
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Both simulation and experimental results show that such retuning capability is possi-

ble in the essence of improving system’s robustness, e.g., incorporating iso-damping

property.

Future work will encompass further analysis of the retuning method with prospec-

tive industrial applications. The issue of efficient realization of the retuning controllers

will also be studied.
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