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ABSTRACT  

The  opportunities  now  afforded  by  increasingly  available,  dense,  aerial  urban  LiDAR  point  clouds  (greater 

than100  pts/m2)  are  arguably  stymied  by  their  sheer  size,  which  precludes  the  effective  use  of  many  tools 

designed for point cloud data mining and classiication. This paper introduces the point cloud voxel classiication 

(PCVC)  method,  an  automated,  two-step  solution  for  classifying  terabytes  of  data  without  overwhelming  the 

computational infrastructure. First, the point cloud is voxelized to reduce the number of points needed to be 

processed sequentially. Next, descriptive voxel attributes are assigned to aid in further classiication. These at-

tributes describe the point distribution within each voxel and the voxel’s geo-location. These include 5 point- 

descriptors (density, standard deviation, clustered points, itted plane, and plane’s angle) and 2 voxel position 

attributes (elevation and neighbors). A random forest algorithm is then used for inal classiication of the object 

within each voxel using four categories: ground, roof, wall, and vegetation. The proposed approach was eval-

uated using a 297,126,417 point dataset from a 1 km2 area in Dublin, Ireland and 50% denser dataset of New 

York  City  of  13,912,692  points  (150  m2).  PCVC’s  main  advantage  is  scalability  achieved  through  a  99  % 

reduction in the number of points that needed to be sequentially categorized. Additionally, PCVC demonstrated 

strong classiication results (precision of 0.92, recall of 0.91, and F1-score of 0.92) compared to previous work on 

the same data set (precision of 0.82-0.91, recall 0.86-0.89, and F1-score of 0.85-0.90).   

1. Introduction 

Urban objects such as roadways, trees, and buildings are presently 

identiied using a multiplicity of data sources including satellite imag-

ery, Light Detection and Ranging (LiDAR), environmental sensors, and 

even crowd sourced information (Aljumaily et al. 2019). Spatial data-

bases  or  some  form  of  a  Geographic  Information  System  (GIS)  has 

traditionally  been  used  for  their  storage,  manipulation,  and  viewing. 

Given the rapidly increasing size of such data sets standard, stand-alone 

computer resources are no longer becoming viable means for achieving 

the most basic functionality and usefulness of such data without turning 

to the complexity of distributed computing. 

Additionally,  collaborative  work  products  such  as  Digital  Surface 

Models (DSMs) of limited areas produced from aerial LiDAR point cloud 

data no longer meet community needs, in part because such worklows 

remove the original data points and, thus, preclude further exploitation 

the  data’s  richness.  Initially,  DSMs  were  adopted  to  overcome  data 

sparsity.  Today  a  different  problem  exists – namely,  the  exceedingly 

large size of the data sets. Typical aerial LiDAR missions consist of bil-

lions of tuples (3D) points requiring terabytes, if not petabytes, of stor-

age. For example, the United States’ irst national aerial LiDAR survey 

has already released more than a trillion points, with more to still be 

acquired (USGS 2020). Processing data sets of this size is further chal-

lenged by the data’s dimensionality. Each tuple had 3 coordinates (x, y, 

and z), a timestamp, and an intensity measurement. When imagery is 

collected at  the  same time or  subsequently  registered,  each  tuple has 

color indicators (typically Red-Green-Blue). There may also be afiliated 

light path and sensor data. In 2015, Vu et al. (2015) charted a projection 

of aerial LiDAR density increase of almost an order of magnitude per 

decade. Notably, a single autonomous vehicle already collects terabytes 
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of LiDAR per hour (Ramesh et al. 2019). Thus, traditional LiDAR storage 

and processing solutions will only increasingly struggle to support the 

rapidly escalating number of LiDAR users and the ever-expanding types 

of  queries  for  these  rapidly  growing  data  sets.  As  an  example,  in  the 

debate in the US congress for funding the national LiDAR survey, more 

than 600 use cases were identiied (USGS 2020). 

The sheer size of the anticipated data densities and spatial extents 

provide further impetus to using strategies commonly referred to as Big 

Data, as noted nearly a decade ago by Xue et al. (2014) for applications 

such  disaster  mitigation,  high-level  modeling,  and  map  updating.  Big 

Data  platforms  can  offer  a  logical  and  useful  choice  for  storage  and 

analysis  of  huge  volumes  of  data  through  parallel  and  distributed 

computing. To demonstrate the viability of this, a fully automatic, two- 

step approach is proposed herein to classify high-density, aerial LiDAR 

point clouds into four classes: ground, wall, roof, and vegetation. The 

irst step partitions the urban area into equisized voxels to reduce the 

number of points being processed. In the second step, these voxels are 

assigned  seven  descriptors  related  to  the  point  distribution  and  the 

voxel’s position. A random forest algorithm is then used for classiica-

tion. The signiicant contributions over  previous work by the authors 

(Aljumaily et al. 2017; Aljumaily et al. 2019) are the scalability and the 

introduction of a means to overcome manual parameter selection with 

respect to selecting the maximum number of outlier points when using 

both the DBSCAN and RANSAC based algorithms. 

The main contribution of the proposed approach is that it demon-

strates the implementation of a fully automatic and signiicantly more 

scalable  approach  than  otherwise  available  to  support  mapping  the 

LiDAR data in a Big Data context by reducing the number of datapoints 

during the classiication task by approximately 99%. Thus, this paper 

offers  a  two-step  solution  for  classifying  terabytes  of  data  without 

overwhelming the computational infrastructure. 

The remainder of this work is organized as follows: Section 2 reviews 

the background literature; Section 3 describes the scope and method-

ology; Section 4 presents validation experiments; Section 5 discusses the 

obtained  results,  and Section  6 formulates  general  conclusions,  em-

phasizes the main contribution of the paper, and provides thoughts on 

future work. 

2. Related work 

Data  classiication  for  the  purpose  of  object  segmentation,  extrac-

tion, and reconstruction is a well-established topic within the geomatics 

community  (Yang  et  al.,  2015).  Approaches  often  rely  upon  point 

grouping of similar features or processing point-to-point data features. 

Ni et al. (2017) described three main strategies for LiDAR data classi-

ication with respect to granularity of the processing unit (irrespective of 

whether  these  are  done  with  or  without  machine  learning  or  deep 

learning  techniques):  (1)  point-based  classiication  (e.g. Yastikli  and 

Cetin 2016; Guo et al., 2015), (2) segment-based classiication (e.g. Yang 

et al., 2015; Xiang et al. 2016), and ((3) multiple-entity-based classii-

cation (Vosselman et al., 2017). 

Point-based methods extract individual features for each point, apply 

a  classiier  to  train  with  various  samples  and  then  classify  the  point 

cloud  with  the  obtained  classiied  model.  For  obtaining  features  for 

every single point, a neighborhood concept is applied that describes the 

3D  structure  around  the  point.  Such  techniques  need  a  parameter 

(usually the radius) to describe the proximity of the points related to 

density and structure in the dataset. 

Segmentation  techniques  divide  the  point  cloud  into  a  set  of  geo-

metric structures (planes, voxels) including the ground plane. Applied 

functions to join points in a geometric structure can be by region (e.g. 

Truong-Hong et al. 2013), aggregation functions (e.g. Vu et al. 2015, 

Aljumaily et al. 2015); or combining both approaches (e.g. Li and Sun 

2018). A disadvantage to such approaches relates to reliance on only 

geometric structures. This can limit the effectiveness, but they are useful 

to  calculate  geometric  features  that  mitigate  dependency  on 

neighborhood optimization methods and provide several new attributes 

helpful  to  use  semantic  rules  (e.g.  if  planes  then  walls;  if  rough  then 

trees).  Furthermore,  the  approaches  typical  require  calculation  of  ei-

genvectors and eigenvalues for each point in a repetitive manner and 

are, therefore, time-consuming. 

Multiple-entity-based  classiication  uses  points  and  segments  with 

other data to improve classiication accuracy (Xu et al. 2014) such as 

joining aerial LiDAR data with terrestrial and mobile LiDAR, as well as 

imagery  (Awrangjeb  et  al.  2013)]  or  GIS-based  data  [e.g.  Open-

StreetMap data (Aljumaily et al. 2019)]. Such approaches are not un-

common  but  may  require  overcoming  data  format  or  device 

incompatibilities (Previtali et al. 2014; Nikoohemat et al. 2017). As an 

example, multiple-entity-based classiication by Vosselman et al. (2017) 

employed  information  directly  obtained  from  the  point  cloud  (e.g. 

derived  orientation  and  neighborhood  context)  combined  with  inde-

pendent domain classiiers as part of a hybrid segmentation to obtain 

planar segments and segments of arbitrary shapes and sizes using Con-

ditional Random Field. The outcomes of those efforts demonstrated that 

segment-based classiication was more effective in utilizing context in-

formation than a point-based approach (91% vs 82.8%) when using a 30 

pts/m2 dataset from Rotterdam. 

Beyond those are machine learning (ML) approaches that learn about 

an  object  in  context  (e.g.  area,  surface  dimensions,  orientation,  simi-

larity, proximity, coplanarity, and orthogonality). These have also been 

used to extract regions, patterns, points, and objects (Chakrawarty et al. 

2014),  as  well  as  direct  classiication,  as  recently  summarized  by Liu 

et al. (2019). Notable examples include the work by Weinmann et al. 

(2015) in  which  four  components  (neighborhood,  feature  selection, 

feature extraction, and classiication) were used to support individual 

point classiication. That work concluded that classiication algorithms 

are more eficient when information associated with a point’s neighbors 

is  included.  As  an  example  of  this, Qi  et  al.  (2016) applied  a  neural 

network called PointNet that directly consumes point clouds. Once the 

features  were  selected,  the  data  were  grouped  into  feature  vectors  to 

train the model to predict membership class (point or segment). 

Common  ML  approaches  used  with  LiDAR  data  include  K-Nearest 

Neighbors  (KNN),  SVM,  Convolutional  Neural  Networks  (CNNs)  and 

Random Forest (RF). Notably, most CNNs provide point cloud classii-

cations  without  any  pre-processing  as  described  by Liu  et  al.  (2019). 

Recent  work  in  this  area  includes  that  by Zhang  et  al.  (2020) who 

employed  a  CNN  in  the  extraction  of  a  digital  elevation  model  by 

including speciic features of the LiDAR data. Their approach organized 

the  point  cloud  data  in  a  patch-based  structure  that  entailed  a  pre- 

clustering  of  points  with  similar  characteristics.  Their  proposed  CNN 

improved  models  such  as  PointNet ++,  although  there  were  still  in-

eficiencies in the application due to the complexity of the deep neural 

network  and  the  high  computational  cost  in  data  preprocessing  and 

network inference. According to Lin et al. (2020) deep neural networks 

have made signiicant breakthroughs in point cloud classiication and 

segmentation tasks, such as PointCNN. While successful for complicated 

feature representation, deep learning approaches require thousands of 

pieces of ground truth data for training, as demonstrated by Zolanvari 

et al. (2019) where over 2,500 h were expended to complete an 8-cate-

gory classiication of 260 million points (representing less than 20% of a 

high-density aerial data set from 2015). 

Among  the  wide  range  of  ML  and  DL  approaches,  Random  Forest 

(RF) [Breiman, 2001] has been particularly widely adopted. According 

to Belgiu and Dr̆aguţ (2016), RF is less sensitive than CNNs for LiDAR 

urban objects classiication and does not tend to overtrain. RF was irst 

applied  for  LiDAR  classiication  in  2009  (Chehata  et  al.,  2009).  This 

supervised algorithm consisted of a “build phase” and an “operational 

phase” (Wang et al., 2019). The build phase trained the algorithm and 

generated  the  classiication  model,  while  the  operational  phase  per-

formed  the  classiications.  Therefore,  the  training  set  quality  is  very 

important and usually something that is prepared manually, which is 

very time consuming and subject to the introduction of human error. In 
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the application of RF by Park and Guldmann (2019), 11 attributes were 

used  to  classify  data  as  point-speciic,  footprint-relative,  and  point- 

neighborhood  with  the  goals  of  building  and  roof  classiication,  as 

well as height estimation. The overall accuracy was around 97%, which 

decreased to 93% in residential areas, because of the presence of shrubs, 

fences,  and  other  items  in  the  environment  that  added  noise. Bassier 

et al. (2019) recently concluded that while ML methods often generalize 

better than heuristic ones (e.g. Soilan et al., 2020), they require exten-

sive training data, as previously noted by Zolanvari et al. (2019). Despite 

this  constraint,  RF  has  shown  itself  to  be  a  computationally  eficient 

technique and able to produce higher accuracies than other approaches 

(e.g. Farnaaz  and  Jabbar,  2016)  without  requiring  extensive  training 

times (Park and Guldmann; 2019; Belgiu and Dr̆aguţ, 2016; Khan et al. 

2010; Oshiro et al. 2012). RF has the additional beneit of being appli-

cable to multi-class and multi-attribute classiication problems (Wang 

et al., 2019). 

The RF prediction model has been used as a ML technique in many 

LiDAR projects. For instance, Naidoo et. al. (2012) applied RF to classify 

8 common savanna tree species using a combination of hyperspectral 

and LiDAR-derived structural parameters, in the form of a 7 predictor 

dataset resulting in an accuracy of approximately 87%. Slightly lower 

success  rates  with  RF  (mean  precision  and  recall  measures  of  78% 

85%) were obtained by Azadbakht et al. (2016) using a ivefold, cross- 

validation (four training splits and one validation split) when applied to 

urban  objects  of  trees,  vegetation  (shrubs  and  grass),  multiple  roof 

classes,  asphalt,  concrete,  vehicles,  power  lines,  walls  (fences)  and 

bodies of water. In Ahmed et al. (2015), RF and multiple regression were 

applied  separately  to  model  canopy  cover  and  height  for  three  forest 

classes  (mature,  young  and  mature,  and  young).  The  RF  models  pro-

vided  improved  estimates  relative  to  the  multiple  regression  models 

across all classes. Bassier et al. (2019) demonstrated better performance 

with an RF classiication when compared to other approaches including 

KNN, a multiceptron Neural Network (NN), and Support Vector Machine 

(SVM). Consequently, RF was selected herein to improve classiication 

performance within a Big Data environment. 

Speciically, this paper proposes a classiication algorithm based on 

the creation of device-independent and format-independent, grid-based 

subspaces with the intent of providing more scalability than other RF 

implementations (e.g. Bassier et al., 2019). Unlike many state-of-the-art 

approaches (e.g. Park and Guldmann, 2019; Azadbakht et al. 2016), the 

proposed Point Cloud Voxel Classiication (PCVC) approach uses attri-

butes  derived  from  point  geometry,  context  geometry  (for  each  sub-

space), and global attributes to achieve a model suficiently robust to 

classify  dificult  classes  such  as  low  vegetation  or  trees  near  building 

facades. To  overcome the limitations of complex implementation and 

high computational costs [as noted by Xu and Stilla (2021)], the pro-

posed PCVC approach is introduced within a scalable, Big Data platform. 

3. The proposed approach 

The proposed PCVC approach employs RF to classify objects within 

urban,  aerial  point  cloud  data.  Although  point  cloud  data  attributes 

typically  include  x-,  y-,  and  z-coordinates,  intensity,  return  number, 

number of returns, scan direction lag, edge of light line, and classii-

cation, in the proposed approach only the x-, y-, and z-coordinates for 

each point were used, which vastly simpliies its implementation. This 

approach  involves  two  steps  (Fig.  1).  Step  1  is grid-based  subspace 

partitioning,  where  points  are  grouped  in  a  set  of  3D  voxels.  This 

strategy facilitates easier and more eficient data handling than working 

directly with individual points and makes the procedure less sensitive to 

noise, without reliance on a supervoxel or recursive voxel exploration. 

In  contrast,  in  Step  2 descriptive  voxel  attributes are  assigned  for 

further classiication. These attributes mainly describe the point distri-

bution within each voxel along with the geolocation of the voxel. After 

attribute calculation, RF is applied to classify these voxels (see Section 

4). These steps are further described below. 

3.1. Step 1: Grid-Based subspace partitioning 

Three-dimensional,  grid-based  methods  for  subspace  partitioning 

signiicantly  reduce  time  complexity,  especially  for  high-dimensional 

datasets (Aljumaily, et al. 2019). Thus, the basic idea presented herein 

is to exploit the coordinates (x, y, z) of each point in the point cloud by 

mapping  these  into  smaller,  equisized,  3D  subspaces  (i.e.  voxels).  To 

achieve this, a value of D =1 m is used as the grid resolution in each 

direction The proposed volume is only a small fraction of the entire point 

cloud and smaller than most objects found in cities. In Aljumaily, et al. 

2017,  an  experiment  was  done  by  selecting  three  different  voxel  di-

mensions (0.5 m, 1.0 m, and 2.0 m) of the same point cloud for object 

detection.  The execution  time  using voxels  with  dimensions  of  0.5  m 

were very similar to those using dimensions of 1.0 m, but a value of 1.0 

m for D was recommended, because when the voxel dimension was only 

0.5  m  there  were  many  voxels  of  low  density.  This  is  particularly 

problematic  for  distinguishing  vertical  surfaces  from  noise  in  aerial 

LiDAR data sets, as the yield of vertical data is only about one-tenth of 

that of the horizontal data yield as was established by both Hinks et al. 

(2009) and Stanley and Laefer (2021) in multiple, urban, aerial LiDAR 

missions.  If  a  larger  grid  (e.g.  2  m)  is  selected,  other  problems  arise 

including  the  accidental  inclusion  of  multiple  objects  within  a  single 

voxels. This is  particularly problematic in the presence of vegetation. 

Additionally, larger voxels result in a high number of points needing to 

being processed within each voxel. Consequently, more execution time 

is then needed. 

As such, in this Step 1, consider a point cloud consisting of a set of 3D 

points; p1 (x1, y1, z1), p2 (x2, y2, z2), …, pn (xn, yn, zn), where n is the 

number of points, and m is a set of voxels identical in size to each other 

[C1 (X1, Y1, Z1), C2 (X2, Y2, Z2), …, Cm (Xm, Ym, Zm)]. If D =1, then p (x, 

y, z) ∈C (X, Y, Z), if (X <=x <X +1) and (Y <=y <Y +1) and (Z <=z 

<Z +1).  For  example,  for  point  coordinates × =315603.38,  y =

233870.5, z =15.38 and D =1, the point is mapped to the voxel co-

ordinates of X  =315603, Y =233870, Z =15. 

Fig. 1.Proposed approach with 3 stages of outputs: (1) undescribed voxels; (2) 

described voxels; and (3) classiied voxels. 
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The  grid-based  subspaces  are  achieved  by  using  the  MapReduce 

framework, a programming model used to support parallel computing. 

The approach consists of two functions: Map and Reduce, which operate 

using Key-Value data types. The Map function receives an input data and 

issues a list in the form of (K1, V1), where K1 represents the voxel co-

ordinates, which is calculated according to the previous rule, while V1 
represents the current point being processed. Next, the Reducer receives 

the list of the pairs (K1, V1) and issues a list of the pairs (K2, V2), where K2 
is the voxel coordinate, as a unique key in the list, while V2 is a list of all 

points that belong to K2. For more information about applying MapRe-

duce for voxel division see Aljumaily et al. (2015). 

3.2. Step 2: Assigning descriptive voxel attributes 

In this step, attributes based on point distribution inside each voxel 

and the geographical positions of the voxel within the larger data set are 

determined. To begin this process, a point cloud PC is mapped to a set of 

voxels PC ∈{C1, C2, C3… CM}, where M is the number of voxels in the 

PC. Each voxel Ci (1 m ×1 m ×1 m) consists of a set of points, Ci ∈{p1, 

p2, p3… pN}, where N is the number of points in Ci. In this case, ive 

distinctive  point  descriptors  (density,  standard  deviation,  clustered 

points, itted plane, and plane’s angle) and two voxel position attributes 

(voxel  elevation  and  voxel  neighbors)  are  determined  These  area 

described below. 

a) Density (DENS). 

This attribute represents the overall point density within each voxel, 

DENSi =Ni / 1
3 where Ni is the number of points within Ci. This attribute 

provides an indicator of importance. For example, a voxel with only one 

point would likely represent noise, while a voxel containing more than 

10 points would likely represent an object or part of an object. 

b) Standard Deviation (STDV). 

To measure the amount of point variation or dispersion, the standard 

deviation STDVi for each Ci is calculated. For this, let {(xi, yi, zi), where i 

=1,…n} be a set of points of Ci. Then STDVi is calculated as follows: 

(x,y,z) =
1

n

∑ n

i=1
(xi,yi,zi) (1) 

From that, the standard deviation of Ci can be calculated by: 

STDVi=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x xi)
2+

(

y yi

)2
+ (z zi)

2

n

√
√
√
√
√

(2) 

c) Clustered points (CLUS). 

There are two primary point distribution patterns: dense and sparse 

(Aljumaily et al. 2015). A dense voxel is deined as containing a set of 

successfully clustered points either horizontally or diagonally (Fig. 2) 

that form a highly populated sector within the voxel. 

Consider Ci as a given voxel, CLUSi =ni / Ni, where ni is the number 

of clustered points in Ci. If CLUSi =1, then Ci is a fully clustered or dense 

voxel. Normally, a dense voxel forms part of a building object (mostly 

roofs) or part of the ground including roads and sidewalks. 

A sparse voxel contains a high percentage of dispersed points (i.e., 

CLUSi ≈0). These voxels tend to represent vegetation (Fig. 3a) [due to 

the ability of laser scanner to penetrate gaps among the foliage] or a 

vertical wall (Fig. 3b); low vertical point densities are an artefact of the 

aircraft’s relative position to the building wall causing large angles of 

incidence, thereby limiting point acquisition on these vertical surfaces, 

as demonstrated by Hinks et al. (2009). Aboveground utilities, humans, 

automobiles in transit, and general noise are classiied as sparse voxels, 

due  to  their  partial  representation  in  typical  aerial  point  clouds.  For 

CLUSi =(ni /  Ni),  the  clustered  points,  ni,  for  each  voxel  need  to  be 

calculated.  This  is  done  with  a  DBSCAN  clustering  algorithm  (Ester 

et al., 1996), which eficiently partitions clustered and dispersed spaces 

in a k-dimensional space by calculating the distance between points. For 

that, consider pj and pk as two points belonging to a voxel Ci, if Distance 

(pj, pk) <Eps (the maximum radius threshold to delimit the neighbor-

hood of a point pj), where pj is considered as a core point, and pk is its 

neighbor.  Otherwise,  point  pk is  considered  as  noise.  Additionally,  a 

point  pj is  the  core  of  a  cluster,  if  at  least  MinPts  points  exist  in  its 

neighborhood  region  and  the  distance  that  point  and  the  rest  of  the 

points of the cluster is less than EPS. Thus, deining the two parameters 

of Eps and MinPts is crucial to the proposed clustering process, because 

an  overly  large  Eps  will  unintentionally  include  points  that  do  not 

belong to that cluster, while an overly small Eps will exclude points that 

actually belong. The same problem arises with respect to MinPts. If an 

excessively  low  MinPts  is  selected,  then  low-density  clusters  may  be 

included, while an  overly high MinPts  would unintentionally  exclude 

some high-density clusters. 

Herein, ni =DBSCAN (Ci, Eps, MinPts) is used mainly to calculate the 

number  of  clustered  and  dispersed  points  in  Ci.  For  example, Fig.  4 

shows a dense voxel with 227 points. Of these, 184 are clustered points 

(blue points) and 45 points are dispersed points (red points) [i.e., CLUSi 
=0.80]. Importantly, the approach detects arbitrarily shaped clusters, 

which  means  that  the  cluster  formation  is  independent  of  both  the 

voxel’s orientation and the speciic details of the actual object, as well as 

largely independent of speciic point density. 

d) Fitted plane (FITT). 

As previously noted, the attribute CLUSi can easily distinguish be-

tween  fully  clustered  and  fully  dispersed  voxels.  However,  there  are 

voxels where classiication is not straightforward, such as that shown in 

Fig. 2.Dense voxels (typically part of building objects or the ground).  
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Fig. 4s, which ha a high CLUSi of 0.80 but no visible pattern. To aid in 

the classiication of this type of voxel, a itted plane is introduced, in the 

form of the RANdom SAmple Consensus (RANSAC) algorithm as pro-

posed by Fischler and Bolles (1981). RANSAC is used to ind the best 

plane that can be itted through a set of 3D points within a voxel. 

For  that,  let  Ci be  a  given  voxel,  FITTi =ni /  Ni,  where  ni is  the 

number of itted points onto a plane Ci. If FITTi =1, then Ci has fully 

itted points. Normally, a fully itted voxel forms part of a building object 

(mostly roofs) or part of the ground. An unitted voxel contains a high 

percentage of dispersed points (i.e., FITTi ≈0). 

According  to  the  RANSAC  procedure,  a  plane  is  calculated  using 

three points randomly selected from the set. Inlier and outlier points are 

designated with respect to a threshold distance. In this work, a threshold 

distance value of 0.1 m is selected. The number of iterations, k, of the 

algorithm is calculated according to the following formula: k =log(1-p)/ 

log(1-(1-e)s), where p is the probability to ind at least one good set of 

inlier points in k iterations; s is the minimum number of points to it into 

a model; and e is the percentage of outliers. 

Fig. 5 shows an example of the application of the RANSAC algorithm 

in  this  incarnation.  This  itting  facilitates  clear  distinctions  between 

voxels.  The  voxel  shown  in Fig.  5a  is  the  same  voxel  as Fig.  3a  but 

rotated 180◦to be visually clearer. Although CLUSi =0 due to its fully 

dispersed points, its FITTi =1, because all of its points are itted onto a 

single plane. The voxel in Fig. 5a belongs to a vertical wall. The voxel 

shown in Fig. 5b has CLUSi =0 due to its fully dispersed points, and 

FITTi =83/227 =0.36, where 83 is the number of itted points onto a 

plane, and 227 is the total number of points in the voxel. The voxel in 

Fig. 5b belongs to the class vegetation. 

e) Plane’s angle (ANGL). 

Fig. 4.Clustered points shown as blue points and disperse points as red points. 

(For interpretation of the references to color in this igure legend, the reader is 

referred to the web version of this article.) 

Fig. 5.Fitted plane vs unitted plane in previously uncategorized voxels.  

Fig. 3.Sparse voxels (typically vegetation or vertical wall).  
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This substep calculates the slope of the previously found itted plane 

(Fig. 5a), which consists of a normal vector n1 =(a1, b1, c1). The plane’s 

slope is the angle between the obtained plane and a horizontal plane 

with a normal vector n2 =(0, 0, 1), which is calculated as per eqn (3). 

cos(a) =

⎛

⎜
⎝

|c1|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a21+b

2
1+c

2
1

√

⎞

⎟
⎠ 3) 

Consider voxel Ci. If cos (a) ≈1, then ANGLi ≈0
◦. If cos (a) ≈0, then 

ANGLi ≈90
◦. Normally, a perpendicular plane with ANGLi ≈90

◦and 

FITTi ≈1 would form part of a vertical wall, while a voxel with ANGLi ≈

0◦and FITTi ≈1 would form part of building object (mostly roofs) or 

part of the ground. 

Distinguishing point distribution patterns to achieve classiication is 

not a simple task, because multiple patterns can appear within a speciic 

voxel type. For example, not all the bare ground voxels have horizontal 

point distributions, and not all the buildings roofs voxels have the same 

slope distribution. Thus, the voxel’s position within the larger data set is 

considered. 

f) Voxel’s elevation (ELEV). 

For  determination  of  a  voxel’s  elevation  (ELEV),  the  originally 

assigned coordinates are not considered to achieve independence of any 

geo-referencing. Instead, the real height of each voxel is measured from 

the ground. The voxel’s elevation can help distinguish between ground 

and  non-ground  voxels  and  is  determined  based  on  the  following 

algorithm: 

Divide the point cloud PC into a set of small equal point clouds {pc1, 

pc2, …., pcn}. 

For each pci ∈PC: 

Select  3  points  {p1(x1,y1,z1),  p2(x2,y2,z2),  p3(x3,y3,z3)}  with  the 

smallest values of zi in pci. 

Find the equation of a plane (ax +by +cz +d =0) passing through 

{p1, p2, p3}. 

For each voxel vj ∈pci: 

Find the elevation ELEV of vj with the coordinates (xj, yj, zj) and the 

plane ax +by +cz +d =0, where. 

ELEV(vj) =.
|axj+byj+cxj+d|̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2+b2+c2
√

g) Voxel’s Neighbor (NEIB). 

This attribute represents the number of neighboring voxels adjacent 

to the target voxel (0 to 26). For a given starting voxel Ci (Xi, Yi, Zi) [e.g. 

grey voxel in Fig. 6], there exists an adjacent voxel Cj (Xj, Yj, Zj), where 

the value of Xj ranges from Xi-1 to Xi +1, the value of Yj ranges from Yi-1 

to Yi +1, and the value of Zj ranges from Zi-1 to Zi +1. 

This attribute helps to identify voxels belonging to a vegetation ob-

ject. A voxel surrounded on all sides (i.e. NEIB ≈26) can be easily un-

derstood as vegetation, while a smaller value of NEIB (i.e. ≤8) is likely 

indicative of a voxel on a surface (e.g. ground, roof, or wall). 

4. Experiments and evaluation 

The approach presented in the previous section was evaluated using 

a 1.0 km2 study area in the center of Dublin, Ireland (Fig. 7). The original 

data  of  297,126,417 points  were mapped  to  2,560,759 voxels,  which 

resulted  in  an average  of  116  points per  voxel.  After partitioning  the 

point cloud into voxels of 1 m3, the descriptive attributes of each of these 

voxels were calculated. Table 1 shows an example with the values of 

these attributes for four voxels (one per each class of ground, roof, wall, 

and vegetation). For example, the irst voxel belongs to the class ground, 

consists of DENS =324 points with standard deviation STDV =0.26, 

and has all of its points clustered inside the voxel, CLUS =1 (100%). To 

ind the CLUS value of each voxel, values of Eps =10 cm and MinPts =

10 were selected based on reliable usage in a previously published study 

(Aljumaily et al., 2017). To calculate the FITT attribute, the probability 

to  ind  at  least  one  good  set  of  inlier  points,  p,  was  set  to  0.99,  the 

minimum number of points to it into a model was set as s =3 points, 

and the percentage of outliers, e, was assumed to be 30%, also based on 

Fig. 7.Study area data.  

Fig. 6.Adjacent dense voxels.  
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previously published work (Aljumaily et al. 2019). The rest of the at-

tributes corresponded to the angle of the plane generated by RANSAC 

(ANGL =3.85◦), the voxel’s elevation (ELEV =8), and the number of the 

voxels’ neighbour (NEIB =8). 

For  evaluation  purposes,  a  K-Fold  Cross  Validation  technique  was 

used. In that approach, the point cloud was divided into 4 folds of equal 

size (Fig. 7). The number and sectioning were selected to ensure that 

identiiable  vegetation  was  present  within  each  fold  (Fig.  7).  Of  the 

originally  mapped  2,560,759  voxels,  each  fold  contained  one-quarter 

(640,190)  of  all  voxels.  The  distribution  between  categories  among 

these folds is shown in Table 2. Of all of the voxels contained in the total 

study area, 14.25% were ground, 31.41% were roof, 44.67% were walls, 

and  9.67%  were  vegetation.  These  percentages  were  obtained  by 

manual  extraction  for  each  of  the  categories  from  the  original  point 

cloud  after  visualization  in  open-source  software  (CloudCompare, 

2015). Segmentation involved identiication of each object’s contour. 

To quantitatively evaluate the classiication results, precision, recall, 

and quality were calculated. Precision, which evaluates the exactness of 

an approach, is the ratio of the correctly categorized voxels of a speciic 

class to the total number of voxels categorized to that class (eqn (4)). 

Recall,  which  measures  the  ability  to  extract  the  entire  set  of  voxels 

relevant for a category (i.e. completeness), is the ratio of the extracted 

correctly categorized voxels to the total number of voxels in the study 

area (eqn (5)). The f1score evaluates the overall quality of the classii-

cation method and is calculated based on a combination of the precision 

and recall metrics (eqn (6)). 

precision=
TPclass

TPclass+FPclass
(4)  

recall=
TPclass
TP+FN

(5)  

f1score=
2*(precision*recall)

(precision+recall)
(6) 

where  True  Positives  (TP)  are  the  voxels  correctly  included,  False 

Positives (FP) the voxels incorrectly included, and False Negatives (FN) 

the voxels mistakenly excluded. 

After  selecting  the  folds,  the  RF  algorithm  was  applied.  For  this 

sklearn.ensemble.RandomForestClassiier  of scikit-learn.org (Python 

Core  Team,  2019) was  applied to train  the algorithm.  All parameters 

were  set  to  the  software’s  default  settings,  except  that  the  maximum 

depth of trees in the forest was limited to 10 to avoid over-itting and to 

help  ensure  computational  performance.  This  decision  was  based  on 

initial experimentation that showed increasing the depth of trees from 

10 to 20 increased the execution time from 45 s to 95 s but with only a 

0.1% improvement in classiication using a windows PC with an Intel i7- 

8550U-1.80 GHz processor with 16 GB of memory. 

Table 3 and Fig. 8 show the results by fold with the lowest average 

result being the precision (0.89) in Test 2. Looking by category (Fig. 8), 

the  roof  and  wall  classiications  were  high  and  consistent,  with  all 

metrics  (precision,  recall,  f1-score)  exceeding  94%.  For  vegetation, 

precision and recall were worse, although still relatively high: ranging 

from 0.77 to 0.87 for precision and from 0.79 to 0.84 in recall (Fig. 8). 

The  missing  vegetation  voxels  are  likely  to  have  been  lost,  in  part, 

because of the complexity of the manual extraction, and because vege-

tation voxels do not have clear distribution patterns. While not perfect, 

the results are commendable given the extremely high variability of the 

building types, street types, and vegetation for a 1 km2 urban center that 

incorporates  more  than  300  years  of  construction  styles  and  includes 

cobbled roads, as well as paved ones. 

Fig.  9 shows  the  confusion  matrices  of  the  four  tests.  While  the 

approach was successful overall, confusion occurred principally in two 

classes. The irst was between vegetation and walls where 2%-3 % of the 

wall  voxels  were  misclassiied  as  vegetation  and  16%-21%  of  the 

vegetation voxels were misclassiied as walls. The other confusion was 

between  the  ground  and  roof  classes,  where  7%-18%  of  the  ground 

voxels were misclassiied as roof and 3%-5 % of the roof voxels were 

misclassiied as ground. These errors were higher than expected given 

the incorporation of voxel position in the training and may be ultimately 

overcome with more training data. 

To test the impact of each of the seven proposed attributes on the 

eficacy of the proposed classiication method, each attribute was sys-

tematically excluded from the classiication algorithm, and the effects 

on the precision metric of the method were assessed on each of the four 

classiication  categories  (Fig.  10).  For  example, “-ELEV” means  the 

voxel’s  elevation  was  excluded  from the  classiication  algorithm.  The 

results show that in the case of ground classiication (Fig. 10a), when the 

attribute elevation was excluded (-ELEV) from the algorithm the average 

precision across the 4 tests decreased from 91% to 62%. In contrast, the 

roof classiication only fell to 82% (Fig. 10b) with the removal of the 

same  attribute.  For  the  walls  (Fig.  10c)  and  vegetation  (Fig.  10d), 

excluding  the  attribute  (–CLUS)  had  a  more  detrimental  effect.  This 

small experiment shows the importance of all the proposed attributes. 

Here they are only shown for precision, but the recall results were very 

similar. 

Table 1 

Example of descriptive attributes that comprise the vector (as described in the text).  

x y Z  DENS  STDV  CLUS  FITT  ANGL* ELEV** NEIB*** Class 

315,603  233,870  15  324   0.26  1 1 3.85 10 8 1 =Ground 

315,557  233,826  14  308   0.23  0.99  0.98  4.83 7 8 2 =Roof 

315,425  233,845  9  40  0.313  0.22  0.8  90 3 5 3 =Wall 

315,557  233,825  12  103   0.275  0.77  0.83  68.92  5 25 4 =Vegetation  

*unit of measurement is degrees. 
**unit of measurement is meters. 
***unit of measurement is the number of adjacent voxels. 

Table 2 

Distribution of voxel categories of the Dublin study area and its folds.  

Class Total Study Area  Fold 1  Fold 2  Fold 3  Fold 4 

1. Ground   14.25%  3.07%   3.28%   4.29%   3.62% 

2. Roof   31.41%  7.76%   8.90%   7.38%   7.37% 

3. Wall   44.67%  12.01%   11.54%   10.08%   11.04% 

4. Vegetation   9.67%  2.16%   1.28%   3.25%   2.97%  

Table 3 

Testing Design and Results.   

Validation 

Fold 

Training 

Folds 

Precision 

(av.) 

Recall 

(av.) 

F1 score 

(av.) 

Test 1 1 2,3,4   0.92   0.92   0.92 

Test 2 2 1,3,4   0.89   0.90   0.90 

Test 3 3 1,2,4   0.93   0.91   0.92 

Test 4 4 1,2,3   0.95   0.92   0.93 

Overall average    0.92   0.91   0.92  
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                  a. Test 1             b. Test 2 

                  c. Test 3             d. Test 4 

Fig. 9.Confusion matrix results of the 4 tests.  

Fig. 8.Classiication results of the 4 tests.  
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5. Discussion 

The proposed approach offers notable advancements in the ield of 

automatic aerial LiDAR point classiication including the classiication 

of 8 GB of data without use of extensive computational capabilities. The 

proposed  approach  was  able  to  obtain  a  high  classiication  results 

(Fig. 11) by processing just 3D point coordinates, as can be seen through 

visual inspection. Scanner-speciic, LiDAR attributes (e.g. timestamp, an 

intensity  measurement,  Red-Green-Blue  color  indicators)  were 

discarded to make the PCVC approach applicable to any point cloud of 

suficient density. 

The proposed PCVC approach classiied all 4 categories at relatively 

high  F1  levels,  with  much  of  the  misclassiication  involving  walls,  in 

large part due to the low data resolution on vertical surfaces (approxi-

mately 1 vertical point per every 10 on horizontal surfaces) [Hinks et al. 

2009, Stanley and Laefer, 2021]. Some confusion also existed between 

the ground and roof classiications (from 3% to 18%), as the ELEV term 

is relative, since there is not a benchmarked ground plane. A comparison 

Fig. 10.Effect of excluding attributes from the algorithm on precision results.  

Fig. 11.Case study 1 Dublin, Ireland visualization results for the four classes after application of the PCVC algorithm (brown =ground, red =roofs, blue =walls, 

green =vegetation) using 3 million points each with a 10-attribute vector versus the 300 million original points. (For interpretation of the references to color in this 

igure legend, the reader is referred to the web version of this article.) 
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of  the  PCVC  approach  to  previous  results  on  the  same  study  area 

(Aljumaily et al. 2021) demonstrated a consistent superiority with an 

average improvement in percentage points of 8.20 for precision, 2.26 for 

Recall, and 5.06 of the F1-score (Table 4). 

To  further  validate  the  quality  of  the  classiication  method,  the 

approach  was  applied  to  a  second  publicly-accessible  LiDAR  dataset. 

This dataset is for a portion of Brooklyn, New York and was captured in 

2019  (Laefer  and  Vo,  2020).  The  new  dataset  is  approximately  50% 

denser  than  the  Dublin  data  set.  From  New  York  data,  a  single  tile 

(T_978500_174500)  of  150  m ×150  m  was  used,  which  consisted  of 

13,912,692 points. These points were mapped to 89,290 voxels resulting 

in  an  average  of 156  points  per  voxel  (versus the  116  for  the  Dublin 

dataset).  As  was  done  for  Dublin  dataset,  a  K-Fold  Cross  Validation 

technique was used. Notably, in this study, transfer learning was applied 

between the study areas. The distribution between categories from the 

four equisized folds of the Brooklyn point cloud is shown in Table 5. 

The results of the classiication of this second dataset are shown in 

Figs. 12 and 13. Fig. 13 illustrates the second case study (Brooklyn, New 

York City) visualization results for the four classes after application of 

the PCVC algorithm (brown =ground, red =roofs, blue =walls, green 

=vegetation)  using  1  million  points  versus  the  100  million  original 

points. In this case, the lowest classiication for any category was 91%, 

which  was  a  major  improvement  for  the  vegetation  (previously  only 

79%-84%). The ground classiication improved slightly and the build-

ings and walls decreased a little. While the misclassiication of vegeta-

tion for walls decreased 6% (from 16% to 21% in Case Study 1), it was 

the highest error level of all of the categories. Of particular note is the 

prominence of vehicles in this second case study. These were classiied 

as part of the ground as part of the training process. As the scanner in this 

data set was faster, cars were more prominent. Fig. 13 identiies a few 

areas of misclassiication, as denoted by the white circles. For example, 

circles 1 and 2 show some vegetation voxels that were misclassiied as 

ground. Circle 3 shows some of the wall voxels that were misclassiied as 

roof  voxels,  and  in  circle  4  are  roof  voxels  that were  misclassiied  as 

vegetation voxels (see Fig. 14 for a visualization of examples of this type 

of data coniguration). 

Fig. 14 shows an example of data where the approach confused the 

walls and the vegetation. The voxel on the left of the igure is a vege-

tation voxel, however, the PCVC approach classiied it as a wall voxel. In 

contrast,  the  voxel  n  the  right  of  the  igure  is  a  wall  voxel,  but  the 

approach classiied it as a vegetation voxel. Reasons for such confusion 

can  be  attributed  to  the  complexity  of  the  manual  extraction  and 

because  vegetation  voxels  do  not  have  clear  distribution  patterns.  A 

limitation of the proposed PCVC is that objects smaller than or equal to 

1 m3 are classiied as noise. However, in this data set, these represented 

only 0.01% of the total voxels. Thus, the impact of this limitation is quite 

modest 

Critical to the assessment of the worth of the PCVC algorithm is its 

scalability. To demonstrate this, the required execution time is shown in 

Fig. 15. The blue line represents the execution time needed for voxels 

division, the green line is for calculating the descriptive attributes, and 

the red line shows the time needed for the RF algorithm. For example, to 

segment 10,000,000 voxels the MapReduce step needed approximately 

25 s, a further 80 s was required for calculating the descriptive attri-

butes, and a additional 160 s for the RF algorithm. This was tested at 10 

million, 50 million, 100 million, 150 million, and 200 million points. 

While these results clearly show the potential effectiveness of PCVC, 

several parameters have yet to be fully explored. While grid-size may be 

further optimized, the foremost topic should be establishing a minimum 

viable density and an optimum density. As aerial LiDAR data sets get 

even denser, there may ultimately be cause for establishing a maximum 

useful density. 

Finally,  the  proposed  PCVC  approach  is  considered  with  respect 

related work such as Wang et al. (2015), Yun and Sim (2016), Guan et al. 

(2016), Xu et al. (2019), and Jin et al. (2022). In Guan et al. (2016) the 

procedure to generate the voxels uses information about the classes it 

wants to detect. In that case, streetlights and trafic signs are used, which 

unlike  a  full  urban  scene,  are  entities  with  a  highly  distinctive  and 

reliable  characteristic  structure.  Those  authors  reported  39  min  for 

voxelization  and  42  min  for  class  detection,  for  a  dataset  with  1,728 

million points after the points had been pre-segregated from the ground 

plane; no time requirement was reported for pre-segregation. 

Table 4 

Comparison of results compared to previous classiication of the study area (*In 

the previous study the roofs and walls were not considered separately, so they 

are reported here as a merged category for ease of comparison).    

Precision  Recall  F1 

score 

PCVC approach Ground   90.50   88.75   89.75 

Building*   95.25   96.00   95.50 

Vegetation   87.25   81.75   84.00 

Average 91.00   88.83   89.75 

Previous study (Aljumaily et al., 

2021) 

Ground   88.74   92.86   90.75 

Building   81.85   86.64   84.18 

Vegetation   77.81   80.23   79.00 

Average 82.80   86.58   84.69  

Table 5 

Description of the New York study area and its folds.  

Class Voxels  Fold 1  Fold 2  Fold 3  Fold 4 

1. Ground   26.12%   6.92%   4.20%   9.16%   5.84% 

2. Roof  9.79%   2.57%   3.24%   1.77%   2.21% 

3. Wall  35.77%   8.97%   15.04%   4.45%   7.31% 

4. Vegetation   28.33%   10.71%   1.49%   13.11%   3.02%  

Fig. 12.Confusion matrix of classiication results of a second dataset.  
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In similar work, Wang et al. (2015) compared different voxelization 

methods for detecting streetlights, trafic signs, and cars. The authors 

noted that a limitation of their work is the inability to detect non-solid 

objects  (i.e.  tree  canopies  and  bushes).  In  the  supervoxel  approach 

proposed by Yun and Sim (2016), there is a reliance on integrated im-

agery.  This  makes  data  acquisition  and  processing  more  complicated 

and expensive and precludes night and low-level light data acquisition 

missions. 

In the more recent work by Xu et al. (2019), a supervised semantic 

labelling algorithm was devised to reduce the training set size by using 

RF to voxel characterization attributes.. and outperformed PointNet and 

PointNet++in all classes except low vegetation. However, LiDAR data 

sets were from terrestrial scanners so a direct performance comparison 

with PCVC is not possible, as the aerial data are comparatively sparse 

and  contain  major  imbalances  between  the  data  on  vertical  and 

horizontal surfaces, as a function of light mission geometry. While the 

disparity can be employed to distinguish road and roof surfaces from 

other  entities,  the  relatively  low  data  availability  for  non-horizontal 

surfaces  has  proved  a  largely  insurmountable  issue  in  adaptation  of 

terrestrial point cloud processing techniques for use with aerial point 

clouds. Most recently, Jin et al. (2022), employed aerial data for urban 

scene  classiication  but  their  hybrid  data  approach  which  relies  on  a 

joint  LiDAR-hyperspectral  imagery  data,  is  extremely  cumbersome  to 

process and relatively expensive to obtain. In contrast, in the proposed 

PCVC, RF is used as means for choosing a set of features that adequately 

discriminate. As shown in the results, the proposed attributes are easy to 

derive from the points themselves within each voxel, discriminate well, 

and  were  able  to  reduce  the  datapoints  in  the  classiication  task  by 

approximately 99%. 

Fig. 13.Case study 2 Brooklyn, New York City visualization results for the four classes after application of the PCVC algorithm. White circles are select areas of 

misclassiication. 

Fig. 14.Vegetation voxel mistaken for wall (left) and wall voxel mistaken for vegetation (right) from case study 1 data.  
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6. Conclusions 

Scalability poses a major impediment for most object classiication 

and extraction approaches. To address this problem, the proposed PCVC 

approach  offers  a  fully  automatic  and  signiicantly  more  scalable 

approach to LiDAR classiication by reducing approximately 99% of the 

processed points when applying the RF algorithm. This reduction enable 

processing to occur on a single machine, instead of having to adopt a 

distributed  computing  solution.  The  PCVC  approach  was  tested  on  a 

study area of more than 300 million points over approximately 1 km2 

and  typically  reached  classiication  accuracy  in  excess  of  more  than 

94%. 

The PCVC approach creates 3D grid-based subspaces that are inde-

pendent on sensor type and data format. This implies greater scalability 

addressing the problem raised by Bassier et al., (2019) where the data 

collection  device  was  enhanced  to  improve  the  classiication.  PCVC 

overcomes  the  necessity  for  manual  parameter  selection  by  using 

mathematical  and  robust  algorithms  to  classify  the  subspaces.  While 

manystate  of  the  art  approaches  [e.g.  (Park  and  Guldmann  (2019); 

Azadbakht  et  al.  (2016)],  employ  a  employ  mixed  point  geometry, 

context geometry (for each subspace), and global attributes to create a 

model able to classify different classes, PCVC only uses point geometry. 

While the importance of all of the selected attributes was demonstrated, 

the  ELEV  feature  dominated  the  classiication  proces,  especially  for 

classifying Ground, with with the absence of that feature causing a 40% 

reduction in accuracy. To enhance the PCVC procedure, future work is 

needed  on  data  density  sensitivity,  voxel  size  optimization,  and  the 

potential expansion of categories for classiication. 
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