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Abstract: We study integral operators Lu(x) =
∫
RN ψ(u(x) − u(y))J(x − y) dy of the type of the fractional p-

Laplacian operator, and the properties of the corresponding Orlicz and Sobolev-Orlicz spaces. In particular
we show a Poincaré inequality and a Sobolev inequality, depending on the singularity at the origin of the
kernel J considered, which may be very weak. Both inequalities lead to compact inclusions. We then use
those properties to study the associated elliptic problem Lu = f in a bounded domain Ω, and boundary
condition u ≡ 0 on Ωc; both cases f = f (x) and f = f (u) are considred, including the generalized eigenvalue
problem f (u) = λψ(u).
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1 Introduction
The aim of this paper is to study the properties of the nonlinear nonlocal operator

Lu(x) = LJ,ψu(x) ≡
∫
RN

ψ(u(x) − u(y))J(x − y) dy, (1.1)

whereψ : R→ R is a nondecreasing, continuous, unboundedodd function, and J : RN → R+ is ameasurable
function satisfying 

J(z) > 0, J(z) = J(−z), J ∉ L1(B1),∫
RN

min(1, |z|q0 )J(z) dz < ∞, for some q0 > 0.
(H0)

Br denotes the ball Br = {z ∈ RN : |z| < r}. This set of hypotheses is assumed throughout the paper without
furthermention.Wealsodenote q* = inf{q0 > 0 : (H0) holds },whichmeasures in some sense thedi�erential
character of the operator.

The power case ψ(s) = k|s|p−2s for some p > 1, J(z) = c|z|−N−σp/2 for some 0 < σ < 2, is known as the σ–
fractional p–Laplacian operator. We want to consider here general functions ψ and J more than just powers,
so we are led to study some Orlicz and Sobolev-Orlicz spaces, see below, which makes the study nontrivial.
On the other hand, we are also interested in the limit case of integrability, which in our context means q* = 0,
that is, the singularity of the kernel can beweaker than that of any fractional Laplacian or p–Laplacian. Some
of the results also hold for more general kernels, J = J(x, y), satisfying only a lower estimate J(x, y) ≥ J0(x−y),
with J0 in the above hypotheses, but we prefer to keep the proofs in a simpler way.

For problems including operators like (1.1), in particular the fractional p–Laplacian, and themotivations
for their study we refer to [9].
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1.1 The associated Orlicz spaces

Formula (1.1) makes sense pointwise for regular functions with some extra restriction on the nonlinearity
ψ and the kernel J, see Section 2. In order to de�ne the operator L in weak sense we consider the nonlocal
nonlinear interaction energy (linear in the second variable)

E(u;φ) = 1
2

∫∫
R2N

ψ(u(x) − u(y))(φ(x) − φ(y))J(x − y) dxdy, (1.2)

and we put
〈Lu, φ〉 = E(u;φ).

Clearly, by the symmetry properties of ψ and J we have E(u;φ) =
∫
RN

Luφ for regular functions. But the above

allows to de�ne L also for functions in a Sobolev type space. To this end we de�ne the functionals

F(u) =
∫
RN

Ψ(u(x)) dx, (1.3)

E(u) = 1
2

∫∫
R2N

Ψ(u(x) − u(y))J(x − y) dxdy, (1.4)

withΨ ′ = ψ. The properties ofψ imply thatΨ is an strict Young function, sowe can consider the Orlicz spaces

LΨ (RN) = {u : RN → R, F(u) < ∞}, (1.5)

W J,Ψ (RN) =
{
u ∈ LΨ (RN), E(u) < ∞

}
. (1.6)

Observe that in general E(u; u) ≠ cE(u) for any constant c > 0, the equality being true only in the power case
ψ(u) = k|u|p−2u, and then c = p. What we have is that E is the Euler-Lagrange operator associated to the
functional E, that is,

〈E′(u), φ〉 = E(u;φ)

for every u, φ ∈ W J,Ψ (RN).
The above spaces do not have good properties unless we impose some conditions on the nonlinearity Ψ .

The simplest case is when
c1sp−1 ≤ Ψ ′(s) ≤ c2sp−1, s > 0, p > 1, (1.7)

so that the space LΨ (RN) coincides with Lp(RN), and the Sobolev space W J,Ψ (RN) is denoted by W J,p(RN).
But we are interested in more general functions. Thus we consider the set, for some p ≥ q > 1,

Γp,q =
{
Ψ : R→ R+, convex, symmetric, satisfying Ψ(0) = 0, Ψ(1) = 1,

q ≤ sΨ
′(s)

Ψ(s) ≤ p ∀s ≠ 0
}
.

(1.8)

The condition Ψ(1) = 1 is for normalization purposes and simpli�es some expression. We thus deal with
functions that lie between two powers, for instance a sum of powers, but we also allow for perturbation of
powers like Ψ(s) = c|s|p| log(1 + s)|r,min{p, p + r} > 1. The �rst property deduced from (1.8) is the relation
between the interaction energy E and the functional E,

qE(u) ≤ E(u; u) ≤ pE(u). (1.9)

Our main interest lies in studying the properties of the spaces (1.3) and (1.4) for nonlinearities Ψ in the
class Γp,q. In particular we have that LΨ (RN) andW J,Ψ (RN) are re�exive Banach spaces, with norms de�ned,
for instance, in (2.1) and (2.3). On the other hand, if q > q*, see (H0), then the functional E(u) is well de�ned
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and �nite for functions satisfying F(∇u) < ∞, see Proposition 2.3. This means the inclusion W1,Ψ (RN) ⊂
W J,Ψ (RN), the former being the standard Orlicz-Sobolev space of functions in LΨ (RN) with gradient also in
LΨ (RN).

When dealing with problems de�ned in bounded domains Ω ⊂ RN , since the Dirichlet conditions must
be prescribed in the complement Ωc ≡ RN \ Ω, instead of just on the boundary, precisely by the nonlocal
character of the operator, it is convenient to consider the space

W J,Ψ
0 (Ω) =

{
u ∈ W J,Ψ (RN), u ≡ 0 in Ωc

}
.

Without imposing any singularity condition on the kernel J at the origin, besides of course being not
integrable, that is q* may be zero, we show that a Poincaré inequality E(u) ≥ cF(u) holds, so that we have the
embedding

W J,Ψ
0 (Ω) ⊂ LΨ (Ω). (1.10)

Observe that if J were integrable thenW J,Ψ
0 (Ω) ≡ LΨ (Ω).

Assuming now q* > 0 (and some monotonicity near the origin, (3.5)) we obtain a better result, namely a
Sobolev embedding

W J,Ψ
0 (Ω) ⊂ LΨ

r
(Ω), 1 ≤ r < r* ≡

{
N

N−q* if q* < N,
∞ if q* ≥ N,

(1.11)

which is compact. The borderline r = r* when q* < N produces also an embedding W J,Ψ
0 (Ω) ⊂ LΨ

r*
(Ω),

provided J(z) ≥ c|z|−N−q* near the origin, but without compactness. In the limit case q* = 0, which would give
r* = 1 in (1.11), we do obtain compactness of the inclusion (1.10) by assuming a minimum of singularity on
the kernel, the extra condition lim

|z|→0+
|z|N J(z) =∞. See Theorems 3.2–3.4.

1.2 Elliptic problems

With this machinery we next study the problem{
Lu = f , in Ω,
u = 0, in Ωc .

(1.12)

This problemmust be considered in weak sense with the aid of the interaction energy E, that is, any solution
u satis�es

E(u;φ) =
∫
Ω

fφ, ∀ φ ∈ W J,Ψ
0 (Ω). (1.13)

We study �rst the case f = f (x) in an appropriate space. We obtain existence and uniqueness of a solution,
see Theorem 4.1. We also show some integrability properties of the solution in terms of the data f when ψ is
restricted to the power-like case (1.7), see Theorems 4.3 and 4.4. In particular the solution is boundedprovided
f ∈ Lm(Ω)withm > N/q* if q* > 0, see Theorem 4.5. For the corresponding results in the case of the fractional
p–Laplacian see [4].We do not address regularity issues in this paper. For Hölder regularity results in the case
of the fractional p–Laplacian we refer to [12], [13], [22], [24].

We then pass to study the case f = f (u) in problem (1.12). In Theorem 5.1 we prove existence of a non-
negative nontrivial solution in the lower range, which roughly speaking in the power-like case ψ(s) ∼ sp−1,
f (t) ∼ ctm−1, means m < p. The intermediate range p < m < m* = Np

N−q* , below the Sobolev exponent,
is studied in Theorem 5.2 using the Mountain Pass Theorem. We also use a Pohozaev inequality in order to
show nonexistence, in the exact power case, for supercritical powers m > m** = Np

N−δ , δ > 0 being a constant
depending on the kernel J, see Corollary 5.4. Wemust remark that all the conditions on the reaction f are very
involved in terms of ψ, and are not as clean as suggested by the above, see the precise conditions (5.2) and
(5.4). We refer to [20] for the study of nonlinear problems like the above, even with more general reactions,
for the fractional p–Laplacian case.
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We �nally are interested in the limit case m = p, which corresponds to the so called generalized eigen-
value problem {

Lu = λψ(u), in Ω,
u = 0, in Ωc .

We prove that there exists a �rst positive eigenvalue and a �rst positive eigenfunction, which is bounded
provided q* > 0, Theorem 6.1. The fractional p–eigenvalues have been studied in [22] and [17].

1.3 Organization of the paper

We begin with a preliminary Section 2 where we study the properties of the Orlicz spaces LΨ (RN) and
W J,Ψ (RN) by means of some inequalities satis�ed by the nonlinearity Ψ and the functionals F and E. Sec-
tion 3 shows the Sobolev inclusions of the spaces W J,Ψ

0 (Ω). Finally Sections 4–6 are devoted to the study
of problem (1.12) for the di�erent reactions commented upon before. In what follows the letters c or ci will
denote some constants that do not depend on the relevant quantities, and may change from line to line.

After the writing of this paper was completed, we learned that, at the very same time and independently
of us, Fernández-Bonder and Salort proved in [15] some properties of fractional Sobolev-Orlicz spaces de�ned
in a way related to ours.

2 Preliminaries
In this section we study in detail the properties of the Orlicz spaces LΨ (RN) and W J,Ψ (RN) de�ned in (1.5)
and (1.6), and the corresponding spaces in a bounded domain Ω. We refer to [25] for instance for the general
theory of Orlicz spaces. We begin by studying the Young functions in the set Γp,q. First observe that Ψ ∈ Γp,q,
p ≥ q ≥ 0, implies

min{|s|p , |s|q} ≤ Ψ(s) ≤ max{|s|p , |s|q}.

Associated to any given positive function g : R+ → R+ we consider its characteristic functions, for s > 0,

γ−g(s) = inf
x>0

g(sx)
g(x) , γ+g(s) = sup

x>0

g(sx)
g(x) .

These are nondecreasing functions that satisfy

Lemma 2.1. For any Ψ ∈ Γp,q, p ≥ q > 0,

min{sp , sq} ≤ γ−Ψ (s) ≤ γ+Ψ (s) ≤ max{sp , sq}

q
p
γ−Ψ (s)
s ≤ γ−Ψ′ (s) ≤ γ+Ψ′ (s) ≤ pq

γ+Ψ (s)
s .

Proof. If s > 1 we have that

log
(
Ψ(sx)
Ψ(x)

)
=

sx∫
x

Ψ ′(t)
Ψ(t) dt ≤ p

sx∫
x

1
t dt = p log s,

and thus Ψ(sx) ≤ spΨ(x). The other estimates for Ψ are analogous. The inequalities for Ψ ′ are deduced from
the de�nition of Γp,q.

The complementary function Φ of a Young function Ψ is de�ned such that (Φ′)−1 = Ψ ′. If we normalize it to
satisfy Φ(1) = 1 we have, for every p ≥ q > 1 ([25, Corollary 1.1.3])

Ψ ∈ Γp,q ⇔ Φ ∈ Γq′ ,p′ , p′ = p
p − 1 , q

′ = q
q − 1 .
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These two functions satisfy the Young inequality

ab ≤ Ψ(a) + Φ(b), a, b ∈ R,

and equality holds only if b = Ψ ′(|a|)sign a. From this point on we always assume q > 1.
LetΨ ∈ Γp,q be�xedand consider the correspondingOrlicz space LΨ (RN). It is a linear space that satis�es

Lp(RN) ∩ Lq(RN) ⊂ LΨ (RN) ⊂ Lp(RN) + Lq(RN),

and in the case of bounded domains
Lp(Ω) ⊂ LΨ (Ω) ⊂ Lq(Ω).

Also it is a Banach space with norm, called Luxemburg norm,

‖u‖LΨ = inf{k > 0 : F(u/k) ≤ 1}. (2.1)

We recall that other equivalent norms are also used in the literature. The following result allows us to use
F(u) instead of ‖u‖LΨ in most calculations.

Lemma 2.2.
γ−Ψ (‖u‖LΨ ) ≤ F(u) ≤ γ

+
Ψ (‖u‖LΨ ). (2.2)

Proof. Let a = ‖u‖LΨ . We clearly have F
(
u/a

)
≤ 1. Then

F(u) =
∫
RN

Ψ(u(x)) dx ≤ γ+Ψ (a)
∫
RN

Ψ
(
u(x)
a

)
dx ≤ γ+Ψ (a).

On the other hand, for every ε > 0 we have F
(
u/(a + ε)

)
> 1, so that

F(u) ≥ γ−Ψ (a + ε)
∫
RN

Ψ
(
u(x)
a + ε

)
dx ≥ γ−Ψ (a + ε).

The dual space of LΨ (RN) is LΦ(RN), whereΦ is the complementary function, and thus they are both re�exive
Banach spaces.

We also consider the Sobolev type space W J,Ψ (RN). In the same way as before it is a Banach space with
norm

‖u‖W J,Ψ = ‖u‖LΨ + [u]W J,Ψ ≡ ‖u‖LΨ + inf{k > 0 : E(u/k) ≤ 1}. (2.3)

The second term is a kind of Gagliardo seminorm in the context of Young functions. For this seminorm an
analogous property as that of Lemma 2.2 also holds,

γ−Ψ ([u]W J,Ψ ) ≤ E(u) ≤ γ+Ψ ([u]W J,Ψ ). (2.4)

In order to show that this space is re�exive as well we consider the weighted space

LΨ (R2N , J) =

w : R2N → R,
∫∫
R2N

Ψ(w(x, y))J(x − y) dxdy < ∞


and putM = LΨ (RN) × LΨ (R2N , J). Clearly, the product spaceM is re�exive. The operator T : W J,Ψ (RN) → M
de�ned by Tu = [u, w], where w(x, y) = u(x) − u(y), is an isometry. Since W J,Ψ (RN) is a Banach space,
T(W J,Ψ (RN)) is a closed subspace of M. It follows that T(W J,Ψ (RN)) is re�exive (see [7, Proposition 3.20]),
and consequentlyW J,Ψ (RN) is also re�exive.

We now take a look at the properties of the space W J,Ψ (RN) in terms of the properties of the kernel J, in
particular its singularity at the origin, which is re�ected in the exponent q*, see (H0).
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Proposition 2.3. If Ψ ∈ Γp,q with p ≥ q > q* then

W1,Ψ (RN) ⊂ W J,Ψ (RN)

and moreover
E(u) ≤ c(F(u) + F(∇u)). (2.5)

Proof. We decompose the integral

E(u) = 1
2

∫
RN

 ∫
|z|<1

Ψ(u(x) − u(x + z))J(z) dz

+
∫

|z|>1

Ψ(u(x) − u(x + z))J(z) dz

 dx = 1
2(I1 + I2).

The far away integral is easy to estimate

I2 ≤ 2
∫
RN

Ψ(u(x))dx
∫

|z|>1

J(z) dz = cF(u).

As to the inner integral, we have

I1 ≤
∫
RN

∫
|z|<1

Ψ
(
u(x) − u(x + z)

|z|

)
γ+(|z|)J(z) dzdx

≤
∫
RN

∫
|z|<1

Ψ

 1∫
0

|∇u(x + tz)| dt

 γ+(|z|)J(z) dzdx
≤
∫
RN

∫
|z|<1

1∫
0

Ψ
(
|∇u(x + tz)|

)
dtγ+(|z|)J(z) dzdx

≤
∫

|z|<1

1∫
0

∫
RN

Ψ
(
|∇u(x + tz)|

)
dx dtγ+(|z|)J(z) dz

=
∫
RN

Ψ
(
|∇u(x)|

)
dx

∫
|z|<1

γ+(|z|)J(z) dz = cF (|∇u|) ,

since γ+(|z|) = γ+Ψ (|z|) ≤ |z|q in the set {|z| < 1}, and using hypothesis (H0).

If the kernel J behaves like that of the fractional Laplacian

c1|z|−N−α ≤ J(z) ≤ c2|z|−N−α , (2.6)

then we also have the following interpolation estimate

Proposition 2.4. If J satis�es (2.6) for some α > 0, and Ψ ∈ Γp,q with p ≥ q > α then

E(u) ≤ cF(u)max
{(

F(∇u)
F(u)

)α/p
,
(
F(∇u)
F(u)

)α/q}
. (2.7)

Proof. We apply inequality (2.5) to the rescaled function uλ(x) = u(λx). We �rst observe that by (2.6),

E(uλ) = 1
2

∫∫
R2N

Ψ(u(λx) − u(λy))J(x − y) dxdy

= 1
2

∫∫
R2N

λ−2NΨ(u(x) − u(y))J(λ−1(x − y)) dxdy

≥ c12

∫∫
R2N

λ−N+αΨ(u(x) − u(y))J(x − y) dxdy = cλ−N+αE(u).
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Thus
E(u) ≤ cλN−αE(uλ) ≤ λN−αc(F(uλ) + F(∇uλ))

≤ cλN−α(λ−NF(u) + γ+Ψ (λ)λ−NF(∇u))

≤ cλ−α(a + bmax{λp , λq}) ≡ cg(λ),

a = F(u), b = F(∇u). Minimizing the right-hand side in λ we get

min{g(λ)} =


a(b/a)α/q if a/b < q/α − 1,
a(b/a)α/p if a/b > p/α − 1,
a(1 + b/a) if q/α − 1 < a/b < p/α − 1.

From this we easily deduce (2.7).

In the power-like case we obtain from the above the well-known interpolation result.

Corollary 2.5. If J satis�es (2.6) for some α > 0, and ψ satis�es (1.7) with p > α then

E(u) ≤ cF1−α/p(u)Fα/p(∇u),

or which is the same
‖u‖Wα/2,p ≤ c‖u‖1−α/pp ‖∇u‖α/pp .

We now turn our attention to the operatorL. The pointwise expression (1.1) does not always have a meaning.
Let us look at some easy situations where Lu is well de�ned.

We may take, for instance, Ψ ′′ nondecreasing and u ∈ C20(RN). Another less trivial example is q > q* + 1
and u ∈ Cα(RN) ∩ L∞(RN) with q*

q − 1 < α < 1, so that

|Lu(x)| ≤ ‖u‖∞
∫

|x−y|>1

J(x − y) dy +
∫

|x−y|<1

|x − y|(q−1)αJ(x − y) dy < ∞.

Wenowshowsomeuseful inequalities. The�rst one is aKato type inequality, that is, the result of applying
the operatorL to a convex function of u. We refer to [21] and [10], respectively, for thewell-known inequalities

−∆|u| ≤ sign(u)(−∆)u, (−∆)σ/2(u2) ≤ 2u(−∆)σ/2u.

Proposition 2.6. If A is a positive convex function andLu is well de�ned, thenL(A(u)) is also well de�ned and

L(A(u)) ≤ γ+ψ(A
′(u))Lu.

Proof. We just observe that since A is convex and ψ is nondecreasing, we have

ψ(A(u(x)) − A(u(y))) ≤ ψ(A′(u(x))(u(x) − u(y))) ≤ γ+ψ(A
′(u(x)))ψ(u(x) − u(y)).

Now integrate with respect to J(x − y) dy to get the result.

As a Corollary we obtain an integral version of the Kato inequality, useful in the applications.

Corollary 2.7. Assume G ≥ γ+ψ(A
′)A. Then

E(u, G(u)) ≥ qE(A(u)).

Of later use are also the following two inequalities

E(u, u+) ≥ E(u+, u+), E(u) ≥ E(|u|), (2.8)
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whose proof is immediate just looking at the signs of the corresponding functions.
Related to those inequalities is the well known Stroock-Varopoulos inequality, see [29] for the linear case

Ψ(s) = |s|2 and J(z) = |z|−N−σ for some 0 < σ < 2, and [5] for general Lévy kernels J. It is of the type of the inte-
gral Kato inequality, but the functions for which it holds is di�erent. In the case of powers they coincide but
for the coe�cient, which is always better in the Stroock-Varopoulos inequality. We show here a generalized
Stroock-Varopoulos inequality.

Proposition 2.8. Assume δ = inf
s>0

ψ(s)
γ+ψ(s)

> 0 and let u ∈ W J,Ψ (RN) such that G(u), A(u) ∈ W J,Ψ (RN), where A

and G satisfy G′ ≥
∣∣Ψ(A′)

∣∣. Then
E(u;G(u)) ≥ δqp E(A(u)). (2.9)

Proof. The proof follows from a calculus estimate. For any d > c we have that

Ψ
(
|A(d) − A(c)|

)
≤ Ψ

 d∫
c

|A′(s)| ds

 ≤ γ+Ψ (d − c)Ψ
 1
d − c

d∫
c

|A′(s)| ds


≤ γ

+
Ψ (d − c)
d − c

d∫
c

Ψ
(
|A′(s)|

)
ds ≤ pq γ

+
ψ(d − c)|G(d) − G(c)|

≤ p
δqψ(d − c)|G(d) − G(c)|.

The same inequality is obtained for d ≤ c. We now deduce (2.9) by choosing d = u(x), c = u(y) and integrate
with respect to J(x − y) dxdy.

For instance in the case of a sum of powers, Ψ(s) =
M∑
i=1

kispi , p1 < p2 < · · · < pM, we have γ+ψ(s) =

max{sp1−1, spM−1} and δ = min{k1p1, kMpM}.
All the above inequalities hold also, with di�erent constants, for nonlinearities that behave like a power,

i.e., when they satisfy (1.7) instead of (1.8). In particular in that case the integral Kato inequality and the
Stroock-Varopoulos inequality coincide, but for the coe�cient, both giving

E(u; |u|r−1u) ≥ cE(|u|
r+p−1
p ). (2.10)

We also obtain some calculus inequalities needed in proving uniqueness results in the last sections. We
borrow ideas from [23] and [18] that deal with the exact power case.

Lemma 2.9. Let ψ be a nonnegative, nondecreasing, continuous odd function and let ψ = Ψ ′.

i) If ψ satis�es
sψ′(s)
ψ(s) ≥ 1 for every s ≠ 0, (2.11)

then (
ψ(a) − ψ(b)

)
(a − b) ≥ 4Ψ

(
a − b
2

)
. (2.12)

ii) If ψ is concave in (0,∞) then (
ψ(a) − ψ(b)

)
(a − b) ≥ ψ′(|a| + |b|)(a − b)2. (2.13)

iii) If ψ satis�es
c1|s|p−2 ≤ ψ′(s) ≤ c2|s|p−2 for some 1 < p < 2 and every s ≠ 0, (2.14)

then (
ψ(a) − ψ(b)

)
(a − b) ≥ c(Ψ(a − b))

2
p

(Ψ(a) + Ψ(b))
2−p
p
. (2.15)
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Proof. i)We begin by proving a Clarkson inequality. Condition (2.11) implies that the function g(s) = Ψ(
√
|s|)

is convex. Therefore

Ψ
(
a + b
2

)
+ Ψ

(
a − b
2

)
= g
((

a + b
2

)2
)
+ g
((

a − b
2

)2
)

≤ g
((

a + b
2

)2
+
(
a − b
2

)2
)
= g
(
a2 + b2

2

)
≤ 12

(
g(a2) + g(b2)

)
= 1
2
(
Ψ(a) + Ψ(b)

)
.

Now the convexity of Ψ implies
Ψ(a) ≥ Ψ(b) + Ψ ′(b)(a − b),

and also
Ψ
(
a + b
2

)
≥ Ψ(b) + 1

2Ψ
′(b)(a − b),

so that
Ψ(a) + Ψ(b) ≥ 2Ψ

(
a + b
2

)
+ 2Ψ

(
a − b
2

)
≥ 2Ψ(b) + Ψ ′(b)(a − b) + 2Ψ

(
a − b
2

)
.

This gives

Ψ(a) ≥ Ψ(b) + Ψ ′(b)(a − b) + 2Ψ
(
a − b
2

)
,

and reversing the roles of a and b,

Ψ(b) ≥ Ψ(a) + Ψ ′(a)(b − a) + 2Ψ
(
a − b
2

)
.

Adding these two inequalities we get (2.12).
ii) Developing the function Ψ around the point s = a we get

Ψ(b) = Ψ(a) + Ψ ′(a)(b − a) + (b − a)2
1∫

0

(1 − s)Ψ ′′(a + s(b − a)) ds

≥ Ψ(a) + Ψ ′(a)(b − a) + (b − a)2Ψ ′′(a + b)
1∫

0

(1 − s) ds.

We have used that |a + s(b − a)| ≤ |a| + |b| and Ψ ′′ is nonincreasing in (0,∞). Observe that though Ψ ′′ is
singular at zero, the integral is convergent. We conclude as before.

iii) As ii), using (2.14) in the last step.

To end this section devoted to the preliminary properties of E and F, we point out a result on symmetrization
that says that the energy E(u) decreases when we replace u by its symmetric rearrangement (the radially
deacreasing function with the same distribution function as u).

Theorem 2.10. If u ∈ W J,Ψ (RN) and u* is its decreasing rearrangement, then

E(u) ≥ E(u*).

This property is well known for the norm in Wσ/2,p
0 (Ω), 0 < σ ≤ 2, p > 1, see [1], and is proved in [11] for

general kernels when p = 2. The same proof can be used to get the result in our situation, so we omit the
details. See also [3].
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3 Sobolev inclusions
In this section we consider a nonlinearity Ψ ∈ Γp,q, p ≥ q > max{q*, 1} �xed. As to the kernel J, besides
condition (H0) we also consider, for some results, the singularity condition at the origin

J(z) ≥ c|z|−N−α for 0 < |z| < 1, α > 0. (3.1)

Clearly it must be α ≤ q*. In fact in the fractional p–Laplacian case it is α = σp/2. Other kernels could also
be considered, for instance J(z) = |z|−N−µ

∣∣log(|z|/2)∣∣β, for 0 < |z| < 1, with µ ≥ 0, (and β ≥ −1 if µ = 0). In
that case it is q* = µ. If µ > 0 then J satis�es (3.1) with α = µ if β ≥ 0, but if β < 0 it satis�es (3.1) only with
0 < α < µ. A more intricate example can be constructed by the following piecewise de�nition of J,

J(z) =

 |z|
−N if 2−2k−1 < |z| ≤ 2−2k ,

|z|−N−µ if 2−2k < |z| ≤ 2−2k+1,

k ≥ 1, µ > 0. Here we have q* = µ while condition (3.1) does not hold for any α > 0.
Assume now that u has support contained in Ω. Then

E(u) = 1
2

∫∫
R2N

Ψ(u(x) − u(y))J(x − y) dxdy

= 1
2

∫
Ω

∫
Ω

Ψ(u(x) − u(y))J(x − y) dxdy +
∫
Ω

∫
Ωc

Ψ(u(x))J(x − y) dxdy

≥
∫
Ω

Ψ(u(x))Λ(Ω; x) dx,

where
Λ(Ω; x) =

∫
Ωc

J(x − y) dy.

If
µ = min{J(z) : |z| ≤ R} > 0, R > δ = sup

x∈Ω
dist(x, Ωc),

then
Λ(Ω; x) ≥ µ|{δ < |z| < R}| = A > 0 for every x ∈ Ω.

This gives the Poincaré inequality
E(u) ≥ AF(u), (3.2)

and the inclusionW J,Ψ
0 (Ω) ⊂ LΨ (Ω). We remark that in the case of integrable kernel J we immediately would

get E(u) ≤ c‖J‖1 F(u), and thusW J,Ψ
0 (Ω) ≡ LΨ (Ω).

In order to obtain better energy estimates in the case q* > 0, which would yield better space embeddings,
we need a better estimate of the function Λ(Ω; ·) in terms of the kernel J. The following result is essentially
contained in [28, Lemma A.1].

Proposition 3.1.

Λ(Ω; x) ≥ P
((
|Ω|
ωN

)1/N
)

for every x ∈ Ω,

where P(s) =
∫
|z|>s J(z) dz. In particular, if J satis�es (3.1) then

Λ(Ω′; x) ≥ c(Ω)|Ω′|−α/N for every Ω′ ⊂ Ω.

This estimate allows us to prove, assuming condition (3.1), the Sobolev embedding W J,Ψ
0 (Ω) ⊂ LΨ

r
(Ω) for

every 1 ≤ r ≤ r* ≡ N
N−α , if α < N, for every 1 ≤ r < ∞ if α ≥ N. The proof uses ideas of [27] and [14]. If

α ≥ N we obtain the result substituting α by any number below N and close to N, since (3.1) still holds for that
exponent.
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Theorem 3.2. Assume J satis�es condition (3.1) with 0 < α < N. Then there exists a positive constant C =
C(N, p, q, α, Ω) such that, for any function u ∈ W J,Ψ

0 (Ω) we have u ∈ LΨ
r
(Ω) for every 1 ≤ r ≤ r* ≡ N

N−α and

‖Ψ(u)‖r ≤ CE(u). (3.3)

Proof. We prove the inequality for r = r*, and then the result for r < r* follows by Hölder inequality. We can
assume, without loss of generality, that u is radially deacreasing and Ω = BR* , since substituting u by its
symmetric decreasing rearrangement u*, we have by Theorem 2.10,

‖Ψ(u)‖r = ‖Ψ(u*)‖r ≤ CE(u*) ≤ CE(u).

We may also consider the case of u bounded, since if not, taking the sequence uT = min{u, T}, and thanks
to the Dominated Convergence Theorem, we would get the result in the limit T →∞. We now de�ne

Ak := {x ∈ RN : u(x) > 2k}, ak = |Ak|,

Dk := Ak \ Ak+1, dk = |Dk|.

We have Ak = BRk , with Rk+1 ≤ Rk ≤ R*. Also ak = dk = 0 for all large k, say for k > M. Now we compute,

‖Ψ(u)‖r =

 M∑
k=−∞

∫
Dk

Ψ r(u(x)) dx


1/r

≤
M∑

k=−∞
Ψ(2k+1)d1/rk ≤ c

M∑
k=−∞

Ψ(2k)a1/rk ,

since r > 1. On the other hand, if x ∈ Di and y ∈ Dj, with j ≤ i − 2, then

|u(x) − u(y)| ≥ 2i − 2j+1 ≥ 2i−1.

Thus
M∑

i=−∞

i−2∑
j=−∞

∫
Di

∫
Dj

Ψ(u(x) − u(y))J(x − y) dydx

≥
M∑

i=−∞
Ψ(2i−1)

∫
Di

∑
j≤i−2

∫
Dj

J(x − y) dydx

≥
M∑

i=−∞
Ψ(2i−1)

∫
Di

∫
Aci−1

J(x − y) dydx ≥ c
M∑

i=−∞
Ψ(2i)a−α/Ni−1 di

= c
M∑

i=−∞
Ψ(2i)a−α/Ni−1

(
ai −

M∑
k=i+1

dk

)
= c(A − B).

The second term can be estimated as

B =
M∑

i=−∞

M∑
k=i+1

Ψ(2i)a−α/Ni−1 dk =
M∑

k=−∞

k−1∑
i=−∞

Ψ(2i)a−α/Ni−1 dk

≤
M∑

k=−∞

k−1∑
i=−∞

Ψ(2i)a−α/Nk−1 dk ≤
M∑

k=−∞
Ψ(2k)a−α/Nk−1 dk

k−1∑
i=−∞

γ+(2i−k)

=
M∑

k=−∞
Ψ(2k)a−α/Nk−1 dk

∞∑
m=1

γ+(2−m) = c
M∑

k=−∞
Ψ(2k)a−α/Nk−1 dk = c(A − B).

We deduce the estimate

E(u) ≥
M∑

i=−∞

i−2∑
j=−∞

∫
Di

∫
Dj

Ψ(u(x) − u(y))J(x − y) dydx

≥ CA = C
M∑

i=−∞
Ψ(2i)a−α/Ni−1 ai .
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We conclude, using [27, Lemma 5], since 1
r = 1 − α

N ,

E(u) ≥ C
M∑

i=−∞
Ψ(2i)a1−α/Ni ≥ C‖Ψ(u)‖r .

Wealso prove that the above embedding is compact provided r < r*. To this endwe�rst show the compactness
of the inclusion for r = 1 and then interpolate with the continuity for r = r*. It is important to remark that
the inclusionW J,Ψ

0 (Ω) ↪→ LΨ (Ω) is compact even when q* = 0, which implies r* = 1, provided the following
conditions on the kernel at the origin hold

lim
|z|→0+

|z|N J(z) =∞, (3.4)

J(z1) ≥ cJ(z2) for every 0 < |z1| ≤ |z2| ≤ 1, and some c > 0. (3.5)

This implies some kind of minimal singularity and some monotonicity near the origin. In particular this al-
lows to consider for instance a kernel of the form J(z) = |z|−N |log |z||β, β > 0, for |z| ∼ 0. See [11] for the case
Ψ(s) = |s|2.

Theorem 3.3. Assume J satis�es (3.4) and (3.5). Then the embeddingW J,Ψ
0 (Ω) ↪→ LΨ (Ω) is compact.

Proof. The idea of the proof goes back to the Riesz-Fréchet-Kolmogorovwork.We follow the adaptation to the
fractional Laplacian framework performed in [14].

Let A ⊂ W J,Ψ
0 (Ω) be a bounded set. We show that A is totally bounded in LΨ (Ω), i.e., for any ϵ ∈ (0, 1)

there exist β1, ..., βM ∈ LΨ (B1) such that for any u ∈ A there exists j ∈ {1, ...,M} such that

F(u − βj) ≤ ϵ. (3.6)

We take a collection of disjoints cubes Q1, ...QM′ of side ρ < 1 such that Ω ⊂
⋃M′

j=1 Qj. For any x ∈ Ωwe de�ne
j(x) as the unique integer in {1, ...,M′} for which x ∈ Qj(x). Also, for any u ∈ A, let

Q(u)(x) := 1
|Qj(x)|

∫
Qj(x)

u(y) dy.

Notice that
Q(u + v) = Q(u) + Q(v) for any u, v ∈ A,

and that Q(u) is constant, say equal to qj(u), in any Qj, for j ∈ {1, ...,M′}. Therefore, we can de�ne

S(u) := ρN
(
Ψ(q1(u)), ..., Ψ(qM′ (u))

)
∈ RM

′
,

and consider the spatial 1-norm in RM
′
as

‖v‖1 :=
M′∑
j=1
|yj|, for any v = (y1, . . . , yM′ ) ∈ RM

′
.

We observe that

F(Q(u)) =
M′∑
j=1

∫
Qj

Ψ
(
Q(u)(x)

)
dx ≤ ρN

M′∑
j=1

Ψ
(
qj(u)

)
= ‖S(u)‖1, (3.7)

and also, by Jensen inequality and (3.2),

‖S(u)‖1 =
M′∑
j=1

ρN
∣∣Ψ(qj(u))∣∣ = ρN M′∑

j=1
Ψ

 1
ρN

∫
Qj

u(y) dy


≤
M′∑
j=1

∫
Qj

Ψ(u(y)) dy =
∫
Ω

Ψ(u(y)) dy ≤ c.

(3.8)
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In the same way,
F(Q(u) − a) = F(Q(u) − Q(a)) ≤ ‖S(u) − S(a))‖1

for every constant a. In particular from (3.8) we obtain that the set S(A) is bounded in RM
′
and so, since it is

�nite dimensional, it is totally bounded. Therefore, there exist b1, ..., bK ∈ RM
′
such that

S(A) ⊂
K⋃
i=1
Bη(bi), (3.9)

where Bη(bi) are the 1–balls of radius η centered at bi. For any i ∈ {1, ..., K}, we write the coordinates of bi
as bi = (bi,1, ..., bi,M′ ) ∈ RM

′
. For any x ∈ Ω we set

βi(x) = Ψ−1(ρ−Nbi,j(x)),

where j(x) is as above. Notice that βi is constant on Qj, i.e. if x ∈ Qj then

Q(βi)(x) = Ψ−1(ρ−Nbi,j(x)) = Ψ
−1(ρ−Nbi,j) = βi(x) (3.10)

and so qj(βi) = Ψ−1(ρ−Nbi,j); thus S(βi) = bi. Furthermore, again by Jensen inequality,

F(u − Q(u)) =
M′∑
j=1

∫
Qj

Ψ
(
u(x) − Q(u)(x)

)
dx

=
M′∑
j=1

∫
Qj

Ψ

 1
ρN

∫
Qj

(
u(x) − u(y)

)
dy

 dx

≤ 1
ρN

M′∑
j=1

∫
Qj

∫
Qj

Ψ
(
u(x) − u(y)

)
dy dx

≤ 1
`(ρ)

M′∑
j=1

∫
Qj

∫
Qj

Ψ
(
u(x) − u(y)

)
J(x − y) dy dx ≤ c

`(ρ) ,

where ` is some function satisfying `(z) ≤ |z|N J(z). Using (3.4), (3.5) we can take ` radial satisfying `(0+) =∞.
Consequently, for any j ∈ {1, ..., K}, recalling (3.7) and (3.10)

F(u − βj) ≤ F(u − Q(u)) + F(Q(u) − Q(βj)) + F(Q(βj) − βj)

≤ c
(

1
`(ρ) + ‖S(u) − S(βj))‖1

)
.

Now recalling (3.9) we take j ∈ {1, ..., K} such that S(u) ∈ Bη(bj), that is

‖S(u) − S(βj))‖1 = ‖S(u) − bj‖1 < η.

We conclude by choosing ρ and η small so as to have c
(

1
`(ρ) + η

)
< ϵ.

As a corollary we obtain the full compactness result in the fractional case.

Theorem 3.4. Assume J satis�es (3.1) and (3.5). Then the embeddingW J,Ψ
0 (Ω) ↪→ LΨ

r
(Ω) is compact for every

1 ≤ r < r* if α < N, for every 1 ≤ r < ∞ if α ≥ N.

Proof. Asbefore if α ≥ Nweobtain the result substituting α by anynumber belowN. By classical interpolation

‖Ψ(u)‖r ≤ ‖Ψ(u)‖λ1‖Ψ(u)‖1−λr* ≤ cF(u)λ ,

where 1
r = λ +

1−λ
r* . Therefore we can obtain, instead of (3.6), the estimate∫

Ω

Ψ r(u(x) − βj) dx ≤ cϵλr ,

and we are done.
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4 The problem with reaction f = f (x)
We start with this section the study of some elliptic type problems associated to our nonlinear nonlocal op-
erator L.

Here we consider the problem {
Lu = f (x), in Ω,
u = 0, in Ωc .

(4.1)

Given any f ∈
(
W J,Ψ

0 (Ω)
)′
, the dual space, we say that u ∈ W J,Ψ

0 (Ω) is a weak solution to (4.1) if (1.13) holds.

By Poincaré inequality (3.2) we have that f ∈
(
W J,Ψ

0 (Ω)
)′

for instance provided f ∈ LΦ(Ω), where Φ is
the complementary function of Ψ .

We next show that problem (4.1) has a weak solution.We do not know if this solution is a strong solution,
that is if Lu is de�ned pointwise and the equality in (4.1) holds almost everywhere. On the other hand, we
are able to show uniqueness assuming some extra conditions on the function Ψ . In the exact power case
Ψ(s) = |s|p these extra conditions cover the full range p > 1.

Theorem 4.1. For any f ∈
(
W J,Ψ

0 (Ω)
)′

there exists a solution u ∈ W J,Ψ
0 (Ω) to problem (4.1). If ψ satis�es either

condition (2.11) or (2.14) then the solution is unique.

Proof. Existence follows by minimizing inW J,Ψ
0 (Ω) the functional

I(v) = E(v) −
∫
Ω

fv.

Clearly it is well de�ned, lower semicontinuous and Fréchet di�erentiable with

〈I′(v), φ〉 = E(v;φ) −
∫
Ω

fφ

for every v, φ ∈ W J,Ψ
0 (Ω). To see that it is coercive we �rst observe that ‖v‖W J,Ψ → ∞ implies E(v) → ∞.

Actually, by (2.2), (2.4) and Poincaré inequality,

‖v‖W J,Ψ = ‖v‖LΨ + [v]W J,Ψ ≤ c
(
(γ−Ψ )−1(F(v)) + (γ−Ψ )−1(E(v))

)
≤ cmax

{(
E(v)

)1/p , (E(v))1/q} .
Now use Hölder inequality in Orlicz spaces,∣∣∣∣∣∣

∫
Ω

fv

∣∣∣∣∣∣ ≤ c‖v‖W J,Ψ
0
, c = sup

‖w‖
WJ,Ψ0

=1

∣∣∣∣∣∣
∫
Ω

fw

∣∣∣∣∣∣ .
The last quantity is known as the Orlicz norm of f in

(
W J,Ψ

0 (Ω)
)′
, an is equivalent to the Luxemburg norm,

see [25]. We thus get
I(v) ≥ E(v) − c

(
E(v)

)1/q →∞
as ‖v‖W J,Ψ → ∞. Therefore there exists a minimum of I, attained by compactness for some function u ∈
W J,Ψ

0 (Ω), which is a weak solution to our problem.
We now show uniqueness. Suppose by contradiction that there exist two functions u1, u2 ∈ W J,Ψ

0 (Ω)
such that

E(u1;φ) = E(u2;φ) ∀ φ ∈ W J,Ψ
0 (Ω). (4.2)
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Assume �rst that (2.11) holds. We have, denoting a = u1(x) − u1(y), b = u2(x) − u2(y), and using (2.12),

E(u1 − u2) = 1
2

∫∫
R2N

Ψ(a − b)J(x − y) dxdy

≤ c
∫∫
R2N

(
ψ(a) − ψ(b)

)
(a − b)J(x − y) dxdy

= c
(
E(u1; u1 − u2) − E(u2; u1 − u2)

)
= 0

by (4.2). This implies u1 ≡ u2.
Assume now condition (2.14). We calculate, using Hölder inequality and (2.15),

E(u1 − u2) =
1
2

∫∫
R2N

Ψ(a − b)J(x − y) dxdy

≤ c

∫∫
R2N

(
Ψ(a − b)

)2/p
(Ψ(a) + Ψ(b))

2−p
p
J(x − y) dxdy


p
2
∫∫

R2N

(
Ψ(a) + Ψ(b)

)
J(x − y) dxdy

1− p2

≤ c

∫∫
R2N

(
ψ(a) − ψ(b)

)
(a − b)J(x − y) dxdy


p
2
∫∫

R2N

(
Ψ(a) + Ψ(b)

)
J(x − y) dxdy

1− p2

= c
(
E(u1; u1 − u2) − E(u2; u1 − u2)

) p
2
(
E(u1) + E(u2)

)1− p2 = 0.

A maximum principle is easy to obtain.

Proposition 4.2. If u ∈ W J,Ψ (RN) then

E(u, φ) ≥ 0 ∀ φ ∈ W J,Ψ (RN), φ ≥ 0
u ≥ 0 in Ωc

}
⇒ u ≥ 0 in Ω.

Proof. Since u− ≥ 0 and u− ∈ W J,Ψ (RN), we have, by (2.8),

0 ≥ −E(u−, u−) ≥ E(u, u−) ≥ 0.

Hence u− ≡ 0.
We now study the integrability properties of the solution in terms of the integrability of the datum in the

power-like case (1.7). In the exact power case of the fractional p–Laplacian these integrability properties have
been obtained in [4]. Our proofs in themore general case treated in this paper di�er from theirs in that we are
using Stroock-Varopoulos inequality instead of Kato inequality, and that we allow for the limit case q* = 0,
which does not make sense in the fractional p–Laplacian. All the proofs are based on the well known Moser
iteration technique for the standard Laplacian case, see for example the book [19].

The �rst result uses no singularity condition on the kernel J, besides being nonintegrable.

Theorem 4.3. Assume condition (1.7). If u is a weak solution to problem (4.1) with f ∈ Lm(Ω) then u ∈
Lm(p−1)(Ω).

Of course this result is not trivial only ifm > p
p−1 , since u being aweak solution it belongs toW J,Ψ

0 (Ω) ⊂ Lp(Ω).

Proof. Without loss of generality we may assume u ≥ 0, and this simpli�es notation; the general case is
obtained in a similar way. We de�ne for β ≥ 1 and K > 0 the function

H(s) =
{
sβ , s ≤ K,
linear, s > K.
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We choose as test function φ = G(u) =
∫ u
0 Ψ(H

′(s)) ds. It is easy to check that φ ∈ W J,Ψ
0 (Ω). In fact

E(φ) ≤ γ+Ψ (Ψ(βKβ−1))E(u) < ∞.

We obtain on one hand, using the Stroock-Varopoulos inequality (2.9) and the Poincaré inequality (3.2),

E(u;G(u)) ≥ cE(H(u)) ≥ cF(H(u)), (4.3)

and on the other hand, using Hölder inequality,∫
Ω

fG(u) ≤ ‖f‖m‖G(u)‖m′ . (4.4)

Letting K →∞ in the de�nition of H, the inequalities (4.3) and (4.4) give

‖u‖pβpβ ≤ c‖f‖m‖u‖
(β−1)p+1
((β−1)p+1)m′ . (4.5)

Choosing now β = m(p−1)
p , we get

‖u‖m(p−1) ≤ c‖f‖
1
p−1
m .

The same proof allows to gain more integrability when condition (3.1) holds.

Theorem 4.4. Assume conditions (1.7) and (3.1) and let u be aweak solution to problem (4.1), where f ∈ Lm(Ω),
m < N/α. Then u ∈ L

m(p−1)N
N−mα (Ω).

Again this result is not trivial only if m > Np
Np−N+α , since then m(p−1)N

N−mα > Np
N−α .

Proof. In the previous proof, using Sobolev inequality (3.3) instead of Poincaré inequality, we obtain in (4.5)

‖u‖pβpβr* ≤ β‖f‖m‖u‖
(β−1)p+1
((β−1)p+1)m′ ,

r* = N
N−α . Choosing now β = m′(p−1)

p(r*−m′) , we get

‖u‖ m(p−1)N
N−mα

≤ c‖f‖
1
p−1
m .

Even more, assuming a better integrability condition on f we get that the solution is bounded. This is a well
known result for the standard Laplacian or the fractional Laplacian.

Theorem 4.5. Assume conditions (1.7) and (3.1). If u is a weak solution to problem (4.1), where f ∈ Lm(Ω) with
m > N/α, then u ∈ L∞(Ω).

Proof. We change here slightly the test function used in the previous two proofs.We de�ne for β ≥ 1 and K ≥ k
(k to be chosen later) a C1([k,∞)) function H, as follows:

H(s) =
{
sβ − kβ , s ∈ [k, K],
linear, s > K.

Let us also de�ne v = u + k, and choose as test function φ = G(v) =
∫ v
k Ψ(H

′(s)) ds. We obtain on one hand,
using the Stroock-Varopoulos inequality (2.9) and the Sobolev inequality (3.3),

E(u;G(v)) ≥ cE(H(v)) ≥ c‖Ψ(H(v))‖r* , (4.6)
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and on the other hand, using Hölder inequality,∫
Ω

fG(v) ≤
∫
Ω

fvΨ(H′(v)) ≤ 1
kp−1

∫
Ω

fvpΨ(H′(v)) ≤ c
kp−1 ‖f‖m‖vH

′(v)‖ppm′ , (4.7)

since v ≥ k. Inequality (4.6) together with (4.7), and the properties of Ψ , lead to

‖H(v)‖r*p ≤
(
c‖f‖m
kp−1

)1/p
‖vH′(v)‖pm′ . (4.8)

We choose k = (c‖f‖m)
1
p−1 and let K →∞ in the de�nition of H, so that the inequality (4.8) becomes

‖u‖r*pβ ≤ β‖u‖pm′β .

Hence for all β ≥ 1 the inclusion u ∈ Lpm
′β(Ω) implies the stronger inclusion u ∈ Lr

*pβ(Ω), since r* = N
N−α >

m′ = m
m−1 providedm > N

α . Observe that u being a weak solution it belongs toW J,Ψ
0 (Ω), and thus u ∈ L

Np
N−α (Ω).

The result follows now iterating the estimate starting with β = N(m−1)
(N−α)m > 1, see for example [19, Theorem 8.15]

for the details in the standard Laplacian case. This gives u ∈ L∞(Ω). In fact we get the estimate

‖u‖∞ ≤ c(E(u)
1
p + ‖f‖

1
p−1
m ).

5 The problem with reaction f = f (u)
We study in this section the nonlinear elliptic type problem

Lu = f (u), in Ω,
u ≥ 0, u ̸≡ 0, in Ω,
u = 0, in Ωc .

(5.1)

We �rst show existence in the lower case, i.e., when f : [0,∞)→ R is a continuous function satisfying

∃ 0 < µ < q − 1p : |f (t)| ≤ c1 + c2Ψµ(t), lim inf
t→0+

f (t)
Ψµ(t) ≥ c3 > 0. (5.2)

In the power-like case (1.7) with f (t) = tm−1 this means 0 < m < p. See [8] for the classical sublinear problem
for L = −∆ and [11] for general L with q* ≥ 0, both in the case Ψ(s) = |s|2.

Theorem 5.1. Under the assumption (5.2) problem (5.1) has a solution u ∈ W J,Ψ
0 (Ω).

Proof. We de�ne the energy functional I : W J,Ψ
0 (Ω)→ R de�ned by

I(v) = E(v) −
∫
Ω

G(v),

where G(u) =
∫ u
0 f (s) ds. This functional is easily seen to beweakly lower semicontinuous, and iswell de�ned

since ∣∣∣∣∣∣
∫
Ω

G(v)

∣∣∣∣∣∣ ≤ c1|Ω| + c2|Ω|1−µ(F(v))µ < ∞. (5.3)

On the other hand, this same estimate also gives coercivity since µ < 1, and then

I(v) ≥ E(v) − c
(
E(v)

)µ →∞ as ‖v‖W J,Ψ →∞.
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Let now {vn} ⊂ W J,Ψ
0 (Ω) be a minimizing sequence for I,

lim inf
n→∞

I(vn) = ν = inf
u∈W J,Ψ

0 (Ω)
I(u).

This sequence is bounded inW J,Ψ
0 (Ω), and therefore we can assume that there is a subsequence, still denoted

{vn}, such that vn ⇀ u inW J,Ψ
0 (Ω). Therefore vn → u in LΨ (Ω). We thus deduce by (5.3)∫

Ω

G(vn)→
∫
Ω

G(u),

so that

ν ≤ I(u) ≤ lim inf
n→∞

E(vn) − ∫
Ω

G(vn)

 = lim inf
n→∞

I(vn) = ν.

This shows that I(u) = ν and u is a global minimum for I, hence a solution to (5.1). It is easy to see that we
can replace u by |u| since I(|u|) ≤ I(u). In order to show that u is nontrivial let us check that I(u) < 0. In fact,
given any v ∈ W J,Ψ

0 (Ω) we have

I(εv) ≤ γ+Ψ (ε)E(v) − ε
(
γ−Ψ (ε)

)µ ∫
Ω

G(u) ≤ εqE(v) − ε1+pµ
∫
Ω

G(u) < 0,

for small ε > 0, since q > 1 + pµ. We deduce that ν < 0 and u ̸≡ 0.

Unfortunately we are only able to prove uniqueness in the exact power case Ψ(s) = |s|p. In fact uniqueness
follows in that case using a standard argument bymeans of a Picone inequality proved in [16], see [8] and [11].
Though a Picone inequality could be obtained also assuming that (1.7) is satis�ed, it is not sharp enough to
prove uniqueness. In the more general case of Ψ ∈ Γp,q such Picone type inequality is not even known to
hold.

Wenowassumecondition (3.1) and consider nonlinear functions f in the intermediate range, that is above
the power p − 1 but subcritical in the sense of Sobolev, see Theorem 3.2. The precise conditions on f are

∃ ρ > p : tf (t) ≥ ρG(t) ∀ t > 0;

∃ 1 < r < r*, t0 > 0 : tf (t) ≤ cψr(t) ∀ t > t0;

∃ λ0 > 0 : f (λt) ≥ λρ f (t) ∀ t > 0, λ > λ0,

(5.4)

where G′ = f . When f (t) = tm−1 these condition hold with ρ = m provided p < m < Nq
N−α .

Theorem 5.2. Assume J satis�es (3.1), ψ satis�es either (2.11) or (2.14), and f is a nondecreasing function sat-
isfying (5.4). Then problem (5.1) has a solution u ∈ W J,Ψ

0 (Ω).

Proof. As before we consider the functional

I(v) = E(v) −
∫
Ω

G(v),

whose critical points are the solutions to our problem. This functional iswell de�ned inW J,Ψ
0 (Ω) thanks to the

Sobolev embedding and the second condition in (5.4). We therefore apply the standard variational technique
based on the Mountain Pass Theorem [2]. We only have to prove that the functional satis�es the Palais-Smale
condition and has the appropriate geometry.

We �rst prove that any Palais-Smale sequence has a convergent subsequence. Let {vn} be a sequence
satisfying

I(vn)→ ν, 〈I′(vn), φ〉 → 0 ∀ φ ∈
(
W J,Ψ

0 (Ω)
)′
.
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By the �rst condition in (5.4), and using (1.9), we have

〈I′(vn), vn〉 = E(vn; vn) −
∫
Ω

vn f (vn) ≤ pE(vn) − ρ
∫
Ω

G(vn).

On the other hand, for all large n such that ‖I′(vn)‖ ≤ 1 we have

|〈I′(vn), vn〉| ≤ ‖vn‖W J,Ψ .

Therefore
ν + 1 ≥ I(vn) = I(vn) −

1
ρ 〈I

′(vn), vn〉 +
1
ρ 〈I

′(vn), vn〉

≥
(
1 − pρ

)
E(vn) −

1
ρ ‖vn‖W J,Ψ

≥
(
1 − pρ

)
min

{
‖vn‖pW J,Ψ , ‖vn‖qW J,Ψ

}
− 1
ρ ‖vn‖W J,Ψ .

This implies ‖vn‖W J,Ψ ≤ k for every n, so that there exists a subsequence, still denoted {vn}, convergingweakly
to some u ∈ W J,Ψ

0 (Ω), and by Theorem 3.4 it is vn → v∞ strongly in LΨ
r
(Ω) for every 1 ≤ r < r*. The second

condition in (5.4) implies vn f (vn)→ v∞f (v∞) in L1(Ω). Now write,

E(vn; vn − v∞) − E(v∞; vn − v∞) = 〈I′(vn), vn − v∞〉 − 〈I′(v∞), vn − v∞〉

+
∫
Ω

(f (vn) − f (v∞))(vn − v∞)→ 0.

Using inequalities (2.12) or (2.15) as in the proof of uniqueness in Theorem 4.1, we obtain

E(vn − v∞)→ 0,

that is vn → v∞ inW J,Ψ
0 (Ω), and Palais-Smale condition holds.

Let us now look at the behaviour of I close to the origin and far from it. First I(0) = 0. Also, given any
v ∈ W J,Ψ

0 (Ω), we have by Poincaré inequality and the second condition in (5.4)

I(v) = E(v) −
∫
Ω

G(v) ≥ c1
∫
Ω

ψ(v) − c2
∫
Ω

ψr(v) ≥ c1F(v) − c3Fr(v) > 0

for every F(v) small. But ‖v‖W J,Ψ small implies F(v) small. We have obtained

∃ ε, δ > 0 : I(v) > I(0)+δ ∀ v ∈ W J,Ψ
0 (Ω), ‖v‖W J,Ψ = ε.

On the other hand, if λ > 0 is large, using the third condition in (5.4), we get

I(λv) ≤ λpE(v) − λρ
∫
Ω

G(v) < 0,

since p < ρ. Thus
∃ v ∈ W J,Ψ

0 (Ω), ‖v‖W J,Ψ > ε : I(v) < I(0).

This ends the proof by an application of the Mountain Pass Theorem. Actually, if we de�ne

Θ = {h ∈ C([0, 1];W J,Ψ
0 (Ω)) : h(0) = 0, h(1) = v},

then
η = inf

h∈Θ
max
t∈[0,1]

I(h(t))

is a critical value with I(u) = η for some u ∈ W J,Ψ
0 (Ω), which is a solution to our problem.
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The exponent r* in (5.4) is sharp in the fractional p–Laplacian case. In fact, in the fractional Laplacian case
p = 2 this has been proved in [26] by means of a Pohozaev identity when Ω is star-shaped. Their proof was
adapted in [11] for more general kernels again with Ψ(s) = |s|2, obtaining an exponent which depends on
the kernel and is presumed not to be optimal. The proof of this last result works verbatim for general powers
Ψ(s) = |s|p, but not for other functions, since homogeneity is crucial in the argument.

Let, for λ > 1,
µ(λ) = λ−N sup

z∈RN
z≠0

J(z/λ)
J(z) , (5.5)

and assume µ(λ) < ∞ for λ close to 1.

Theorem 5.3. If u is a bounded solution to problem (5.1) with Ψ(s) = |s|p and Ω is star-shaped, then∫
Ω

uf (u) ≤ Np
N − δ

∫
Ω

G(u),

where δ = µ′(1+) and G′ = f .

Corollary 5.4. Problem (5.1)with f (u) = um−1,Ψ(s) = |s|p and Ω star-shaped has no bounded solutions for any
exponent m > m* = Np

N−δ .

We observe that this nonexistence result depends not only on the behaviour of the kernel at the origin, but
on its global behaviour, see (5.5). In fact when the kernel is

J(z) =
{
|z|−N−α1 if |z| < 1,
|z|−N−α2 if |z| > 1,

α1 < p, α2 > 0, we get σ = max{α1, α2}. It will be interesting to know if only the singularity of J at the origin
determines by its own the existence or nonexistence of solution. If this is the case wewould get, in the critical
singularity exponent q* = 0 in (H0), that there is no solution for any m > p. This, together with the existence
result for m < p of Theorem 5.1, leaves only the case m = p to be studied. We dedicate next section to this
task.

6 The generalized eigenvalue problem
In this last section we study the parametric problem{

Lu = λψ(u), in Ω,
u = 0, in Ωc .

(6.1)

Though the problem is not homogeneous due to the presence of the non homogeneous function ψ, since
it is precisely this same function ψ that de�nes both, the operator and the reaction, it can also be called
generalized eigenvalue problem, as is usual for the p–Laplacian or the fractional p–Laplacian, see [22], [23].
The �rst (generalized) eigenvalue and eigenfunction are obtained minimizing

I(v) = E(v)F(v) , v ∈ W J,Ψ
0 (Ω) \ {0}.

In fact, if u is aminimum, the function g(t) = I(u+ tφ), for any admisible function φ satis�es g(0) = E(u)
F(u) = λ1,

g′(0) = 0, that is,
〈E′(u), φ〉 = λ1〈F′(u), φ〉,

which is the associated Euler-Lagrange equation, the weak formulation (1.13).
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Theorem 6.1. De�ne
λ1 = inf

v∈W J,Ψ
0 (Ω)\{0}

I(v).

Then λ1 is positive and is achieved by some u ∈ W J,Ψ
0 (Ω) \ {0}. Moreover, the function u is a weak solution to

problem (6.1). The solution does not change sign, and it is moreover bounded if (1.7) and (3.1) holds for some
α > 0.

Proof. The inequality (3.2) immediately gives λ1 > 0. ConsiderM = {v ∈ W J,Ψ
0 (Ω) : F(v) = 1}. Let {vn} be a

minimizing sequence for I inM, that is

lim
n→∞

I(vn) = λ1 = inf
v∈M

I(v) > 0.

Then {vn} is bounded in W J,Ψ
0 (Ω), so there exists a subsequence, still denoted by {vn}, such that vn ⇀ u

in W J,Ψ
0 (Ω). As usual, by Theorem 3.4 there exists a subsequence converging to u in LΨ (Ω), so F(u) = 1 and

u ∈M. This gives
λ1 ≤ I(u) = E(u) ≤ lim

n→∞
E(vn) = lim

n→∞
I(vn) = λ1,

and then I(u) = λ1. The functionals E and T are di�erentiable, and so is I, and we have

0 = 〈I′(u), φ〉 = 1
F(φ)

(
〈E′(u), φ〉 − I(u)〈F′(u), φ〉

)
.

Therefore
E(u;φ) = 〈E′(u), φ〉 = I(u)〈F′(u), φ〉 = λ1

∫
Ω

ψ(u)φ,

for every φ ∈ W J,Ψ
0 (Ω). The fact that the eigenfunction is nonnegative or nonpositive follows by (2.8) which

implies I(±|u|) ≤ I(u). The boundedness of u assuming (3.1) is easily proved again by the Moser iterative
scheme as performed in [6]. The key point is the use of the Stroock-Varopoulos inequality (2.10) and condi-
tion (1.7), and �nally apply Theorem 4.5. See also [17].

Acknowledgement: Work supported by the Spanish project MTM2014-53037-P.

References
[1] F. J. Almgren Jr. and E. H. Lieb. Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc., 2

(1989), 683–773.
[2] A. Ambrosetti and P. H. Rabinowitz. Dual variational methods in critical point theory and applications. J. Funct. Anal., 14

(1973), 349–381.
[3] A. Baernstein II. A uni�ed approach to symmetrization. Sympos. Math., vol. XXXV, Cambridge Univ. Press, Cambridge,

1994, pp. 47–91.
[4] B. Barrios, I. Peral and S. Vita. Some remarks about the summability of nonlocal nonlinear problems. Adv. Nonlinear

Anal., 4 (2015), 91–107.
[5] C. Brändle and A. de Pablo. Nonlocal heat equations: regularizing e�ect, decay estimates and Nash inequalities. Comm.

Pure Appl. Anal., 17 (2018), 1161–1178.
[6] L. Brasco, E. Lindgren and E. Parini. The fractional Cheeger problem. Interfaces Free Bound., 16 (2014), 419–458.
[7] H. Brezis. Functional analysis, Sobolev spaces and partial di�erential equations. Universitext. Springer, New York, 2011.
[8] H. Brezis and L. Oswald. Remarks on sublinear elliptic equations. Nonlinear Anal. TMA, 10 (1986), 55–64.
[9] L.A. Ca�arelli. Non-local di�usions, drifts and games, in: Nonlinear Partial Di�erential Equations (Oslo 2010), Abel Symp,

7, Springer-verlag, Berlin (2012), 37–52.
[10] A. Córdoba and D. Córdoba. A pointwise estimate for fractionary derivatives with applications to partial di�erential

equations. Proc. Natl. Acad. Sci. USA, 100 (2003) 15316–15317.
[11] E. Correa and A. de Pablo. Nonlocal operators of order near zero. J. Math. Anal. Appl., 461 (2018) 837–867.
[12] A. Di Castro, T. Kuusi and G. Palatucci. Nonlocal Harnack inequalities. J. Funct. Anal., 267 (2014), 1807–1836.



326 | E. Correa and A. de Pablo, Remarks on a nonlinear nonlocal operator in Orlicz spaces

[13] A. Di Castro, T. Kuusi and G. Palatucci. Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire,
33 (2016), 1279–1299.

[14] E. Di Nezza, G. Palatucci and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136 (2012),
521–573.

[15] J. Fernández Bonder, A. M. Salort. Fractional order Orlicz-Sobolev spaces. J. Funct. Anal., (2019) in press.
[16] R. L. Frank and R. Seiringer. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal., 255

(2008), 3407–3430.
[17] G. Franzina and G. Palatucci. Fractional p–eigenvalues. Riv. Mat. Univ. Parma, 5 (2014), 315–328.
[18] K. O. Friedrichs. On Clarkson’s inequalities. Comm. Pure Appl. Math., 23 (1970) 603–607.
[19] D. Gilbarg and N.S. Trudinger. Elliptic partial di�erential equations of second order. Springer-Verlag, Classics in Mathe-

matics, Berlin, 2001.
[20] A. Iannizzotto, S. Liu, K. Perera and M. Squassina. Existence result s for fractional p–Laplacian problems via Morse

theory. Adv. Calc. var., 9 (2016), 101–125.
[21] T. Kato. Schrödinger operators with singular potentials. Israel J. Math., 13 (1972) 135–148.
[22] E. Lindgren and P. Lindqvist. Fractional eigenvalues. Calc. Var. Partial Di�erential Equations, 49 (2014), 795–826.
[23] P. Lindqvist. On the equation div(∇u|p−2∇u) + λ|u|p−2u = 0. Proc. Amer. Math. Soc., 1 (1990), 157–164.
[24] S. Mosconi and M. Squassina. Recent progresses in the theory of nonlinear nonlocal problems. in: Bruno Pini Math. Anal.

Semin. Univ. Bologna, Alma Mater Stud., Bologna (2016), 147–164.
[25] M. M. Rao and Z. D. Ren. Applications of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics,

250. Marcel Dekker, Inc., New York, 2002.
[26] X. Ros-Oton and J. Serra. The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal., 213 (2014), 587–

628.
[27] O. Savin and E. Valdinoci. Density estimates for a nonlocal variational model via the Sobolev inequality. SIAM J. Math.

Anal., 43 (2011), 2675–2687.
[28] O. Savin and E. Valdinoci. Density estimates for a variational model driven by the Gagliardo norm. J. Math. Pures Appl.,

101 (2014), 1–26.
[29] N. T. Varopoulos. Hardy-Littlewood theory for semigroups. J. Funct. Anal., 63 (1985), 240–260.


	Remarks on a nonlinear nonlocal operator  in Orlicz spaces
	1 Introduction
	1.1 The associated Orlicz spaces
	1.2 Elliptic problems
	1.3 Organization of the paper

	2 Preliminaries
	3 Sobolev inclusions
	4 The problem with reaction f=f(x)
	5 The problem with reaction f=f(u)
	6 The  generalized eigenvalue problem


