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Abstract—There is a growing body of studies on applying deep learning to biometrics analysis. Certain circumstances, however, could
impair the objective measures and accuracy of the proposed biometric data analysis methods. For instance, people with chronic pain
(CP) unconsciously adapt specific body movements to protect themselves from injury or additional pain. Because there is no dedicated
benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person’s
biometrics during daily activities in this study and classified pain level and pain-related behaviour in the EmoPain database. To achieve
this, we proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that
incorporates multiple autoencoders using a shared training framework. This architecture is fed by multidimensional data collected from
inertial measurement unit (IMU) and surface electromyography (sEMG) sensors. Furthermore, to compensate for variations in the
temporal dimension that may not be perfectly represented in the latent space of s-RNNs, we fused hand-crafted features derived from
information-theoretic approaches with represented features in the shared hidden state. We conducted several experiments which
indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related
behaviour.

Index Terms—Gated Recurrent Unit, Multi-label Classification, Pain-related Behaviour, Sparsely-connected RNNs.

✦

1 INTRODUCTION

B Iometric data analysis, which is unique to each individ-
ual, has become increasingly popular in recent years for

various applications ranging from security [46] to medical
diagnosis [27]. Biometrics analysis is the process of measur-
ing and analysing an individual’s physical and behavioural
characteristics, such as fingerprints, iris, voice, and body
movements, to identify or verify their identity [20].

Deep learning is a type of machine learning that can be
used to detect patterns in data automatically. The efficiency
of deep learning methods have been shown in various
tasks, including image analysis [1], [2], [5], [13], [15], natural
language processing [17], [34], and biometrics analysis [7].
However, certain circumstances could impair the objective
measures and accuracy of the proposed biometric data anal-
ysis methods. For example, people suffering from chronic
pain (CP) unconsciously adapt body movements to protect
themselves from further pain or injury [23], [45]. As a result,
they may avoid activities that require bending or lifting.
They may also begin sitting for extended periods with a
straight back or twisting their trunk instead of bending their
body during the sit-to-stand movement to reduce strain on
the back muscles. Indeed, the presence of pain and the
adoption of protective behaviours can bias the data used
to train biometrics analysis algorithms toward non-general

Corresponding author: M.M. Dehshibi (mohammad.dehshibi@yahoo.com)

bodily movements, reducing the generalizability of these
algorithms. For instance, Fig. 1 shows an individual with
CP avoids certain activities or strongly alters the way a
movement is generally performed, which results in missing
data points for those activities.

Fig. 1. Examples of avatars from 3D joint coordinates data from healthy
and CP individuals performing five activities. Image is taken from [48].

As there is no dedicated benchmark database to study
the impact of pain presence and protective behaviours in in-
dividuals with CP on the performance of biometric analysis
algorithms, in this study, we considered one of the particular
circumstances that could influence a person’s biometrics
throughout daily activities. Therefore, we primarily focused
on classifying the pain level and pain-related behaviour (i.e.,
non-protective, protective) in the fully-annotated EmoPain
database [6] and left its application in biometrics for future
research.
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We hence argue that the results of this study and the
findings of previous studies in this area can pave the way
for further research into the effect of protective behaviours
on the performance of biometric analysis algorithms and
proposing new objective measures for the following reasons:
(1) these findings could be used, for instance, to identify ar-
eas of a city that are less frequented by people suffering from
chronic pain (according to expected statistics) and increase
accessibility in such regions; (2) these findings could be used
to adapt the computation of people’s own biometrics in the
context of transitionally altered behaviour to prevalent and
fluctuating conditions such as chronic musculoskeletal pain;
and (3) identifying these behavioural patterns may assist
healthcare practitioners and physiotherapists in designing
interventions and providing a physical therapy programme
that includes exercises to improve flexibility and strength
for people with CP [19], [26].

The EmoPain database contains data collected from
healthy individuals and individuals with CP using wearable
inertial measurement unit (IMU) and surface electromyo-
graphy (sEMG) sensors during exercise movements that
reflect activities in everyday life, e.g., sit-to-stand. It is worth
noting that the data in the EmoPain database has been
labelled with two sets of interest labels: pain level and
pain-related behaviour. The characteristics of the EmoPain
database pose the following challenges in classification
tasks, which we address in the proposed architecture.

1) The duration of recorded activities varies per in-
dividual, as each individual adjusts their move-
ment patterns based on their needs to minimise
energy expenditure while maximising protective be-
haviour [11], [50], [52]. The variety in the duration
of recorded activities is considerably larger than the
number of images in benchmark video databases
for human activity recognition (HAR) [29]. There-
fore, modifying deep architectures for HAR from
images/videos to classify signals with comparable
computational complexity is not straightforward.

2) Due to the small sample size and class imbalances
in the EmoPain database, it is not straightforward,
for instance, to combine graph convolutional neu-
ral network (GCN) with Long Short-Term Memory
(LSTM) networks to simultaneously classify pain
level and pain-related behaviour [48].

To address these challenges, we proposed an ensemble
of sparsely-connected recurrent neural networks (s-RNNs)
with the gated recurrent unit (GRU) that incorporates mul-
tiple autoencoders (AEs) using a shared training frame-
work.Multidimensional data feed this architecture to derive
representative features from time series. In addition, we
benefited from using information-theoretic features [12],
[47], [57] to compensate for variations in the temporal
dimension that may not be adequately represented in the

Fig. 2. The proposed method pipeline. The IMU and sEMG sensors are placed on the body to record data from participants while they engage
in activities. The IMU sensors (violet circle) record (x, y, z) coordinates in the Euler angle for each participant, while the sEMG sensors (orange
rectangle) record muscle activity. The positioning of the sensors is presented as an example here that could change depending on the use case
explored. The one used in this case study is described in Section 4. In this schematic, h(E)

C represents the latent space, and ∆ represents extracted
hand-crafted features using the information-theoretic approach. In our architecture, hand-crafted features are combined with deep features before
being fed into the multi-label and multi-class GLOCAL classifier. As shown in the figure, the labels in our use case are pain level and pain-related
behaviour.
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latent space of s-RNNs. Finally, we used the GLOCAL
classifier [58] to perform the multi-class and multi-label
classification (see Fig. 2). The main contributions of this
study can be summarised as follows:

1) We proposed an s-RNNs ensemble with GRU in
which multiple AEs are incorporated using a shared
training framework. In addition, we introduced
sparsity into the proposed architecture using re-
current skip connections and auxiliary connections
between RNN units. Auxiliary connections help
preserve additional hidden states in the past by
removing the connection to the immediate previ-
ous hidden states. Training with a shared training
framework and introducing sparsity to the ensem-
ble of AEs demonstrate their benefit in reducing the
probability of overfitting for small-scaled databases
and making decoders less vulnerable to outliers.

2) In order to compensate for variations in the tem-
poral dimension that may not be perfectly repre-
sented in the latent space of S-RNNs, we proposed
fusing hand-crafted features with those represented
features in the shared hidden state before feeding
it into the multi-label and multi-class classifier. Our
experimental results highlight the cause and bene-
fit of employing information-theoretic features for
analysing problems with multidimensional inputs
like the one in this study.

3) We used the GLOCAL classifier to classify pain
level and pain-related behaviour jointly, whereas
previous studies used different architectures to in-
dependently present the results for each task.

4) We have investigated the use of this novel ap-
proach in the case of pain and protective be-
haviour detection with an in-depth study using the
EmoPain database. We conducted comprehensive
experiments using several performance metrics to
compare the proposed method to the state-of-the-art
approaches. Furthermore, we conducted an ablation
study to show the effect of each component in the
proposed architecture.

Our experimental results demonstrate that the proposed
method outperforms the state-of-the-art in classifying both
pain level and pain-related behaviour. The rest of this paper
is structured as follows: Section 2 reviews the previous
research. Section 3 provides details on the proposed method.
Experimental results and discussions are presented in Sec-
tion 4. Finally, the paper is concluded in Section 5.

2 LITERATURE REVIEW

The use of deep learning to analyse human movement for
assessing pain levels and pain-related protective behaviours
is a relatively new area of research, and wearable sensors
provide a convenient way to gather data for these algo-
rithms. Because studies that specifically look at the impact
of protective behaviour on the performance of biometrics
analysis have not been conducted due to a lack of a dedi-
cated database for this purpose, we summarise the current
state of research analysing human movement data for pain
level and pain-related protective behaviour assessment.

Yang et al. [53] proposed a machine learning approach
to evaluate the physical performance of individuals with
Complex Regional Pain Syndrome (CRPS) using gait data
acquired by an accelerometer over short walking distances.
The feature set comprises temporal features, gait energy
distribution, regularity, and symmetry. They employed a
multilayer perceptron neural network, support vector ma-
chine, random forest, linear discriminant analysis, and KStar
to measure lower back trunk acceleration. They demon-
strated that individuals with CRPS alter their gait to protect
themselves from further pain. Yoo et al. [55] investigated
the relationship between stair ascent movement alterations
and pain, radiographic severity, and prognosis of knee os-
teoarthritis in older women with persistent knee pain. In this
research, kinematic predictors of pain were identified using
support vector machines (SVM). SVM predictors were stair
ascent time, maximal anterior pelvis tilting, knee flexion
at initial foot contact, and ankle dorsiflexion at initial foot
contact. The result revealed that using machine learning
techniques to predict pain and radiographic severity could
help researchers better understand risk factors for knee
osteoarthritis.

Researchers working on the EmoPain database [6] found
that conventional and deep learning methods for analysing
human movement are viable tools for detecting pain-related
protective behaviours [32], [49], [50]. Wang et al. [49], [50],
[52] demonstrated that using LSTM-based architectures al-
lows for activity-independent pain-related behaviour detec-
tion (PBD) with improved performance. In [49], [50], stacked
LSTM and dual-stream LSTM were studied for processing
of body movement data in conjunction with data augmen-
tation and segmentation window width approaches. Three
LSTM layers and two sets of three LSTM layers (for the
MoCap and sEMG streams) were used for stacked-LSTM
and dual-stream LSTM, respectively. The experimental re-
sults revealed that the stacked-LSTM outperforms the dual-
stream LSTM and CNN-based models. BodyAttentionNet
(BANet), an end-to-end deep learning architecture, was
proposed in [52] to perform spontaneous temporal and
bodily part subset selection on MoCap data. Attention
mechanisms were integrated into the LSTM-based network
in the proposed architecture to (1) allow the architecture to
focus on the relevant configuration of protective behaviour
and (2) reveal how MoCap data without sEMG could help
better understand protective behaviour from real-life mea-
surements rather than only lab-based observations. They
showed that BANet could achieve favourable performance
with less trainable parameters. Although these models were
activity-independent and functional across a wide range
of activity types, continuous detection was limited to pre-
segmented activities of interest, and the association between
the kind of activity and protective behaviour was not lever-
aged.

Olugbade et al. [31] proposed a Movement in Multiple
Time (MiMT) neural network with distributed time encod-
ing of low-level movement features and joint prediction of
pain behaviour across multiple timescales to address these
limitations. MiMT could focus on body movement data with
independent but coordinating degrees of freedom because
it could compute time encoding individually for different
sets of anatomical segments using a shared encoder and
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provide multiple outputs at different timescales for the
same label. Wang et al. [48] proposed integrating Human
Activity Recognition (HAR) with PBD using a hierarchical
architecture comprised of graph-convolution and LSTM in
which the activity type is continuously leveraged to build
activity-informed input for concurrent PBD. In this archi-
tecture, both modules receive consecutive frames derived
from the data sequence using a sliding window. The HAR
module’s goal is to recognise the activity being performed
and relay that information to the PBD module, which can
then identify whether or not protective behaviour is present.
Although this architecture has achieved the state-of-the-art
classification of PBD using continuous data, its trainable
parameters are quite large compared to the number of sam-
ples with a significant difference in length, which may affect
the model’s generalisability. Despite advances in classifying
PBD in the EmoPain database, the proposed approaches
only considered one set of labels (i.e., PBD), whereas this
database provides multiple sets of labels, including an-
notation for pain level and pain-related behaviour. As a
result, in our study, we not only addressed the shortcomings
mentioned above, but we also proposed using the GLOCAL
classifier to jointly classify pain level and pain-related be-
haviour.

3 PROPOSED METHOD

3.1 Multidimensional Time Series
A time series T = ⟨s1, s2, · · · , sC⟩ is a time-ordered se-
quence of vectors. Each vector si represents k features of
an entity at a specific time point ti, where 1 ≤ i ≤ C.

3.2 Sparsely-connected Autoencoders with GRU
Motivated by [24], we proposed a sparsely-connected RNN
ensemble (s-RNNs) with the gated recurrent unit (GRU)
that incorporates N autoencoders using a shared training
framework to represent the feature space for all inputs in
a shared layer h

(E)
C . When dealing with different inputs,

the basic framework trains different autoencoders indepen-
dently without considering their correlation and interaction.
However, taking this correlation into account could enhance
the reconstruction of inputs and make the representation of
the features in the latent space more discriminative. There-
fore, motivated by multi-task learning principles [10], [30],
we proposed a shared training framework that incorporates
interactions among different autoencoders (see Fig. 3).

Each cell in a standard GRU-based encoder, which is
initially fed by st ∈ T , performs computation based on
Eq. 1.

zt = σg

(
Wzst +Uzh

(E)
t−1 + bz

)
rt = σg

(
Wrst +Urh

(E)
t−1 + br

)
ĥ
(E)
t = ϕh

(
Whst +Uh(rt ⊙ h

(E)
t−1) + bh

)
h
(E)
t = zt ⊙ ĥ

(E)
t + (1− zt)⊙ h

(E)
t−1 (1)

where ht, ĥt, zt, and rt represent the activation, candidate
activation, update gate, and reset gate at time step t, respec-
tively. The output for t = 0 is h0 = 0, and ⊙ denotes the

Fig. 3. The proposed GRU-based s-RNNs Autoencoder architecture with
a shared training framework. This architecture encodes and decodes N
input time series to represent the feature space for all inputs in a shared
layer h(E)

C .

Hadamard product. Also, W, U represent weight matrices,
and b denotes the bias term. The two activation functions
used are a sigmoid function, σg , and a hyperbolic tangent
function, ϕh. When the current unit’s hidden state ht is
obtained at time step t, it is passed into the next unit at
time step t+ 1.

The time series is reconstructed in reverse order in the
decoder (i.e., T̂ = ⟨̂sC , · · · , ŝ2, ŝ1⟩), with the encoder’s last
hidden state serving as the decoder’s first hidden state.
The decoder is fed by the previous hidden state h

(D)
t−1 and

the previously reconstructed vector ŝt−1 to reconstruct the
current vector and compute the current hidden state using
Eq. 2.

z
′

t = σg

(
WzEŝt−1 +Uzh

(D)
t−1 + bz

)
r
′

t = σg

(
WrEŝt−1 +Urh

(D)
t−1 + br

)
ĥ
(D)
t = ϕh

(
WhEŝt−1 +Uh(r

′

t ⊙ h
(D)
t−1) + bh

)
h
(D)
t = z

′

t ⊙ ĥ
(D)
t + (1− z

′

t)⊙ h
(D)
t−1 (2)

where E, z
′

t, r
′

t, and ĥ
(D)
t are the embedding matrix, update

gate, reset gate and candidate activation at time step t,
respectively.

Our proposed architecture is based on a shared training
framework that employs recurrent skip connections [51] to
preserve sparse connections throughout the training phase.
In addition to recurrent skip connections, we used auxiliary
connections between RNN units (L) to consider additional
hidden states in the past through the removal of the con-
nection to the immediate previous hidden state to bring
sparsity to the AE architecture. Consider f(·) and f

′
(·) to

be the non-linear functions (i.e., hyperbolic tangent) in Eq. 1
and Eq. 2, respectively that represent the hidden state ht

using st, ht−1, and ht−L. To remove connections between
hidden states, we introduce a sparseness weight vector

wt = (w
(f)
t , w

(f
′
)

t ) to regulate which connections should
be removed at each time step t, where w

(f)
t ∈ {0, 1} and

w
(f

′
)

t ∈ {0, 1} in such a way that at least one element in wt

is not equal to 0. The computation is formalised in Eq. 3.
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ht =
f(st,ht−1) · w(f)

t + f
′
(st,ht−L) · w(f

′
)

t

∥wt∥0
(3)

where ∥wt∥0 denotes the number of non-zero elements in
vector wt.

As shown in Fig. 3, different autoencoders interact in
the proposed shared training framework to reduce the like-
lihood of some encoders overfitting to the original time
series and to help make decoders robust and less affected
by outliers. This interaction occurs at a shared layer (h(E)

C )
to include all encoders’ last hidden states by concatenating
these states using linear weight matrices (W(Ei)) in Eq. 4.
The shared layer is then used as the initial hidden state in
the shared decoder framework to reconstruct the time series.

h
(E)
C = concat

(
h
(E1)
C ·W(E1), · · · ,h(EN )

C ·W(EN )
)

(4)

All autoencoders in the shared framework are trained
jointly by minimising the objective function J , as given in
Eq. 5, which calculates the sum of reconstruction errors for
each autoencoder and then applies an L1 regularisation term
to the shared hidden state.

J =
N∑
i=1

Ji + λ
∥∥∥h(E)

C

∥∥∥
1

=
N∑
i=1

C∑
t=1

∥∥∥st − ŝ
(Di)
t

∥∥∥2
2
+ λ

∥∥∥h(E)
C

∥∥∥
1

(5)

where λ is a weight that regulates the significance of the L1
regularisation,

∥∥∥h(E)
C

∥∥∥
1
, and the L1 regularisation makes the

shared hidden state h
(E)
C sparse to minimise overfitting to

the original time series and reduce the influence of outliers.

3.3 Information-theoretic Features

In several challenging signal processing systems [9], [12],
[14] and applications, such as machine learning [56], when
the data does not follow a Gaussian distribution and the
adaptive system is nonlinear, second-order statistics (e.g.,
variance, correlation, and mean square error) are insufficient
to derive adaptive features from the data. Such applications
necessitate higher-order statistics of the data, in which the
characteristics of linear/nonlinear adaptive signal process-
ing systems, as well as machine learning applications, can
be better represented by employing information-theoretic
metrics such as entropy, Simpson diversity, expressiveness,
and Lempel-Ziv complexity.

The fundamental idea of information theory is that
the “informational value” of data is determined by the
degree of uncertainty. If a highly probable event occurs,
the data contains very little information; otherwise, the
data is much more informative. These higher-order statis-
tics help to lower uncertainty, which is also the goal of
machine learning. Therefore, in this study, we calculated
information-theoretic complexity measures to characterise
spatio-temporal activity patterns in signals to reduce un-
certainty and compensate for variations in the temporal

dimension that may not be adequately represented in the
latent space of s-RNNs.

Because participants carried out the activities in their
personalised manner, the acquired signals with equivalent
features in T have varying lengths. To compensate for the
variations in the temporal dimension, we used dynamic
time warping (DTW) [41], in which the sequences are
warped non-linearly in the time dimension, and a warping
path is generated to align two signals along this path.
Consider two time series, s and s

′
, of lengths m and n,

respectively, for which the DTW is calculated using the
optimisation problem at the power of θ in Eq. 6.

DTWθ(s, s
′
) = min

π∈A(s,s′ )

( ∑
u,v∈π

d(su, s
′

v)

) 1
θ

(6)

where π is a κ-length alignment path made up of a sequence
of κ index pairs ((u1, v1), · · · , (uκ, vκ)), A(s, s

′
) is the set

of all admissible paths, and d(·, ·) calculates the distance
between the uth sample of s and the vth sample of s

′
.

The DTW similarity measure analyses a set of sequences
using two time series as input. In our case, because each
si consists of several time series, one of the inputs must be
a representative of si that preserves the magnitude of the
extremes and the timing features. Therefore, for each si, we
used DTW Barycenter Averaging [38] to define a reference
time series and then calculated DTW.

We extracted an 8-dimensional feature vector from DTW
of each time series (∆ = {δ1, δ2, · · · , δ8}) and combined it
with represented features in the shared hidden state (h(E)

C )
in a vanilla way before feeding it into the GLOCAL classifier.
Shannon entropy [42], the logarithm of true diversity, was
the first attempt to quantify the degree of uncertainty. Rényi
entropy [39] expanded on this concept by calculating the
logarithm of true diversity based on any value and is
used as a diversity index in higher-order statistics. Simpson
diversity [43] is another measure of diversity that assesses
the degree of concentration when individuals are classified.
This metric is determined by two key factors, including
(1) richness (i.e., the number of different categories of data
present in a database) and (2) evenness (i.e., the similarity of
the population size of each of the data present). The expres-
siveness [3] is assessed based on the set of all quantifiable ac-
tivities of interest. The more that can be said absolutely, the
greater expressiveness is. We described how hand-crafted
features are extracted and explained them mathematically
and theoretically as follows.

1) Shannon entropy (δ1): Given a discrete
random variable π with possible outcomes
{π1, π2, · · · , πκ}, which occur with probability
{p(π1), p(π2), · · · , p(πκ)}, the Shannon entropy is
formally defined as in Eq. 7:

δ1 = −
κ∑

j=1

p(πj) log (p(πj)) (7)

2) Rényi entropy (δ2): This entropy (see Eq. 8) forms
the basis of the concept of generalised dimensions,
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which is important in statistics as an index of diver-
sity. In our experiments, we set q = 2.

δ2 =
1

1− q

ln

 κ∑
j=1

p(πj)
q

 (8)

3) Simpson diversity (δ3): It is calculated as δ3 =∑κ
j=1 p(πj)

2. It measures the degree of concentra-
tion when individuals are classified into types. The
value of δ3 ranges between 0 and 1, where 1 repre-
sents infinite diversity and 0 no diversity.

4) Space filling (δ4): It is the ratio of non-zero entries
in π to the total length of signal.

5) Expressiveness (δ5): It is calculated as the Shannon
entropy δ1 divided by Space filling ratio δ4, where
it reflects the ‘economy of diversity’.

6) Lempel–Ziv complexity (δ6): It is used to assess
temporal signal diversity, i.e., compressibility. We
used the Kolmogorov complexity algorithm [22]
to measure the Lempel–Ziv complexity. It is par-
ticularly useful as a scalar metric to estimate the
bandwidth of random processes and the harmonic
variability in quasi-periodic signals.

7) Perturbation complexity index (δ7): It is defined
as the normalised Lempel—Ziv complexity of the
spatio-temporal pattern of a signal by its Shannon
entropy.

8) Diversity index (δ8): It is a quantitative measure
that reflects how many different activities of interest
are in the acquired signal and that can simultane-
ously take into account the phylogenetic relations
among the activities of interest, such as richness,
divergence or evenness.

3.4 Multi-label Classification

The EmoPain database is annotated with two sets of la-
bels, amongst others, one for pain level and one for pain-
related behaviour. In this study, we employed the multi-
label GLOCAL (Multi-Label Learning with Global and Local
Label Correlation) classifier [58]. GLOCAL uses manifold
regularisation in order to model global and local label
correlations. This learning method uses the label matrix’s
low-rank decomposition to obtain latent labels. To min-
imise the reconstruction error in the classifier output, it
decomposes the label matrix into two low-rank Laplacian
matrices and substitutes missing-label instances with the
label correlation. The similarities between labels are ex-
plored by enabling similar label predictions to be similar.
The adapted global manifold regularisation yields a global
label correlation matrix with a positive matrix position if
two labels are positively correlated. The same concept is
used in local manifold regularisation, but it is applied to k
groups identified using the k-means algorithm, resulting in
k local label correlation matrices. The optimisation problem
is formulated by combining global and local manifold regu-
larisation in order to learn global and local label correlations
jointly.

Let C = {c1, · · · , cl} represent the set of l class labels.
The η-dimensional feature vector of an instance is repre-
sented by x ∈ X = {∆∪h

(E)
C } ⊆ Rη , and y ∈ Y ⊆ {−1, 1}l

represents the ground-truth label vector, where [y]j = 1 if x
matches the class label cj and −1 otherwise.

4 EXPERIMENTS

4.1 EmoPain Database

The EmoPain database [6] contains data collected from
healthy individuals and individuals with CP. The individ-
uals were asked to perform different activity types, in-
cluding bend-down, one-leg-stand, sit-to-stand, stand-to-sit,
and reach-forward, to reflect movements in everyday life
activities. It should be noted that individuals participated in
two variants of the same activities, i.e., normal and difficult.
In the difficult trials, for the sit-to-stand or stand-to-sit,
participants were asked to begin the task at the exper-
imenter’s instructions; for the one-leg-stand, participants
were asked to not just stand on the preferred leg but also the
non-preferred one; for the bend-down and reach-forward
movements, participants were required to hold 2 and 1 kg
dumbbells, respectively, while performing the movements.
No instructions on how to perform the movement were
provided in either trial, allowing participants to relax or
engage in other motions such as stretching, walking, and
self-preparation as needed. Indeed, transitions between ac-
tivities of interest added typical noise to resemble in-the-
wild data-gathering settings.

The data was collected using 18 wearable IMU and four
sEMG sensors. The IMU sensors recorded Euler angles,
which were then converted into position data for 26 full-
body anatomical joints using a MATLAB toolbox [28], as
described in [6]. In this paper, we used the angle data (also
referred to as Joint Angle) derived from the joint positions
and the angular energies (also referred to as Joint Energy)
extracted for each of these angles. In addition, we used
sEMG sensor-captured muscle activity data from the right
and left upper and lower back muscle groups.

The EmoPain database includes self-reports of pain in-
tensity provided after all repetitions of each exercise in the
normal or difficult trial were completed. Individuals with
CP were the only ones who rated their pain intensity on a
range of 0 (i.e., no pain at all) to 10 (i.e., extreme pain). Ad-
ditionally, the database includes labels for six categories of
pain-related behaviour provided continuously over time by
four clinicians while they watched video recordings of the
movements. They labelled the presence of each behaviour
category.

We used data from 17 healthy individuals and 16 indi-
viduals with CP who participated in normal activities, as
well as data from 23 healthy individuals and 13 individuals
with CP who participated in difficult activities. For the pain
level label, we used self-reported values from individuals
with CP, with this value set to 0 for healthy individuals.
For the protective behaviour label, we used 0 to indicate the
absence of protective behaviour when clinicians perceived
less protective behaviour throughout the trial and 1 to
indicate the presence of protective behaviour.

4.2 Architecture Details

Experiments were conducted on a computer with an Intel
Core i9 CPU, 32 GB of RAM, and a GeForce RTX3080 GPU
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with 12 GB of RAM in the MATLAB 2022a environment
using the Deep Learning and Signal Processing toolboxes.

The proposed s-RNNs consists of three autoencoders
with GRU units. The IMU sensors provide 26 records of
(x, y, z) positions in the Euler angle for each participant,
while the sEMG sensors provide 4 records of muscle activity.
We used the MoCap MATLAB toolbox [28] to extract 13
Joint Angles (derived from joint positions) and 13 Joint
Energies (angular energies) for each of these Euler angles,
which we passed to the encoder as s1 and s2, respectively,
while sEMG data passed directly to the encoder as s3.
Figure 4 shows the pipeline of the proposed approach to
classify pain level and pain-related behaviour.

Fig. 4. We used the MoCap MATLAB toolbox [28] to extract 13 Joint
Angles (derived from joint positions) and 13 Joint Energies (angular
energies) for each of these Euler angles, which we passed to the
encoder as s1 and s2, respectively, while sEMG data sent directly to
the encoder as s3. We derive h

(E)
C ∈ R1×320 by feeding data into a

trained encoder using a shared training framework. The shared hidden
state is then passed to two fully connected layers (FC) with a 0.5 dropout
ratio, where the first FC ∈ R1×160 and the second FC ∈ R1×80.
Next, the output of the final fully connected layer is fused with hand-
crafted features ∆ using the vanilla fusion approach to represent the
body movement of individuals. Finally, this feature vector (x ∈ R1×88)
is fed into the GLOCAL multi-label classifier [58] to jointly classify pain
level and pain-related behaviour. Please note that in this illustration,
⊕ represents the concatenation of the high-level descriptor with hand-
crafted features, Pain score refers to a value between 0 (no pain) and 10
(severe pain), and PBD refers to no-protective or protective behaviours.

The encoder has two hyper-parameters, the number of
GRU units and the skip connection jump size L, which
are later utilised to regulate the pain level and pain-related
behaviour classification results using GLOCAL classifier. We
trained the proposed architecture as a function of (GRU
units, L) and plotted the hamming loss (see Section 4.3)
to identify the best trade-off between these two hyper-
parameters for each h(Ei), 1 ≤ i ≤ 3 (see Fig. 5). We
obtained hamming loss values of {0.159, 0.162, 0.173} for
h(E1) ∈ R128, h(E2) ∈ R128, and h(E3) ∈ R64, respectively,
at L = {3, 3, 2} and used these values in the rest of the
experiments.

We used the hyperbolic tangent function as the non-
linear activation function. We evaluated different weight
penalty values (λ) in the range of [0, 0.005, 0.01, 0.05, 0.1]
and chose 0.005 for the encoder and decoder. We also chose
the sparse weight vector wt at random. The decoder consists
of layers with the same dimensions as the encoder.

We trained the proposed s-RNNs using the Adam opti-
miser [25], which projects the multi-modal data onto a 320-
dimensional space (η = 320). In training the entire network,
we used a mini-batch size of 8 that was determined by grid
search. The learning rate was set to 10−2, 10−3 and 10−4

for the first 70, next 30, and final 30 epochs, respectively,
where the training data was shuffled before each epoch. This
policy was used to prevent model divergence caused by
unstable gradients. In addition, we set the L2 regularisation,
gradient decay factor, and denominator offset to 10−4, 0.9,
and 10−8, respectively. Finally, we truncated sequences in
each mini-batch to the same length as the shortest sequence.
This option prevents padding from being introduced at the
expense of discarding data, which we compensated for by
fusing the hand-crafted features.

We set the learning rates in the trained encoder layers to
zero for the classification to use as the feature extractor and
avoid overfitting the layers during GLOCAL training on the
EmoPain database. We added two fully connected layers
with batch normalisation and dropout layers (with a ratio
of 0.5) after the shared hidden state to regularise the output
feature vector. The hand-crafted features were concatenated
with the output of the final fully connected layer before
being fed into the GLOCAL multi-label classifier.

4.3 Evaluation Metrics

We employed Hamming Loss, Coverage, Example-Based
Accuracy, Ranking Loss, and F-Measure to report the per-
formance of the GLOCAL multi-label classifier, as suggested
by Pereira et al. [37]. These metrics could prevent the assess-
ment from presenting redundant information.

• Hamming Loss (HL) is a normalised metric in which
a prediction error (when an incorrect label is pre-
dicted) and a missing error (when a relevant label is
not predicted) are considered for all classes. It can be
calculated by HL(H,X) = 1

N

∑N
i=1

|Yi⊗Ỹi|
|C| , where H

is the feature representative model used by the multi-
label classifier, N is the number of test data, and ⊗
is the symmetrical difference between the two sets,
similar to the XOR operation in Boolean logic.

• Coverage (Cvg) counts the average steps to be taken
in the ranked list of labels to cover all the rele-
vant labels of the example. It can be calculated by
Cvg(H,X) = 1

N

∑N
i=1 max(ri(c)) − 1, where ri(c)

is the rank position of the label c. The most relevant
label has the highest rank, and the least relevant label
has the lowest rank (l).

• Example-based Accuracy (EbA) expresses the overall
effectiveness of a classifier, given by EbA(H,X) =
1
N

∑N
i=1

|Yi∩Ỹi|
|Yi∪Ỹi|

.
• Ranking Loss (Rkl) calculates the frequency

of irrelevant labels that are ranked higher
than relevant labels, given by Rkl(H,X) =
1
N

∑N
i=1

1
|Yi||Ỹi|

|{(ca, cb) : ri(ca) > ri(cb), (ca, cb) ∈
Yi × Ỹi}|.

• F-Measure is the harmonic mean of Precision
and Recall, which is calculated by F1(H,X) =
1
N

∑N
i=1

2|Yi∩Ỹi|
|Yi|+|Ỹi|

, where we report it in percentage
F1(%).

To better understand classifier performance in detecting
pain-related behaviour, we calculated precision, recall, and
F1 in the second evaluation setting using Eq. 9.
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Fig. 5. Hamming loss of GLOCAL as a function of (GRU units, L) for the encoders. GLOCAL achieved HL = 0.159 with (GRU units, L) = (128, 3)
for h(E1), HL = 0.162 with (GRU units, L) = (128, 3) for h(E2), and HL = 0.173 with (GRU units, L) = (64, 2) for h(E3).

TABLE 1
The performance of the proposed method and baseline approaches for classifying the pain level and pain-related behaviour. We show the mean of

metrics at 95% confidence intervals.

Method HL Cvg Rkl EbA F1-Measure (%)
MiMT [31] 0.24± 0.04 3.21± 0.18 0.32± 0.08 0.60± 0.10 63.56± 0.87
LSTM+GCN [48] 0.21± 0.03 3.14± 0.23 0.31± 0.06 0.61± 0.12 65.24± 1.20
Stacked LSTM [49] 0.32± 0.08 3.77± 0.21 0.37± 0.10 0.58± 0.25 59.24± 1.05
Dual-stream LSTM [50] 0.28± 0.05 3.33± 0.14 0.33± 0.06 0.59± 0.08 62.02± 0.55
BANet [52] 0.36± 0.06 3.90± 0.43 0.40± 0.09 0.56± 0.15 58.36± 0.83
Sparse VAE [4] 0.39± 0.07 4.13± 0.05 0.42± 0.17 0.54± 0.05 55.80± 0.75
Gaussian VAE [18] 0.42± 0.03 4.43± 0.25 0.44± 0.07 0.52± 0.05 53.78± 0.75
Ours 0.17± 0.03 2.28± 0.23 0.27± 0.05 0.69± 0.04 72.21± 0.64

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1 = 2× Precision× Recall

Precision + Recall
. (9)

where TP , FP and FN stand for true positive, false posi-
tive and false negative, respectively.

4.4 Experimental Results
We evaluated the proposed method in two different set-
tings. In the first setting, we tackled the multi-label and
multi-class classification task and compared our proposed
method to MiMT [31], LSTM+GCN [48], Stacked LSTM [49],
Dual-stream LSTM [50], BANet [52] that have already been
applied to the EmoPain database. In addition to these
approaches, we used the Sparse VAE [18] and Gaussian
VAE [4] to extract features for this classification task. We
used the cross-validation strategy (leave-one-subject-out)
to handle the small sample size. To minimise statistical
uncertainty, the results were averaged across independent
repetitions for all methods and reported with a 95% confi-
dence interval.

The results for the multi-label classification in the first
evaluation setting are shown in Table 1. The proposed
method outperformed the state-of-the-art results by Wang
et al. [48], which used the combination of LSTM and GCN,
achieving an F1-Measure of 65.24%, and Olugbade et al.
(MiMT) [31], which used distributed time encoding of low-
level movement features and joint prediction to achieve an
F1-Measure of 63.56% in predicting the pain level and pain-
related behaviour simultaneously.

Rather than performing a multi-label classification task
in the second evaluation setting, we focused on evaluating
pain-related behaviour in the EmoPain database, as in the
other baseline approaches. For this reason, we replaced
the GLOCAL classifier with a Softmax with two classes
(i.e., non-protective, protective) and reported Precision, Re-
call, and F1 using the leave-one-subject-out cross-validation
strategy. Table 2 shows the results for this evaluation setting.

TABLE 2
Comparison of the proposed GRU-based s-RNNs with a shared

training framework and baseline approaches for predicting pain-related
behaviour in the EmoPain database.

Method Precision (%) Recall (%) F1 (%)
MiMT [31] 77.78 82.35 80.00
LSTM+GCN [48] 78.87 83.58 81.16
Stacked LSTM [49] 76.39 80.88 78.57
Dual-stream LSTM [50] 77.46 80.88 79.14
BANet [52] 76.06 79.41 77.70
Sparse VAE [4] 71.83 76.12 73.91
Gaussian VAE [18] 67.14 72.31 69.63
Ours 86.11 81.58 83.78

We achieved a 2.62% performance improvement over the
best-performing benchmarking method [48] on the EmoPain
database. The superior performance of our method is at-
tributable to (1) the usage of a shared training framework
in the ensemble of RNNs and (2) concatenating the hand-
crafted features extracted using an information-theoretic
approach. This architecture allows the model to learn deeper
part-whole relationships and selectively focus on the most
informative body movement representations, making our
model more robust to the challenges associated with move-
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ment in individuals with CP.

4.5 Ablation Study

In this section, we examine how hand-crafted features affect
the performance of multi-label and single-label classification
tasks, as well as the difference between independent (IF) and
shared (SF) training frameworks (see Tables 3 and 4). Details
of this experiment are as follows:

TABLE 3
Comparison of the proposed GRU-based s-RNNs architecture for

predicting pain-related behaviour. Here, HC, SF and IF are
abbreviations for hand-crafted features, shared training framework and
independent training framework, respectively. Also, ⊕ and ⊖ mean with

and without fusing HC.

Method Precision (%) Recall (%) F1 (%)
Ablation study
s-RNNs (SF) ⊖ HC 78.95 81.08 80.00
s-RNNs (IF) ⊕ HC 77.63 79.73 78.67
s-RNNs (IF) ⊖ HC 75.34 76.39 75.86
Proposed architecture
Ours 86.11 81.58 83.78

1) We excluded the hand-crafted features from the
proposed s-RNNs. In this way, GLOCAL and Soft-
max classifiers were thus solely fed by represented
features in h

(E)
C ∈ R1×320. The results in Tables 3

and 4 show that excluding the hand-crafted features
decreases the performance of classifiers. The perfor-
mance drop is attributable to hand-crafted features’
potential to enrich the s-RNNs feature space (h(E)

C )
by compensating for temporal dimension variations
that may not be perfectly represented in the latent
space of AEs.

2) We examined differences between IF and SF, ensur-
ing that both use three GRU-based s-RNNs autoen-
coders and built IF and SF on top of these autoen-
coders. Furthermore, we studied the impact of the
presence and exclusion of hand-crafted features in
IF on the performance of both classification tasks.

Tables 3 and 4 indicate that employing the shared
training framework and hand-crafted features contributes
the most to multi-label and single-label classification tasks.
However, excluding hand-crafted features significantly re-
duces the efficiency of the proposed method for SF and
IF. The primary goal of using the proposed s-RNNs is to
reduce the dimensionality of input data in a database with

a small sample size to deal with the curse of dimensionality
and overfitting problems. Furthermore, using the IF training
framework mainly without using the hand-crafted features
could attenuate the multimodal data semantic relationship
in the latent space.

Figure 6 shows the cumulative distribution function
(CDF) of hand-crafted features to demonstrate their discrim-
inative abilities in normal and difficult activities for both
healthy individuals and individuals with CP. We can see that
the curves associated with normal and difficult activities
are discriminative in all complexity measures derived from
information theory.

In particular, the Shannon entropy and the Rényi entropy
CDFs show similar patterns. The wide range of the Shannon
entropy CDF for CP during normal activity may capture two
important factors affecting how CP people approach less
demanding movements. First of all, many people with CP
develop very controlled and specific strategies to deal with
perceived physical challenges, which reduces entropy when
performing activities. Similarly, disparities in psychological
and physical capacity across the group [52] may lead to
various strategies used by different people. This is also
highlighted by the wide range of Simpson Index CDF values
for CP participants engaged in normal activity.

At the same time, participants with CP have a con-
sistently higher level of entropy in difficult activities. As
anxiety increases, the way and extent to which people en-
gage in movement (if at all) becomes highly variable across
people, as this is dictated less by perceived capability but
more by perceived danger. The higher entropy in healthy
participants performing the difficult activity is interesting.
This higher level of entropy, when compared to the “CP
Difficult Activity” group, can be explained by the fact that
all healthy people engage in more demanding everyday
activities rather than refraining from doing so, with the
caveat of increasing variety in movement trajectory (e.g.,
amount of bending of the knee and movement speed as
they do full bend down to pick up weights from the floor
and return or level of balance). This is also supported by the
wide range of CDF Index of Diversity values for “Healthy
Difficult Activity”.

The Expressiveness CDF is also particularly interesting.
Indeed, only the CDF for “Healthy Normal Activity” has
a higher level of expressiveness (idiosyncrasy), suggesting
ease of movement execution for that case. Instead, the CDFs
for “Healthy Difficult Activity” and both CDFs for partici-
pants with CP show a broader spectrum of expressiveness,
suggesting the greater difficulty of movement execution and

TABLE 4
Comparison of the proposed GRU-based sparsely connected RNNs ensemble with a shared training framework to the proposed architecture for
predicting pain level and pain-related behaviour using GLOCAL. Here, HC, SF and IF are abbreviations for hand-crafted features, shared training
framework and independent training framework, respectively, and we show the mean of metrics at 95% confidence intervals. Also, ⊕ and ⊖ mean

with and without fusing HC.

Method HL Cvg Rkl EbA F1-Measure (%)
Ablation study
Ours (SF) ⊖ HC 0.20± 0.08 2.85± 0.05 0.30± 0.10 0.64± 0.20 67.12± 0.83
Ours (IF) ⊕ HC 0.25± 0.03 3.45± 0.12 0.34± 0.08 0.60± 0.15 63.24± 1.05
Ours (IF) ⊖ HC 0.33± 0.12 3.92± 0.38 0.38± 0.15 0.57± 0.63 59.35± 0.9
Proposed architecture
Ours 0.17± 0.03 2.28± 0.23 0.27± 0.05 0.69± 0.04 72.21± 0.64
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Fig. 6. Cumulative distribution function of hand-crafted features.

reduced idiosyncrasy, possibly for the sake of optimising
execution for the healthy participants or addressing anxiety
for participants with CP.

5 CONCLUSION

Chronic pain is a prevalent long-term condition that in-
terferes with the everyday physical functioning of millions
of people worldwide [21], [40], [54]. The body movements
of those with CP can influence biometrics analysis. This
is because CP can cause changes in muscle tension and
posture, which can, in turn, affect the way that algorithms
interpret biometric data. These changes can be subtle, such
as how people walk, or more pronounced, such as how
people hold their heads.

Deep learning-based biometric algorithms have been
shown to be more accurate than traditional biometrics meth-
ods. Although deep learning algorithms can be fooled by
changes in body movement (e.g., protective behaviours of
people with chronic pain), they can be trained to account
for these changes to improve the accuracy of biometrics
analysis. Because there is no dedicated benchmark to inves-
tigate the impact of the protective behaviours of individuals
suffering from CP on the performance of biometric analysis
algorithms, we concentrated primarily on detecting protec-
tive behaviours in this study. Indeed, we believe that the
results of this study and the findings of previous studies in
this area can pave the way for further research into the effect
of protective behaviours on the performance of biometric
analysis algorithms.

In this paper, we proposed a sparsely-connected recur-
rent neural networks (s-RNNs) ensemble with the gated re-
current unit (GRU) that incorporates multiple autoencoders
using a shared training framework for identifying pain level
and pain-related behaviour in the EmoPain database [6].
The proposed architecture employed recurrent skip connec-
tions to maintain sparse connections throughout the train-
ing phase, in which auxiliary connections between GRUs

were used to consider additional hidden states in the past
when the immediate connection to the previous hidden state
was removed. Furthermore, different autoencoders interact
in the shared training framework to reduce the probabil-
ity of encoders overfitting to the original time series and
help make decoders robust and less impacted by outliers.
To compensate for variations in the temporal dimension
that may not be perfectly represented in the latent space
of s-RNNs, we also propose fusing hand-crafted features
extracted from time series using the information-theoretic
approaches with represented features in the shared hidden
state of s-RNNs.

We evaluated the proposed approach in two separate
settings. In the first setting, we tackled the multi-label
classification task and compared our proposed method to
baseline approaches applied to the EmoPain database. In
the second evaluation setting, we focused solely on evalu-
ating pain-related behaviour in the EmoPain database, as in
the previous baseline approaches. Our experimental results
showed that our proposed method outperformed the state-
of-the-art in both multi-label and single-label classification
tasks.

It should be noted that the proposed s-RNNs architecture
can be used to analyse a variety of multidimensional input
types, such as skeleton tracking from videos (e.g., through
OpenPose [8] and Kinect [16]) or directly 2D/3D computer
vision-based body movement tracking data. While the skele-
ton joints could be used as input to the s-RNNs for the
former, using 2D/3D video raw data would require some
architectural refinement. For instance, this could be attained
by changing the internal modules of the proposed s-RNNs
(e.g., substituting GRU with convolution, transformer or
diffusion modules) to handle the 2D/3D image or video in-
puts. Nevertheless, the rationale for using wearable sensors
is that chronic pain rehabilitation occurs primarily during
functional activity, such as chores at home, work, going
out in the city to visit museums, shopping, and playing
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with kids in the park. As such, a video-based method
would be constrained since it requires being in front of a
video camera. These recommendations are based on studies
conducted with patients and clinicians [33], [35], [36], [44].
Furthermore, video-based tracking poses considerable ethi-
cal and privacy concerns, mainly when used outside one’s
home.

In conclusion, by analysing the body movements of
individuals with chronic pain with deep learning, we may
better understand the mechanisms underlying this condi-
tion. This is something that should be taken into account
when using these methods for developing biometrics appli-
cations for security or healthcare. This could be used, for
instance, to identify areas of a city that are less frequented
by people with chronic pain and increase accessibility in
such regions. In addition, they could be used to adapt the
computation of people’s own biometrics in the context of
gait modification to prevent falling or transitionally altered
behaviour to prevalent and fluctuating conditions such as
chronic musculoskeletal pain.
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