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Abstract: Orthopedic prosthesis-related infections (OPRI) are an essential health concern. OPRI
prevention is a priority and a preferred option over dealing with poor prognosis and high-cost
treatments. Micron-thin sol–gel films have been noted for a continuous and effective local delivery
system. This study aimed to perform a comprehensive in vitro evaluation of a novel hybrid organic–
inorganic sol–gel coating developed from a mixture of organopolysiloxanes and organophosphite
and loaded with different concentrations of linezolid and/or cefoxitin. The kinetics of degradation
and antibiotics release from the coatings were measured. The inhibition of biofilm formation of the
coatings against Staphylococcus aureus, S. epidermidis, and Escherichia coli strains was studied, as well as
the cell viability and proliferation of MC3T3-E1 osteoblasts. The microbiological assays demonstrated
that sol–gel coatings inhibited the biofilm formation of the evaluated Staphylococcus species; however,
no inhibition of the E. coli strain was achieved. A synergistic effect of the coating loaded with
both antibiotics was observed against S. aureus. The cell studies showed that the sol–gels did not
compromise cell viability and proliferation. In conclusion, these coatings represent an innovative
therapeutic strategy with potential clinical use to prevent staphylococcal OPRI.

Keywords: nanogels; sol–gel coating; linezolid; cefoxitin; Prosthesis-Related Infections; Staphylococcus
epidermidis; Staphylococcus aureus; Escherichia coli; Electrochemical Impedance Spectroscopy

1. Introduction

The use of orthopedic implants has increased over recent decades [1]; though the
incidence of orthopedic prosthesis-related infections (OPRI) is low (1–2%), the number of
cases increases proportionally with the number of prostheses, making OPRI a vital health
concern [2]. Such infections are characterized by poor patient prognosis associated with
comorbidity and high medical cost treatments. The prevention of OPRI is a priority and a
preferred option over dealing with complex and expensive treatment.

An area gaining increasing interest in preventing OPRI is the controlled release and
local delivery of antibiotics from suitable carriers. Access to the site of infection by antibac-
terial agents administered orally or intravenously is limited due to bone necrosis and poor
vascular perfusion that often occurs in complicated OPRI [3]. The local release provides
more efficient delivery of higher concentrations of antibiotics to the site of infection, many
times more than the minimum inhibitory concentration (MIC) while minimizing serum
concentrations and systemic toxicity associated with traditional methods of intravenous
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antibiotics. The execution of this approach in conjunction with systemic therapy will pro-
duce a result superior to systemic therapy alone, as has already been observed in two-stage
arthroplasty revision procedures [4].

However, due to the growing development of antibiotic resistance, efforts have been
made to seek alternatives, beginning with antibiotic combination therapy, addressed in
this work [5]. Currently, numerous strategies aim to prevent prosthesis-related infections.
With the use of antibiotics being the most widespread strategy, other alternatives are
gaining interest, such as implant surface modification [6], cationic biocidal polymers, an-
tifouling coatings [7], coatings based on metal-oxide nanoparticles, antimicrobial peptides
(AMPs) [5,7], and bacteriophage therapy [5,8], among others [9–11]. Specifically, in the
area of release systems, major progress has been made in chlorhexidine-releasing, silver-
releasing, furanone-releasing, and nitric oxide-releasing coatings [7]. Although many of
these alternatives are promising and could have high relevance in the coming years, they
are currently in the early stages of the investigation, and many of them have not reached
clinical trials, not even animal models in some cases [7,12].

Micron-thin sol–gel films have been noted as a continuous and effective local delivery
system for orthopedic instruments to prevent and treat OPRI [13]. These types of coatings
can not only prevent OPRI but could also be used in other devices where this type of
infection occurs. For staphylococcal infections, the application field is very wide, including
not only infections related to orthopedic implants but also breast implants, heart valves,
cardiac pacemakers, endotracheal tubes, urinary catheters, central venous catheters, and
prosthetic devices for erectile dysfunction [7,14].

The preparation of coatings by sol–gel technology offers multiple advantages since it
is one of the most simple and versatile synthesis methods, allowing the control of the final
structure of the coating. Its degradation by-products are not toxic to humans. The possibility
of low-temperature processing allows the incorporation of thermolabile molecules without
their denaturation. These biomolecules are encapsulated within the sol–gel network and
their release is linked to the coating degradation, thus achieving a sustained and controlled
biomolecule release [15–17]. However, it should be considered that the concentration of
the added biomolecule is limited by the final physical properties sought in the coating.
Using antibiotics as a biofunctionalizer of these systems ensures the action mechanism to
combat the bacteria but increases the possibility of the emergence of multidrug-resistant
microorganisms [14]. This option is minimized as it is a local release where the antibiotic
will be placed directly at the implant/periprosthetic tissue interface [8]. Another precaution
taken to avoid this possibility is combination therapy [8,18,19]. The long-term effectiveness
of the drugs incorporated in these systems has yet to be demonstrated [7].

The first use of sol–gel technology as an implant coating for use in antibiotic delivery
dates back to 2007 when S. Radin introduced vancomycin in the sol–gel network [20] and
demonstrated its effectiveness in combating osteomyelitis [21]. The study of a sol–gel film
loaded with both an antibiotic and an adjuvant, namely vancomycin and farnesol, to treat
methicillin-resistant Staphylococcus aureus (MRSA) infections has also been reported [22].
A sol–gel coating releasing triclosan was studied to prevent pin tract and periprosthetic
infections [23,24]. Nichol et al. reported a sol–gel coating loaded with gentamicin for
bioceramic-coated cementless arthroplasty material [25]. In previous works, we have
developed two sol–gel coatings with the incorporation of fluconazole and anidulafun-
gin [26]. Its antifungal effectiveness was demonstrated in in vitro [27] and in vivo [28]
studies in subsequent reports. In addition, in vitro and in vivo studies were performed
on a moxifloxacin-loaded sol–gel coating for the prevention of bacterial prosthetic joint
infection [29] and bacterial intravenous catheter-related infection [30]. Despite this, there is
no evidence of reports based on sol–gel films loaded with two antibiotics simultaneously
and their impact on antibacterial effectiveness, as proposed in this study.

The combination of two antibiotics instead of monotherapy is widely used when a
single antibiotic is not expected to have a spectrum broad enough to cover all potential
pathogens [31]. Furthermore, combination therapy offers advantages such as the prevention
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of resistance emergence [18,19], the synergistic action of the combination against a specific
pathogen [32], or the medication of a polymicrobial infection not treatable with a single
drug [33,34]. In the treatment of staphylococcal infections, the most common strains in
OPRI [1], rifampin is preferred as the standard combination partner [35], but its activity
against other organisms remains unclear [36].

The present study is focused on the microbiological evaluation, as well as the study
of the coating degradation and antibiotics release rate, of coatings biofunctionalized with
different concentrations of linezolid (LNZ) and cefoxitin (FOX) to locally prevent prosthesis-
related infections.

While broadening the antibacterial spectrum of the coatings is the main goal of com-
bining these two antibiotics, synergistic action is expected in the treatment of gram-positive
bacterial infections, since the mechanism of action of both antibiotics is different. Linezolid
is the first antibiotic of the oxazolidinone group and significantly surpasses the MIC90
of enterococci and staphylococci [36] in current resistance patterns. By decreasing the
susceptibility of vancomycin to methicillin-resistant staphylococci, linezolid can potentially
be used in bone and joint infections [36,37]. However, recent studies of trends in OPRI
etiology report a statistically significant increase in the proportion of infections caused by
Gram-negative bacilli in recent years [1]. The antibacterial spectrum of cefoxitin includes
the aerobic Gram-positive cocci organisms commonly encountered in OPRI, many aerobic
Gram-negative bacilli, and anaerobic strains, which allows cefoxitin to provide adequate
antibacterial coverage. For these reasons, cefoxitin has been widely and successfully used
for the prevention and treatment of a variety of difficult-to-treat postoperative infections in
orthopedic surgery, including some polymicrobial etiology [38–41].

The sol–gel coating loaded with linezolid and cefoxitin will be able to release these
antibiotics and fight infections of Gram-positive and Gram-negative strains.

2. Results and Discussion
2.1. Synthesis and Samples Preparation

After 24 h of the reaction, the sols obtained in all formulations were translucent
and without phase separation, as shown in Figure 1a. The adequate viscosity of the sols
facilitated the correct application on the substrate. The dried coatings on the powder
metallurgical titanium were simple-sight inspected, without imperfections such as cracks
or pores (Figure 1b). A complete characterization of the synthesis and the surface of these
coatings can be read in a previous report [42].
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Figure 1. (a) Production batch of the sol–gels of all the formulations analyzed (antibiotic-free coat-

ing: Control; LNZ-loaded coatings: lc.LNZ, mc.LNZ, and hc.LNZ; FOX-loaded coatings: lc.FOX, 
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coating deposited on a titanium disc produced by powder metallurgical route (part of the metal 

area was left uncoated for exemplification and visual support). 

Figure 1. (a) Production batch of the sol–gels of all the formulations analyzed (antibiotic-free coating:
Control; LNZ-loaded coatings: lc.LNZ, mc.LNZ, and hc.LNZ; FOX-loaded coatings: lc.FOX, mc.FOX,
and hc.FOX; and coating loaded with both antibiotics: hc.FOX-LNZ). (b) Example of a coating
deposited on a titanium disc produced by powder metallurgical route (part of the metal area was left
uncoated for exemplification and visual support).

2.2. Coating Degradation Study

Figure 2 depicts the Bode plots from Electrochemical Impedance Spectroscopy (EIS)
test results, at 4, 12, and 24 h of sample immersion in PBS at 37 ◦C. In all the systems,
the absence of great variations was evidenced during the 24 h period, labeling them as
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stable systems. Despite this, a slightly increasing trend of the average impedance from
4 h to 24 h was revealed, indicating an enhancement of corrosion barrier properties with
evolution over time. In all formulations, the same order of magnitude in the impedance
module value at 10−2 Hz was obtained in the module Bode plots, with very similar values
(≈2 × 105 Ω·cm2).
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Figure 2. Evolution of Bode spectra with the exposition time on EIS tests. (a) Control, (b) lc.FOX,
(c) mc.FOX, (d) hc.FOX, (e) lc.LNZ, (f) mc.LNZ, (g) hc.LNZ, and (h) hc.FOX-LNZ.

In the phase angle Bode plots, the phase peak located at low-mid frequencies behaved
similarly in all systems. A leftward shift of this peak was observed (except in lc.FOX),
which represents a less electrochemically active area [43].

The impedance module value at frequencies related to coatings (≈100 Hz) [26] evi-
denced an increase with the immersion time, except in the lc.FOX sample, which could
be the result of water uptake or due to their capacitance increase, meaning an increase in
the active area, possibly due to the degradation of the coatings, eroding its surface and
exposing a greater area to the electrolyte [44].

The interpretation of the curves obtained in the EIS tests was performed by fitting
them to equivalent electrical circuits. The electrical elements of the chosen circuit depict the
dielectric properties of the system layers and the electrochemical processes occurring in the
system. Figure 3 shows the equivalent electrical model used, and the electrical elements
that constitute it are listed below. This model of three time constants is widely used in
porous coatings that allow the electrolyte to reach the coating/metal substrate interface,
and as a consequence of this interaction, a passive layer is formed [45]. Rcoat (Coating
Resistance) and CPEcoat (Coating Capacitance Constant Phase Element) refer to coating-
related processes occurring at high frequencies. In this manner, Rcoat is associated with
the porosity and deterioration of the coating and CPEcoat refers to the water uptake into
the coating. Rox (Oxide Layer Resistance) and CPEox (Oxide Layer Capacitance Constant
Phase Element) are related to the oxide layer that can appear on the metal surface. They
can be determined at intermediate frequencies and provide information on the formation
and growth trend of the oxide layer, as well as on its stability. Lastly, Rp (Polarization
Resistance) and CPEdl (Double-Layer Capacitance Constant Phase Element) are processes
localized at low frequencies, referred to as changes in the coating/substrate interface. While
Rp is associated with the polarization resistance of the interface between the outer layers
and the metallic substrate, CPEdl refers to the uncoupling of the coating and the initiation
of the corrosion process at the interface [45].
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The chi-squared parameter (χ2) obtained in the fits of all the systems was usually less
than 0.003. The n values in the phase constant elements (CPE) used in the modeling are
an indicator of the closeness of this element to the behavior of a capacitor, with the value
of 1 being considered the response of an ideal capacitor. In the adjustment, anomalous
values of the pair Rp/CPEdl of the last time constant were obtained. Figure 4 shows the
evolution of the passive elements of the equivalent circuit with the immersion time in the
electrolyte for each studied system. While Rp and CPEdl plots are represented, some points
were omitted due to these inconsistencies.
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Rox; (d) constant phase element of corrosion layer, CPEox (0.55 < n < 0.83); (e) polarization resistance,
Rp; and (f) double layer constant phase element, CPEdl (0.86 < n < 1).

The Rcoat parameter (coating resistance) displayed an increase with immersion time
in almost all systems and timepoints. Exceptions were observed, some systems remained
almost constant throughout the test (hc.FOX-LNZ) or decreased from certain timepoints
(lc.FOX, mc.FOX, and hc.LNZ). The decrease in Rcoat is proportional to the coating per-
meability and its increase is related to the blockage of the coating pores according to the
substrate passivation [26]. The coating resistances of all the formulations are in the order
of 104 Ω·cm2.

The water content that can load the coating is directly connected to its capacitance
values, CPEcoat. Stability was common in all systems, although their CPEcoat values varied
by orders of magnitude. These values are associated with water uptake, which in turn are
related to the number and extension of pores or capillary channels perpendicular to the
substrate surface. Although thickness differences between coatings were kept to a minimum
(available in [42]), this factor could also influence the CPEcoat values. Noteworthily, those
specimens whose Rcoat decreased at a certain timepoint mostly showed increasing behavior
in the CPEcoat. A higher porosity of the coating led to a decrease in its resistance.

The analysis of the difference in orders of magnitude of the capacitance values between
the coatings is necessary. The porosity in the coatings loaded with LNZ seemed to be
proportional to the antibiotic concentration, while in FOX coatings, it had an inverse
behavior. This observation indicates that cefoxitin somehow favors the crosslinking of the
sol–gel network since the expected result would be the behavior obtained in LNZ coatings.
Supporting this reasoning, the coating loaded with both antibiotics has an intermediate
capacitance value.

The oxide layer resistance (Rox) was augmented in all systems, with values close to
each other (103–104 Ω·cm2). This behavior is due to titanium passivation. The documented
differences between systems could be influenced by the permeability of each coating and,
therefore, the total surface area of the titanium in contact with the electrolyte.

In general, CPEox remained stable with very close values in all systems, with a slight
decrease indicating the formation of an increasingly less permeable oxide layer.

The polarization resistance (Rp) illustrated an increasing trend in all systems. This is
supported by the titanium passivation and the plugging of the coating pores by the oxide
layer formation. The double-layer capacitance area (CPEdl) remained stable throughout the
test in all systems. No differences were found between the systems.

Inspection of the surface of the coatings after completion of the EIS tests complemented
the analysis of the test results. SEM images were taken for each sample (Figure 5).

The images are consistent with the results obtained in the EIS tests. After 24 h of
immersion in the electrolyte, the Rcoat values continued to be very close to those values
at the start of exposure. However, all the samples show isolated cracks as a sign of
deterioration. Larger cracks are observed in hc.FOX and hc.FOX-LNZ, with these coatings
and the Control having the lowest Rcoat values.

2.3. Antibiotics Release Study

The release of both antibiotics followed a similar pattern (Figure 6). A concentration-
dependent release of each formulation was evidenced in both antibiotics. Most of the
drug was released within the first 6 h (R2 = 0.9550 for cefoxitin and R2 = 0.8285 for line-
zolid) following linear behavior. The release kinetics in the coatings loaded with linezolid
revealed a decreasing trend in the last hours of measurement. The degradation of this
antibiotic is accelerated by increasing the temperature and exposure time in the solution,
and this implies a coloration change [46,47]. The color change explains the decrease in the
concentration read through absorbance.
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Figure 6. Kinetics of (left) cefoxitin and (right) linezolid released over time determined by UV-VIS
absorbance. Data are represented as the median and interquartile range of the amount of antibiotic
measured in three replicates.

Table 1 lists the constant release rate reached up to 6 h for each coating, as well as their
maximum concentrations released. From 6 to 48 h, the release of both antibiotics stabilized
and stayed constant over time (p = 0.599 for lc.FOX, p = 0.053 for mc.FOX, p = 0.313 for
hc.FOX, p = 0.168 for lc.LNZ, and p = 0.306 for hc.LNZ; Kruskal–Wallis test) excluding
mc.LNZ, which stayed constant from 12 to 48 h (p = 0.061 for the Kruskal–Wallis test).
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Table 1. Constant release rate up to 6 h and maximum concentration released reached for coatings.

Constant Release Rate up to 6 h (µg/h) Concentration Released (µg)

lc.FOX 0.75 8.96
mc.FOX 1.47 21.51
hc.FOX 3.21 31.36
lc.LNZ 0.75 5.78

mc.LNZ 1.67 16.73
hc.LNZ 3.71 33.47

Only two other studies have been found in the literature that address the cefoxitin
release in coatings for biomedical applications. The results obtained in both were contra-
dictory. The first one dates to 2004, when Kim and co-workers incorporated this antibiotic
into poly(lactide-co-glycolide) (PLGA) scaffolds. The drug was encapsulated by adding
the amphiphilic poly(ethylene glycol)-b-poly(lactide) (PEG-b-PLA) diblock copolymer
to the solution. The release profile was evaluated by UV-VIS spectroscopy. As a result,
approximately 70% of all the loaded antibiotic was released within the first hour, and the
rest was released over one week [48]. Despite demonstrating antibacterial effectiveness,
burst release is an undesirable effect.

The second was reported in 2016 by Back et al., where they incorporated various an-
tibiotics into poly(D,L-lactide) (PDLLA) coatings. The release determination was confirmed
by liquid chromatography with mass spectrometry (LC-MS/MS). The first burst release
of cefoxitin is reported, and immediately after this, there is a considerable decrease in the
amount of antibiotic detected due to antibiotic degradation [49]. The causes of this behavior
are not clarified; however, the authors suggest that it must be attributed to more causalities
than fast degradation and should be investigated.

Studies using linezolid as the delivery drug are numerous. Many alternatives have
used this antibiotic in release to prevent infections related to orthopedic implants. Although
a burst release has been found in some of them [50–52], some recent studies have achieved
a sustained release [53–55].

2.4. Microbiological Assays

The selection of the right concentration of each antibiotic was analyzed in the following
results of the biofilm inhibition response against S. aureus ATCC29213 of the formulations
loaded with different concentrations.

Figure 7a,c show plots of the bacteria concentration per area unit that are attached to
the surface as colony-forming units per square centimeter (CFU/cm2), while Figure 7b,d
show the planktonic bacterial concentration, which is proportional to the absorbance of the
supernatant measured at 600 nm. LNZ loading showed a concentration-dependent effect
while FOX loading did not prevent biofilm formation. Similar behavior was observed when
evaluating the reduction of planktonic bacteria in the S. aureus strain. In LNZ samples, the
coating loaded with the maximum concentration (hc.LNZ) caused the greatest inhibition in
biofilm development in S. aureus, inhibiting by up to 96% (Figure 7c). Moreover, hc.LNZ
was effective at reducing the generation of planktonic bacteria by up to 83% (Figure 7d).
In both cases, medium and high concentrations of antibiotics produced a reduction of
planktonic bacteria with significant differences compared to the control. Comparing the
two antibiotics, LNZ caused a higher reduction in planktonic bacteria than FOX.

While a slight inhibitory effect on the growth of planktonic bacteria was observed in
coatings with higher concentrations of FOX, there was no inhibition of sessile bacteria in
any of the FOX formulations. This could be caused by a combination of factors. On the
one hand, part of the released antibiotic lost its bactericidal effect during sol–gel synthesis,
possibly because it has been chemically bound to the sol–gel network. On the other hand,
the effective antibiotic released does not reach inhibitory amounts in the initial hours. Being
in the presence of sub-inhibitory concentrations of cefoxitin, biofilm formation is allowed.
The effect found in planktonic bacteria compared to bacteria adhered to the surface can
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be explained by the fact that beta-lactams, such as FOX, are not active against biofilm [56],
due to the acidic pH inside the biofilm, which these facultative anaerobic bacteria develop
in their fermentative metabolism [57,58].
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Figure 7. S. aureus colony-forming units per square centimeter (a,c) and planktonic bacteria (b,d)
following strain incubation of titanium discs coated with Control, FOX-loaded coatings (a,b), or
LNZ-loaded coatings (c,d). Data are represented as median and interquartile range. * p-value < 0.05
for Wilcoxon test.

Based on these results, we decided to choose the highest concentrations of both
antibiotics, because in the LNZ-loaded coatings, hc.LNZ showed greater biofilm inhibition,
and in the FOX-loaded coatings, a better response of hc.FOX is expected when combined
with LNZ.

The following results analyze the antibacterial effectiveness of the sol–gel coating
loaded with both antibiotics (hc.FOX-LNZ), and for comparison, the Control, hc.FOX, and
hc.LNZ coatings also participated in the assays.

An evaluation of the prevention of biofilm formation (Figure 8a), showed that hc.FOX-
LNZ was effective in inhibiting biofilm formation in all strains except for E. coli. The greatest
inhibition in biofilm development was shown against Staphylococcus species, obtaining
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99.86% against S. aureus and 99.88% against S. epidermidis in the coating loaded with both
antibiotics. The prevention of E. coli biofilm development was not efficient.
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Figure 8. Quantification of (a) biofilms and (b) non-adherent planktonic bacteria of titanium pieces
coated with Control, hc.FOX, hc.LNZ, and hc.FOX-LNZ. Data are represented as median and
interquartile range of the log10(CFU/cm2) estimated by (a) drop plate and (b) absorbances (ab-
sorbance units, AU) obtained in four independent experiments. * p-value < 0.05, ** p-value < 0.01,
*** p-value < 0.001 for Wilcoxon test.

When evaluating the reduction of the generation of non-adherent planktonic bacteria
(Figure 8b), a behavior very similar to the inhibition of biofilm formation was observed.
For S. aureus and S. epidermidis strains, hc.LNZ caused a higher reduction in planktonic
bacteria than hc.FOX (48% against 15% for S. aureus and 88% against 17% for S. epidermidis).
The planktonic bacteria reduction action of the coatings with both antibiotics showed a
synergistic effect against S. aureus, but not against S. epidermidis. The linezolid-loaded
coating caused a slight reduction in planktonic bacteria against E. coli. Although line-
zolid MICs for Gram-negative bacteria are higher than those for Gram-positive cocci, it
is known that the ribosomes of Escherichia coli are as susceptible to linezolid as those of
Gram-positive cocci [59].

The LNZ-loaded coatings inhibited the biofilm formation of S. epidermidis to a higher
degree compared to S. aureus. This effect occurs because linezolid is more selective for
S. epidermidis than S. aureus. This fact may be due to the difference in the generation time
of each staphylococcus since; while the S. epidermidis generation time ranged between
17 and 38 min on surfaces [60], the S. aureus generation time is 20 min [61]. Although the
combination of both antibiotics did achieve a greater decrease in biofilm formation for
S. aureus, reaching a significantly greater reduction in planktonic bacteria compared to
the formulations loaded with the antibiotics separately, the same effect was not achieved
against S. epidermidis. What is more, FOX did not show any bactericidal effect against
E. coli. Possible reasons for the inactivity of cefoxitin-loaded coatings were hypothesized in
the above results. One possible explanation is that part of the concentration of FOX lost
its antimicrobial effect by chemically bonding with some element of the sol–gel synthesis
and the release of the rest of the antibiotic is of sub-inhibitory concentrations in the initial
hours. The behavior against E. coli is the least favorable considering that the generation
time of this strain is the shortest among those studied (only 20 min) [62]. The synergistic
effect observed in the hc.FOX-LNZ coating against S. aureus demonstrates that not all FOX
concentrations should have been affected.

In the studies found in the literature related to cefoxitin release, Kim et al. achieved
inhibition of S. aureus growth of more than 90% with respect to the control [48]. The
concentrations tested in this article were 0.04 mg/mL, 0.03 mg/mL, and 0.02 mg/mL.
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However, in the study by Back et al., no bacterial inhibition was shown at a 40% w/w
concentration at any time point [49].

As a precedent of this work, this sol–gel system was used to design a moxifloxacin-
loaded organic–inorganic sol–gel to prevent bacterial prosthetic joint infections. The micro-
biological study revealed that this coating completely inhibited the formation of biofilm
development and treated a mature biofilm of the three evaluated bacterial species (S. aureus,
S. epidermidis, and E. coli) [29].

The sol–gels described here will have the advantage of reducing the probable antibiotic
resistance emergence related to antibiotic monotherapy.

The results obtained make this type of sol–gel coating a local treatment for OPRI in
primary implantation surgeries or surgical approaches after bacterial infection where a one-
or two-stage replacement is required. However, this approach would not replace the oral
administration of antibiotics as systemic therapy but would rather reinforce it. Additionally,
it could be considered to prevent infection of maxillofacial and dental implants.

2.5. Cellular Studies

Cell viability is not affected by the presence of any of the coatings studied (Figure 9a).
In addition, there were no statistically significant differences in relative cell proliferation
concerning the control (Figure 9b). These results are in line with previous works where
they assert that this kind of non-antibiotic-loaded sol–gel can enhance the osseointegration
of the implants coated with it [63], even when they are loaded with moxifloxacin [29]. This
biocompatibility is desired in both orthopedic surgery [64] and dentistry [65,66].
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or treated with Control, hc.FOX, hc.LNZ, or hc.FOX-LNZ sol–gel coatings. Data are represented as
median and interquartile range of the percentage of viability and cellular proliferation, respectively.
in 32 biological replicates. *** p-value < 0.001 for Wilcoxon test.

2.6. Research Limitations

The findings of this study have to be viewed in light of some limitations. Firstly, the
stability of antibiotics can condition the determination of their release kinetics. Linezolid
undergoes a coloration change when in dissolution for prolonged periods at a physiological
temperature [46,47]. Regardless of the coloration change, antibiotic hydrolysis degradation
usually occurs under these circumstances [67]. Choosing absorbance as the method of
measurement is perhaps not the most appropriate alternative. The release of the antibiotics
in the coating loaded with both cannot be determined because the peaks of maximum
absorbance for FOX and LNZ are very close. Likewise, the degradation of the sol–gel influ-
ences the determined absorbance values, and although the Control coating is considered to
determine its contribution to the measurement, the degradation of the loaded and unloaded
coatings are not the same. It is suggested to use high-performance liquid chromatography
(HPLC) to avoid the above limitations; however, the degradation of antibiotics will occur
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regardless of the measurement method used. Secondly, the microbiological assays were
performed with laboratory reference strains and were not extended to individual clinical
isolates strains. Therefore, not only must the experimental conditions be considered but the
behavior of these strains may also be different from those found in patients with OPRI. The
reference strains present genomic differences concerning clinical strains and might have
lost important pathophysiological characteristics since the bacteria adapt very quickly to
in vitro conditions [68]. Thirdly, further studies are required to confirm the efficacy of these
sol–gels using in vivo models.

3. Conclusions

The studies corresponding to coating degradation, antibiotic release, biofilm inhibition,
cell viability, and proliferation were carried out satisfactorily in coatings loaded with
cefoxitin and/or linezolid in different concentrations.

Even though in the first 24 h there are not many signs of degradation of the studied
coatings, it is enough to obtain a constant release of both antibiotics. Linezolid release is
sufficient to cause greater than 90% biofilm inhibition for S. aureus and S. epidermidis, but
cefoxitin release is compromised. One plausible explanation is that part of the cefoxitin
concentration lost its antimicrobial effect by chemically bonding during the sol–gel syn-
thesis and the release of the rest of the antibiotic is of sub-inhibitory concentrations in the
initial hours. The synergistic effect observed in the hc.FOX-LNZ coating against S. aureus
demonstrates that not all cefoxitin concentrations were affected.

The coating loaded with a higher concentration of linezolid and the coating loaded
with both antibiotics showed an excellent bactericidal and anti-biofilm response to staphy-
lococcal species, without compromising cell viability and proliferation.

Although the introduction of cefoxitin has not been successful in preventing infections
in Gram-negative species, at least in the strain tested, the use of the coating loaded with
both antibiotics is interesting as it achieves greater staphylococcal inhibition, avoiding the
resistance emergence in these species.

4. Materials and Methods
4.1. Sol–Gel Synthesis and Coatings Preparation

Hybrid organic–inorganic sol–gel coatings were synthesized according to a previ-
ously published methodology [42]. These were designed from the combination of the
organopolysyloxanes methacryloxypropyltrimethoxy silane (MAPTMS, 98%, Acros Organ-
ics, Thermo Fisher Scientific, Waltham, MA, USA) and tetramethyl orthosilane (TMOS, 98%,
Acros Organics, Thermo Fisher Scientific, Waltham, MA, USA) and were biofunctionalized
with tris (tri-methylsilyl)phosphite (92%, Sigma–Aldrich, St. Louis, MO, USA). In the
formulations, the molar ratio of MAPTMS to TMOS was fixed at 1:2, and silanes and the
phosphorus precursor were in a 50:1 molar ratio. Ethanol and water were added to the
reaction in stoichiometric amounts. Before addition to the component mix, the antibiotics
were dissolved or suspended in water, although some of the ethanol used in the formulation
contributed to the dissolution or improved solubility of the antibiotics. Three coatings were
loaded with the following concentrations of linezolid (LNZ, Acros Organics, Thermo Fisher
Scientific, Waltham, MA, USA): 0.61 (lc.LNZ), 1.23 (mc.LNZ), and 2.46 (hc.LNZ) mg/mL;
alternatively, they were loaded with cefoxitin (FOX, Sigma-Aldrich, St. Louis, MO, USA)
in the following concentration: 0.81 (lc.FOX), 1.62 (mc.FOX), and 3.24 (hc.FOX) mg/mL.
Sol–gel functionalized with organophosphite without the addition of antibiotics was used
as a control. Moreover, a formulation was produced and loaded with both antibiotics
(hc.FOX-LNZ) in the following concentrations: 3.24 mg/mL of cefoxitin and 2.46 mg/mL of
linezolid. All reagents were mixed before the addition of water. Once the aqueous solution
had been added dropwise, suspensions were stirred for 24 h in a glove box. All reagents
were used as received.

The sample preparation for the studies of coating degradation, antibiotic release rate,
and microbiological assays was conducted as described below. The samples consisted of
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titanium substrates of 15 mm diameter × 2.5 mm thickness, prepared by a conventional
powder metallurgy route, where the deposition of the sol–gel coatings was performed by
dip coating at a rate of 200 mm/s. Afterward, samples were dried at 60 ◦C for 60 min inside
an oven.

A series of analytical trials focused on studying the crosslinking and the surface of
these coatings was developed in a previous report [42].

4.2. Study of Sol–Gel Degradation

The coating degradation of the evaluated systems was assessed on a Metrohm Autolab
PGSTAT302N potentiostat (Metrohm; Herisau; Swiss) and a three-electrode configuration,
using the coated TiPM substrate as the working electrode, a saturated silver/silver chloride
reference electrode (E = 0.197 V vs. NHE), and a platinum wire counter electrode. A PBS
solution (Sigma-Aldrich, St. Louis, MO, USA) at 37 ± 1 ◦C was used as the electrolyte.
To guarantee the temperature, a double-walled glass cell was used to recirculate water at
37 ◦C through the cell wall using the Julabo HC/F30 temperature control system (Julabo
UK Ltd., Stamford, UK).

To carry out these measurements, the samples required prior preparation. TiPM
disks were attached to a copper wire on the uncoated side using conductive tape. The
measurement area (a coating measurement area of 1 cm2) was delimited by covering the rest
of the disk with an edge retention lacquer (MacDermid, Waterbury, CT, USA). A frequency
sweep was performed from 10 mHz to 10 kHz applying a sinusoidal signal of ±10 mV
amplitude to the open circuit potential (OCP). For each formulation, at least 3 replicates
were performed, and each sample was immersed in PBS at 37 ◦C, recording the EIS curves
every 2 h for 24 h and measuring the OCP before and after each impedance. Interferences
were avoided by using a Faraday cage. The impedance spectra were obtained and analyzed
using Nova v2.1.4 and Z-view v3.3e software, respectively.

4.3. Kinetics Study of Antibiotics Release

Absorbance measurements for the kinetics study of antibiotics release were performed
using a JASCO V-650 UV–vis absorption spectrophotometer (JASCO Corporation, Tokyo,
Japan). Coatings were exposed to 3 mL of deionized water (DI, Sigma-Aldrich, St. Louis,
MO, USA) at 37 ◦C and placed in 50-mL FalconTM conical tubes (Thermo Fisher Scien-
tific, Waltham, MA, USA). Measurements were made in triplicate. The cefoxitin and
linezolid release were monitored by measuring the maximum absorbance of both antibi-
otics (235 nm [69,70] and 251 nm [71–73], respectively) at different times (2, 4, 6, 12, 24, and
48 h). For each timepoint, 600 µL aliquots were extracted and transferred to a 700 µL quartz
cuvette (10 mm pathlength, Hellma, Essex, Germany). Aliquots were replaced by new DI.
Obtaining the concentration of the antibiotics was determined by employing the calibration
curves and the absorbance values obtained. Calibration was previously performed for
each antibiotic in DI, varying the concentration of both antibiotics between 35 × 10−3 µg to
35 µg. The concentration of each sample was then recalculated according to the following
factors: The control coating contribution, the dilution performed at each timepoint, and
the calibration curve. The calibration curves were linear over the measured concentration
range with an R2 = 0.9998 for the cefoxitin calibration curve and R2 = 0.9967 for the linezolid
calibration curve.

4.4. Evaluation of Biofilm Formation Inhibition

The first study was completed to choose the minimum concentrations of each antibiotic
corresponding to the coatings with the greatest biofilm inhibition response against the
methicillin-susceptible S. aureus from the American Type Culture Collection ATCC 29213
strain. The chosen concentrations were used to synthesize a sol–gel formulation loaded
with both antibiotics simultaneously.

Subsequent studies analyzed the antimicrobial behavior of the coating without antibi-
otics (Control) and the coatings loaded with the chosen concentrations of each antibiotic
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separately, and in the same formulation. These experiments were performed using the
reference strains S. aureus ATCC 29213, S. epidermidis ATCC 35984, and E. coli ATCC 25922.
These species represent the most common pathogens related to prosthesis-related infections
and constitute susceptible strains to these antibiotics.

Before the start of the experiments, all strains were preserved under freezing conditions
at −80 ◦C. They were then maintained at 37 ◦C in tryptic soy agar + 5% sheep blood plates
(TSS, BioMérieux, Marcy-l’Étoile, France). The day before each test, a TSS plate spread of
the corresponding strain was made to be incubated overnight at 37 ◦C and 5% CO2. Each
assay was performed in 4 independent experiments.

The biofilm formation inhibition assay was performed by immersing the coated TiPM
discs in 5 mL of a solution diluted to a final concentration of 0.5 McFarland (≈1.6 × 108

colony-forming units per milliliter, CFU/mL) of the chosen strain in the tryptic soy broth
medium (TSB, Sigma Aldrich, St. Louis, MO, USA) supplemented with 1% glucose (w/v)
in wells of a 6-well plate (Sigma Aldrich, St. Louis, MO, USA). They were left in immersion
for 24 h at 37 ◦C and 5% CO2. After incubation, discs were rinsed with a 0.9% NaCl sterile
saline solution (SS, B. Braun, Melsungen, Germany) and coatings were scraped off using
sterile halved tongue depressors that were then sonicated at RT for 5 min [74] in 5 mL of SS.
The drop plate method was then used to determine CFU/cm2 values [75]. Additionally,
absorbance at 600 nm was used in eight repetitions to quantify the number of non-adherent
planktonic strains still present in the incubation medium, using TSB media alone as a
negative control. EnSpire Multimode Plate Reader (Perkin Elmer, Waltham, MA, USA)
equipment was used for absorbance measurements.

4.5. Cell Study

In 96-well plates with α-minimum essential media containing 10% bovine fetal serum
and 1% penicillin-streptomycin (αMEM, Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA), MC3T3-E1 cells were seeded at a concentration of 10,000 cells/cm2 before being
incubated at 37 ◦C and 5% CO2 overnight. After incubation and cell adhesion had oc-
curred, the medium was replaced by αMEM with 50 mg/mL ascorbic acid (Sigma–Aldrich,
St. Louis, MO, USA) and 10 mM ß-glycerol-2-phosphate (Sigma–Aldrich, St. Louis, MO,
USA) for osteoblastic differentiation. With this medium, the plate lid was replaced with an
MBECTM biofilm incubator lid (Innovotech, Edmonton, AB, Canada) previously prepared
with the formulations. On the previous day, the MBECTM biofilm incubator lid pegs were
dipped into wells containing 200 µL of each sol–gel formulation (negative control, Control,
hc.FOX, hc.LNZ, and hc.FOX-LNZ, n = 32 for each) and allowed to dry in a laminar flow
hood. Using this MBECTM biofilm incubator lid, they were incubated for 48 h at 37 ◦C in
5% CO2. After this time, cytotoxicity was determined using a CytoTox 96® NonRadioac-
tive Cytotoxicity Assay (Promega, Madison, WI, USA) and cell proliferation using the
AlamarBlue® solution (BIO-RAD, Hercules, CA, USA) at 10% (v/v) by measuring fluores-
cence intensity at excitation and emission wavelengths of 540 and 600 nm, respectively, in a
Tecan Infinite 200 Reader (Tecan Group Ltd., Männedorf, Switzerland).

4.6. Statistical Analysis

Statistical analyses were performed using the non-parametric Kruskal–Wallis test or
the one-sided pairwise Wilcoxon non-parametric test using IBM® SPSS® Statistics software
release 26.0.0.0 (IBM Corp., Endicott, NY, USA), considering different significant levels of
statistical significance. All trials involved at least three replicates. Data are represented in
the graphs as the mean and standard deviation or as the median and interquartile range
depending on the distribution of the data as normal or non-normal.
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