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a b s t r a c t 

Machine Learning (ML) techniques, especially Artificial Neural Networks, have been widely adopted as a 

tool for malware detection due to their high accuracy when classifying programs as benign or malicious. 

However, these techniques are vulnerable to Adversarial Examples (AEs), i.e., carefully crafted samples de- 

signed by an attacker to be misclassified by the target model. In this work, we propose a general method 

to produce AEs from existing malware, which is useful to increase the robustness of ML-based models. 

Our method dynamically introduces unused blocks (caves) in malware binaries, preserving their origi- 

nal functionality. Then, by using optimization techniques based on Genetic Algorithms, we determine the 

most adequate content to place in such code caves to achieve misclassification. We evaluate our model 

in a black-box setting with a well-known state-of-the-art architecture ( MalConv ), resulting in a successful 

evasion rate of 97.99 % from the 2k tested malware samples. Additionally, we successfully test the trans- 

ferability of our proposal to commercial AV engines available at VirusTotal, showing a reduction in the 

detection rate for the crafted AEs. Finally, the obtained AEs are used to retrain the ML-based malware 

detector previously evaluated, showing an improve on its robustness. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The number of malicious software (malware) samples actively 

eing used has grown exponentially over the last two decades 

 Aleshkin and Lesko, 2019 ). Due to the high return of invest- 

ent of this kind of software, cybercrime has become a prof- 

table business ( Anderson et al., 2019; Connolly and Wall, 2019; 

uang et al., 2018 ). In this new scenario, traditional detection tech- 

iques, mainly based on signatures ( Gandotra et al., 2014 ) and ob- 

erved behavior ( Bazrafshan et al., 2013; Brumley et al., 2008 ), 

ave been shown unable to deal with the current volume and 

omplexity of the threats. Signature-based techniques search for 

reviously known malicious patterns. On the other hand, behav- 

oral techniques try to detect malware based on its interactions 

ith the system at runtime through the use of heuristic rules. 

iven the overwhelming number of never-seen-before malicious 

amples to be analyzed, recent progresses in Artificial Intelligence 

AI) have been incorporated to tackle the problem of malware de- 

ection ( Sahay et al., 2020; Xue et al., 2019 ). 
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Although the use of AI for malware detection is not new ( El- 

akry, 2010; Firdausi et al., 2010; Shah et al., 2013 ), its recent ad- 

ances, mainly based on the use of Machine Learning (ML) tech- 

iques, have contributed to increase the performance of the afore- 

entioned task. Generally speaking, ML techniques are usually 

ased on the construction of models based on the analysis of data 

amples. These models represent an abstraction of the application 

omain with the aim of classifying new instances. Therefore, they 

ork under the assumption that new data from the same context, 

ot yet evaluated, will follow the same statistical distribution rep- 

esented in the model. 

Artificial Neural Networks (ANN) have become a very successful 

L technique in many different tasks. Specifically, Deep Learning 

DL) architectures (i.e., a particular type of ANN) have been ap- 

lied in contexts such as image recognition ( Simonyan and Zisser- 

an, 2014 ), natural language processing ( Young et al., 2018 ), voice 

peech recognition ( Das, 2019 ), or malware detection ( Sahay et al., 

020 ), among others. 

Despite its effectiveness when applied to malware detection, 

L cannot solve all problems in this domain nor it is ex- 

mpt from shortcomings ( Gibert et al., 2020b ). One of the best- 

nown weaknesses is their vulnerability against a class of eva- 

ion techniques commonly referred to as Adversarial Examples 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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AEs) ( Papernot et al., 2016 ). AEs are carefully crafted inputs that 

re misclassified when provided to DL models. Due to the hos- 

ile nature of the environments in which malware detection so- 

utions are deployed, AE attacks and defenses have recently been 

he subject of extensive research (two reviews can be found in 

hakraborty et al. (2018) ; Yuan et al. (2019) ). Within the malware 

etection field, an AE has to be designed in such a way that it 

vades the detection capabilities of the DL network while preserv- 

ng its malicious functionality. 

The main contribution of this paper is the proposal of a new 

ethod to derive AEs from existing malware binaries that were 

reviously detected by a DL model. Furthermore, our method pro- 

uces fully functional AEs in a reasonable amount of time. To eval- 

ate the performance of our proposal, we tested the samples pro- 

uced by our method against a state-of-the-art malware detector 

ased on DL ( MalConv ) that was recently proposed ( Raff et al., 

018 ). The obtained results are compared with seven previously 

roposed approaches ( Demetrio et al., 2019, 2020, 2021; Kolosnjaji 

t al., 2018; Sharif et al., 2019 ), and also with commercial anti-virus 

etectors. Finally, the obtained AEs have been used to retrain the 

forementioned ML-based malware detector, showing an improve 

n its robustness. Our technique can be used both to evaluate the 

obustness of current DL models used for malware detection, and 

s a tool to generate new samples that can be used for adversarial 

etraining, which might result in stronger DL models. In order to 

acilitate the reproducibility of our results and to foster further re- 

earch in this area, we make public the code and data used in this 

ork 1 . 

The rest of the paper is organized as follows. In Section 2 we 

iscuss the state of the art in the generation of AEs and identify 

he key research gaps. In Section 3 we describe our method to gen- 

rate AEs, which we experimentally validate in Section 4 . Finally, 

ection 5 concludes the paper by summarizing our key contribu- 

ions. 

. Related work 

We next review related works in the areas of malware detec- 

ion based on machine learning techniques and the generation of 

dversarial Examples. Then, we identify the most outstanding re- 

earch gaps. 

.1. Machine learning based malware detection 

ML is increasingly playing an important role in the field of mal- 

are detection, especially in combination with traditional tech- 

iques. In this area, there exists a heterogeneous corpus of input 

eatures to DL models: Application Programming Interface (API) 

mports ( Saxe and Berlin, 2015 ), API calls collected at runtime 

 Kolosnjaji et al., 2016 ), malware images ( Liu et al., 2020 ), behav-

or ( Smith et al., 2020 ), headers of files ( Radwan, 2019; Raff et al.,

017 ), permissions ( Hojjatinia et al., 2019 ) or even whole binaries 

 Raff et al., 2018 ). Regardless of the actual features provided as in- 

ut to the network, all these models produce as output either a 

inary result (malware/benign), or a multiclass result distinguish- 

ng the type or family of the malware sample. 

ML approaches for malware detection can also be classified ac- 

ording to the method used to extract the features from the sam- 

les that will be used as input data. Static analysis approaches 

ollect features from the sample’s code and other software arte- 

acts, without running the program ( Hojjatinia et al., 2019; Lee 

t al., 2019 ). Dynamic analysis approaches rely on features ob- 

ained by running the sample ( Kolosnjaji et al., 2016 ), often in 
1 https://github.com/JavierYuste/Optimization- of- code- caves- in- malware- 

inaries- to- evade- Machine- Learning- detectors . 

t

i

w

b

2 
n instrumented sandbox. Some approaches use a combination of 

tatic and dynamic approaches ( Wang et al., 2017 ). Feature extrac- 

ion techniques (either static or dynamic) present the common dif- 

culty that they need a system devoted to extract the features 

 Aghakhani et al., 2020 ). 

A recent proposal introduces an alternative approach that 

voids the need of the feature-extraction step ( Raff et al., 2018 ). 

he authors propose a DL model that receives the whole binary 

ample (i.e., its raw bytes) as an input. This work inspired simi- 

ar featureless approaches ( Kr ̌cál et al., 2018; Le et al., 2018; Mil- 

ar et al., 2020 ) . Additionally, it has been used as a comparison

ramework ( Anderson and Roth, 2018; Coull and Gardner, 2018; 

oth et al., 2019 ) and also as a target for the design of AE attacks

 Demetrio et al., 2019, 2020, 2021; Kolosnjaji et al., 2018; Kreuk 

t al., 2018; Sharif et al., 2019 ). 

.2. Adversarial evasion attacks 

Attacks on machine learning have been known for more than a 

ecade ( Biggio et al., 2013; Biggio and Fabio, 2018; Szegedy et al., 

014 ). AEs attacks have been classified in different categories de- 

ending on the knowledge that the attacker has about the model 

ested ( Anderson et al., 2017 ): i) the attacker has fully access to 

he model; ii) the attacker does not have access to the model, 

ut it is able to try it and receive the scores provided by the 

odel as a response; and iii) the attacker can only probe the de- 

ector and receive labels (e.g., malicious or benign) in response. 

he first category can be considered as a white-box approach and 

ases the development of efficient AEs. On the other hand, the sec- 

nd and third categories can be classified as black-box approaches. 

hese approaches are harder for the attackers, but they are also 

he most realistic scenarios. Recently, some theoretical efforts have 

een made towards the discovery of the desired properties in the 

esign of AE attacks ( Amsaleg et al., 2021; Pierazzi et al., 2019 ).

he use of AEs has also been suggested in previous works in the 

iterature as a method to increase the robustness of DL models 

 Chen et al., 2017; Hashemi and Mozaffari, 2019 ). 

In this paper, we introduce a method for designing AEs from 

xisting malicious Portable Executable (PE) binaries by introduc- 

ng perturbations in the binary. In contrast to other domains such 

s image recognition, the generation of AEs in malware detection 

resents harder constraints. Specifically, the modification of a func- 

ional binary (i.e., compiled code) is prone to corruption, which 

ight result in a non-functional binary. Valid methods in this do- 

ain must be able to generate AEs that evade the target DL net- 

ork while preserving their semantics and execution integrity. We 

ext discuss the most relevant techniques proposed in this area. 

A common strategy for the introduction of perturbations in 

alware binaries consists of appending data at the end of the sam- 

le. This is a safe way to introduce perturbations since the original 

unctionality remains untouched. This is due to the fact that the 

riginal code and data sections are not modified, and the refer- 

nces contained within the code do not need to be updated. The 

ppended data is still readable by the DL model (i.e., the malware 

etector) and, furthermore, can be freely edited with the aim of 

inimizing the probability that the binary is classified as malware. 

sing this technique, Kolosnjaji et al. (2018) propose a white-box 

pproach based on appending carefully crafted bytes at the end of 

les, which are optimized via a direct gradient-based attack. Their 

roposal is tested against MalConv in Kolosnjaji et al. (2018) . Simi- 

arly, Kreuk et al. (2018) propose to append bytes at the end of PE 

inaries to achieve misclassification, using a surrogate loss function 

o optimize the introduced bytes in a white-box approach. When 

ndicating that both proposals are tested in a white-box approach, 

e mean that the internal information of the DL model (i.e., num- 

er of layers, number of neurons, weights, etc.) is known to the 

https://github.com/JavierYuste/Optimization-of-code-caves-in-malware-binaries-to-evade-Machine-Learning-detectors
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ttacker, who uses this knowledge to optimize the introduced per- 

urbations. 

A different approach in Sharif et al. (2019) proposes a mech- 

nism to replace recognized instructions with semantically equiv- 

lent code. Note that, when working with PE binaries, separating 

he data from the code is a nontrivial task. This approach is lim- 

ted by the number of available instructions to be replaced, and 

y the number of available modifications for each instruction. Ad- 

itionally, the code to be replaced cannot be self-modifiable (i.e., 

nstructions should not be modified at runtime). To address these 

hortcomings, the approach also uses a displacement technique, re- 

rranging code sequences and inserting new ones, which allows 

hem to further modify the samples at the cost of increasing their 

ize. The proposal is also tested against MalConv and other DL 

odels in Sharif et al. (2019) . The authors use the structural prop- 

rties of the network in a white-box approach, but also test their 

ethod in a black-box setting where only the output score of the 

odel is known. 

In Demetrio et al. (2019) , the authors propose a method, named 

artial DOS, which modifies some bytes in the DOS header of 

E files, with the objective of generating an AE. This approach is 

ater revisited in Demetrio et al. (2020) , where the authors ex- 

end Partial DOS by modifying additional bytes of the DOS header. 

hey called this extension Full DOS. This is, to the best of our 

nowledge, the first time that a metaheuristic (i.e., a Genetic Al- 

orithm) was used to optimize the content of the modified bytes. 

n Demetrio et al. (2021) , the same authors explore an alterna- 

ive method, named GAMMA, to craft AEs from existing malware. 

he technique relies on the injection of benign content in different 

arts of a PE file. The authors report the differences in the detec- 

ion rate of common detectors from VirusTotal ( Chronicle, 2004 ) 

hen comparing the original malware samples and the generated 

Es. 

Other techniques to generate AEs in this domain take advantage 

f memory alignment ( Kreuk et al., 2018; Szor, 2005 ). Particularly, 

ections in PE binaries often contain padding bytes (i.e., not used 

ytes) that are known as code caves in the literature ( Szor, 2005 ).

hese spaces are suitable to be modified and they have been fre- 

uently used to trojanize legitimate applications, since the pertur- 

ations introduced there may be hardly recognizable. While the 

ocation of these spaces might be relatively easy to identify, the 

vailable space is very limited. The use of code caves is exploited 

y Demetrio et al. (2020) but they only use the space between the 

eaders and the sections in the PE binary. This proposal is com- 

ined with the modification of unused bytes in the headers of the 

le. 

.3. Key research gaps 

ML techniques are used as a key component in malware detec- 

ors in combination with traditional techniques. One key strategy 

o make such ML techniques more robust is to investigate the auto- 

atic generation of AEs in black-box settings. Previous works have 

dentified code caves as a powerful vehicle to generate AEs in these 

ettings, and some authors have explored the use of optimization 

echniques to automatically determine the content of such code 

aves. 

Our work builds on and improves previously proposed tech- 

iques in this area by presenting a method that can determine, 

or each code cave: the smallest size needed, the right location, 

nd the adequate content. In doing so, we introduce a more pre- 

ise formulation of the problem that will result in AEs of higher 

uality than previous techniques. Furthermore, we couch the three 

revious tasks as an optimization problem and show that the use 

f efficient optimization techniques can solve them in a reasonable 

ime. 
3 
. Our proposal 

In this paper, we explore the design of AE attacks against DL 

odels which receive raw bytes as input in a black-box setting. 

ur goal is to propose a new method to design AEs from exist- 

ng malware binaries in the PE format commonly used in Windows 

perating systems ( Singh, 2009 ). Since modifying bytes in a com- 

iled PE binary is prone to corrupt its functionality, our method is 

ased on introducing additional bytes that can be freely manipu- 

ated without altering the original behavior of the PE file. We can- 

ot know in advance which bytes have a larger influence on the 

utput, nor which content is more suitable to produce missclasifi- 

ation, since we are not assuming any knowledge about the target 

L model to be evaded. Therefore, we need an exploratory method 

hat can introduce bytes at different locations within the PE file 

nd modify them in a systematic way. Based on these assump- 

ions, our proposal consists of two main phases. First, we build 

 modified sample (see Section 3.1 ) in order to introduce unused 

locks in the PE file, guaranteeing that the original functionality of 

he sample remains untouched. Second, we optimize the content 

f the previously introduced blocks (see Section 3.2 ) to minimize 

he probability of detection by the considered model. 

The aforementioned method is summarized in Fig. 1 . First, we 

ntroduce a predefined unused space before each section in the PE 

le (step 1). Then, we test if the sample is detected by the target 

L model (step 2). If not, the algorithm stops (step 7). Otherwise, 

e proceed to optimize the content of the introduced spaces (step 

). If the modified sample is not detected by the target DL after the 

ptimization phase (step 4), and the size of the unused space is 

ot larger than a predefined threshold which will be described in 

he following sections (step 5), we increase the size of the unused 

pace (step 6) and we start a new iteration of the algorithm. This 

rocedure is repeated until an AE is crafted (i.e., it evades the DL 

odel) or the total size of the introduced space is larger than the 

redefined threshold. 

We note that this approach to build AEs based on code caves 

efines previous work by handling together three related but sepa- 

ate tasks: (1) determining dynamically the smallest size needed to 

ntroduce one or more code caves for evading a ML detector (steps 

 and 6 in Fig. 1 ); (2) studying the right location for the code caves

step 1 in Fig. 1 ); and (3) introducing the adequate content of the 

ode caves by using an advanced optimization technique (step 3 in 

ig. 1 ). In the latter, we also illustrate the importance of perform- 

ng a fine-tuning of the optimization technique in comparison with 

ther approaches. 

.1. Modification of samples 

This procedure starts with a sample consisting in a functional 

alicious PE file. Each PE file can be divided in two parts: head- 

rs and sections. Headers contain the information necessary for the 

perating system to load the PE file in the memory of the com- 

uter. On the other hand, sections contain the code and data nec- 

ssary for the correct execution of the PE file. 

The operating system loader is responsible for creating a new 

rocess, reserving some address space in memory for this pro- 

ess, and mapping every section from the PE file in that space 

 Yosifovich et al., 2017 ). In a general overview, the operating sys- 

em reads the headers from the PE file which contain the sec- 

ions table that specifies, for each section, the location of the sec- 

ion on the disk and, additionally, the space that will be needed in 

emory at execution time. 

It is important to notice that the amount of space used in mem- 

ry must be multiple of the page size of the operating system. 

herefore, some unused space might be available in the last page 

n memory. Similarly, the sections in the PE file are stored on the 
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Fig. 1. Activity diagram of the proposed method. 
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isk in positions aligned with the page size, which is indicated in 

he header of the PE file. Therefore, as it was the case of the space

n memory, there might be some available space at the end of each 

ection stored on disk. This space has been historically exploited to 

tore malicious code within legitimate applications ( Szor, 2005 ). 

Since the headers specify the addresses and sizes of each sec- 

ion, the mapping process from disk to memory can be controlled 

uch that not everything is copied from disk. This fact opens an in- 

eresting possibility for our goal: we may introduce unused spaces 

n between sections that will not be loaded in memory. Although 

his technique is not new ( Demetrio et al., 2020; Kaspersky, 2005 ), 

o the best of our knowledge, it has not yet been fully exploited 

o generate AEs for malware detection. The introduction of unused 

pace has been only explored between the headers and the first 

ection. In particular, we extend the current proposals by creat- 

ng code caves in between sections. Furthermore, we propose a dy- 

amic widening of the existing available space, depending on the 

inary explored, with the aim of constructing a successful AE. 

Fig. 2 a shows an example of an original PE file structure on disk 

nd the associated memory mapping. As shown in the figure, sec- 

ions of the PE file are loaded in memory in the same order as 

hey are stored on disk. Note also that some sections might oc- 

upy a larger space in memory than on disk. Our proposed method 

or introducing modifications in a sample is based on exploiting 

hese observations. The modifications consist of unused space on 

he disk (in between sections) that can be modified in the next 

tep without corrupting the sample. Fig. 2 b shows an example of 

he modification of the PE file depicted in Fig. 2 a. In this case, we

llustrate the introduction of 4 slots of unused space (in rectan- 

les with orange dashed lines) of different sizes, one before each 

ection. Note that the introduced slots are not mapped into mem- 

ry. Therefore, the bytes introduced in those spaces do not affect 
4 
he running time nor the behavior of the original program. Since 

he introduced bytes are never executed, they are meaningless for 

unning purposes and do not need to represent valid instructions. 

The method proposed to introduce unused spaces can be sum- 

arized as follows: 

1. Parse the header of the PE file. 

2. Extract the starting address of each section on disk. 

3. Choose a target section t . Let A t be its starting address on disk. 

4. Determine the size S t of the code cave to introduce before sec- 

tion t . 

5. For every section i in the PE binary starting at a position A i such

that A i ≥ A t , modify the starting address in the header of the PE 

file (i.e., modify the corresponding entry in the sections table ) 

such that the new starting address is A 

′ 
i 
= A i + S t . 

6. Shift the content at disk of each section whose header has been 

modified in step 5 to its new starting address. 

7. Repeat steps 2–6 as many times as needed (i.e., one for each 

target section). 

Note that the algorithm considers that the spaces are intro- 

uced in order, starting from the beginning of the file. Additionally, 

ince it modifies the pointers in the headers on disk, these spaces 

re never loaded in memory, as discussed before. Finally, the un- 

sed spaces recently introduced will be modified in a later step 

see Section 3.2 ) in order to evade the detection by the ML model. 

The procedure needs to determine the amount of initial space 

ntroduced (let S be the sum of the different S t ). However, this 

uantity along with the optimization phase might not be able to 

vade the DL model. In that case, we need to progressively increase 

he size of the total unused space introduced until the modified 

ample evades the DL model or it reaches a maximum size. The 

nitial value of S, the increase steps, and the maximum size al- 
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Fig. 2. Representation of the memory mapping of the original sample and a modified version with unused spaces introduced by the attacker. 

Fig. 3. Activity diagram of a Genetic Algorithm. 
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owed before stopping can be considered search parameters and 

ill be discussed in Section 4.2 . 

.2. Optimization 

We next describe our approach to fill the inserted unused 

paces with the aim of improving the evasion rate. In particular, 

he objective function is to minimize the probability of a modified 

E binary being classified as malware by the DL model. To tackle 

his optimization problem, we propose a procedure based on the 

se of metaheuristics ( Gendreau and Potvin, 2010 ), to determine 

he right content of the unused spaces. 

Metaheuristics are high-level procedures which help subordi- 

ate heuristics to escape from local optima, finding efficient so- 

utions to hard optimization problems in a very short time. Evo- 

utionary Algorithms are a notable class of metaheuristics inspired 

y natural processes. Specifically, we propose the use of Genetic 

lgorithms (GAs). GAs explore the search space by using several 

ioinspired operators (selection, crossover, and mutation) to opti- 

ize an initial population of solutions. The use of GAs instead of 

ther successful metaheuristics is based on the characteristics of 

he tackled problem. In this case, we are facing a black-box op- 

imization problem (i.e., there is not access to the implementation 

etails of the model used to evaluate a solution). Therefore, no gra- 

ient information can be used to optimize the inputs, which makes 

he family of metaheuristics based on local search procedures not 

o suitable in this setting. 

Fig. 3 provides a flow chart of the main steps of a GA. The 

ethod is based on the generation of a group of feasible solutions 
5 
or the problem (known as the initial population) as the starting 

oint (step 1). Then, these solutions are evaluated (step 2) and, 

hile the stop condition is not met (step 3), the GA selects a sub- 

roup of solutions (selection in step 4) based on quality and di- 

ersity criteria. Next, in step 5, it performs a crossover operation 

construction of new solutions by combining the characteristics of 

wo or more previously existing ones) trying to capture the best 

haracteristics of each solution, to obtain a better combined solu- 

ion. Finally, in step 6, the GA applies a mutation operation which 

andomly modifies parts of the obtained solution. Once this step 

as been made and the obtained solutions have been reevaluated, 

he process is repeated as many times as necessary. Each of these 

terations is known as a generation. 

The inputs to the optimization phase described in this sec- 

ion are the ones provided by the output of Section 3.1 . In par-

icular, they are PE files modified in such a way that there are un- 

sed spaces that have been introduced before one or more sec- 

ions. However, as it is customary in optimization, real instances 

problem examples) cannot be provided straight away to the op- 

imization algorithms, but they usually need to be represented in 

uch a way that the algorithm is able to handle them. In this case, 

e are only interested in the introduced unused spaces before the 

ections. We refer to those spaces as target blocks. All target blocks 

n a PE file are then concatenated into a single array of bytes which 

epresent a solution for the GA. 

In Fig. 4 we depict the transformation of the real instance (i.e., 

he modified PE binary) into an empty solution represented by an 

rray of bytes (see steps 1 and 2 in Fig. 4 ). Following the GA ter-

inology, this array represents a chromosome (a solution for the 
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Fig. 4. Adaptation of the general GA scheme to the problem of evading PE malware. 
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ptimization process). Additionally, each byte in the array repre- 

ents a gene of the solution. Note that each gene is one byte that 

an take up to 256 different values. 

The optimization process starts by building an initial population 

f solutions (step 3). Each solution of the population is built by in- 

roducing a random byte in each position of an empty array with 

 length equal to the total unused space in bytes. The actual size 

f this population is an experimental parameter and it might vary 

mong different algorithmic designs. Moreover, it is important to 

emark that the representation of a solution in this context is only 

alid for the tackled optimization problem. When a solution needs 

o be evaluated, it is necessary to write the bytes which are cur- 

ently in the solution, back into their corresponding unused blocks 

f the PE file. Then, the new PE file is provided as an input to the

L model to evaluate the solution (step 4). The quality of the solu- 

ion is measured by the output of the DL model. Note that this is 

 value ranging from 0 to 1, where values close to 1 indicate mali-

ious, while values close to 0 indicate benign. Therefore, the lower 

he output, the better the solution. As it was described in the in- 

roduction of the GAs, once the population is conformed, it evolves 

nto a new generation by applying the selection (step 6), crossover 

step 7), and mutation (step 8) operators, until the stopping crite- 

ion (evaluated in step 5) is met. This stopping criterion is usually 

elated to the execution time, to the number of generations, or to 

he quality of the obtained solutions in the population. We detail 

he stopping criterion used in Section 4 . 

Next, we describe the implementation of each of the key oper- 

tors within the GA: 

• Selection: this operator performs a selection of a subgroup of 

solutions within the current population to be crossed in the 

following step. We propose two different selection operators: 

i) elitism and ii) tournaments ( Miller et al., 1995 ). In the first

case, the solutions are selected by their quality conserving the 

best solutions of the population. In the latter, each tournament 

tries to find a balance between randomization and intensifica- 

tion. Particularly, it consists of selecting ten solutions at random 

and then picking the best solution within this group to be in- 
6 
cluded in the diverse group. Note that each chosen solution is 

extracted from the population, so a single solution cannot be 

selected twice. We explore the performance of the combination 

of these two criteria in Section 4.2 . 

• Crossover: each solution from the elitist group is crossed over 

with each solution from the diverse group, producing two off- 

spring solutions per crossover. We propose here the use of two 

different crossover operators inspired by the uniform crossover: 

i) based on random voting, and ii) based on weighted voting. 

Particularly, in both of them we divide each chromosome in dif- 

ferent chunks of the same size. The first chunk of each offspring 

is the first chunk of one of the parents, the second chunk of 

each offspring is the second chunk from one of the two parents, 

and so on. The difference between the random and weighted 

voting is that the probability of selection in the first case is 

equal for both chunks, while the probability in the second strat- 

egy is pondered depending on the quality of the solution (i.e., 

chunks of better solutions have a higher chance of being se- 

lected). In particular, the probability ( P ) of selecting a chunk 

i from the first parent ( p 1 ) in the weighted voting strategy is 

P i = 1 − (q 1 / (q 1 + q 2 )) , where q 1 is the quality of the first par-

ent and q 2 is the quality of the second parent. Finally, the size 

of the chunks considered for crossover is a search parameter 

that must be empirically adjusted. 

• Mutation: the offspring solutions obtained after the crossover 

are then mutated with a particular probability p 1 . Then, if a so- 

lution is selected to be mutated, a percentage ( p 2 ) of its genes

are mutated (modified by a random value). Notice that p 1 and 

p 2 are search parameters that must be experimentally adjusted 

and that will be studied in the experimental section. 

To maintain a constant number of solutions across generations, 

he next generation is built with the best solution from the pre- 

ious generation and the best solutions obtained from the off- 

pring. If the algorithm does not stop, this new generation be- 

omes the initial population for the next iteration and steps 5–8 

rom Fig. 4 are repeated. 
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It is important to remark that aggressive selection mechanisms 

such as the use of an elitist group, or the selection of the best 

olution for the next iteration) may speed up convergence, imped- 

ng sufficient exploration of the problem space and falling into lo- 

al optima regions ( Oliveto et al., 2018 ). Therefore, to decrease the 

onvergence rate, it is important to empirically adapt the parame- 

ers of the mutation operator. 

. Experimental results 

In this section, we present the experiments devoted to test the 

lgorithmic proposal introduced in Section 3 . First, we describe the 

ataset collected and used in our experiments ( Section 4.1 ). Then, 

e perform a set of preliminary experiments to adjust the con- 

gurable parts of our algorithm ( Section 4.2 ). In Section 4.3 , we

resent the results of the final experimentation performed, where 

e show the ability of our proposal to evade the targeted DL 

odel ( Raff et al., 2018 ). In Section 4.4 , we evaluate the utility of

sing the crafted AEs in the task of retraining a ML-based mal- 

are detector. We extend the evaluation of the proposed approach 

y comparing it with other methods over a dataset of modern ran- 

omware samples in Section 4.5 . Finally, we describe some limita- 

ions of our work in Section 4.6 . 

The targeted model ( MalConv ) consists of a convolution network 

rchitecture which returns a value in [0,1]. Its objective is to clas- 

ify PE files as benign or malicious based on their raw content. 

ote that we consider that values larger than 0.5 indicate that a 

ample must be classified as malware, as it is assumed in other 

roposals ( Kolosnjaji et al., 2018; Kreuk et al., 2018 ). It is also im-

ortant to remark that we used a pretrained implementation that 

as made publicly available at Anderson and Roth (2018) . We re- 

er the reader to Raff et al. (2018) for further details about the DL 

odel. The results obtained with the DL model have been favor- 

bly compared with four previous approaches in the state of the 

rt. Additionally, we have retrained the network with the gener- 

ted AEs and verified the existence of an increase of its robustness. 

inally, we evaluate the transferability of our proposal to commer- 

ial anti-viruses. 

All experiments were run on an Intel®Core TM i5-8250U CPU 

 1.60GHz, with 16 Gb RAM. The Operating System used was 

buntu 20.04.1 LTS, 64-bit. All implemented methods were coded 

n Python 3.7. We used the open source tools Radare2 2 and Pefile 3 

o manipulate the PE binaries. 

.1. Dataset 

To test our proposal, we collected a dataset of malicious sam- 

les from VirusShare ( Roberts, 2020 ). We first downloaded 42,658 

amples and then filtered out those files that were not in 32-bit PE 

ormat (.js,.html, 64-bit binaries, etc.). This resulted in 3540 PEs. 

n order to avoid duplicated or highly similar samples that could 

ias our results, we compared the similarity between each pair of 

amples using ssdeep ( Kornblum, 2006 ) and filtered out samples 

hat were almost identical, resulting in 3131 samples. Finally, we 

elected the samples that were detected as malicious by MalConv 

i.e., those with a prediction score larger than 0.5). The resulting 

ataset contained 2036 different 32-bit PE malicious samples. The 

verage and median scores (in the range [0,1]) for this dataset re- 

orted by MalConv were 0.9804 and 0.9999, respectively, with a 

tandard deviation of 0.0687. To determine the validity of the high 

etection rate obtained by MalConv , we checked if any of the col- 

ected samples were previously used for training the model (EM- 

ER dataset in Anderson and Roth (2018) ). We found that only 2 
2 https://rada.re/n/ . 
3 https://github.com/erocarrera/pefile . 

s  

i

o

t  

7 
ut of the 2036 samples were part of the training set. Therefore, 

his indicates a very large confidence in classifying the samples as 

alware. 

To validate the dataset for our proposal, we scanned it using the 

9 AV engines available in VirusTotal ( Chronicle, 2004 ). All sam- 

les but 3 were detected by at least one AV, and only 17 samples 

ere detected by less than 4 vendors. On average, the collected 

amples were detected by 54.81 different AVs. Therefore, we as- 

ume that the samples collected can be considered as malware. 

o check the diversity of malware types in the dataset, we ana- 

yzed the labels returned by the anti-virus engines and found that 

8.76 % of the samples are considered trojans, 20.00 % are consid- 

red worms, 14.65 % are labeled as viruses, 2.96 % are labeled as 

dware, 2.83 % are considered downloaders, and 0.35 % are labeled 

s ransomware. 

Finally, since our method alters the binary size, we analyzed 

he distribution of file sizes of the original samples. The size of the 

inaries ranges from 4096 bytes to 21 megabytes. The number of 

ections varies from 1 to 18, with an average of 4.58 sections per 

E file. Up to 49.69 % of the collected samples have one or more 

irtual sections, and at least 12.21 % seem to be packed. 

.2. Preliminary experiments 

Since the method introduced in Section 3 depends on several 

arameters that might influence the performance of the algorithm, 

e have conducted a set of preliminary experiments to study the 

ehavior of the most relevant ones. For these experiments, we 

se a reduced subset of representative instances composed by 100 

amples (4.91 % of the overall dataset) that were selected following 

he same distribution (in terms of size) than the original dataset. 

ll experiments in this section have been performed over this re- 

uced dataset. 

As far as the GA is concerned, we present here the experiments 

erformed to select the best crossover and mutation strategies (see 

ection 4.2.1 and 4.2.2 respectively). For the sake of simplicity, we 

o not report other preliminary experiments to determine the size 

f the population (set to 50 individuals) or the number of solu- 

ions selected for the crossover (set to 10 individuals). For the se- 

ection operators used in the GA, we explored a selection based on 

uality, also known as elitism (only the best solutions are chosen) 

nd a selection based on tournaments (each tournament consists 

f selecting ten solutions at random and the best among them is 

elected for the next iteration). Finally, we also explored the com- 

ination of these two strategies (choosing half of the solutions by 

litism and the other half by tournaments). We observed that the 

se of both selection operators in combination outperformed the 

se of each of them in isolation. This fact is commonly observed 

n the performance of Genetic Algorithms since it helps to find a 

alance between intensification (the best solutions are chosen) and 

iversification. Additionally, it is important to notice that we used 

 mixed stopping criterion for the algorithm, based on the quality 

f the solution found. Since we are trying to build an AE starting 

rom a malicious PE file, the GA halts at any iteration as soon as 

he modified sample is classified as non-malware. Alternatively, the 

ethod stops if the improvement found in the last 10 generations 

s smaller than 1 %, but letting the algorithm to run for at least 50

enerations. 

As for the amount of introduced space, we present here the ex- 

eriment performed to determine the influence of its location (see 

ection 4.2.3 ). Again, for the sake of simplicity, we avoid report- 

ng other preliminary experiments such as determining the initial 

pace introduced S (set to 1 % of the total size of the PE file); the

ncrease of unused space introduced at each iteration (set to 3 % 

f the total size of the PE file); or the maximum allowed size of 

he introduced space (set to 100 % of the total size of the PE file).

https://rada.re/n/
https://github.com/erocarrera/pefile
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Fig. 5. Representation of the average size increment and the average time needed to build an AE. 
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inally, in Section 4.2.4 , we report a comparison between the per- 

ormance of the GA and the performance of a random content gen- 

rator when optimizing the content of the introduced code caves. 

.2.1. Crossover 

First, we compared the 2 different crossover methods (random 

oting and weighted voting, denoted with an R and a W respec- 

ively) proposed in Section 3.2 , with 7 different configurations of 

he size of the chunks in which solutions were split to be crossed 

ver. Particularly, we decided to test both crossover methods by 

sing chunks of 1, 8, 16, 32, 64, 128, and 256 bytes. The resulting

4 methods have been named as: R-1, R-8, R-16, R-32, R-64, R-128, 

-256, W-1, W-8, W-16, W-32, W-64, W-128, and W-256. We per- 

ormed two different experiments to evaluate these methods. Note 

hat, in addition to the general parameters already set, we fixed 

he probability of mutation of a solution to a 75 %, and the per-

entage of genes to be mutated to the 0.2 % of the total number

f genes of the solution. These choices were made as a trade-off

etween diversity and time of convergence of the method. 

1. In the first experiment, for each sample we tried to find the 

smallest modified sample that was not detected by the target 

DL model. For this experiment we reported the average size of 

the total introduced spaces and the time needed to reach the 

evasion value. Note that in some cases the method was not able 

to evade the DL model. In those cases, we reported the total 

time used until the method stopped following the criteria intro- 

duced in Section 3 , and the maximum introduced size tried. In 

Fig. 5 we represent the results obtained by each method tested. 

Particularly, we depict the representation of the average size in- 

crement for all the modified instances and the averaged time 

needed to build the AEs. At a first glance, the shorter the time 

and the smaller the size, the better. However, there might be 

configurations of the algorithms which stands out for one of the 

metrics despite the fact that they are not so successful for the 

other. Additionally, in the legend of this figure we also present 

the percentage of evaded samples by each crossover method. In 

this case, we highlight two methods: “W-32” configured with 

the weighted voting and chunks of 32 bytes and “R-1” con- 

figured with a random voting and chunks of 1 byte. The for- 

mer was the one which achieved the smaller size increment, 

while the latter was the fastest method to process all the sam- 

ples. However, the method “W-32” achieved an evasion rate of 
8 
98.0 % (which is the largest among the tested ones), while “R- 

1” achieved an evasion rate of 97.0 %. These two configurations 

have been selected for a further evaluation. 

2. Given the previous results, the second experiment aims at ob- 

serving the convergence of the methods over time. We fixed 

the incremented size of the introduced spaces to the 5 % of the 

original samples size and we set the time limit for the execu- 

tion to 480 seconds. We reported the averaged best prediction 

confidence of the model every 30 seconds, for each of the com- 

pared variants of the methods studied. Particularly, in Fig. 6 we 

present the results for the 2 best variants previously selected 

(“W-32” and “R-1”). As we can observe, the behavior of both 

methods is very similar in terms of convergence. Considering 

that the evasion of the model is achieved when less than a 50 % 

of prediction confidence is reached, we find that both methods 

were able to reach this value in less than 90 seconds on aver- 

age. Also, we observe that the improvement in the evasion rate 

after 300 seconds can be considered negligible ( < 1 %). 

Despite the similarity of the two best configurations, we have 

onfigured the crossover method for the rest of our experiments 

ith the weighted voting strategy with chunks of 32 bytes, since 

t achieves a slightly better evasion rate. 

.2.2. Mutation 

As discussed in Section 3.2 , the mutation operator has two pa- 

ameters ( p 1 and p 2 ) that need to be adjusted experimentally. 

ere, we test different configurations of such parameters. In par- 

icular, p 1 indicates the probability of a solution in the popula- 

ion to be mutated, while p 2 indicates the percentage of genes in 

ach solution to be mutated. In Fig. 7 we report the results ob- 

ained for the combination of different values of p 1 with differ- 

nt values of p 2 . Specifically, we considered p 1 = { 10 , 20 , 40 , 60 }
nd p 2 = { 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 } . In that figure, we report the aver-

ge size increment in percentage of the AE and the time needed 

o reach it. Again, at a first glance, the smaller the size and the 

horter the time, the better. As we can observe in the figure, the 

ombination 10-1, which mutates the 10 % of the solutions with a 

utation rate of the 1 % of the genes, together with the combina- 

ion 40-1, which mutates the 40 % of the solutions with a mutation 

ate of the 1 % of the genes, are the two best combinations in the

xperiment. However, the averaged time needed by the combina- 

ion 40-1 is considerably larger than the time needed by the com- 
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Fig. 6. Evolution of the prediction score of the DL model over the time. 

Fig. 7. Representation of the average size increment and the average time needed to build an AE. 
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ination 10-1 (119 seconds between both methods), while the size 

ncrement is not very large (0.3 % between both methods). There- 

ore, we have selected the combination p 1 = 10 and p 2 = 1 for the

est of the experiments in the paper. 

.2.3. Influence of the location of introduced spaces 

Once all parameters of our GA have been adjusted, we test 

he influence of the location where the unused spaces are intro- 

uced. Recall that our technique exploits the possibility of insert- 

ng a block of unused space before each section in the PE file. All 

revious experiments have been performed by dividing the unused 

pace in equal chunks before each available section. In this exper- 

ment, we study the influence of the position of the introduced 

nused space within the PE file. In particular, we compare the pre- 

ious approach with the results obtained by introducing the same 

nused space in a single block before each section. 

The samples in the preliminary dataset have been classified de- 

ending on the number of sections in the PE file. Then, we have 

elected the subsets of samples with three, four, and five sections, 
9 
esulting in 10 samples with three sections, 19 samples with four 

ections, and 16 samples with five sections. 

In Table 1 we report the results of the aforementioned exper- 

ment grouped by subsets of instances (3 sections, 4 sections, or 

 sections). For each group, we report two columns with the to- 

al number of evaded samples (Evaded Samples) achieved and the 

verage CPU Time in seconds (Time(s)). Each row of Table 1 rep- 

esents the results of the experiment for a location of the unused 

pace tested. For instance, the first row corresponds to the situa- 

ion where the unused space has been introduced before Section 1 , 

nd so on. In general, we can observe that in most of the cases 

he position where the unused space was introduced did not affect 

onsiderably the final result in terms of the number of AEs crafted 

those able to evade the DL model). More specifically, some posi- 

ions seemed to be more suitable for a particular subset, but that 

as not consistent in others. Additionally, in the original design of 

alConv ( Raff et al., 2018 ), the authors chose a convolution net- 

ork architecture with a global max-pooling for the convolutional 

ctivations. Therefore, the model is supposed to find features re- 
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Table 1 

Number of evaded samples and average time of execution for each of the selected subsets in the Sec- 

tions importance preliminary experiment. 

3 sections (10 samples) 4 sections (19 samples) 5 sections (16 samples) 

Section Evaded samples Time (s) Evaded samples Time (s) Evaded samples Time (s) 

1 4 183.69 8 225.75 12 171.91 

2 5 217.46 8 244.45 11 206.15 

3 5 183.82 10 253.11 11 208.23 

4 - - 9 196.80 11 218.02 

5 - - - - 11 214.17 

All 5 177.57 8 199.73 11 224.12 

Table 2 

Comparison of the evasion obtained when using a GA or using a random content genera- 

tor. 

Method Time (s) Evaded Total Ev. rate (%) Size (%) 

Random content generator 1577.45 62 100 62.00 % 49.73 % 

GA 685.25 99 100 99.00 % 6.52 % 
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ardless of their location. Although the idea of testing different lo- 

ations within the PE file is not effective for this model, it might 

e a useful approach to test other networks. Also, we do not ob- 

erve a noticeable reduction of time depending on the strategy 

sed. Therefore, as we could not find significant differences with 

espect to the position of the unused space, and the number of 

ections differs among the samples, we keep the strategy of split- 

ing the introduced space equally before every section in the PE 

le, to design the most general method. 

.2.4. Comparison of the performance of the GA vs a random content 

enerator 

To validate the contribution of the GA in the optimization of 

he unused spaces introduced in the samples, we have compared 

ts performance with respect to a random generator for the con- 

ent. To do so, we replace the GA with a random bytes generator 

aintaining the same stopping criteria (i.e., number of iterations 

ithout improvement). Table 2 reports the obtained results. As it 

an be observed, the method using a random generator to deter- 

ine the cave content achieves a 62 % of evasion rate in 1577.45 s, 

hile the GA is able to achieve a 99 % of evasion in half the time.

dditionally, the size of the perturbations introduced was much 

arger in the case of the random generator (49.73 %) than in the 

ase of the GA (6.52 %). 

.3. Evaluation 

To evaluate our proposal, we test the performance of our ap- 

roach against MalConv and compare the results with those of the 

even previous methods identified in Section 2 ( Demetrio et al., 

019, 2020, 2021; Kolosnjaji et al., 2018; Sharif et al., 2019 ). 

For the sake of simplicity, the first comparison has been per- 

ormed over the preliminary dataset (100 samples). However, one 

f the methods tested ( Sharif et al., 2019 ) presents the restric- 

ion that it is only applicable to nonpacked samples. Therefore, to 

ave a fair comparison, we selected those instances suitable for all 

ethods, resulting in 37 samples out of the 100 samples from the 

reliminary dataset. We refer to this subset as the reduced prelim- 

nary dataset. 

In Table 3 we report the performance of each method over 

he aforementioned 37 instances. It is important to note that 

he results presented for the methods denoted as “Padding”

 Kolosnjaji et al., 2018 ), “Extend” ( Demetrio et al., 2020 ), “Shift”

 Demetrio et al., 2020 ), “Partial DOS” ( Demetrio et al., 2019 ), “Full

OS” ( Demetrio et al., 2020 ), and “Gamma” ( Demetrio et al., 2021 ) 

ave been obtained with the original implementation made avail- 
10 
ble in Demetrio and Biggio (2021) . Unfortunately, the code for the 

ethod denoted as “Sharif” was not available and the results have 

een obtained with our own implementation of the ideas proposed 

n Sharif et al. (2019) . For each of the considered methods included 

n Table 3 , we report four columns: the average time per sample 

in seconds) needed by each algorithm (Time (s)); the number of 

ot corrupted AEs which successfully evade MalConv (Evaded); the 

otal number of samples tested (Total); and the evasion rate (Ev. 

ate (%)). As we can observe from the obtained results, our pro- 

osal was very successful in the task of constructing an AE from 

he samples used. Particularly, it was able to produce an AE for all 

he samples tested, achieving an evasion rate of 100 %. However, 

his behavior needs to be corroborated over the whole dataset 

ince the samples in this reduced dataset were used to adjust the 

arameters of our proposal. On the contrary, the “Padding” method 

erformed the worst, since it was unable to craft a single AE. It 

as followed by “Sharif” with an evasion rate of 18.92 %, “Partial 

OS” with an evasion rate of 24.32 %, “Shift” with an evasion rate 

f 29.73 %, “Full DOS” with an evasion rate of 37.84 %, “Extend”

ith an evasion rate of 75.68 %, and “Gamma” with an evasion rate 

f 75.68 %. Moreover, it is remarkable that the method denoted as 

Sharif” was considerably slower than the rest of the approaches. 

otice that the authors of this method originally reported an eva- 

ion rate of 33.00 % in Sharif et al. (2019) . The differences found

n the performance might be partially explained by the threshold 

sed in their original experiments. Let us remember that we con- 

ider 0.5 as a threshold for MalConv (i.e., a sample is classified as 

alicious if the prediction score is greater than 0.5), as it was es- 

ablished in other previous proposals ( Kolosnjaji et al., 2018; Kreuk 

t al., 2018 ). In contrast, Demetrio et al. (2020) and Sharif et al.

2019) used greater thresholds in their original experiments. Note 

hat this eases the generation of AEs since it contributes to in- 

rease the evasion rate, but it might reduce the robustness of the 

roposal. 

In the next experiment, we extend our comparison to the whole 

ataset, formed by 2036 samples. Since the “Sharif” method is 

ot applicable to packed samples and its performance is not very 

ompetitive (either in time or evasion rate), we have removed it 

rom this experiment. In Table 4 we report the results of the com- 

arison of our approach with the other six methods of the state 

f the art (“Extend”, “Shift”, “Padding”, “Partial DOS”, “Full DOS”, 

nd “Gamma”). Again, for each method, we report the same four 

olumns aforementioned. This time, the evasion rate of the meth- 

ds decreased slightly with respect to the previous experiment, ex- 

ept for “Gamma” and “Full DOS”. Additionally, “Padding” was able 

o construct an AE in the current dataset. 
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Table 3 

Comparison of the evasion obtained by the different methods, over the reduced prelimi- 

nary dataset. 

Method Time (s) Evaded Total Ev. rate (%) 

Ours 493.77 37 37 100.00 % 

Gamma ( Demetrio et al., 2021 ) 89.63 29 37 75.68 % 

Extend ( Demetrio et al. 2020 ) 4.77 29 37 75.68 % 

Full DOS ( Demetrio et al., 2019 ) 9.47 14 37 37.84 % 

Shift ( Demetrio et al., 2020 ) 8.78 11 37 29.73 % 

Partial DOS ( Demetrio et al., 2019 ) 10.42 9 37 24.32% 

Sharif ( Sharif et al., 2019 ) 337866.63 7 37 18.92 % 

Padding ( Kolosnjaji et al., 2018 ) 9.46 0 37 0.00 % 

Table 4 

Comparison of the evasion obtained by the different methods, over the whole dataset. 

Method Time (s) Evaded Total Ev. rate (%) 

Ours 1017.68 1995 2036 97.99 % 

Gamma ( Demetrio et al., 2021 ) 96.81 1756 2036 86.25 % 

Extend ( Demetrio et al., 2020 ) 8.53 1211 2036 59.48 % 

Full DOS ( Demetrio et al., 2019 ) 10.38 804 2036 39.49 % 

Shift ( Demetrio et al., 2020 ) 14.04 401 2036 19.70 % 

Partial DOS ( Demetrio et al., 2019 ) 10.23 338 2036 16.60 % 

Padding ( Kolosnjaji et al., 2018 ) 11.88 1 2036 0.05 % 

Fig. 8. Histogram of the number of samples with an introduced size in the same interval. 
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Note that our proposal outperforms the other six in terms of 

vasion rate in this experiment, even though it is more time con- 

uming. However, we run the other six algorithms as long as they 

eep improving the solution, and we reported the time instant in 

hich they were unable to make any further improvement. Addi- 

ionally, we observed the evasion rate of our proposal at the same 

ime span than the rest of the methods (resulting in an evasion 

ate of 27.75 % in 9 seconds, 29.57 % in 12 seconds, and 31.04 %

n 14 seconds). In this sense, the “Extend” and “Gamma” methods 

resent a reasonable evasion rate in very short computing time. 

owever, we believe that the extra time needed by our proposal 

o achieve higher evasion rates than the rest of the methods is 

orth spending from an attacker perspective, since none of these 

pproaches (either ours or the ones in the state of the art) are de- 

igned to be run on a real-time scenario. Furthermore, our method 

s easily parallelizable, since the exploration for different sizes of 

nused space can be performed at the same time. 

Our next experiment is devoted to analyze the increase in the 

ize needed by our algorithmic proposal to produce an AE. In 

ig. 8 , we report an histogram which classifies the modified sam- 

les able to produce an AE, when the introduced unused space is 
11 
maller than 20 % of its original PE file (1,879 out of 2,036). The 

istogram reported includes four bars, where each bar represents 

n interval of the size (in %) of the unused space introduced. Par- 

icularly, we report those AEs which needed the introduction of an 

nused space with a size smaller than the 20 % of its original PE 

le, in steps of 5 %. Notice that in 1503 samples, the algorithm 

eeded less than 5 % of unused space to produce an AE. Further- 

ore, 1117 samples out of 2036 needed less than 1 %. On the other 

and, only 118 samples needed an increase larger than 20 % of the 

riginal PE file, while the method was unable to produce an AE in 

1 samples. 

Finally, our last experiment is devoted to test the influence 

n the detection rate of the proposed technique against commer- 

ial anti-viruses. In particular, we have tested the original 2036 

amples (and their corresponding modified versions for each of 

he compared methods) against the anti-viruses available at the 

latform VirusTotal ( Chronicle, 2004 ) on September, 2021, and re- 

orted the average number of detections. On average, the original 

amples were detected by 57.12 anti-viruses (out of 79). On the 

ther hand, the modified samples obtained by any of the com- 

ared methods have reduced the number of average detections. 
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Fig. 9. Number of binaries detected by the same number of anti-viruses at VirusTotal ( Chronicle, 2004 ). 
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4 VirusTotal Academic share is a dataset of malware samples collected and cu- 

rated by VirusTotal, which is available for academic research after a vetting process. 
articularly, the Padding method is the one with the smallest per- 

ormance (with an average number of 56.92 detections) and the 

amma method is the one with the largest performance (with an 

verage number of 45.28 detections). Our proposal achieved an in- 

ermediate performance with an average number of 51.76 detec- 

ions, which is very similar to the rest of the tested methods. 

In Fig. 9 , we illustrate the number of samples that were de- 

ected as malicious by the same number of anti-viruses for: the 

riginal samples, our proposal, and the method which further re- 

uced the number of average detections (Gamma). Comparing the 

ehavior of the anti-viruses in the platform over the original and 

odified samples for each method, we can see a shift in the 

raphic, illustrating the aforementioned reduction in the number 

f detections of the modified samples. 

Observing these results, we can conclude that all compared 

echniques seem to perform similarly in this matter. However, it 

s important to notice that anti-viruses use several techniques si- 

ultaneously to detect malware. Then, we can not assure which 

f them are actually the ones which triggered the detection, since 

his information is not available. Furthermore, the dataset used in 

ur evaluation is composed of well-known viruses, therefore it is 

robable that techniques based on signatures are responsible for 

lassifying the samples as malware. 

Since the differences obtained between our proposal and the 

riginal samples do not seem to be very large, we performed a 

ann-Whitney U test to determine if the differences found were 

tatistically significant. This test is a non-parametric test to com- 

are two non-pairwise samples. The obtained results indicate that 

he difference in the number of detections before and after the 

odification of the samples is statistically significant with a p- 

alue < 0.05. 

.4. Evaluation of adversarial retraining 

In this section, we evaluate the utility of using the crafted AEs 

n the task of retraining a ML-based malware detector. In partic- 

lar, we have used the original code provided by Anderson and 

oth (2018) to perform the retraining of MalConv . From the 1997 

Es generated with our method, we have discarded those obtained 

rom the samples in the preliminary dataset, resulting in 1898 AEs 

hat will be used for retraining. Additionally, we have provided the 

ame number of benign binaries for the training of the network, 

hich have been randomly collected from the PE files present 

n a clean Windows 10 operating system with several programs 
12 
nstalled (e.g., PyCharm IDE, Visual Studio Code, Google Chrome, 

tc.). In each case, we indicated to the network if the sample was 

enign or malicious. Notice that we have used the same propor- 

ion of benign/malicious samples as in the original dataset used in 

nderson and Roth (2018) . 

Then, we have tested the retrained network by performing 

hree different experiments. First, we have evaluated the detection 

ate of the AEs not used for training purposes. Notice that none of 

hose AEs are classified as malware when using the original net- 

ork. However, when using the retrained network, 95 out of 99 

les are detected as malicious. 

In our second experiment, we have applied our proposal to gen- 

rate AEs from the original samples in the preliminary dataset, but 

argeting the retrained MalConv model instead of the original one. 

ith the original network, our method was able to craft an AE 

rom 99.00 % of the samples. However, when using the retrained 

alConv network, the method was able to craft a new AE only 

rom 21.00 % of the samples. Furthermore, the size needed to craft 

 successful AE was larger when targeting the retrained model (i.e., 

n average size of 5.80 % of the original sample in the case of 

he original network, versus 16.76 % in the case of the retrained 

ne). Finally, the average running time increased from 685.25 s to 

2,486.62 s. 

In our third and final experiment, we have evaluated the re- 

rained model over a set of 903 collected malicious samples that 

ere not detected by MalConv originally and, therefore, were dis- 

arded from our dataset in Section 4.1 . The new retrained model 

as able to detect 642 out of 903 samples, which represents 

1.10 % of the tested samples. 

The obtained results indicate that the AEs crafted from existing 

alware with our method can help to retrain ML-based malware 

etectors with the aim of making them more robust. 

.5. Evaluation with ransomware samples 

Given the current threat landscape, we now evaluate the accu- 

acy of our approach over a set of modern ransomware samples 

vailable in the VirusTotal Academic share 4 . We selected samples 

ublished in the VirusTotal Academic share during 2021, which 

ere categorized as ransomware, and were in the correct format 

or our study. This resulted in a dataset of 451 ransomware PE files. 
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Table 5 

Comparison of the evasion obtained by the different methods over a dataset of ran- 

somware samples published in VirusTotal Academic share. . 

Method Time (s) Evaded Total Ev. rate (%) 

Ours 3003.05 366 451 81.15 % 

Gamma ( Demetrio et al., 2021 ) 111.44 288 451 63.86 % 

Full DOS ( Demetrio et al., 2019 ) 11.03 265 451 58.76 % 

Extend ( Demetrio et al., 2020 ) 7.42 195 451 43.24 % 

Partial DOS ( Demetrio et al., 2019 ) 9.38 121 451 26.83 % 

Shift ( Demetrio et al., 2020 ) 10.18 92 451 20.40 % 

Padding ( Kolosnjaji et al., 2018 ) 9.20 0 451 00.00 % 
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Table 5 shows the results obtained with our proposal and with 

he state-of-the-art methods previously discussed in Section 4.3 . 

or each of the considered methods we report four columns: the 

verage time per sample (in seconds) needed by each algorithm 

Time (s)); the number of not corrupted AEs which successfully 

vade MalConv (Evaded); the total number of samples tested (To- 

al); and the evasion rate (Ev. Rate (%)). As it can be observed, 

ome methods (our proposal, Gamma, Extend, and Padding) have 

educed their effectiveness on this dataset, while others have 

hown a better performance (Full DOS, Partial DOS, and Shift). 

he evasion rate of Full DOS in comparison with the evaluation 

f Section 4.3 is particularly significant, with an improvement of 

9.27 %. Although the top methods have reduced their effective- 

ess on this dataset, the difference between the two best meth- 

ds, ours and Gamma, has increased from 11.74 % to 17.29 %. These 

esults complement the evaluation of the methods presented in 

ection 4.3 and further validate the advantages of our method. 

.6. Limitations and threats to validity 

Our results are promising but might be limited by either the 

ize or the content of the dataset used for our experimentation. 

espite our effort s to guarantee representativeness and accuracy in 

ur collection methodology, the resulting dataset might still con- 

ain unknown biases. In this regard, we tried to analyze if our 

ethod performs particularly better or worse on specific types 

f malware. In particular, we analyzed the following properties 

o identify any particularities among the samples for which our 

ethod did not produce AEs: size, submission date to VirusTo- 

al, number of sections, presence of virtual sections, presence of 

nown packers, and type of malware. Unfortunately, we were un- 

ble to reach any conclusive findings. Similarly, after analyzing the 

amples for which our method does not successfully generate AEs, 

e were unable to identify any common characteristics among 

hem. This lack of explainability is common to both detectors and 

utomatic methods to generate AEs: our model also behaves as a 

lack box and it is not possible to determine which part of the in-

ut perturbations produce the actual improvement in the results. 

Despite the fact that MalConv has been commonly used for 

valuation purposes on related work, some weaknesses have been 

ighlighted that might affect the validity of the obtained results 

 Kr ̌cál et al., 2018; Le et al., 2018 ). These shortcomings might be

ddressed by using a different DL model. However, although there 

xist previous works available using ML approaches for malware 

etection, they are not focused on raw bytes or do not offer a pre-

rained model ( Gibert et al., 2018, 2020; Qi et al., 2021 ). We leave

his question as future work and make our code and data publicly 

vailable to facilitate its testing with other trained models. 

The comparison we do with commercial AV engines in Virus- 

otal must be taken in light of known shortcomings of the use of 

irusTotal for academic research, as it is pointed out in Peng et al. 

2019) and Zhu et al. (2020) . This includes both observational bi- 

ses (e.g., different commercial AVs relying on the same underlying 

etection engine) and AV configuration issues, among others. 
13 
. Conclusions 

In this paper, we have proposed a general method to craft Ad- 

ersarial Examples for Machine Learning-based malware detectors. 

n particular, we focus on models which operate on raw bytes. Our 

roposal is based on a black-box setting, where the algorithm can 

bserve the output of the Machine Learning detector. The system 

eceives a binary as input and produces a score as output. Specifi- 

ally, we propose a two-phase method to design the AEs. First, we 

esign a method to introduce unused spaces, known as code caves, 

nside a PE file which do not alter the functionality of the origi- 

al binary. Moreover, the size of these unused spaces is dynami- 

ally determined. Second, the content of the introduced spaces is 

ptimized with a Genetic Algorithm. Therefore, the importance of 

he proposed method is related to its ability to determine, for each 

ndividual code cave, the smallest size needed, the right location, 

nd the adequate content, that will result in AEs of higher qual- 

ty. Furthermore, we handle the previous tasks as an optimization 

roblem and show that the use of efficient fine-tuned optimization 

echniques can solve them with a better evasion rate than previ- 

us methods. To do so, the proposed approach has been evaluated 

n a well-known state-of-the-art Deep Learning architecture, Mal- 

onv , achieving an evasion rate of 97.99 %. Moreover, we favorably 

ompared our approach with seven methods available in the state 

f the art for the same task. We also showed that the increment 

n the size needed to craft an AE with the proposed procedure is 

ess than 1 % in more than half of the tested samples. In addi- 

ion, given the current threat landscape, we evaluated our method 

ver a set of modern ransomware samples, achieving similar 

esults. 

Then, we tested the crafted AEs over a set of commercial anti- 

iruses, obtaining an average decrease of 5 detections. This fact 

uggests the possibility of transferability of our proposal to the 

ndustry. Thus, this method could be used in combination with 

ther approaches to further reduce the detection rate of commer- 

ial anti-viruses. 

Finally, we used the generated AEs to retrain the original model, 

esulting in an increase of its detection rate. Then, we used the re- 

ulting model to reevaluate the performance of our proposal. In 

his experiment, we observed an increase in the difficulty of craft- 

ng successful AEs (either in time and size). Furthermore, the re- 

rained model detected malware samples that were not detected 

y MalConv originally. These results indicate that retraining ML 

alware detectors with the generated AEs might increase the ro- 

ustness of the ML models. However, the impact of the technique 

ight be limited by the number of different techniques used for 

he generation of AEs and the number of ML models evaluated. An 

nteresting future research line would be exploring the evaluation 

f Adversarial Retraining including other AE generation methods 

nd further ML models. 

Despite the fact that the particular technique proposed in this 

aper is applied for raw bytes, the general idea of performing a 

erturbation of a sample and, based on heuristic optimization, de- 

ermining the size, location, and content of the perturbation can 
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e extended to target either other ML-based detectors or other file 

ormats. 

ML-based malware detectors in isolation are not currently the 

efinitive solution in the malware detection domain. However, they 

re already playing an important role in the detection pipeline. In 

his context, the general method proposed in this paper to design 

Es can be easily used to enhance the performance of anti-virus 

oftware. Specifically, it could help to increase their robustness via 

dversarial retraining. 

To improve the reproducibility of our experiments and to foster 

uture research in this area, we make publicly available both the 

ource code and the data used in this work. 
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