
Computers & Security 116 (2022) 102643

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

TC 11 Briefing Papers

Optimization of code caves in malware binaries to evade machine

learning detectors

Javier Yuste

a , Eduardo G. Pardo

a , ∗, Juan Tapiador b

a Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
b Universidad Carlos III de Madrid, Avda. de la Universidad, 30, Leganés, 28911, Spain

a r t i c l e i n f o

Article history:

Received 30 June 2021

Revised 22 December 2021

Accepted 5 February 2022

Available online 8 February 2022

Keywords:

Malware

Evasion

Machine learning

Adversarial example

Genetic algorithm

a b s t r a c t

Machine Learning (ML) techniques, especially Artificial Neural Networks, have been widely adopted as a

tool for malware detection due to their high accuracy when classifying programs as benign or malicious.

However, these techniques are vulnerable to Adversarial Examples (AEs), i.e., carefully crafted samples de-

signed by an attacker to be misclassified by the target model. In this work, we propose a general method

to produce AEs from existing malware, which is useful to increase the robustness of ML-based models.

Our method dynamically introduces unused blocks (caves) in malware binaries, preserving their origi-

nal functionality. Then, by using optimization techniques based on Genetic Algorithms, we determine the

most adequate content to place in such code caves to achieve misclassification. We evaluate our model

in a black-box setting with a well-known state-of-the-art architecture (MalConv), resulting in a successful

evasion rate of 97.99 % from the 2k tested malware samples. Additionally, we successfully test the trans-

ferability of our proposal to commercial AV engines available at VirusTotal, showing a reduction in the

detection rate for the crafted AEs. Finally, the obtained AEs are used to retrain the ML-based malware

detector previously evaluated, showing an improve on its robustness.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

b

(

m

i

H

n

s

h

c

p

i

w

G

s

(

t

P

B

v

n

m

b

s

d

w

n

r

M

(

p

m

s

2

h

0

. Introduction

The number of malicious software (malware) samples actively

eing used has grown exponentially over the last two decades

 Aleshkin and Lesko, 2019). Due to the high return of invest-

ent of this kind of software, cybercrime has become a prof-

table business (Anderson et al., 2019; Connolly and Wall, 2019;

uang et al., 2018). In this new scenario, traditional detection tech-

iques, mainly based on signatures (Gandotra et al., 2014) and ob-

erved behavior (Bazrafshan et al., 2013; Brumley et al., 2008),

ave been shown unable to deal with the current volume and

omplexity of the threats. Signature-based techniques search for

reviously known malicious patterns. On the other hand, behav-

oral techniques try to detect malware based on its interactions

ith the system at runtime through the use of heuristic rules.

iven the overwhelming number of never-seen-before malicious

amples to be analyzed, recent progresses in Artificial Intelligence

AI) have been incorporated to tackle the problem of malware de-

ection (Sahay et al., 2020; Xue et al., 2019).
∗ Corresponding author.

E-mail addresses: javier.yuste@urjc.es (J. Yuste), eduardo.pardo@urjc.es (E.G.

ardo), jestevez@inf.uc3m.es (J. Tapiador).

D

e

k

s

ttps://doi.org/10.1016/j.cose.2022.102643

167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article u
Although the use of AI for malware detection is not new (El-

akry, 2010; Firdausi et al., 2010; Shah et al., 2013), its recent ad-

ances, mainly based on the use of Machine Learning (ML) tech-

iques, have contributed to increase the performance of the afore-

entioned task. Generally speaking, ML techniques are usually

ased on the construction of models based on the analysis of data

amples. These models represent an abstraction of the application

omain with the aim of classifying new instances. Therefore, they

ork under the assumption that new data from the same context,

ot yet evaluated, will follow the same statistical distribution rep-

esented in the model.

Artificial Neural Networks (ANN) have become a very successful

L technique in many different tasks. Specifically, Deep Learning

DL) architectures (i.e., a particular type of ANN) have been ap-

lied in contexts such as image recognition (Simonyan and Zisser-

an, 2014), natural language processing (Young et al., 2018), voice

peech recognition (Das, 2019), or malware detection (Sahay et al.,

020), among others.

Despite its effectiveness when applied to malware detection,

L cannot solve all problems in this domain nor it is ex-

mpt from shortcomings (Gibert et al., 2020b). One of the best-

nown weaknesses is their vulnerability against a class of eva-

ion techniques commonly referred to as Adversarial Examples
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102643
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102643&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:javier.yuste@urjc.es
mailto:eduardo.pardo@urjc.es
mailto:jestevez@inf.uc3m.es
https://doi.org/10.1016/j.cose.2022.102643
http://creativecommons.org/licenses/by/4.0/

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

(

a

t

l

t

C

d

e

i

m

p

d

u

d

b

2

p

e

d

a

o

r

a

r

f

s

w

d

t

e

S

t

2

t

A

s

2

w

n

f

i

(

i

2

(

p

b

i

c

p

c

f

e

t

b

a

s

t

fi

(

a

T

s

l

l

f

R

(

e

2

d

2

p

t

t

b

m

t

T

e

o

T

t

b

d

T

l

(

e

i

a

p

t

m

m

w

n

m

p

f

o

e

a

d

m

U

a

fi

p

l

b

AEs) (Papernot et al., 2016). AEs are carefully crafted inputs that

re misclassified when provided to DL models. Due to the hos-

ile nature of the environments in which malware detection so-

utions are deployed, AE attacks and defenses have recently been

he subject of extensive research (two reviews can be found in

hakraborty et al. (2018) ; Yuan et al. (2019)). Within the malware

etection field, an AE has to be designed in such a way that it

vades the detection capabilities of the DL network while preserv-

ng its malicious functionality.

The main contribution of this paper is the proposal of a new

ethod to derive AEs from existing malware binaries that were

reviously detected by a DL model. Furthermore, our method pro-

uces fully functional AEs in a reasonable amount of time. To eval-

ate the performance of our proposal, we tested the samples pro-

uced by our method against a state-of-the-art malware detector

ased on DL (MalConv) that was recently proposed (Raff et al.,

018). The obtained results are compared with seven previously

roposed approaches (Demetrio et al., 2019, 2020, 2021; Kolosnjaji

t al., 2018; Sharif et al., 2019), and also with commercial anti-virus

etectors. Finally, the obtained AEs have been used to retrain the

forementioned ML-based malware detector, showing an improve

n its robustness. Our technique can be used both to evaluate the

obustness of current DL models used for malware detection, and

s a tool to generate new samples that can be used for adversarial

etraining, which might result in stronger DL models. In order to

acilitate the reproducibility of our results and to foster further re-

earch in this area, we make public the code and data used in this

ork 1 .

The rest of the paper is organized as follows. In Section 2 we

iscuss the state of the art in the generation of AEs and identify

he key research gaps. In Section 3 we describe our method to gen-

rate AEs, which we experimentally validate in Section 4 . Finally,

ection 5 concludes the paper by summarizing our key contribu-

ions.

. Related work

We next review related works in the areas of malware detec-

ion based on machine learning techniques and the generation of

dversarial Examples. Then, we identify the most outstanding re-

earch gaps.

.1. Machine learning based malware detection

ML is increasingly playing an important role in the field of mal-

are detection, especially in combination with traditional tech-

iques. In this area, there exists a heterogeneous corpus of input

eatures to DL models: Application Programming Interface (API)

mports (Saxe and Berlin, 2015), API calls collected at runtime

 Kolosnjaji et al., 2016), malware images (Liu et al., 2020), behav-

or (Smith et al., 2020), headers of files (Radwan, 2019; Raff et al.,

017), permissions (Hojjatinia et al., 2019) or even whole binaries

 Raff et al., 2018). Regardless of the actual features provided as in-

ut to the network, all these models produce as output either a

inary result (malware/benign), or a multiclass result distinguish-

ng the type or family of the malware sample.

ML approaches for malware detection can also be classified ac-

ording to the method used to extract the features from the sam-

les that will be used as input data. Static analysis approaches

ollect features from the sample’s code and other software arte-

acts, without running the program (Hojjatinia et al., 2019; Lee

t al., 2019). Dynamic analysis approaches rely on features ob-

ained by running the sample (Kolosnjaji et al., 2016), often in
1 https://github.com/JavierYuste/Optimization- of- code- caves- in- malware-

inaries- to- evade- Machine- Learning- detectors .

t

i

w

b

2
n instrumented sandbox. Some approaches use a combination of

tatic and dynamic approaches (Wang et al., 2017). Feature extrac-

ion techniques (either static or dynamic) present the common dif-

culty that they need a system devoted to extract the features

 Aghakhani et al., 2020).

A recent proposal introduces an alternative approach that

voids the need of the feature-extraction step (Raff et al., 2018).

he authors propose a DL model that receives the whole binary

ample (i.e., its raw bytes) as an input. This work inspired simi-

ar featureless approaches (Kr ̌cál et al., 2018; Le et al., 2018; Mil-

ar et al., 2020) . Additionally, it has been used as a comparison

ramework (Anderson and Roth, 2018; Coull and Gardner, 2018;

oth et al., 2019) and also as a target for the design of AE attacks

 Demetrio et al., 2019, 2020, 2021; Kolosnjaji et al., 2018; Kreuk

t al., 2018; Sharif et al., 2019).

.2. Adversarial evasion attacks

Attacks on machine learning have been known for more than a

ecade (Biggio et al., 2013; Biggio and Fabio, 2018; Szegedy et al.,

014). AEs attacks have been classified in different categories de-

ending on the knowledge that the attacker has about the model

ested (Anderson et al., 2017): i) the attacker has fully access to

he model; ii) the attacker does not have access to the model,

ut it is able to try it and receive the scores provided by the

odel as a response; and iii) the attacker can only probe the de-

ector and receive labels (e.g., malicious or benign) in response.

he first category can be considered as a white-box approach and

ases the development of efficient AEs. On the other hand, the sec-

nd and third categories can be classified as black-box approaches.

hese approaches are harder for the attackers, but they are also

he most realistic scenarios. Recently, some theoretical efforts have

een made towards the discovery of the desired properties in the

esign of AE attacks (Amsaleg et al., 2021; Pierazzi et al., 2019).

he use of AEs has also been suggested in previous works in the

iterature as a method to increase the robustness of DL models

 Chen et al., 2017; Hashemi and Mozaffari, 2019).

In this paper, we introduce a method for designing AEs from

xisting malicious Portable Executable (PE) binaries by introduc-

ng perturbations in the binary. In contrast to other domains such

s image recognition, the generation of AEs in malware detection

resents harder constraints. Specifically, the modification of a func-

ional binary (i.e., compiled code) is prone to corruption, which

ight result in a non-functional binary. Valid methods in this do-

ain must be able to generate AEs that evade the target DL net-

ork while preserving their semantics and execution integrity. We

ext discuss the most relevant techniques proposed in this area.

A common strategy for the introduction of perturbations in

alware binaries consists of appending data at the end of the sam-

le. This is a safe way to introduce perturbations since the original

unctionality remains untouched. This is due to the fact that the

riginal code and data sections are not modified, and the refer-

nces contained within the code do not need to be updated. The

ppended data is still readable by the DL model (i.e., the malware

etector) and, furthermore, can be freely edited with the aim of

inimizing the probability that the binary is classified as malware.

sing this technique, Kolosnjaji et al. (2018) propose a white-box

pproach based on appending carefully crafted bytes at the end of

les, which are optimized via a direct gradient-based attack. Their

roposal is tested against MalConv in Kolosnjaji et al. (2018) . Simi-

arly, Kreuk et al. (2018) propose to append bytes at the end of PE

inaries to achieve misclassification, using a surrogate loss function

o optimize the introduced bytes in a white-box approach. When

ndicating that both proposals are tested in a white-box approach,

e mean that the internal information of the DL model (i.e., num-

er of layers, number of neurons, weights, etc.) is known to the

https://github.com/JavierYuste/Optimization-of-code-caves-in-malware-binaries-to-evade-Machine-Learning-detectors

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

a

t

a

a

t

i

b

d

i

s

a

t

s

m

e

m

m

P

P

l

t

T

k

g

I

t

T

p

t

w

A

o

s

b

T

q

b

l

a

b

h

b

fi

2

t

t

m

i

s

t

c

n

f

a

c

q

p

o

t

3

m

O

i

o

p

b

l

n

o

c

D

t

a

t

a

b

t

o

t

i

fi

D

w

3

o

n

t

s

p

m

p

r

r

i

1

(

c

F

i

o

3

m

e

o

p

e

p

c

(

t

t

t

m

o

T

i

ttacker, who uses this knowledge to optimize the introduced per-

urbations.

A different approach in Sharif et al. (2019) proposes a mech-

nism to replace recognized instructions with semantically equiv-

lent code. Note that, when working with PE binaries, separating

he data from the code is a nontrivial task. This approach is lim-

ted by the number of available instructions to be replaced, and

y the number of available modifications for each instruction. Ad-

itionally, the code to be replaced cannot be self-modifiable (i.e.,

nstructions should not be modified at runtime). To address these

hortcomings, the approach also uses a displacement technique, re-

rranging code sequences and inserting new ones, which allows

hem to further modify the samples at the cost of increasing their

ize. The proposal is also tested against MalConv and other DL

odels in Sharif et al. (2019) . The authors use the structural prop-

rties of the network in a white-box approach, but also test their

ethod in a black-box setting where only the output score of the

odel is known.

In Demetrio et al. (2019) , the authors propose a method, named

artial DOS, which modifies some bytes in the DOS header of

E files, with the objective of generating an AE. This approach is

ater revisited in Demetrio et al. (2020) , where the authors ex-

end Partial DOS by modifying additional bytes of the DOS header.

hey called this extension Full DOS. This is, to the best of our

nowledge, the first time that a metaheuristic (i.e., a Genetic Al-

orithm) was used to optimize the content of the modified bytes.

n Demetrio et al. (2021) , the same authors explore an alterna-

ive method, named GAMMA, to craft AEs from existing malware.

he technique relies on the injection of benign content in different

arts of a PE file. The authors report the differences in the detec-

ion rate of common detectors from VirusTotal (Chronicle, 2004)

hen comparing the original malware samples and the generated

Es.

Other techniques to generate AEs in this domain take advantage

f memory alignment (Kreuk et al., 2018; Szor, 2005). Particularly,

ections in PE binaries often contain padding bytes (i.e., not used

ytes) that are known as code caves in the literature (Szor, 2005).

hese spaces are suitable to be modified and they have been fre-

uently used to trojanize legitimate applications, since the pertur-

ations introduced there may be hardly recognizable. While the

ocation of these spaces might be relatively easy to identify, the

vailable space is very limited. The use of code caves is exploited

y Demetrio et al. (2020) but they only use the space between the

eaders and the sections in the PE binary. This proposal is com-

ined with the modification of unused bytes in the headers of the

le.

.3. Key research gaps

ML techniques are used as a key component in malware detec-

ors in combination with traditional techniques. One key strategy

o make such ML techniques more robust is to investigate the auto-

atic generation of AEs in black-box settings. Previous works have

dentified code caves as a powerful vehicle to generate AEs in these

ettings, and some authors have explored the use of optimization

echniques to automatically determine the content of such code

aves.

Our work builds on and improves previously proposed tech-

iques in this area by presenting a method that can determine,

or each code cave: the smallest size needed, the right location,

nd the adequate content. In doing so, we introduce a more pre-

ise formulation of the problem that will result in AEs of higher

uality than previous techniques. Furthermore, we couch the three

revious tasks as an optimization problem and show that the use

f efficient optimization techniques can solve them in a reasonable

ime.
3
. Our proposal

In this paper, we explore the design of AE attacks against DL

odels which receive raw bytes as input in a black-box setting.

ur goal is to propose a new method to design AEs from exist-

ng malware binaries in the PE format commonly used in Windows

perating systems (Singh, 2009). Since modifying bytes in a com-

iled PE binary is prone to corrupt its functionality, our method is

ased on introducing additional bytes that can be freely manipu-

ated without altering the original behavior of the PE file. We can-

ot know in advance which bytes have a larger influence on the

utput, nor which content is more suitable to produce missclasifi-

ation, since we are not assuming any knowledge about the target

L model to be evaded. Therefore, we need an exploratory method

hat can introduce bytes at different locations within the PE file

nd modify them in a systematic way. Based on these assump-

ions, our proposal consists of two main phases. First, we build

 modified sample (see Section 3.1) in order to introduce unused

locks in the PE file, guaranteeing that the original functionality of

he sample remains untouched. Second, we optimize the content

f the previously introduced blocks (see Section 3.2) to minimize

he probability of detection by the considered model.

The aforementioned method is summarized in Fig. 1 . First, we

ntroduce a predefined unused space before each section in the PE

le (step 1). Then, we test if the sample is detected by the target

L model (step 2). If not, the algorithm stops (step 7). Otherwise,

e proceed to optimize the content of the introduced spaces (step

). If the modified sample is not detected by the target DL after the

ptimization phase (step 4), and the size of the unused space is

ot larger than a predefined threshold which will be described in

he following sections (step 5), we increase the size of the unused

pace (step 6) and we start a new iteration of the algorithm. This

rocedure is repeated until an AE is crafted (i.e., it evades the DL

odel) or the total size of the introduced space is larger than the

redefined threshold.

We note that this approach to build AEs based on code caves

efines previous work by handling together three related but sepa-

ate tasks: (1) determining dynamically the smallest size needed to

ntroduce one or more code caves for evading a ML detector (steps

 and 6 in Fig. 1); (2) studying the right location for the code caves

step 1 in Fig. 1); and (3) introducing the adequate content of the

ode caves by using an advanced optimization technique (step 3 in

ig. 1). In the latter, we also illustrate the importance of perform-

ng a fine-tuning of the optimization technique in comparison with

ther approaches.

.1. Modification of samples

This procedure starts with a sample consisting in a functional

alicious PE file. Each PE file can be divided in two parts: head-

rs and sections. Headers contain the information necessary for the

perating system to load the PE file in the memory of the com-

uter. On the other hand, sections contain the code and data nec-

ssary for the correct execution of the PE file.

The operating system loader is responsible for creating a new

rocess, reserving some address space in memory for this pro-

ess, and mapping every section from the PE file in that space

 Yosifovich et al., 2017). In a general overview, the operating sys-

em reads the headers from the PE file which contain the sec-

ions table that specifies, for each section, the location of the sec-

ion on the disk and, additionally, the space that will be needed in

emory at execution time.

It is important to notice that the amount of space used in mem-

ry must be multiple of the page size of the operating system.

herefore, some unused space might be available in the last page

n memory. Similarly, the sections in the PE file are stored on the

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Fig. 1. Activity diagram of the proposed method.

d

t

i

s

s

t

s

t

i

t

t

t

s

s

i

n

b

a

t

t

c

f

t

t

s

t

i

g

s

o

t

t

r

m

d

s

a

u

(

i

q

e

t

s

i

isk in positions aligned with the page size, which is indicated in

he header of the PE file. Therefore, as it was the case of the space

n memory, there might be some available space at the end of each

ection stored on disk. This space has been historically exploited to

tore malicious code within legitimate applications (Szor, 2005).

Since the headers specify the addresses and sizes of each sec-

ion, the mapping process from disk to memory can be controlled

uch that not everything is copied from disk. This fact opens an in-

eresting possibility for our goal: we may introduce unused spaces

n between sections that will not be loaded in memory. Although

his technique is not new (Demetrio et al., 2020; Kaspersky, 2005),

o the best of our knowledge, it has not yet been fully exploited

o generate AEs for malware detection. The introduction of unused

pace has been only explored between the headers and the first

ection. In particular, we extend the current proposals by creat-

ng code caves in between sections. Furthermore, we propose a dy-

amic widening of the existing available space, depending on the

inary explored, with the aim of constructing a successful AE.

Fig. 2 a shows an example of an original PE file structure on disk

nd the associated memory mapping. As shown in the figure, sec-

ions of the PE file are loaded in memory in the same order as

hey are stored on disk. Note also that some sections might oc-

upy a larger space in memory than on disk. Our proposed method

or introducing modifications in a sample is based on exploiting

hese observations. The modifications consist of unused space on

he disk (in between sections) that can be modified in the next

tep without corrupting the sample. Fig. 2 b shows an example of

he modification of the PE file depicted in Fig. 2 a. In this case, we

llustrate the introduction of 4 slots of unused space (in rectan-

les with orange dashed lines) of different sizes, one before each

ection. Note that the introduced slots are not mapped into mem-

ry. Therefore, the bytes introduced in those spaces do not affect
4
he running time nor the behavior of the original program. Since

he introduced bytes are never executed, they are meaningless for

unning purposes and do not need to represent valid instructions.

The method proposed to introduce unused spaces can be sum-

arized as follows:

1. Parse the header of the PE file.

2. Extract the starting address of each section on disk.

3. Choose a target section t . Let A t be its starting address on disk.

4. Determine the size S t of the code cave to introduce before sec-

tion t .

5. For every section i in the PE binary starting at a position A i such

that A i ≥ A t , modify the starting address in the header of the PE

file (i.e., modify the corresponding entry in the sections table)

such that the new starting address is A

′
i
= A i + S t .

6. Shift the content at disk of each section whose header has been

modified in step 5 to its new starting address.

7. Repeat steps 2–6 as many times as needed (i.e., one for each

target section).

Note that the algorithm considers that the spaces are intro-

uced in order, starting from the beginning of the file. Additionally,

ince it modifies the pointers in the headers on disk, these spaces

re never loaded in memory, as discussed before. Finally, the un-

sed spaces recently introduced will be modified in a later step

see Section 3.2) in order to evade the detection by the ML model.

The procedure needs to determine the amount of initial space

ntroduced (let S be the sum of the different S t). However, this

uantity along with the optimization phase might not be able to

vade the DL model. In that case, we need to progressively increase

he size of the total unused space introduced until the modified

ample evades the DL model or it reaches a maximum size. The

nitial value of S, the increase steps, and the maximum size al-

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Fig. 2. Representation of the memory mapping of the original sample and a modified version with unused spaces introduced by the attacker.

Fig. 3. Activity diagram of a Genetic Algorithm.

l

w

3

s

t

P

t

u

t

n

l

l

b

A

b

m

o

t

t

d

d

t

s

m

f

p

w

g

v

(

t

c

t

r

h

t

i

t

t

u

t

(

t

s

w

s

i

r

t

a

m

owed before stopping can be considered search parameters and

ill be discussed in Section 4.2 .

.2. Optimization

We next describe our approach to fill the inserted unused

paces with the aim of improving the evasion rate. In particular,

he objective function is to minimize the probability of a modified

E binary being classified as malware by the DL model. To tackle

his optimization problem, we propose a procedure based on the

se of metaheuristics (Gendreau and Potvin, 2010), to determine

he right content of the unused spaces.

Metaheuristics are high-level procedures which help subordi-

ate heuristics to escape from local optima, finding efficient so-

utions to hard optimization problems in a very short time. Evo-

utionary Algorithms are a notable class of metaheuristics inspired

y natural processes. Specifically, we propose the use of Genetic

lgorithms (GAs). GAs explore the search space by using several

ioinspired operators (selection, crossover, and mutation) to opti-

ize an initial population of solutions. The use of GAs instead of

ther successful metaheuristics is based on the characteristics of

he tackled problem. In this case, we are facing a black-box op-

imization problem (i.e., there is not access to the implementation

etails of the model used to evaluate a solution). Therefore, no gra-

ient information can be used to optimize the inputs, which makes

he family of metaheuristics based on local search procedures not

o suitable in this setting.

Fig. 3 provides a flow chart of the main steps of a GA. The

ethod is based on the generation of a group of feasible solutions
5
or the problem (known as the initial population) as the starting

oint (step 1). Then, these solutions are evaluated (step 2) and,

hile the stop condition is not met (step 3), the GA selects a sub-

roup of solutions (selection in step 4) based on quality and di-

ersity criteria. Next, in step 5, it performs a crossover operation

construction of new solutions by combining the characteristics of

wo or more previously existing ones) trying to capture the best

haracteristics of each solution, to obtain a better combined solu-

ion. Finally, in step 6, the GA applies a mutation operation which

andomly modifies parts of the obtained solution. Once this step

as been made and the obtained solutions have been reevaluated,

he process is repeated as many times as necessary. Each of these

terations is known as a generation.

The inputs to the optimization phase described in this sec-

ion are the ones provided by the output of Section 3.1 . In par-

icular, they are PE files modified in such a way that there are un-

sed spaces that have been introduced before one or more sec-

ions. However, as it is customary in optimization, real instances

problem examples) cannot be provided straight away to the op-

imization algorithms, but they usually need to be represented in

uch a way that the algorithm is able to handle them. In this case,

e are only interested in the introduced unused spaces before the

ections. We refer to those spaces as target blocks. All target blocks

n a PE file are then concatenated into a single array of bytes which

epresent a solution for the GA.

In Fig. 4 we depict the transformation of the real instance (i.e.,

he modified PE binary) into an empty solution represented by an

rray of bytes (see steps 1 and 2 in Fig. 4). Following the GA ter-

inology, this array represents a chromosome (a solution for the

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Fig. 4. Adaptation of the general GA scheme to the problem of evading PE malware.

o

s

c

o

t

a

o

a

r

v

t

r

o

D

t

a

c

t

t

i

(

r

r

t

t

a

t

v

s

c

f

ptimization process). Additionally, each byte in the array repre-

ents a gene of the solution. Note that each gene is one byte that

an take up to 256 different values.

The optimization process starts by building an initial population

f solutions (step 3). Each solution of the population is built by in-

roducing a random byte in each position of an empty array with

 length equal to the total unused space in bytes. The actual size

f this population is an experimental parameter and it might vary

mong different algorithmic designs. Moreover, it is important to

emark that the representation of a solution in this context is only

alid for the tackled optimization problem. When a solution needs

o be evaluated, it is necessary to write the bytes which are cur-

ently in the solution, back into their corresponding unused blocks

f the PE file. Then, the new PE file is provided as an input to the

L model to evaluate the solution (step 4). The quality of the solu-

ion is measured by the output of the DL model. Note that this is

 value ranging from 0 to 1, where values close to 1 indicate mali-

ious, while values close to 0 indicate benign. Therefore, the lower

he output, the better the solution. As it was described in the in-

roduction of the GAs, once the population is conformed, it evolves

nto a new generation by applying the selection (step 6), crossover

step 7), and mutation (step 8) operators, until the stopping crite-

ion (evaluated in step 5) is met. This stopping criterion is usually

elated to the execution time, to the number of generations, or to

he quality of the obtained solutions in the population. We detail

he stopping criterion used in Section 4 .

Next, we describe the implementation of each of the key oper-

tors within the GA:

• Selection: this operator performs a selection of a subgroup of

solutions within the current population to be crossed in the

following step. We propose two different selection operators:

i) elitism and ii) tournaments (Miller et al., 1995). In the first

case, the solutions are selected by their quality conserving the

best solutions of the population. In the latter, each tournament

tries to find a balance between randomization and intensifica-

tion. Particularly, it consists of selecting ten solutions at random

and then picking the best solution within this group to be in-
6
cluded in the diverse group. Note that each chosen solution is

extracted from the population, so a single solution cannot be

selected twice. We explore the performance of the combination

of these two criteria in Section 4.2 .

• Crossover: each solution from the elitist group is crossed over

with each solution from the diverse group, producing two off-

spring solutions per crossover. We propose here the use of two

different crossover operators inspired by the uniform crossover:

i) based on random voting, and ii) based on weighted voting.

Particularly, in both of them we divide each chromosome in dif-

ferent chunks of the same size. The first chunk of each offspring

is the first chunk of one of the parents, the second chunk of

each offspring is the second chunk from one of the two parents,

and so on. The difference between the random and weighted

voting is that the probability of selection in the first case is

equal for both chunks, while the probability in the second strat-

egy is pondered depending on the quality of the solution (i.e.,

chunks of better solutions have a higher chance of being se-

lected). In particular, the probability (P) of selecting a chunk

i from the first parent (p 1) in the weighted voting strategy is

P i = 1 − (q 1 / (q 1 + q 2)) , where q 1 is the quality of the first par-

ent and q 2 is the quality of the second parent. Finally, the size

of the chunks considered for crossover is a search parameter

that must be empirically adjusted.

• Mutation: the offspring solutions obtained after the crossover

are then mutated with a particular probability p 1 . Then, if a so-

lution is selected to be mutated, a percentage (p 2) of its genes

are mutated (modified by a random value). Notice that p 1 and

p 2 are search parameters that must be experimentally adjusted

and that will be studied in the experimental section.

To maintain a constant number of solutions across generations,

he next generation is built with the best solution from the pre-

ious generation and the best solutions obtained from the off-

pring. If the algorithm does not stop, this new generation be-

omes the initial population for the next iteration and steps 5–8

rom Fig. 4 are repeated.

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

(

s

i

c

c

t

4

a

d

w

fi

p

w

m

u

w

b

s

t

a

s

N

s

p

p

w

f

m

a

a

a

F

c

@

U

i

t

4

p

s

f

I

b

s

t

s

(

d

a

p

s

d

l

B

o

t

m

7

p

w

s

s

T

l

4

e

a

a

t

b

s

P

v

4

p

w

b

u

s

t

A

d

p

S

d

o

t

l

q

a

o

s

b

e

u

u

i

b

d

a

o

f

t

m

i

g

p

S

i

It is important to remark that aggressive selection mechanisms

such as the use of an elitist group, or the selection of the best

olution for the next iteration) may speed up convergence, imped-

ng sufficient exploration of the problem space and falling into lo-

al optima regions (Oliveto et al., 2018). Therefore, to decrease the

onvergence rate, it is important to empirically adapt the parame-

ers of the mutation operator.

. Experimental results

In this section, we present the experiments devoted to test the

lgorithmic proposal introduced in Section 3 . First, we describe the

ataset collected and used in our experiments (Section 4.1). Then,

e perform a set of preliminary experiments to adjust the con-

gurable parts of our algorithm (Section 4.2). In Section 4.3 , we

resent the results of the final experimentation performed, where

e show the ability of our proposal to evade the targeted DL

odel (Raff et al., 2018). In Section 4.4 , we evaluate the utility of

sing the crafted AEs in the task of retraining a ML-based mal-

are detector. We extend the evaluation of the proposed approach

y comparing it with other methods over a dataset of modern ran-

omware samples in Section 4.5 . Finally, we describe some limita-

ions of our work in Section 4.6 .

The targeted model (MalConv) consists of a convolution network

rchitecture which returns a value in [0,1]. Its objective is to clas-

ify PE files as benign or malicious based on their raw content.

ote that we consider that values larger than 0.5 indicate that a

ample must be classified as malware, as it is assumed in other

roposals (Kolosnjaji et al., 2018; Kreuk et al., 2018). It is also im-

ortant to remark that we used a pretrained implementation that

as made publicly available at Anderson and Roth (2018) . We re-

er the reader to Raff et al. (2018) for further details about the DL

odel. The results obtained with the DL model have been favor-

bly compared with four previous approaches in the state of the

rt. Additionally, we have retrained the network with the gener-

ted AEs and verified the existence of an increase of its robustness.

inally, we evaluate the transferability of our proposal to commer-

ial anti-viruses.

All experiments were run on an Intel®Core TM i5-8250U CPU

 1.60GHz, with 16 Gb RAM. The Operating System used was

buntu 20.04.1 LTS, 64-bit. All implemented methods were coded

n Python 3.7. We used the open source tools Radare2 2 and Pefile 3

o manipulate the PE binaries.

.1. Dataset

To test our proposal, we collected a dataset of malicious sam-

les from VirusShare (Roberts, 2020). We first downloaded 42,658

amples and then filtered out those files that were not in 32-bit PE

ormat (.js,.html, 64-bit binaries, etc.). This resulted in 3540 PEs.

n order to avoid duplicated or highly similar samples that could

ias our results, we compared the similarity between each pair of

amples using ssdeep (Kornblum, 2006) and filtered out samples

hat were almost identical, resulting in 3131 samples. Finally, we

elected the samples that were detected as malicious by MalConv

i.e., those with a prediction score larger than 0.5). The resulting

ataset contained 2036 different 32-bit PE malicious samples. The

verage and median scores (in the range [0,1]) for this dataset re-

orted by MalConv were 0.9804 and 0.9999, respectively, with a

tandard deviation of 0.0687. To determine the validity of the high

etection rate obtained by MalConv , we checked if any of the col-

ected samples were previously used for training the model (EM-

ER dataset in Anderson and Roth (2018)). We found that only 2
2 https://rada.re/n/ .
3 https://github.com/erocarrera/pefile .

s

i

o

t

7
ut of the 2036 samples were part of the training set. Therefore,

his indicates a very large confidence in classifying the samples as

alware.

To validate the dataset for our proposal, we scanned it using the

9 AV engines available in VirusTotal (Chronicle, 2004). All sam-

les but 3 were detected by at least one AV, and only 17 samples

ere detected by less than 4 vendors. On average, the collected

amples were detected by 54.81 different AVs. Therefore, we as-

ume that the samples collected can be considered as malware.

o check the diversity of malware types in the dataset, we ana-

yzed the labels returned by the anti-virus engines and found that

8.76 % of the samples are considered trojans, 20.00 % are consid-

red worms, 14.65 % are labeled as viruses, 2.96 % are labeled as

dware, 2.83 % are considered downloaders, and 0.35 % are labeled

s ransomware.

Finally, since our method alters the binary size, we analyzed

he distribution of file sizes of the original samples. The size of the

inaries ranges from 4096 bytes to 21 megabytes. The number of

ections varies from 1 to 18, with an average of 4.58 sections per

E file. Up to 49.69 % of the collected samples have one or more

irtual sections, and at least 12.21 % seem to be packed.

.2. Preliminary experiments

Since the method introduced in Section 3 depends on several

arameters that might influence the performance of the algorithm,

e have conducted a set of preliminary experiments to study the

ehavior of the most relevant ones. For these experiments, we

se a reduced subset of representative instances composed by 100

amples (4.91 % of the overall dataset) that were selected following

he same distribution (in terms of size) than the original dataset.

ll experiments in this section have been performed over this re-

uced dataset.

As far as the GA is concerned, we present here the experiments

erformed to select the best crossover and mutation strategies (see

ection 4.2.1 and 4.2.2 respectively). For the sake of simplicity, we

o not report other preliminary experiments to determine the size

f the population (set to 50 individuals) or the number of solu-

ions selected for the crossover (set to 10 individuals). For the se-

ection operators used in the GA, we explored a selection based on

uality, also known as elitism (only the best solutions are chosen)

nd a selection based on tournaments (each tournament consists

f selecting ten solutions at random and the best among them is

elected for the next iteration). Finally, we also explored the com-

ination of these two strategies (choosing half of the solutions by

litism and the other half by tournaments). We observed that the

se of both selection operators in combination outperformed the

se of each of them in isolation. This fact is commonly observed

n the performance of Genetic Algorithms since it helps to find a

alance between intensification (the best solutions are chosen) and

iversification. Additionally, it is important to notice that we used

 mixed stopping criterion for the algorithm, based on the quality

f the solution found. Since we are trying to build an AE starting

rom a malicious PE file, the GA halts at any iteration as soon as

he modified sample is classified as non-malware. Alternatively, the

ethod stops if the improvement found in the last 10 generations

s smaller than 1 %, but letting the algorithm to run for at least 50

enerations.

As for the amount of introduced space, we present here the ex-

eriment performed to determine the influence of its location (see

ection 4.2.3). Again, for the sake of simplicity, we avoid report-

ng other preliminary experiments such as determining the initial

pace introduced S (set to 1 % of the total size of the PE file); the

ncrease of unused space introduced at each iteration (set to 3 %

f the total size of the PE file); or the maximum allowed size of

he introduced space (set to 100 % of the total size of the PE file).

https://rada.re/n/
https://github.com/erocarrera/pefile

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Fig. 5. Representation of the average size increment and the average time needed to build an AE.

F

f

e

4

v

t

t

o

u

1

R

f

t

t

c

o

b

c

w

i

4

r

H

t

t

e

t

e

a

a

t

s

c

m

t

r

e

t

inally, in Section 4.2.4 , we report a comparison between the per-

ormance of the GA and the performance of a random content gen-

rator when optimizing the content of the introduced code caves.

.2.1. Crossover

First, we compared the 2 different crossover methods (random

oting and weighted voting, denoted with an R and a W respec-

ively) proposed in Section 3.2 , with 7 different configurations of

he size of the chunks in which solutions were split to be crossed

ver. Particularly, we decided to test both crossover methods by

sing chunks of 1, 8, 16, 32, 64, 128, and 256 bytes. The resulting

4 methods have been named as: R-1, R-8, R-16, R-32, R-64, R-128,

-256, W-1, W-8, W-16, W-32, W-64, W-128, and W-256. We per-

ormed two different experiments to evaluate these methods. Note

hat, in addition to the general parameters already set, we fixed

he probability of mutation of a solution to a 75 %, and the per-

entage of genes to be mutated to the 0.2 % of the total number

f genes of the solution. These choices were made as a trade-off

etween diversity and time of convergence of the method.

1. In the first experiment, for each sample we tried to find the

smallest modified sample that was not detected by the target

DL model. For this experiment we reported the average size of

the total introduced spaces and the time needed to reach the

evasion value. Note that in some cases the method was not able

to evade the DL model. In those cases, we reported the total

time used until the method stopped following the criteria intro-

duced in Section 3 , and the maximum introduced size tried. In

Fig. 5 we represent the results obtained by each method tested.

Particularly, we depict the representation of the average size in-

crement for all the modified instances and the averaged time

needed to build the AEs. At a first glance, the shorter the time

and the smaller the size, the better. However, there might be

configurations of the algorithms which stands out for one of the

metrics despite the fact that they are not so successful for the

other. Additionally, in the legend of this figure we also present

the percentage of evaded samples by each crossover method. In

this case, we highlight two methods: “W-32” configured with

the weighted voting and chunks of 32 bytes and “R-1” con-

figured with a random voting and chunks of 1 byte. The for-

mer was the one which achieved the smaller size increment,

while the latter was the fastest method to process all the sam-

ples. However, the method “W-32” achieved an evasion rate of
8
98.0 % (which is the largest among the tested ones), while “R-

1” achieved an evasion rate of 97.0 %. These two configurations

have been selected for a further evaluation.

2. Given the previous results, the second experiment aims at ob-

serving the convergence of the methods over time. We fixed

the incremented size of the introduced spaces to the 5 % of the

original samples size and we set the time limit for the execu-

tion to 480 seconds. We reported the averaged best prediction

confidence of the model every 30 seconds, for each of the com-

pared variants of the methods studied. Particularly, in Fig. 6 we

present the results for the 2 best variants previously selected

(“W-32” and “R-1”). As we can observe, the behavior of both

methods is very similar in terms of convergence. Considering

that the evasion of the model is achieved when less than a 50 %

of prediction confidence is reached, we find that both methods

were able to reach this value in less than 90 seconds on aver-

age. Also, we observe that the improvement in the evasion rate

after 300 seconds can be considered negligible (< 1 %).

Despite the similarity of the two best configurations, we have

onfigured the crossover method for the rest of our experiments

ith the weighted voting strategy with chunks of 32 bytes, since

t achieves a slightly better evasion rate.

.2.2. Mutation

As discussed in Section 3.2 , the mutation operator has two pa-

ameters (p 1 and p 2) that need to be adjusted experimentally.

ere, we test different configurations of such parameters. In par-

icular, p 1 indicates the probability of a solution in the popula-

ion to be mutated, while p 2 indicates the percentage of genes in

ach solution to be mutated. In Fig. 7 we report the results ob-

ained for the combination of different values of p 1 with differ-

nt values of p 2 . Specifically, we considered p 1 = { 10 , 20 , 40 , 60 }
nd p 2 = { 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 } . In that figure, we report the aver-

ge size increment in percentage of the AE and the time needed

o reach it. Again, at a first glance, the smaller the size and the

horter the time, the better. As we can observe in the figure, the

ombination 10-1, which mutates the 10 % of the solutions with a

utation rate of the 1 % of the genes, together with the combina-

ion 40-1, which mutates the 40 % of the solutions with a mutation

ate of the 1 % of the genes, are the two best combinations in the

xperiment. However, the averaged time needed by the combina-

ion 40-1 is considerably larger than the time needed by the com-

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Fig. 6. Evolution of the prediction score of the DL model over the time.

Fig. 7. Representation of the average size increment and the average time needed to build an AE.

b

i

f

r

4

t

d

i

p

s

i

u

v

u

p

s

r

s

i

5

t

a

r

s

t

a

t

c

(

t

w

M

w

a

ination 10-1 (119 seconds between both methods), while the size

ncrement is not very large (0.3 % between both methods). There-

ore, we have selected the combination p 1 = 10 and p 2 = 1 for the

est of the experiments in the paper.

.2.3. Influence of the location of introduced spaces

Once all parameters of our GA have been adjusted, we test

he influence of the location where the unused spaces are intro-

uced. Recall that our technique exploits the possibility of insert-

ng a block of unused space before each section in the PE file. All

revious experiments have been performed by dividing the unused

pace in equal chunks before each available section. In this exper-

ment, we study the influence of the position of the introduced

nused space within the PE file. In particular, we compare the pre-

ious approach with the results obtained by introducing the same

nused space in a single block before each section.

The samples in the preliminary dataset have been classified de-

ending on the number of sections in the PE file. Then, we have

elected the subsets of samples with three, four, and five sections,
9
esulting in 10 samples with three sections, 19 samples with four

ections, and 16 samples with five sections.

In Table 1 we report the results of the aforementioned exper-

ment grouped by subsets of instances (3 sections, 4 sections, or

 sections). For each group, we report two columns with the to-

al number of evaded samples (Evaded Samples) achieved and the

verage CPU Time in seconds (Time(s)). Each row of Table 1 rep-

esents the results of the experiment for a location of the unused

pace tested. For instance, the first row corresponds to the situa-

ion where the unused space has been introduced before Section 1 ,

nd so on. In general, we can observe that in most of the cases

he position where the unused space was introduced did not affect

onsiderably the final result in terms of the number of AEs crafted

those able to evade the DL model). More specifically, some posi-

ions seemed to be more suitable for a particular subset, but that

as not consistent in others. Additionally, in the original design of

alConv (Raff et al., 2018), the authors chose a convolution net-

ork architecture with a global max-pooling for the convolutional

ctivations. Therefore, the model is supposed to find features re-

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Table 1

Number of evaded samples and average time of execution for each of the selected subsets in the Sec-

tions importance preliminary experiment.

3 sections (10 samples) 4 sections (19 samples) 5 sections (16 samples)

Section Evaded samples Time (s) Evaded samples Time (s) Evaded samples Time (s)

1 4 183.69 8 225.75 12 171.91

2 5 217.46 8 244.45 11 206.15

3 5 183.82 10 253.11 11 208.23

4 - - 9 196.80 11 218.02

5 - - - - 11 214.17

All 5 177.57 8 199.73 11 224.12

Table 2

Comparison of the evasion obtained when using a GA or using a random content genera-

tor.

Method Time (s) Evaded Total Ev. rate (%) Size (%)

Random content generator 1577.45 62 100 62.00 % 49.73 %

GA 685.25 99 100 99.00 % 6.52 %

g

c

b

s

u

r

s

t

fi

4

g

t

i

t

m

w

c

m

w

A

l

c

4

p

s

2

f

o

t

h

m

p

i

t

t

(

(

D

h

a

m

b

i

i

(

n

t

R

p

t

t

t

s

p

p

w

D

o

w

o

“

N

s

i

u

s

m

t

e

(

t

c

p

d

n

c

f

p

o

a

c

o

c

t

ardless of their location. Although the idea of testing different lo-

ations within the PE file is not effective for this model, it might

e a useful approach to test other networks. Also, we do not ob-

erve a noticeable reduction of time depending on the strategy

sed. Therefore, as we could not find significant differences with

espect to the position of the unused space, and the number of

ections differs among the samples, we keep the strategy of split-

ing the introduced space equally before every section in the PE

le, to design the most general method.

.2.4. Comparison of the performance of the GA vs a random content

enerator

To validate the contribution of the GA in the optimization of

he unused spaces introduced in the samples, we have compared

ts performance with respect to a random generator for the con-

ent. To do so, we replace the GA with a random bytes generator

aintaining the same stopping criteria (i.e., number of iterations

ithout improvement). Table 2 reports the obtained results. As it

an be observed, the method using a random generator to deter-

ine the cave content achieves a 62 % of evasion rate in 1577.45 s,

hile the GA is able to achieve a 99 % of evasion in half the time.

dditionally, the size of the perturbations introduced was much

arger in the case of the random generator (49.73 %) than in the

ase of the GA (6.52 %).

.3. Evaluation

To evaluate our proposal, we test the performance of our ap-

roach against MalConv and compare the results with those of the

even previous methods identified in Section 2 (Demetrio et al.,

019, 2020, 2021; Kolosnjaji et al., 2018; Sharif et al., 2019).

For the sake of simplicity, the first comparison has been per-

ormed over the preliminary dataset (100 samples). However, one

f the methods tested (Sharif et al., 2019) presents the restric-

ion that it is only applicable to nonpacked samples. Therefore, to

ave a fair comparison, we selected those instances suitable for all

ethods, resulting in 37 samples out of the 100 samples from the

reliminary dataset. We refer to this subset as the reduced prelim-

nary dataset.

In Table 3 we report the performance of each method over

he aforementioned 37 instances. It is important to note that

he results presented for the methods denoted as “Padding”

 Kolosnjaji et al., 2018), “Extend” (Demetrio et al., 2020), “Shift”

 Demetrio et al., 2020), “Partial DOS” (Demetrio et al., 2019), “Full

OS” (Demetrio et al., 2020), and “Gamma” (Demetrio et al., 2021)

ave been obtained with the original implementation made avail-
10
ble in Demetrio and Biggio (2021) . Unfortunately, the code for the

ethod denoted as “Sharif” was not available and the results have

een obtained with our own implementation of the ideas proposed

n Sharif et al. (2019) . For each of the considered methods included

n Table 3 , we report four columns: the average time per sample

in seconds) needed by each algorithm (Time (s)); the number of

ot corrupted AEs which successfully evade MalConv (Evaded); the

otal number of samples tested (Total); and the evasion rate (Ev.

ate (%)). As we can observe from the obtained results, our pro-

osal was very successful in the task of constructing an AE from

he samples used. Particularly, it was able to produce an AE for all

he samples tested, achieving an evasion rate of 100 %. However,

his behavior needs to be corroborated over the whole dataset

ince the samples in this reduced dataset were used to adjust the

arameters of our proposal. On the contrary, the “Padding” method

erformed the worst, since it was unable to craft a single AE. It

as followed by “Sharif” with an evasion rate of 18.92 %, “Partial

OS” with an evasion rate of 24.32 %, “Shift” with an evasion rate

f 29.73 %, “Full DOS” with an evasion rate of 37.84 %, “Extend”

ith an evasion rate of 75.68 %, and “Gamma” with an evasion rate

f 75.68 %. Moreover, it is remarkable that the method denoted as

Sharif” was considerably slower than the rest of the approaches.

otice that the authors of this method originally reported an eva-

ion rate of 33.00 % in Sharif et al. (2019) . The differences found

n the performance might be partially explained by the threshold

sed in their original experiments. Let us remember that we con-

ider 0.5 as a threshold for MalConv (i.e., a sample is classified as

alicious if the prediction score is greater than 0.5), as it was es-

ablished in other previous proposals (Kolosnjaji et al., 2018; Kreuk

t al., 2018). In contrast, Demetrio et al. (2020) and Sharif et al.

2019) used greater thresholds in their original experiments. Note

hat this eases the generation of AEs since it contributes to in-

rease the evasion rate, but it might reduce the robustness of the

roposal.

In the next experiment, we extend our comparison to the whole

ataset, formed by 2036 samples. Since the “Sharif” method is

ot applicable to packed samples and its performance is not very

ompetitive (either in time or evasion rate), we have removed it

rom this experiment. In Table 4 we report the results of the com-

arison of our approach with the other six methods of the state

f the art (“Extend”, “Shift”, “Padding”, “Partial DOS”, “Full DOS”,

nd “Gamma”). Again, for each method, we report the same four

olumns aforementioned. This time, the evasion rate of the meth-

ds decreased slightly with respect to the previous experiment, ex-

ept for “Gamma” and “Full DOS”. Additionally, “Padding” was able

o construct an AE in the current dataset.

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Table 3

Comparison of the evasion obtained by the different methods, over the reduced prelimi-

nary dataset.

Method Time (s) Evaded Total Ev. rate (%)

Ours 493.77 37 37 100.00 %

Gamma (Demetrio et al., 2021) 89.63 29 37 75.68 %

Extend (Demetrio et al. 2020) 4.77 29 37 75.68 %

Full DOS (Demetrio et al., 2019) 9.47 14 37 37.84 %

Shift (Demetrio et al., 2020) 8.78 11 37 29.73 %

Partial DOS (Demetrio et al., 2019) 10.42 9 37 24.32%

Sharif (Sharif et al., 2019) 337866.63 7 37 18.92 %

Padding (Kolosnjaji et al., 2018) 9.46 0 37 0.00 %

Table 4

Comparison of the evasion obtained by the different methods, over the whole dataset.

Method Time (s) Evaded Total Ev. rate (%)

Ours 1017.68 1995 2036 97.99 %

Gamma (Demetrio et al., 2021) 96.81 1756 2036 86.25 %

Extend (Demetrio et al., 2020) 8.53 1211 2036 59.48 %

Full DOS (Demetrio et al., 2019) 10.38 804 2036 39.49 %

Shift (Demetrio et al., 2020) 14.04 401 2036 19.70 %

Partial DOS (Demetrio et al., 2019) 10.23 338 2036 16.60 %

Padding (Kolosnjaji et al., 2018) 11.88 1 2036 0.05 %

Fig. 8. Histogram of the number of samples with an introduced size in the same interval.

e

s

k

w

t

t

r

i

p

H

t

w

a

s

i

u

s

F

p

s

h

a

t

u

fi

n

m

h

o

4

o

c

s

t

p

p

s

o

p

Note that our proposal outperforms the other six in terms of

vasion rate in this experiment, even though it is more time con-

uming. However, we run the other six algorithms as long as they

eep improving the solution, and we reported the time instant in

hich they were unable to make any further improvement. Addi-

ionally, we observed the evasion rate of our proposal at the same

ime span than the rest of the methods (resulting in an evasion

ate of 27.75 % in 9 seconds, 29.57 % in 12 seconds, and 31.04 %

n 14 seconds). In this sense, the “Extend” and “Gamma” methods

resent a reasonable evasion rate in very short computing time.

owever, we believe that the extra time needed by our proposal

o achieve higher evasion rates than the rest of the methods is

orth spending from an attacker perspective, since none of these

pproaches (either ours or the ones in the state of the art) are de-

igned to be run on a real-time scenario. Furthermore, our method

s easily parallelizable, since the exploration for different sizes of

nused space can be performed at the same time.

Our next experiment is devoted to analyze the increase in the

ize needed by our algorithmic proposal to produce an AE. In

ig. 8 , we report an histogram which classifies the modified sam-

les able to produce an AE, when the introduced unused space is
11
maller than 20 % of its original PE file (1,879 out of 2,036). The

istogram reported includes four bars, where each bar represents

n interval of the size (in %) of the unused space introduced. Par-

icularly, we report those AEs which needed the introduction of an

nused space with a size smaller than the 20 % of its original PE

le, in steps of 5 %. Notice that in 1503 samples, the algorithm

eeded less than 5 % of unused space to produce an AE. Further-

ore, 1117 samples out of 2036 needed less than 1 %. On the other

and, only 118 samples needed an increase larger than 20 % of the

riginal PE file, while the method was unable to produce an AE in

1 samples.

Finally, our last experiment is devoted to test the influence

n the detection rate of the proposed technique against commer-

ial anti-viruses. In particular, we have tested the original 2036

amples (and their corresponding modified versions for each of

he compared methods) against the anti-viruses available at the

latform VirusTotal (Chronicle, 2004) on September, 2021, and re-

orted the average number of detections. On average, the original

amples were detected by 57.12 anti-viruses (out of 79). On the

ther hand, the modified samples obtained by any of the com-

ared methods have reduced the number of average detections.

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Fig. 9. Number of binaries detected by the same number of anti-viruses at VirusTotal (Chronicle, 2004).

P

f

G

a

t

t

t

o

d

b

m

g

o

t

i

m

o

t

o

p

c

o

M

s

p

t

m

v

4

i

u

R

A

f

t

s

w

i

i

e

b

t

A

t

r

t

w

fi

e

t

W

f

M

f

a

a

t

o

1

t

w

c

w

7

m

d

4

r

a

p

w

f

4 VirusTotal Academic share is a dataset of malware samples collected and cu-

rated by VirusTotal, which is available for academic research after a vetting process.
articularly, the Padding method is the one with the smallest per-

ormance (with an average number of 56.92 detections) and the

amma method is the one with the largest performance (with an

verage number of 45.28 detections). Our proposal achieved an in-

ermediate performance with an average number of 51.76 detec-

ions, which is very similar to the rest of the tested methods.

In Fig. 9 , we illustrate the number of samples that were de-

ected as malicious by the same number of anti-viruses for: the

riginal samples, our proposal, and the method which further re-

uced the number of average detections (Gamma). Comparing the

ehavior of the anti-viruses in the platform over the original and

odified samples for each method, we can see a shift in the

raphic, illustrating the aforementioned reduction in the number

f detections of the modified samples.

Observing these results, we can conclude that all compared

echniques seem to perform similarly in this matter. However, it

s important to notice that anti-viruses use several techniques si-

ultaneously to detect malware. Then, we can not assure which

f them are actually the ones which triggered the detection, since

his information is not available. Furthermore, the dataset used in

ur evaluation is composed of well-known viruses, therefore it is

robable that techniques based on signatures are responsible for

lassifying the samples as malware.

Since the differences obtained between our proposal and the

riginal samples do not seem to be very large, we performed a

ann-Whitney U test to determine if the differences found were

tatistically significant. This test is a non-parametric test to com-

are two non-pairwise samples. The obtained results indicate that

he difference in the number of detections before and after the

odification of the samples is statistically significant with a p-

alue < 0.05.

.4. Evaluation of adversarial retraining

In this section, we evaluate the utility of using the crafted AEs

n the task of retraining a ML-based malware detector. In partic-

lar, we have used the original code provided by Anderson and

oth (2018) to perform the retraining of MalConv . From the 1997

Es generated with our method, we have discarded those obtained

rom the samples in the preliminary dataset, resulting in 1898 AEs

hat will be used for retraining. Additionally, we have provided the

ame number of benign binaries for the training of the network,

hich have been randomly collected from the PE files present

n a clean Windows 10 operating system with several programs
12
nstalled (e.g., PyCharm IDE, Visual Studio Code, Google Chrome,

tc.). In each case, we indicated to the network if the sample was

enign or malicious. Notice that we have used the same propor-

ion of benign/malicious samples as in the original dataset used in

nderson and Roth (2018) .

Then, we have tested the retrained network by performing

hree different experiments. First, we have evaluated the detection

ate of the AEs not used for training purposes. Notice that none of

hose AEs are classified as malware when using the original net-

ork. However, when using the retrained network, 95 out of 99

les are detected as malicious.

In our second experiment, we have applied our proposal to gen-

rate AEs from the original samples in the preliminary dataset, but

argeting the retrained MalConv model instead of the original one.

ith the original network, our method was able to craft an AE

rom 99.00 % of the samples. However, when using the retrained

alConv network, the method was able to craft a new AE only

rom 21.00 % of the samples. Furthermore, the size needed to craft

 successful AE was larger when targeting the retrained model (i.e.,

n average size of 5.80 % of the original sample in the case of

he original network, versus 16.76 % in the case of the retrained

ne). Finally, the average running time increased from 685.25 s to

2,486.62 s.

In our third and final experiment, we have evaluated the re-

rained model over a set of 903 collected malicious samples that

ere not detected by MalConv originally and, therefore, were dis-

arded from our dataset in Section 4.1 . The new retrained model

as able to detect 642 out of 903 samples, which represents

1.10 % of the tested samples.

The obtained results indicate that the AEs crafted from existing

alware with our method can help to retrain ML-based malware

etectors with the aim of making them more robust.

.5. Evaluation with ransomware samples

Given the current threat landscape, we now evaluate the accu-

acy of our approach over a set of modern ransomware samples

vailable in the VirusTotal Academic share 4 . We selected samples

ublished in the VirusTotal Academic share during 2021, which

ere categorized as ransomware, and were in the correct format

or our study. This resulted in a dataset of 451 ransomware PE files.

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

Table 5

Comparison of the evasion obtained by the different methods over a dataset of ran-

somware samples published in VirusTotal Academic share. .

Method Time (s) Evaded Total Ev. rate (%)

Ours 3003.05 366 451 81.15 %

Gamma (Demetrio et al., 2021) 111.44 288 451 63.86 %

Full DOS (Demetrio et al., 2019) 11.03 265 451 58.76 %

Extend (Demetrio et al., 2020) 7.42 195 451 43.24 %

Partial DOS (Demetrio et al., 2019) 9.38 121 451 26.83 %

Shift (Demetrio et al., 2020) 10.18 92 451 20.40 %

Padding (Kolosnjaji et al., 2018) 9.20 0 451 00.00 %

t

F

a

(

e

t

s

r

s

T

o

1

n

o

r

S

4

s

D

o

t

m

o

t

m

t

k

a

s

w

t

a

b

p

e

h

(

a

e

d

t

t

a

T

V

(

a

d

5

v

I

p

o

r

c

d

i

n

c

o

t

i

a

i

p

t

o

o

C

c

o

i

l

t

o

r

v

s

i

o

c

r

s

t

i

t

b

m

b

m

t

i

o

a

p

p

t

Table 5 shows the results obtained with our proposal and with

he state-of-the-art methods previously discussed in Section 4.3 .

or each of the considered methods we report four columns: the

verage time per sample (in seconds) needed by each algorithm

Time (s)); the number of not corrupted AEs which successfully

vade MalConv (Evaded); the total number of samples tested (To-

al); and the evasion rate (Ev. Rate (%)). As it can be observed,

ome methods (our proposal, Gamma, Extend, and Padding) have

educed their effectiveness on this dataset, while others have

hown a better performance (Full DOS, Partial DOS, and Shift).

he evasion rate of Full DOS in comparison with the evaluation

f Section 4.3 is particularly significant, with an improvement of

9.27 %. Although the top methods have reduced their effective-

ess on this dataset, the difference between the two best meth-

ds, ours and Gamma, has increased from 11.74 % to 17.29 %. These

esults complement the evaluation of the methods presented in

ection 4.3 and further validate the advantages of our method.

.6. Limitations and threats to validity

Our results are promising but might be limited by either the

ize or the content of the dataset used for our experimentation.

espite our effort s to guarantee representativeness and accuracy in

ur collection methodology, the resulting dataset might still con-

ain unknown biases. In this regard, we tried to analyze if our

ethod performs particularly better or worse on specific types

f malware. In particular, we analyzed the following properties

o identify any particularities among the samples for which our

ethod did not produce AEs: size, submission date to VirusTo-

al, number of sections, presence of virtual sections, presence of

nown packers, and type of malware. Unfortunately, we were un-

ble to reach any conclusive findings. Similarly, after analyzing the

amples for which our method does not successfully generate AEs,

e were unable to identify any common characteristics among

hem. This lack of explainability is common to both detectors and

utomatic methods to generate AEs: our model also behaves as a

lack box and it is not possible to determine which part of the in-

ut perturbations produce the actual improvement in the results.

Despite the fact that MalConv has been commonly used for

valuation purposes on related work, some weaknesses have been

ighlighted that might affect the validity of the obtained results

 Kr ̌cál et al., 2018; Le et al., 2018). These shortcomings might be

ddressed by using a different DL model. However, although there

xist previous works available using ML approaches for malware

etection, they are not focused on raw bytes or do not offer a pre-

rained model (Gibert et al., 2018, 2020; Qi et al., 2021). We leave

his question as future work and make our code and data publicly

vailable to facilitate its testing with other trained models.

The comparison we do with commercial AV engines in Virus-

otal must be taken in light of known shortcomings of the use of

irusTotal for academic research, as it is pointed out in Peng et al.

2019) and Zhu et al. (2020) . This includes both observational bi-

ses (e.g., different commercial AVs relying on the same underlying

etection engine) and AV configuration issues, among others.
13
. Conclusions

In this paper, we have proposed a general method to craft Ad-

ersarial Examples for Machine Learning-based malware detectors.

n particular, we focus on models which operate on raw bytes. Our

roposal is based on a black-box setting, where the algorithm can

bserve the output of the Machine Learning detector. The system

eceives a binary as input and produces a score as output. Specifi-

ally, we propose a two-phase method to design the AEs. First, we

esign a method to introduce unused spaces, known as code caves,

nside a PE file which do not alter the functionality of the origi-

al binary. Moreover, the size of these unused spaces is dynami-

ally determined. Second, the content of the introduced spaces is

ptimized with a Genetic Algorithm. Therefore, the importance of

he proposed method is related to its ability to determine, for each

ndividual code cave, the smallest size needed, the right location,

nd the adequate content, that will result in AEs of higher qual-

ty. Furthermore, we handle the previous tasks as an optimization

roblem and show that the use of efficient fine-tuned optimization

echniques can solve them with a better evasion rate than previ-

us methods. To do so, the proposed approach has been evaluated

n a well-known state-of-the-art Deep Learning architecture, Mal-

onv , achieving an evasion rate of 97.99 %. Moreover, we favorably

ompared our approach with seven methods available in the state

f the art for the same task. We also showed that the increment

n the size needed to craft an AE with the proposed procedure is

ess than 1 % in more than half of the tested samples. In addi-

ion, given the current threat landscape, we evaluated our method

ver a set of modern ransomware samples, achieving similar

esults.

Then, we tested the crafted AEs over a set of commercial anti-

iruses, obtaining an average decrease of 5 detections. This fact

uggests the possibility of transferability of our proposal to the

ndustry. Thus, this method could be used in combination with

ther approaches to further reduce the detection rate of commer-

ial anti-viruses.

Finally, we used the generated AEs to retrain the original model,

esulting in an increase of its detection rate. Then, we used the re-

ulting model to reevaluate the performance of our proposal. In

his experiment, we observed an increase in the difficulty of craft-

ng successful AEs (either in time and size). Furthermore, the re-

rained model detected malware samples that were not detected

y MalConv originally. These results indicate that retraining ML

alware detectors with the generated AEs might increase the ro-

ustness of the ML models. However, the impact of the technique

ight be limited by the number of different techniques used for

he generation of AEs and the number of ML models evaluated. An

nteresting future research line would be exploring the evaluation

f Adversarial Retraining including other AE generation methods

nd further ML models.

Despite the fact that the particular technique proposed in this

aper is applied for raw bytes, the general idea of performing a

erturbation of a sample and, based on heuristic optimization, de-

ermining the size, location, and content of the perturbation can

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

b

f

d

a

t

A

s

a

f

s

D

c

i

C

M

C

d

v

A

n

P

C

E

i

t

o

R

A

A

A

A

A

A

B

B

B

B

C

C

C

C

C

D

D

D

D

D

E

F

G

,

G

G

G

H

H

H

K

K

K

K

K

K

L

L

L

M

M

O
e extended to target either other ML-based detectors or other file

ormats.

ML-based malware detectors in isolation are not currently the

efinitive solution in the malware detection domain. However, they

re already playing an important role in the detection pipeline. In

his context, the general method proposed in this paper to design

Es can be easily used to enhance the performance of anti-virus

oftware. Specifically, it could help to increase their robustness via

dversarial retraining.

To improve the reproducibility of our experiments and to foster

uture research in this area, we make publicly available both the

ource code and the data used in this work.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Javier Yuste: Conceptualization, Investigation, Data curation,

ethodology, Software, Writing – original draft. Eduardo G. Pardo:

onceptualization, Investigation, Validation, Writing – original

raft. Juan Tapiador: Supervision, Formal analysis, Writing – re-

iew & editing, Funding acquisition.

cknowledgements

This research was supported by the Ministerio de Ciencia, In-

ovación y Universidades (Grant Refs. PGC2018-095322-B-C22 and

ID2019-111429RB-C21), by the Region of Madrid grant CYNAMON-

M (P2018/TCS-4566), co-financed by European Structural Funds

SF and FEDER, and the Excellence Program EPUC3M17. The opin-

ons, findings, conclusions, or recommendations expressed are

hose of the authors and do not necessarily reflect those of any

f the funders.

eferences

ghakhani, H. , Gritti, F. , Mecca, F. , Lindorfer, M. , Ortolani, S. , Balzarotti, D. , Vigna, G. ,

Kruegel, C. , 2020. When malware is packin’heat; limits of machine learning clas-
sifiers based on static analysis features. Network and Distributed Systems Secu-

rity (NDSS) Symposium 2020 .

leshkin, A. , Lesko, S. , 2019. Predicting the growth of total number of users, devices
and epidemics of malware in internet based on analysis of statistics with the

detection of near-periodic growth features. In: 2019 XXI International Confer-
ence Complex Systems: Control and Modeling Problems (CSCMP), pp. 347–352 .

msaleg, L., Bailey, J., Barbe, A., Erfani, S.M., Furon, T., Houle, M.E., Radovanovi ́c, M.,
Nguyen, X.V., 2021. High intrinsic dimensionality facilitates adversarial attack:

theoretical evidence. IEEE Trans. Inf. Forensics Secur. 16, 854–865. doi: 10.1109/

TIFS.2020.3023274 .
nderson, H.S. , Kharkar, A. , Filar, B. , Roth, P. , 2017. Evading machine learning mal-

ware detection. Black Hat .
nderson, H.S. , Roth, P. , 2018. Ember: an open dataset for training static pe malware

machine learning models. arXiv preprint arXiv:1804.04637 .
nderson, R. , Barton, C. , Bölme, R. , Clayton, R. , Ganán, C. , Grasso, T. , Levi, M. ,

Moore, T. , Vasek, M. , 2019. Measuring the changing cost of cybercrime. The 18th

Annual Workshop on the Economics of Information Security .
azrafshan, Z. , Hashemi, H. , Fard, S.M.H. , Hamzeh, A. , 2013. A survey on heuris-

tic malware detection techniques. In: The 5th Conference on Information and
Knowledge Technology. IEEE, pp. 113–120 .

iggio, B. , Corona, I. , Maiorca, D. , Nelson, B. , Srndic, N. , Laskov, P. , Giacinto, G. ,
Roli, F. , 2013. Evasion attacks against machine learning at test time. In:

ECML/PKDD (3). Springer, pp. 387–402 .
iggio, B. , Fabio, R. , 2018. Wild patterns: ten years af- ter the rise of adversarial

machine learning. Pattern Recognit 84, 317,331 .

rumley, D. , Hartwig, C. , Liang, Z. , Newsome, J. , Song, D. , Yin, H. , 2008. Automatically
identifying trigger-based behavior in malware. In: Botnet Detection. Springer,

pp. 65–88 .
hakraborty, A. , Alam, M. , Dey, V. , Chattopadhyay, A. , Mukhopadhyay, D. , 2018. Ad-

versarial attacks and defences: a survey. arXiv preprint arXiv: 1810.0 0 069 .
14
hen, L. , Ye, Y. , Bourlai, T. , 2017. Adversarial machine learning in malware detection:
Arms race between evasion attack and defense. In: 2017 European Intelligence

and Security Informatics Conference (EISIC). IEEE, pp. 99–106 .
hronicle, 2004-. VirusTotal. https://www.virustotal.com/ . [Online; accessed 13-

June-2020].
onnolly, L.Y. , Wall, D.S. , 2019. The rise of crypto-ransomware in a changing cy-

bercrime landscape: taxonomising countermeasures. Computers & Security 87,
101568 .

oull, S., Gardner, C., 2018. What are Deep Neural Networks Learning

About Malware? https://www.fireeye.com/blog/threat-research/2018/12/
what- are- deep- neural- networks- learning- about- malware.html . [Online; ac-

cessed 12-June-2020].
as, S. , 2019. A machine learning model for detecting respiratory problems using

voice recognition. In: 2019 IEEE 5th International Conference for Convergence
in Technology (I2CT). IEEE, pp. 1–3 .

emetrio, L. , Biggio, B. , 2021. Secml-malware: a python library for adversar-

ial robustness evaluation of windows malware classifiers. arXiv preprint
arXiv:2104.12848 .

emetrio, L. , Biggio, B. , Lagorio, G. , Roli, F. , Armando, A. , 2019. Explaining vul-
nerabilities of deep learning to adversarial malware binaries. arXiv preprint

arXiv:1901.03583 .
emetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A., 2021. Functionality-

preserving black-box optimization of adversarial windows malware. IEEE Trans.

Inf. Forensics Secur. 16, 3469–3478. doi: 10.1109/TIFS.2021.3082330 .
emetrio, L. , Coull, S.E. , Biggio, B. , Lagorio, G. , Armando, A. , Roli, F. , 2020. Adversar-

ial EXEmples: a survey and experimental evaluation of practical attacks on ma-
chine learning for windows malware detection. arXiv preprint arXiv:2008.07125 .

l-Bakry, H.M. , 2010. Fast virus detection by using high speed time delay neural
networks. Journal in computer virology 6 (2), 115–122 .

irdausi, I. , Lim, C. , Erwin, A. , Nugroho, A.S. , 2010. Analysis of machine learning tech-

niques used in behavior-based malware detection. In: 2010 Second International
Conference on Advances in Computing, Control, and Telecommunication Tech-

nologies, pp. 201–203 .
andotra, E. , Bansal, D. , Sofat, S. , 2014. Malware analysis and classification: a survey.

Journal of Information Security 2014 .
 2010. In: Gendreau, M., Potvin, J.-Y. (Eds.), Handbook of metaheuristics, Vol. 2.

Springer .

ibert, D. , Mateu, C. , Planes, J. , 2018. An end-to-end deep learning architecture for
classification of malwares binary content. In: International Conference on Arti-

ficial Neural Networks. Springer, pp. 383–391 .
ibert, D. , Mateu, C. , Planes, J. , 2020. Hydra: a multimodal deep learning framework

for malware classification. Computers & Security 95, 101873 .
ibert, D., Mateu, C., Planes, J., 2020. The rise of machine learning for detection and

classification of malware: research developments, trends and challenges. Jour-

nal of Network and Computer Applications 153, 102526. doi: 10.1016/j.jnca.2019.
102526 .

ashemi, A.S. , Mozaffari, S. , 2019. Secure deep neural networks using adversar-
ial image generation and training with noise-gan. Computers & Security 86,

372–387 .
ojjatinia, S. , Hamzenejadi, S. , Mohseni, H. , 2019. Android botnet detection using

convolutional neural networks. arXiv preprint arXiv:1911.12457 .
uang, K. , Siegel, M. , Madnick, S. , 2018. Systematically understanding the cyber at-

tack business: a survey. ACM Computing Surveys (CSUR) 51 (4), 1–36 .

aspersky, K. , 2005. Hacker debugging uncovered (uncovered series). A-List Publish-
ing .

olosnjaji, B. , Demontis, A. , Biggio, B. , Maiorca, D. , Giacinto, G. , Eckert, C. , Roli, F. ,
2018. Adversarial malware binaries: Evading deep learning for malware detec-

tion in executables. In: 2018 26th European Signal Processing Conference (EU-
SIPCO). IEEE, pp. 533–537 .

olosnjaji, B. , Zarras, A. , Webster, G. , Eckert, C. , 2016. Deep learning for classification

of malware system call sequences. In: Australasian Joint Conference on Artificial
Intelligence. Springer, pp. 137–149 .

ornblum, J. , 2006. Identifying almost identical files using context triggered piece-
wise hashing. Digital Invest. 3, 91–97 .

reuk, F. , Barak, A. , Aviv-Reuven, S. , Baruch, M. , Pinkas, B. , Keshet, J. , 2018. Deceiving
end-to-end deep learning malware detectors using adversarial examples. arXiv

preprint arXiv:1802.04528 .

r ̌cál, M. , Švec, O. , Bálek, M. , Jašek, O. , 2018. Deep convolutional malware classifiers
can learn from raw executables and labels only. ICLR .

e, Q. , Boydell, O. , Mac Namee, B. , Scanlon, M. , 2018. Deep learning at the shal-
low end: malware classification for non-domain experts. Digital Invest. 26,

S118–S126 .
ee, W.Y. , Saxe, J. , Harang, R. , 2019. Seqdroid: Obfuscated Android Malware De-

tection Using Stacked Convolutional and Recurrent Neural Networks. In: Deep

Learning Applications for Cyber Security. Springer, pp. 197–210 .
iu, X. , Lin, Y. , Li, H. , Zhang, J. , 2020. A novel method for malware detection on

ml-based visualization technique. Computers & Security 89, 101682 .
illar, S. , McLaughlin, N. , Martinez del Rincon, J. , Miller, P. , Zhao, Z. , 2020. Dan-

droid: A multi-view discriminative adversarial network for obfuscated android
malware detection. In: Proceedings of the Tenth ACM Conference on Data and

Application Security and Privacy, pp. 353–364 .

iller, B.L. , Goldberg, D.E. , et al. , 1995. Genetic algorithms, tournament selection,
and the effects of noise. Complex systems 9 (3), 193–212 .

liveto, P.S. , Paixão, T. , Heredia, J.P. , Sudholt, D. , Trubenová, B. , 2018. How to escape
local optima in black box optimisation: when non-elitism outperforms elitism.

Algorithmica 80 (5), 1604–1633 .

http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0002
https://doi.org/10.1109/TIFS.2020.3023274
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0012
https://www.virustotal.com/
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0014
https://www.fireeye.com/blog/threat-research/2018/12/what-are-deep-neural-networks-learning-about-malware.html
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0018
https://doi.org/10.1109/TIFS.2021.3082330
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0026
https://doi.org/10.1016/j.jnca.2019.102526
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0042

J. Yuste, E.G. Pardo and J. Tapiador Computers & Security 116 (2022) 102643

P

P

P

Q

R

R

R

R

R

S

S

S

S

S

S

S

S

S
W

X

Y

Y

Y

Z

J
i

s

s
a

E
S

a
i

U

o
p

J
d

e
H

A

C
t

P
H

F

apernot, N. , McDaniel, P. , Jha, S. , Fredrikson, M. , Celik, Z.B. , Swami, A. , 2016. The
limitations of deep learning in adversarial settings. In: 2016 IEEE European sym-

posium on security and privacy (EuroS&P). IEEE, pp. 372–387 .
eng, P. , Yang, L. , Song, L. , Wang, G. , 2019. Opening the blackbox of virustotal: An-

alyzing online phishing scan engines. In: Proceedings of the Internet Measure-
ment Conference. Association for Computing Machinery, pp. 478–485 .

ierazzi, F. , Pendlebury, F. , Cortellazzi, J. , Cavallaro, L. , 2019. Intriguing properties of
adversarial ml attacks in the problem space. arXiv preprint arXiv:1911.02142 .

i, P. , Zhang, Z. , Wang, W. , Yao, C. , 2021. Malware detection by exploiting deep

learning over binary programs. In: 2020 25th International Conference on Pat-
tern Recognition (ICPR). IEEE, pp. 9068–9075 .

adwan, A.M. , 2019. Machine learning techniques to detect maliciousness of
portable executable files. In: 2019 International Conference on Promising Elec-

tronic Technologies (ICPET). IEEE, pp. 86–90 .
aff, E. , Barker, J. , Sylvester, J. , Brandon, R. , Catanzaro, B. , Nicholas, C.K. , 2018. Mal-

ware detection by eating a whole exe. In: Workshops at the Thirty-Second AAAI

Conference on Artificial Intelligence .
aff, E. , Sylvester, J. , Nicholas, C. , 2017. Learning the pe header, malware detection

with minimal domain knowledge. In: Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, pp. 121–132 .

oberts, M., 2020. VirusShare. https://virusshare.com/ . [Online; accessed 12-June-
2020].

oth, P., Anderson, H., Cattell, S., 2019. Extending EMBER. https://www.endgame.

com/blog/technical-blog/extending-ember . [Online; accessed 12-June-2020].
ahay, S.K. , Sharma, A. , Rathore, H. , 2020. Evolution of Malware and Its Detection

Techniques. In: Information and Communication Technology for Sustainable De-
velopment. Springer, pp. 139–150 .

axe, J. , Berlin, K. , 2015. Deep neural network based malware detection using two
dimensional binary program features. In: 2015 10th International Conference on

Malicious and Unwanted Software (MALWARE). IEEE, pp. 11–20 .

hah, S. , Jani, H. , Shetty, S. , Bhowmick, K. , 2013. Virus detection using artificial neu-
ral networks. Int J Comput Appl 84 (5) .

harif, M. , Lucas, K. , Bauer, L. , Reiter, M.K. , Shintre, S. , 2019. Optimization-guided
binary diversification to mislead neural networks for malware detection. arXiv

preprint arXiv:1912.09064 .
imonyan, K. , Zisserman, A. , 2014. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 .

ingh, A. , 2009. Portable Executable File Format. In: Identifying Malicious Code
Through Reverse Engineering. Springer, pp. 1–15 .

mith, M.R., Johnson, N.T., Ingram, J.B., Carbajal, A.J., Haus, B.I., Domschot, E.,
Ramyaa, R., Lamb, C.C., Verzi, S.J., Kegelmeyer, W.P., 2020. Mind the Gap: On

Bridging the Semantic Gap between Machine Learning and Malware Analysis.
In: Proceedings of the 13th ACM Workshop on Artificial Intelligence and Se-

curity. Association for Computing Machinery, New York, NY, USA, pp. 49–60.

doi: 10.1145/3411508.3421373 .
15
zegedy, C. , Zaremba, W. , Sutskever, I. , Bruna, J. , Erhan, D. , Goodfellow, I.J. , Fergus, R. ,
2014. Intriguing properties of neural networks. In: 2nd International Conference

on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014,
Conference Track Proceedings .

zor, P. , 2005. The art of computer virus research and defense. Pearson Education .
ang, R. , Zhu, Y. , Tan, J. , Zhou, B. , 2017. Detection of malicious web pages based on

hybrid analysis. Journal of Information Security and Applications 35, 68–74 .
ue, H. , Sun, S. , Venkataramani, G. , Lan, T. , 2019. Machine learning-based analysis

of program binaries: a comprehensive study. IEEE Access 7, 65889–65912 .

osifovich, P. , Solomon, D.A . , Ionescu, A . , 2017. Windows internals, part 1: System ar-
chitecture, processes, threads, memory management, and more. Microsoft Press .

oung, T. , Hazarika, D. , Poria, S. , Cambria, E. , 2018. Recent trends in deep learning
based natural language processing. IEEE Comput Intell Mag 13 (3), 55–75 .

uan, X. , He, P. , Zhu, Q. , Li, X. , 2019. Adversarial examples: attacks and defenses for
deep learning. IEEE Trans Neural Netw Learn Syst 30 (9), 2805–2824 .

hu, S. , Shi, J. , Yang, L. , Qin, B. , Zhang, Z. , Song, L. , Wang, G. , 2020. Measuring and

modeling the label dynamics of online anti-malware engines. In: 29th USENIX
Security Symposium (USENIX Security 20), pp. 2361–2378 .

avier Yuste is a Ph.D. student at Universidad Rey Juan Carlos, Madrid, where he
s part of the Group for Research in Algorithms For Optimization (GRAFO). His re-

earch interests focus on the applicability of Artificial Intelligence (AI) techniques to

olve cybersecurity problems. In particular, the intersection between AI techniques
nd analysis, detection and evasion of malicious software.

duardo G. Pardo is an Associate Professor at Universidad Rey Juan Carlos (Madrid,
pain). He got his Ph.D. in 2011 in the field of heuristic optimization and he is co-

uthor of many journal papers related to this topic. Additionally, Eduardo is found-
ng member of the Group for Research in Algorithms For Optimization (GRAFO) at

niversidad Rey Juan Carlos. Among his research interests he includes the devel-

pment and application of efficient Artificial Intelligence techniques to real-world
roblems, where we can find problems related to security.

uan Tapiador is a Professor of Computer Science with the Universidad Carlos III
e Madrid, Spain, where he leads the Computer Security Lab. His research inter-

sts include binary analysis, systems security, privacy, surveillance, and cybercrime.
e has served in the technical committee of conferences, such as USENIX Security,

CSAC, DIMVA, ESORICS, and AsiaCCS. He has been a recipient of the UC3M Early

areer Award for Excellence in Research in 2013, the Best Practical Paper Award at
he 41st IEEE Symposium on Security and Privacy (Oakland), the CNIL-Inria 2019

rivacy Protection Prize, and the 2019 AEPD Emilio Aced Prize for Privacy Research.
is work has been covered by international media, including The Times, Wired, Le

igaro, ZDNet, and The Register.

http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0049
https://virusshare.com/
https://www.endgame.com/blog/technical-blog/extending-ember
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0056
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0056
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0056
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0057
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0057
https://doi.org/10.1145/3411508.3421373
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0060
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0060
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00042-6/sbref0066

	Optimization of code caves in malware binaries to evade machine learning detectors
	1 Introduction
	2 Related work
	2.1 Machine learning based malware detection
	2.2 Adversarial evasion attacks
	2.3 Key research gaps

	3 Our proposal
	3.1 Modification of samples
	3.2 Optimization

	4 Experimental results
	4.1 Dataset
	4.2 Preliminary experiments
	4.2.1 Crossover
	4.2.2 Mutation
	4.2.3 Influence of the location of introduced spaces
	4.2.4 Comparison of the performance of the GA vs a random content generator

	4.3 Evaluation
	4.4 Evaluation of adversarial retraining
	4.5 Evaluation with ransomware samples
	4.6 Limitations and threats to validity

	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

