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Abstract
In burgeoning urban landscapes, the proliferation of the populace necessitates swift

and accurate urban transit solutions to cater to the citizens’ commuting requirements. A
pivotal aspect of fostering optimized traffic management and ensuring resilient responses
to unanticipated passenger surges is precisely forecasting hourly occupancy levels within
urban subway systems. This study embarks on delineating a two-tiered model designed
to address this imperative adeptly:

1. Preliminary Phase - Employing a Feed Forward Neural Network (FFNN):
In the initial phase, a Feed Forward Neural Network (FFNN) is employed to gauge
the occupancy levels across various subway stations. The FFNN, a class of artificial
neural networks, is well-suited for this task because it can learn from the data
and make predictions or decisions without being explicitly programmed to perform
the task. Through a series of interconnected nodes, known as neurons, arranged
in layers, the FFNN processes the input data, adjusts its weights based on the
error of its predictions, and optimizes the network for accurate forecasting. For
the random process of occupation levels in time and space, this phase encapsulates
the so-called process filtration, wherein the underlying patterns and dynamics of
subway occupancy are captured and represented in a structured format, ready for
subsequent analysis. The estimates garnered from this phase are pivotal and form
the foundation for the subsequent modelling stage.

2. Subsequent Phase - Implementing a Bayesian Proportional-Odds Model
with Hourly Random Effects: With the estimates from the FFNN at disposal,
the study transitions to the subsequent phase wherein a Bayesian Proportional-
Odds Model is utilized. This model is particularly adept for scenarios where the
response variable is ordinal, as in the case of occupancy levels (Low, Medium, High).
The Bayesian framework, underpinned by the principles of probability, facilitates the
incorporation of prior probabilities on model parameters and updates this knowledge
with observed data to make informed predictions. The unique feature of this model
is the incorporation of a random effect for hours, which acknowledges the inherent
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variability across different hours of the day. This is paramount in urban transit
systems where passenger influx varies significantly with the hour.

The synergy of these two models facilitates calibrated estimations of occupancy levels,
both conditionally (relative to the sample) and unconditionally (on a detached test set).
This dual-phase methodology furnishes analysts with a robust and reliable insight into
the quality of predictions propounded by this model. This, in turn, avails a data-driven
foundation for making informed decisions in real-time traffic management, emergency
response planning, and overall operational optimization of urban subway systems.

The model expounded in this study is presently under scrutiny for potential deploy-
ment by the Beijing Metro Group Ltd. This initiative reflects a practical stride to-
wards embracing sophisticated analytical models to ameliorate urban transit manage-
ment, thereby contributing to the broader objective of fostering sustainable and efficient
urban living environments amidst the surging urban populace.

Keywords: Bayesian model calibration; Deep Learning; Integrated Nested Laplace Approxima-
tion; Proportional odds model; Spatial-temporal modelling.

1 Introduction to the problem and relevant statistical
concepts
The escalating demand for urban transit has led to recurrent congestion and overcrowding

within transportation networks, especially during peak traffic hours. Numerous metropolitan
regions face persistent traffic challenges despite significant financial investments in transporta-
tion infrastructure. Overcrowding at stations poses safety risks and affects the regularity and
reliability of public transport services. This, in turn, influences passengers’ travel behaviours
and path choices, thereby raising the need for adept traffic management solutions. Transport
planners and researchers have been propelled to develop transit assignment models in response
to these challenges. These models aim to predict passenger volumes across different services con-
necting various origin-destination pairs and appraise operational services’ effectiveness within
transit systems (Fu et al., 2012). Accurate and reliable real-time metro passenger flow data is
indispensable for developing effective traffic plans, which is crucial for managing the occupancy
levels at stations within a metro network.

In contrast to the relative stability observed in daily occupation levels, which reflects
the aggregate sum of hourly occupations as per the Central Limit Theorem (CLT) – the fun-
damental theorem in probability theory that describes how the distribution of the passenger
aggregation from hours to the day, becomes Gaussian distributed – hourly passenger counts
exhibit pronounced variability across stations and hours. Past studies have underscored the
relative regularity of daily passenger flows across workweeks (Jie et al., 2018). Most existing
Traffic Control Centers utilize time series models for analysis and forecasting (Eric Lin, 2017).
While recent works Han et al. (2019); Roos et al. (2016) have employed Convolutional Neural
Networks (CNN) – a type of Deep Learning model primarily used for image and video recog-
nition but also applied in other domains – to model passenger traffic, these methodologies fall
short in providing a probabilistic approach to elucidate prediction uncertainty. The extant liter-
ature predominantly focuses on modelling time series of counts Davis et al. (2021) or transitions
of passengers among stations Zhao & Ma (2022); Fu et al. (2014), with Bayesian approaches
to passenger predictions being relatively scant. The Kalman filter used by Jiao et al. (2016)
is deemed unsuitable for counting data, and the Multivariate Dynamic Linear Model (DLM)
emerges as a potential alternative. However, it necessitates further refinement to account for
spatial relations across stations (Petris, 2010; Petris et al., 2009; Rodriguez et al., 2020). No-

4



tably, Cabras & He (2023) implemented a Bayesian spatiotemporal model for predicting daily
passenger flows.

Recent advancements have seen the application of Deep Learning (DL) techniques rooted
in Neural Networks (NN) – a type of machine learning model inspired by the human brain’s
structure and function, capable of learning from data – to predict hourly passenger flows in
metro or train networks Xue et al. (2023); Yang et al. (2020); Yin et al. (2023); Zhu et al.
(2019); Fu et al. (2022). The model proposed in this work aligns with this trajectory, leveraging
multiple data sources, including mobile phone and smart card data for the metro network data.
The occupancy level at any given station and time is contingent upon its preceding occupancy
levels and the occupancy patterns at adjacent stations. These spatial correlations are intricate
and nonlinear, necessitating a bespoke approach to model the traffic dynamics. Functional
characteristics of stations and the day of the week also influence passenger flow, alongside other
factors like weather or local events. However, these are not accounted for in the available data.

Drawing inspiration from Cabras (2021), the proposed hybrid model in this work melds a
DL model to elicit prior distributions – initial beliefs or assumptions about the probabilities of
unseen occupation levels – on future occupancy levels, representing a groundbreaking approach
to predicting passenger flows. Unlike extant models, our approach endeavours to reconcile all
sources of uncertainty encircling predictions, striving for a calibrated prediction model for metro
station occupancy levels. Calibration, defined in terms of accuracy, seeks to align the nominal
level of accuracy with both the conditional (to the observed sample) and unconditional accuracy
(on a test set). Although DL literature primarily focuses on unconditional accuracy, our model
underscores the Bayesian aspect, striving to harmonize all three facets of accuracy depending on
the data and statistical model employed, and acknowledged for Bayesian models from Hartigan
(1966). Figure 7 encapsulates this harmonization, potentially extending to any model approach
amalgamating DL and Bayesian frameworks, and this is our main contribution to the statistical
methods. This could also be handled by considering the posterior distribution of NN weights
(Gawlikowski et al., 2023) with the so-called Bayesian NN. However, Bayesian NNs – neural
networks capable of providing a measure of uncertainty for their predictions – are feasible
to estimate for too many simple architectures concerning the one required for the predicting
problem considered in this work. Nevertheless, the uncertainty surrounding weights is also
implicitly considered in the proposed modelling approach using Dropout – a regularization
technique for reducing overfitting by randomly setting to zero some weights during training –
in our DL algorithm Gal & Ghahramani (2016); Kingma et al. (2015). Hence, with the required
complex architecture, the output can be construed as obtained from a Bayesian DL model.

The subsequent discourse in this paper is organized as follows: Section 2 delineates the
available data, Section 3 expounds on the Bayesian spatial-temporal model, and Section 3.3
discusses the results and model interpretation. The use of the model for predicting traffic
under unexpected situations is illustrated in Section 4. Final remarks and comparisons with
alternative approaches are reserved for Section 5, which also discusses the results of some
comparisons. The Appendix reports a sketch of the relevant R code used in the paper.

2 The available data and relevant terminologies
This excerpt introduces us to a statistical modelling scenario to understand and predict

occupancy levels within urban transit systems, particularly at metro stations, during various
hours of the day. Let’s break down the technical terminologies and concepts used in this text:

1. Ordered Categorical Random Variable: The term Yst = k ∈ {1, . . . , K} represents
an ordered categorical random variable. Here, Yst denotes the occupancy level k at a
station s at a specific hour t. Ordered categorical variables are types of categorical
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variables where the categories have a meaningful order, but the distances between the
categories are not defined. Examples include rating scales such as low, medium, and high.

2. Indices and Sets: The indices s ∈ {1, . . . , S} and t ∈ {1, . . . , T} indicate that the
analysis is being performed across multiple stations and various hours within a specified
period T . Each station is uniquely identified by index s, and each hour by index t starting
from midnight of September 3, 2021 (t = 0).

3. Quantiles (in particular Terciles): Quantiles are points taken at regular intervals
from the cumulative distribution function (CDF) of a random variable. In this context,
terciles (K = 3) are used, which divide the data into three equal parts. This allows
for a simpler (although less informative) representation of the data by categorizing the
occupancy levels into Low (k = 1), Medium (k = 2), and High (k = 3) based on the
distribution of people counts. Models with levels K > 3 (or with original counts with
no categorization) were explored but unsatisfactory in Calibration, as explained below.
This underscores the importance of selecting an appropriate level of categorization for
the occupancy levels to ensure the model provides reliable predictions.

4. Source of People Count: The source of people count is the data source used to obtain
the counts of individuals at a station, which directly defines the variable Yst. This could
also encompass the tally of individuals entering and departing from the station or the
count of individuals connecting, disconnecting, or residing near a cellular phone antenna
in the city.

5. Dataset Period: The dataset covers all observed hours from September 3, 2021, to
October 30, 2021, for every hour of each day. This comprehensive data collection enables
a thorough analysis of occupancy levels across different times and stations.

6. Calibration: Calibration in this context refers to adjusting the model to ensure the
prediction accuracy required by the analyst.

This excerpt sets up a statistical framework to analyze and predict metro station occupancy
levels using an ordered categorical variable representation. By categorizing occupancy levels
into three quantiles (terciles), the model aims to provide a simplified yet effective way to
predict occupancy levels, making it a potentially valuable tool for urban transit management
and planning.

2.1 Descriptive statistics for metro occupancy levels
The dataset under consideration comprises records from a total of S = 273 metro stations.

This extensive data collection provides a granular insight into the occupancy levels across
various metro stations at different times. A visual representation of this data can significantly
help in understanding the daily patterns of metro usage. For instance, Figure 1 illustrates the
occupancy levels for a typical workday, September 8 2021, at specific hours.

The figure elucidates the prevalent usage of the metro system for commuting purposes,
particularly during the peak hours of 8 and 18. This pattern reflects the typical workday
commute where individuals travel to and from their workplaces. On the contrary, around
lunchtime at hour 14, a notable decrease in metro occupancy is observed, especially in central
Beijing. This dip could be attributed to various factors, including a break in work schedules or
perhaps the proximity of workplaces to eateries, negating the need for metro travel.

As the night advances, an interesting pattern emerges on the city’s outskirts, where a no-
ticeable amount of traffic is observed. This presumably indicates individuals utilizing the metro
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Figure 1: Illustration of occupancy levels Y at different hours on a general working day.

system to return to their residences. The metro system thus serves as a vital conduit facili-
tating daily commuting, especially in a bustling urban landscape like Beijing. Understanding
the patterns of metro occupancy at different hours can aid in better transit planning, ensur-
ing the availability and accessibility of metro services in alignment with the demand, thereby
contributing to a smoother urban transit experience.

These patterns and trends gleaned from the data are instrumental in devising effective
strategies for managing and accommodating the ebb and flow of metro occupancy, which is
crucial for maintaining a reliable and efficient urban transit system. Moreover, the insights de-
rived from this data visualization could serve as a foundation for further analysis and modelling
to predict metro occupancy levels, paramount for proactive transit management and enhancing
the metro system’s overall efficiency and user satisfaction.
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2.2 Descriptive statistics for cellular phone antennas levels and their
clusters

In the modern era, cellular phone antennas are significant indicators of human activity
within a geographical region. This study delves into three particular events associated with
each antenna: the number of connections, disconnections, and resident devices. These events
are crucial as they reflect the movement and density of individuals near the antenna at a
particular time t. Initially, the raw count data for each event, at each antenna at time t,
have been encoded into K = 3 levels, simplifying the granularity while retaining the essential
information regarding human activity. The database encompasses 2265 antennas, with their
geographical positions illustrated in Figure 2.

Given the computational constraints of this study, the sheer number of antennas posed a
challenge, particularly due to memory overflow issues on the available GPUs. A hierarchical
clustering approach was employed using the complete linkage method on the Euclidean dis-
tances among antennas to mitigate this. This method grouped the antennas into 50 distinct
clusters, reducing the computational load while preserving the spatial relationships among an-
tennas. As shown in Figure 2, the centres of these clusters serve as representative points,
encapsulating the data of all antennas within the respective cluster. The data within each clus-
ter was aggregated by summing the number of connected, disconnected, and resident cellular
terminals and subsequently calculating the K levels over these sums.

On the same workday, as depicted in Figure 1, the levels of disconnections one hour prior
are illustrated in Figure 3.

These levels are insightful as they reflect the dynamism of individuals’ movement within
and out of each cluster. As Figure 3 shows, the disconnections exhibit a consistent pattern,
albeit higher during morning and noon hours. This pattern indicates the typical workday
commute, with a surge in disconnections in the morning as individuals depart for work and
around noon, possibly for lunch breaks. While the correlation with metro occupancy might be
low—since only a subset of individuals use the Metro for city transit—the past values of these
levels are not directly utilizable for predicting passenger counts. However, the levels associated
with cellular activity (connected/disconnected/resident) shed light on metro occupancy levels,
especially at stations close to clusters with higher movement activity. This indirect insight could
be instrumental in understanding and predicting metro occupancy levels, thereby contributing
to more effective transit management and planning in urban settings.

2.3 split of the dataset in train and testing
The dataset at our disposal spans two months, equating to 60 days or 1440 hours. In the

context of machine learning and statistical modelling, the size of the dataset is a critical factor
that influences the model’s ability to learn and generalize well to unseen data. However, the
adequacy of the dataset size is relative to the complexity of the task at hand and the nature of
the models being employed.

Deep Learning (DL) is renowned for its capacity to model complex relationships in data,
especially when the available dataset is large. However, although seemingly substantial, our
dataset of 1,440 hours does not constitute a large sample size for a one-shot Deep Learning
analysis. The term ”one-shot” here refers to training the model in a single iteration over the
entire dataset. This is especially pertinent as some observations must be set aside for model
validation, a standard practice to evaluate the model’s performance and generalization ability
on unseen data. Conversely, when viewed from the lens of Bayesian modelling, which often
operates on the principles of probability and uncertainty, this dataset size is considerably large
and complex for a parametric or semi-parametric Bayesian model like that in Cabras & He
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(2023). Bayesian models are known for working efficiently with smaller datasets compared to
their DL counterparts, as they incorporate prior knowledge and uncertainty in their framework.

For modelling, a structured approach is adopted to ensure a robust evaluation of the
models. The initial 50 days of data are designated as the training set for the DL model (refer
to Section 3.1), which is a common practice to allocate a majority of the data for training to
allow the model to learn the underlying patterns in the data. Subsequently, the following 10
days are allocated for testing the model to evaluate its performance on new, unseen data.

A further breakdown is done for the Bayesian calibration model, where days 51-55 (com-
prising 5 days) are utilized for estimating the Bayesian calibration model (refer to Section 3.2),
with the remaining 5 days earmarked for testing the calibration model. This arrangement is
meticulous to ensure that the final 120 hours (last 5 days) remain untouched by any training
process, serving as the actual testing set for model evaluation. This segregation is crucial to
ascertain the models’ ability to generalize to new data, a critical aspect of machine learning
and statistical modelling.

The Calibration mentioned above graph, a pivotal part of evaluating the models is reported
using the data from these final days, as illustrated in Figure 7. This figure encapsulates the
essence of Calibration, which measures how well the predicted probabilities align with the actual
outcomes, providing a nuanced understanding of the models’ performance and reliability.

3 Description of the model used to estimate Metro’s oc-
cupancy levels.
We introduce the lagged matrix denoted by Xl, characterized as a binary matrix com-

prised solely of entries being 0s and 1s. The dimensions of this matrix will be specified in the
subsequent discussion. The essence of Xl is to encapsulate lagged observations at the preceding
hours t − 1, t − 2, . . . , t − l, where l = 4. This matrix is conceived to embody the filtration
Fl of the process Yst up to l = 4 hours before, with our focal point estimator of the posterior
distribution of Pr(Yst = y|Fl) ≈ Pr(Yst = y|Xl).

All the variables in this analysis have been encoded into dummy variables corresponding to
their original categories. This encoding lacks constraints, akin to constructing a typical design
matrix in regression analysis. The matrix Xl is an exemplar of such encoding, encompassing
past occupancy levels Y for all stations, levels of individuals entering/connecting and depart-
ing/disconnecting from stations and cellular phone antennas, along with other covariates such
as the specific metro station s, the day of the week (ranging from Monday to Sunday), the
hour of the day t (ranging from 0 to 23 and encoded into 24 columns of Xl), and the current
operational status of the station at time t: open or closed. These variables are encapsulated
within the columns of Xl. For instance, envisioning a scenario where the aim is to predict Yst

utilizing all available information four hours prior (l = 4), the matrix Xl would incorporate,
for each hour up to four hours before t: the levels of departures, entries, and occupancy of
all stations including station s, alongside analogous data for mobile phone antennas, the hour
of the day, and the day of the week and so on. This conglomeration culminates in a sizable
matrix, thereby furnishing a substantial dataset to be employed in the Deep Learning (DL)
model delineated later.

The endeavour of predicting hourly occupancy is orchestrated via a two-tiered model strat-
egy: initially, a Deep Learning model, specifically a Feed Forward Neural Network (FFNN),
is employed to spatially and temporally correlate all available information regarding passen-
gers’ occupancy and movements across all metro stations and cellular phone locations. The
FFNN is a class of neural networks well-suited for learning from multidimensional data and
capturing complex relationships. The subsequent model is constructed on the probability of
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occupancy levels gleaned from the DL model, with a calibrated approach accounting for the
prediction uncertainty inherent in the DL model and the specific hour under prediction. This
Calibration is crucial for enhancing the reliability and interpretability of the predictions. The
model employed here is a proportional odds model coupled with a random effect of hours. It
is estimated utilizing an advanced statistical technique called Integrated Nested Laplace Ap-
proximation (INLA). INLA is a robust method for Bayesian inference that facilitates fast and
accurate approximations. Notably, in the latter model, the definition of k based on quantiles
becomes immaterial, as the variable is treated as an ordinal categorical variable in the Bayesian
model articulated later. This configuration affords the flexibility for alternative definitions of
k diverging from the conventional utilization of quantiles, thereby providing a robust frame-
work for analyzing the occupancy levels in a statistically rigorous and computationally efficient
manner.

3.1 The Feed Forward Neural Network used in the first step
The DL model is engineered to regress the target variable Yst on the predictor matrix Xl,

which is a vast matrix with a sprawling count of 8,793 columns. This massive input dimen-
sionality culminates in an FFNN (Feed Forward Neural Network) that boasts a staggering one
million trainable parameters, precisely 1,093,059. The entire training sample comprises 319,956
statistical units, underscoring the sheer volume of data fed into the model. The grandiose di-
mensionality of this model underscores the unfeasibility of employing Bayesian Neural Networks
(Bayesian NNs) in this particular applied setting, mainly due to the computational and memory
demands that Bayesian approaches entail.

We explore and train four distinct FFNN models, each tailored to predict different time
horizons: 1, 2, 3, and 4 hours ahead. The architectural blueprint of all these models is meticu-
lously delineated in Figure 4, showcasing the structure of the neural network employed.

As depicted in the figure, the architecture exhibits dense and Dropout layers alternating.
This design choice is imperative to avert overfitting, a common problem in machine-learning
models with large parameter spaces. The dropout layers serve to distil the pertinent signal in
the matrix Xl for the arduous task of predicting Yst. The loss function employed to train the
model is binary cross-entropy, a choice driven by the fact that the levels are deemed unordered
in the DL models, and hence, a binary classification loss is apt. The model undergoes a training
regimen over 20 optimization steps, and the trajectory of the loss function on the validation
set is depicted in Figure 5.

The plateauing of losses, which is reached at around 15 steps when considering the con-
fidence bounds in Figure 5, signifies a state of model learning’s stabilization, where further
optimization could potentially lead to overfitting—a scenario where the model learns the noise
in the training data, compromising its generalization capability on unseen data.

Upon training, the model computes the estimated probability levels p̃(1), p̃(2), and subse-
quently p̃(3) = 1 − p̃(1) − p̃(2). As elucidated by Polson & Sokolov (2017), these probability
levels represent the maximum a posteriori of the probability levels given the sample. These
probabilities can be harnessed to estimate a given model’s occupancy level: Ỹst = arg maxk p̃

(k),
i.e., the level with the highest probability. Typically, Ỹst is juxtaposed with the observed yst to
derive performance metrics like accuracy, which is the Ratio of Ỹst = yst across all yst or across
all yst = k which is the conditional accuracy to a specific occupation level k. We, however, look
to the more interesting analysis done with the ROC (Receiver Operating Characteristic) and
the relative Area Under the ROC Curve (AUC).

The ROC curve is a graphical representation that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied. It is created by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings.
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The TPR is also known as sensitivity, recall, or probability of detection, while the FPR is also
known as the fall-out or probability of false alarm. The ROC curve showcases the trade-off
between true positive and false positive rates, providing insight into the model’s capability to
discriminate between the positive and negative classes across different thresholds.

The AUC is a scalar metric that quantifies the overall ability of the model to discriminate
between positive and negative classes across all thresholds. An AUC of 1.0 signifies a perfect
model, while an AUC of 0.5 indicates a model with no discrimination capability akin to random
guessing. The AUC is a robust measure as it is invariant to the scaling and balance of the classes.
In this study, a higher AUC across different hours ahead and occupation levels underscores
the model’s adeptness in discriminating between different occupancy levels, thereby furnishing
invaluable insights for real-time and future metro occupancy prediction and planning.

In the grand scheme of this study, the DL model serves as a stepping stone rather than
the final predictive model for metro occupancy. It aids in constructing the substrate for the
subsequent Bayesian model. Nevertheless, evaluating the encapsulated information within the
FFNN is of merit, particularly if the DL prediction accuracy is high. To this end, we con-
template the ROC curves pertinent to the three levels of occupancy across the three models,
showcased in Figure 6.

The Illustration sheds light on the superior estimation prowess of the model for low and high
occupation levels. This is discerned from the corresponding areas under the ROC curves, which
surpass the 80% threshold, as meticulously tabulated in Table 1. The crux of the uncertainty in
prediction lies in the medium occupancy level. Despite this, the model discriminates between
low and high occupancy levels, which is pivotal for devising and fine-tuning train schedules to
cater to the dynamic passenger load.

Table 1: Area Under the ROC for the test set conditionally to the number of hours ahead
predictions and the predicted occupation level.

Occupation Level
Hour Ahead Low Medium High

1 0.925 0.802 0.840
2 0.920 0.810 0.842
3 0.920 0.803 0.837
4 0.917 0.819 0.839

Moreover, it is noteworthy that the model tasked with predicting 4 hours ahead is only
marginally less accurate than the one predicting merely an hour ahead. This modest deterio-
ration in accuracy over a longer prediction horizon is a testament to the model’s robustness.

3.2 The Bayesian Proportional Odds Model (POM)
The objective of this secondary model is to furnish predictions of metro occupancy levels

along with their associated uncertainties, culminating in the final and calibrated prediction
model.

The Bayesian framework employs a Proportional Odds Model (POM) regression, charac-
terized by parallel (to the K occupancy levels) fixed effects and an independent random effect
about hours. Formally, the stochastic delineation of the proposed POM is encapsulated in
equations (1) through (7):
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Yst|p(1)st , . . . , p
(K)
st ∼ Multinomial(p(1)st , . . . , p

(K)
st ), p

(k)
st = Pr(Yst = k) (1)

p
(k)
st = F (k)− F (k − 1)

F (k) = Pr(Yst ≤ k) =
exp(γ(k)

st )

1 + exp(γ(k)
st )

γ
(k)
st = αk − ηst, α0 = −∞ < α1 < . . . αK = ∞ (2)

(α1, . . . , αK−1) ∼ DP(α = 3) (3)
η = β1p̃

(1)
st + β2p̃

(2)
st + ht (4)

β1, β2 ∼ π(β) ∝ 1, for β1, β2 ∈ R2 (5)
ht|τ ∼ Normal(0, τ) (6)

τ ∼ Gamma(1, 0.00005) (7)

In the above equations, Multinomial(·) denotes the Multinomial distribution, a generaliza-
tion of the binomial distribution suitable for categorical data with more than two categories. It
models the probabilities of observing counts among multiple categories. The DP(α) represents
the Dirichlet Process, a stochastic process used in Bayesian non-parametric to define priors and
hence complex models, with a concentration parameter α set to 3. The Normal(0,τ) refers to
the conventional normal distribution with mean 0 and precision τ , where precision is the recip-
rocal of the variance. The Gamma(a, b) symbolizes the Gamma distribution, a two-parameter
family of continuous probability distributions, with mean a/b.

Due to the presence of the DP prior, this is a semiparametric model that accurately treats
Yst as an ordered categorical variable, liberating the analysis from a precise delineation of Yst

based on quantiles. Specifically, equation (3) models the cumulative distribution of Yst via the
prescription of the cumulative odds model. This modelling strategy is viable at this juncture
since the process filtration represented in Xl has been previously accounted for in p̃

(k)
st , stemming

from the output of the DL mentioned above model, which is incorporated in the linear predictor
(4).

Moreover, this Bayesian model accommodates an independent random effect for the dis-
tinct hours to be predicted, which is pivotal as the endeavour aims to assess the reliability of
model predictions across varying hours. For instance, the implication of a reliable or unreliable
prediction at 8 a.m. (high traffic) vastly differs from that at 10 p.m. (low traffic). The model
outlined in equations (1) through (7) virtually lacks tuning parameters, as the priors (3), (5),
and (7) can be perceived as weakly informative or default priors, particularly in the case of
the location parameters β1 and β2. This aspect substantially mitigates the necessity for robust
analysis concerning the priors in the model.

The posterior distribution was estimated for the four lagged prediction hours: one hour
ahead up to four hours ahead, resulting in four posterior distributions of model parameters.
These posteriors were obtained by evaluating the likelihood during the calibration period span-
ning days 51 to 55, with the model being tested on the subsequent 5 available days as delineated
in 2.3.

The ensuing section elucidates the results in terms of prediction and model interpretation.

3.3 Results
The ultimate prediction generated by the Bayesian model for each s and t is delineated

by the posterior distribution of parameters p
(k)
st as expressed in (1). The prediction for Yst will

be designated by the level k∗, under the circumstance where this level manifests the highest
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posterior probability, and provided that the uncertainty, as depicted by the posterior equal tails
Credible Intervals (CI) of p(k

∗)
st at a nominal level 1−δ (for instance, 75%, 1−δ = 0.75), ensures

that k∗ retains the position of the level with the highest posterior probability, i.e., the CI of
p
(k∗)
st does not intersect (in its lower bound) with the other CI of p(k)st for levels k ̸= k∗. This

approach facilitates a prediction probable to materialize at least with a probability of 1− δ. A
prediction is withheld if the uncertainty falls below the nominal δ.

A Credible Interval (CI) is a range of values derived from the posterior distribution, within
which an unobserved parameter value falls with probability 1 − δ. It is a Bayesian analogue
to the confidence intervals in frequentist statistics but with a different interpretation, as the
credible intervals are conditioned to the observed data. In contrast, confidence intervals are
interpreted in the light of infinite replications (and hence for an infinite set of datasets) of the
same experiments.

A significant outcome of the methodology elucidated in this discourse is illustrated in
Figure 7.

For each specified δ, the probability of accurately predicting Y s in the 5-day test set,
marginally about stations and hours, is approximated with the observed accuracy in the test
set. Figure 7 represents this on the vertical axis. A calibrated model will exhibit an agreement
between the nominal level 1 − δ (the conditional inference) and the accuracy level in the test
set (unconditional inference), predominantly apparent at levels of 1− δ spanning 70% to 80%.

It can thus be inferred that, conditional to the data, the model is calibrated to forecast
hour-level occupancy with an accuracy range of 70% - 80%, provided that the same nominal
level is employed in the analysis. Nominal levels exceeding (or falling below) the 70% - 80%
range will yield lesser (or greater) accuracy than the nominal one. While an analyst might opt
for exceedingly high nominal levels, such as 1− δ = 0.95, besides being unreliable, predictions
may not demonstrate such a level of precision. This is also to state that the analysis is intended
to not communicate as reliable any prediction that does not satisfy the nominal level or report
them with a pertinent warning.

The proportion of predictions meeting the stipulated nominal levels is represented by the
colour scale in Figure 7. It can be asserted that the model is calibrated at 70% - 80%, and the
analyst can utilize approximately 68% of the predictions proffered by the model.

Given the available dataset, figure 7 accurately depicts the model’s capability to address
the hour occupancy level prediction problem. A more substantial dataset is anticipated to
enhance the representation in Figure 7 according to the theory of Bayesian CI developed in
Hartigan (1966). This assesses that CI will have a frequentist interpretation as the sample size
increases and that the achievement between nominal coverage 1− δ (accuracy here as the Yst is
discrete) and the frequentist one occurs at a higher speed (in term of accumulation of sample
size) than frequentist procedures.

Regarding the interpretation of the latter Bayesian model, an examination of the posterior
distribution of the fixed effects β1 and β2 showcased in Figure 8, reveals that these effects are
positive, as anticipated. The positive coefficients of p

(1)
st and p

(2)
st engender a decline in the

probability of high occupancy levels.
A higher degree of uncertainty is observed on the coefficient of p(2)st , denoted as β2, compared

to p
(1)
st , namely β1. This outcome echoes the inherent challenge in predicting the medium

occupancy level, as depicted in Figure 6 and Table 1.
The posterior distribution of the hour random effect is illustrated in Figure 9. Random

effects model the correlation of observations within the same group and account for unobserved
heterogeneity. Significant deviations from zero in the posterior distribution of the random effect
for certain hours indicate these hours have a pronounced effect on the prediction of Yst.

Figure 9 exhibits a pronounced clustering of hour-random effects about the opening and
closing times of the Metro. Nonetheless, certain hours markedly influence the prediction of
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Yst, specifically hours 6, 7, 10, 13, 16, and 19. The posterior distribution of these hours
significantly deviates from zero. With a negative value, it intimates that the probability of high
occupancy levels is generally inclined to escalate during these hours. This insight is integral to
the recalibration of the DL model for the specific hour predicted. The prominence of such an
effect amplifies in the model employed for the 4 hours ahead prediction, as delineated at the
bottom of Figure 10.

The relevance of the random effect in η is affirmed by the posterior distribution of the pre-
cision parameter τ in Figure 10. A diminutive precision value signifies an augmented variability
among random effects emanating from a higher internal precision of the random effect.

3.4 Interpretation of the model: an analysis of the effect of the
mobile antenna on metro traffic

This investigation endeavours to discern the impact of mobile phone antennae on metro
traffic within the framework of the proposed model. Such exploratory endeavours and their
ensuing development are commonplace in scrutinizing DL models, as delineated in Lundberg
& Lee (2017); Samek et al. (2017).

Investigations like these delve into the relationships between different variables within a
model to gain insights or validate the model’s assumptions and predictions.

As previously discussed, there exists no direct correlation between the occupancy levels at
antennae and those at metro stations: only a segment of the populace utilizes the Metro, and
the objective is to ascertain the estimated size of this segment as estimated by the model.

To undertake this, we altered all antenna levels of residents, connections, and disconnec-
tions from low to high throughout October 29, 2021 (a Friday), while maintaining all other
observed variables in their original state.

The resultant effect is gauged by approximating the posterior distribution of log differences
(the log-risk Ratio, log(RR)) in the posterior mean probability of high occupancy levels p

(3)
st

(the reference level in this analysis) when all three antenna levels (resident, connected and
disconnected) were high as opposed to when they were designated as low. The log-risk Ratio
(log(RR)) is a measure used to compare the probability of a particular outcome between two
groups, in this case, the probability of high occupancy levels between high and low antenna
activity levels.

The findings are depicted in Figure 11. The log(RR) have been reported only if the
estimations of p(3)st under high and low conditions where both reliable at the level 1− δ = 80%.
The reported values for those cases are the posterior mean of log(RR).

As inferred from Figure 11, the marginal alterations are zero at the commencement of
operations. Yet, there is an anticipated decrease to 50% in the probability of high occupancy
during the early hours (9-10) and a contrasting surge around (12-13). These movements of
people all over the city may be interpreted as movement out of the city (at the beginning of
the day) through other means that are not the Metro network and into the city (at noon) and
are typically observed during the beginning of holiday periods. A general downtrend in metro
traffic is expected towards the day’s closure. Per the station-conditional alterations, these shifts
permeate the network and do not concentrate within a particular zone.

4 A particular use of the model for planning emergencies
or unexpected situations
In this section, we explore the planning for emergencies or unexpected scenarios related

to metro passengers’ behaviour by utilizing the fitted model and employing the same metric as
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delineated in Section 3.4 to assess the impact of certain behaviours.
We illustrate, for instance, the predictions rendered by the model at a designated hour

when a particular station starts to witness crowding and when a significant aggregation of
mobile phones transpires in a specific urban zone.

Here, an illustration is made regarding how the model predicts metro passenger behaviour
at a specific hour under two different scenarios:

1. When a particular metro station experiences crowding.

2. When a significant number of mobile phones (indicative of a large gathering of people)
are detected in a specific urban zone.

These scenarios exemplify how external factors might influence metro passenger behaviour
and how the model can be utilized to plan for such eventualities.

The aim is to leverage the model to provide insights into how these scenarios could impact
metro operations and, in turn, aid in better planning and response to ensure the smooth
operation of the metro system and the safety of its passengers.

4.1 Crowded Train Stations
In this scenario, a hypothetical situation is being considered where the occupancy levels

in three specific metro stations (Beijingxi, Huilongg, and Tiantongy) in Beijing experience a
surge from low to high between 8 to 10 a.m. on October 22. The objective is to understand
the ripple effect this sudden surge in occupancy levels may have on the metro network.

Similar to Section 3.4, the effect is gauged by the distribution of log differences (the log-risk
Ratio, log(RR)) in the probability of high occupancy levels when the occupancy level was high
against when it was low. All other data remains constant as collected for that particular day.
The results are showcased in Figure 12.

In Figure 12 (top), the results of this hypothetical scenario are presented, showcasing
how the sudden surge in occupancy levels at these stations between 8 to 10 a.m. affects the
probability of high occupancy levels across the metro network.

The figures illustrate that the occupancy levels at these stations influence the network in
the ensuing hours; specifically, an escalation of around 3% in the marginal probability of high
occupancy levels is anticipated just at 9, and the impact will diminish as the hours progress.
Initially, this change will be confined to the proximate stations at 10. Still, it will generally
spread to the remainder of the line as the day advances, only to vanish in the evening since no
significant alterations are foreseen towards the day’s end, around 18.

This analysis suggests that sudden changes in occupancy levels at the mentioned stations
during peak hours could temporarily affect the occupancy probabilities across the metro net-
work. The model anticipates a peak effect at 9 a.m., with a ripple effect diminishing as the day
progresses. By evening, around 6 p.m. (18), the effects of the morning’s occupancy surge are
no longer significant, returning the network to its usual occupancy probabilities. The graphical
representation in Figure 12 visually elucidates these impacts, offering insights for better metro
management and emergency response planning.

4.2 Tourists’ concentration
This investigation seeks to grasp the impact of a shift in mobile phone antennae occupancy

levels (including connection, disconnection, and resident levels) on metro traffic when such a
change occurs in the city centre. For the 20 most centrally located antenna clusters, the
occupancy levels were altered from low to high throughout October 29, while all other observed
variables remained unchanged. The outcomes are presented in Figure 13.
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Figure 13 showcases the results of this simulation, illustrating how the change in antennae
occupancy levels influences the metro traffic at different hours throughout the day. From Figure
13, we can see that the marginal changes are substantial at the day’s onset and diminish as the
hours advance. Initially, a surge in metro traffic is anticipated at 12 and 18, whereas a notable
decline in traffic is projected during hour 14. This pattern, particularly on Fridays, is typically
attributed to tourist activity. Indeed, at 22, a rise in traffic is expected in the city’s peripheries
coupled with a significant reduction of traffic within the central city stations.

5 Discussion and concluding remarks
The analytical strategy delineated in this manuscript facilitates the forecasting of hourly

occupancy levels within Beijing’s metro system, along with a trustworthy measure of uncertainty
surrounding such predictions. The concept of uncertainty here is pivotal as it provides a range
within which the actual values are likely to lie, enhancing the predictions’ reliability.

This uncertainty has been appraised unconditionally to the available data, particularly on a
test set, as is customary within Machine Learning literature, while also provided conditionally in
the typical Bayesian framework based on the available data. This bifurcated unconditional and
conditional assessment enables a more robust evaluation of the model’s performance, adhering
to conventional machine learning practices and Bayesian statistical principles, which emphasize
probabilistic interpretations and are particularly adept at handling uncertainty.

The dual assessment enables more dependable predictions, which could be enhanced by
employing a period extending beyond the two months utilized for modelling in this study. Ex-
tending the data collection and analysis time frame could reveal more intricate patterns and
dependencies, fostering improved predictive accuracy. This potential enhancement could man-
ifest in the form of heightened prediction accuracy and the employment of a broader spectrum
of occupancy levels beyond the rudimentary low, medium, and high classifications proposed
herein. Broadening the categories of occupancy levels could provide a more granular insight
into the occupancy dynamics, thereby enriching the model’s predictive capability.

The consideration of additional levels and the original counts has been undertaken in
preceding iterations of this study; however, the resultant AUC hovered around 30% at some
level for K = 4, and the R2 of the DL model approximated less than 10% when fitted on the
original counts. This points to a certain limitation in the granularity of the model when dealing
with more nuanced categorizations or the original count data.

None of the methodologies that could potentially be adapted to the dataset has demon-
strated superiority over the one considered herein, at least for the data at hand. This statement
underscores the robustness and suitability of the chosen model for the current dataset amidst
the explored alternatives.
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Appendix - Code
Here is a sketch of the relevant R code used in the paper.

library(verification)
library(readr)
library(dplyr)
library(reshape2)
library(ggplot2)
library(gganimate)
library(keras)

# Value of K: number of levels of occupancy
nq=3
lq=1:nq

batch_size <- 128 # Batch size at each iteration
epochs <- 20 # Optimization Steps
hour.before=1 # Hour ahead in the prediction
lag=4 # The value of l
test.days=20 # Number of test days (for Bayesian POM and testing)
nantclust=50 # Number of Antenna Clusters

# Metro occupancy data set and all covariates
metro <- read.csv("metrodata.csv")

# antenna data set
antenna <- read.csv("antenna.csv")

# Cluster of antennas
coord=antenna %>%
group_by(antenna) %>%
summarise(lat=mean(lat),lng=mean(lng)) %>%
ungroup()

ii=match(antenna$antenna ,coord$antenna)
antenna$lat=coord$lat[ii]
antenna$lng=coord$lng[ii]

clantenna=antenna %>%
select(antenna ,lat ,lng) %>%
unique() %>%
mutate(cluster.antenna=cutree(hclust(dist(cbind(lat ,LNG))),
k = nantclust)) %>%
select(antenna ,cluster.antenna)
ii=match(antenna$antenna ,clantenna$antenna)
antenna$clantenna=clantenna$cluster.antenna[ii]

## Definition of K levels for Metro and Antennas
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antenna=antenna %>%
select(clantenna ,htime ,resident ,arrival ,departure) %>%
group_by(clantenna ,htime) %>%
summarize(resident=sum(resident),
arrival=sum(arrival),
departure=sum(departure)) %>%
ungroup() %>%
group_by(htime) %>%
mutate(resident=findInterval(resident ,
quantile(resident ,p=seq(0,1,length=nq+1)),
all.inside = TRUE)) %>%
mutate(arrival=findInterval(arrival ,
quantile(arrival ,p=seq(0,1,length=nq+1)),
all.inside = TRUE)) %>%
mutate(departure=findInterval(departure ,
quantile(departure ,p=seq(0,1,length=nq+1)),
all.inside = TRUE)) %>%
ungroup() %>%
arrange(htime)

metro=metro %>%
arrange(htime ,station) %>%
group_by(station) %>%
mutate(total=findInterval(total ,
quantile(total ,p=seq(0,1,length=nq+1)),
all.inside = TRUE)) %>%
mutate(enter=findInterval(enter ,
quantile(enter ,p=seq(0,1,length=nq+1)),
all.inside = TRUE)) %>%
mutate(depar=findInterval(depar ,
quantile(depar ,p=seq(0,1,length=nq+1)),
all.inside = TRUE)) %>%
ungroup()

## The FFNN
model <- keras_model_sequential() %>%
layer_dense(units = 64, input_shape = c(ncol(X_train)),
activation = "relu",use_bias = TRUE) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 64,
activation = "relu",use_bias = TRUE) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = ncol(Y_train), activation = "softmax")

model %>% compile(
loss = 'binary_crossentropy',
optimizer = optimizer_adam(),
metrics = c('accuracy'))

history <- model %>%
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fit(X_train , Y_train ,
epochs = epochs ,
batch_size = batch_size ,
validation_split = 0.2,
verbose=2)

## Predictions and AUC calculation
preds.test <- model %>% predict(X_test)
for(i in 1:nq) cat("level:",i,"␣A=",
roc.area(Y_test[,i],preds.test[,i])$A,"␣\n")
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Figure 2: Depiction of the original positions of cellular phone antennas and their cluster as-
sociations. The cluster centre serves as the virtual representative antenna for that cluster.

22



39.7

39.8

39.9

40.0

40.1

116.1116.2116.3116.4116.5116.6
Longitude

La
tit

ud
e

Disconnect Lev.
Low

Medium

High

Disconnected at 7

39.7

39.8

39.9

40.0

40.1

116.1116.2116.3116.4116.5116.6
Longitude

La
tit

ud
e

Disconnect Lev.
Low

Medium

High

Disconnected at 13

39.7

39.8

39.9

40.0

40.1

116.1116.2116.3116.4116.5116.6
Longitude

La
tit

ud
e

Disconnect Lev.
Low

Medium

High

Disconnected at 17

39.7

39.8

39.9

40.0

40.1

116.1116.2116.3116.4116.5116.6
Longitude

La
tit

ud
e

Disconnect Lev.
Low

Medium

High

Disconnected at 21

Figure 3: On the same day as shown in Figure 1, we present the levels of disconnected indi-
viduals within the antenna clusters (points represent cluster centres) one hour before the time
reported in Figure 1.
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Figure 4: Structure of the deployed Feed Forward neural network.
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Figure 5: Illustration of loss levels across the four FFNNs during training steps. Losses on the
validation sample are portrayed through smoothing splines along with their 95% confidence
band.
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Figure 6: ROC curves conditioned on each predicted level on the test set for each model for
the indicated number of hours ahead prediction.
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levels of probabilities 1− δ (horizontal axis), the figure displays the accuracy on the test set of
5 days (vertical axis) alongside the proportion of observations deemed accurate at level 1 − δ
(colour legend). The horizontal dashed line represents the accuracy of the DL model, which
has no assessment of its conditional uncertainty.
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Figure 10: Posterior distributions of precision parameters of hour random effect. Lower preci-
sion of the hour random effect signifies its increased importance. Each row corresponds to each
calibration model, i.e., one for each hour-ahead prediction.
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Figure 11: Posterior predictive distribution of the log differences in the probability, log(RR), of
high occupancy levels p(3)st when all three antenna levels change from low to high on October 29.
Marginal (over stations) changes, along with their 95% Confidence bounds at varying hours,
are presented at the top, while changes conditional to stations at specific hours are delineated
at the bottom.
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Figure 12: Posterior predictive distribution of the log differences in the probability, log(RR),
of high occupancy levels p

(3)
st when the occupancy level in stations Beijingxi, Huilongg, and

Tiantongy shifts from 8 till 10 on October 22. Marginal (over stations) changes, along with their
95% Confidence bounds at varying hours, are presented at the top, while changes conditional
to stations at specific hours are delineated at the bottom.
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Figure 13: Posterior predictive distribution of the log differences in the probability, log(RR), of
high occupancy levels p

(3)
st when the resident and traffic on the 20 most centred mobile phone

antenna transition from low to high on October 29. Marginal (over stations) changes, along
with their 95% Confidence bounds at varying hours, are presented at the top, while changes
conditional to stations at specific hours are delineated at the bottom.
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