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Android malware has emerged as a consequence of the increasing popularity of smartphones and tablets. While most previous
work focuses on inherent characteristics of Android apps to detect malware, this study analyses indirect features and metadata
to identify patterns in malware applications. Our experiments show the following: (1) the permissions used by an application offer
only moderate performance results; (2) other features publicly available at Androidmarkets aremore relevant in detectingmalware,
such as the application developer and certificate issuer; and (3) compact and efficient classifiers can be constructed for the early
detection of malware applications prior to code inspection or sandboxing.

1. Introduction and Motivation

The mobile market industry has explosively grown in the
last decade. According to the latest estimates, the number
of smartphone users has reached 2 billion at the beginning
of 2016 and is expected to growup tomore than 2.50 billion in
2018 (seehttps://www.statista.com/statistics/330695/number-
of-smartphone-users-worldwide, last access June 2018).

Android has positioned itself as the leading operating
system in the smartphone industry, accounting formore than
81% of devices by the end of 2016 (see http://www.idc.com/
prodserv/smartphone-os-market-share.jsp, last access June
2018). Indeed, one key for its success is that the Android
platform is open to any developer, individual, or enterprise
that is able to easily design new applications and services and
upload them to any of the Android markets available: Google
Play Store, Amazon Appstore, Samsung Galaxy Apps, etc. At
the time of writing, it is estimated that nearly 2.7 million
applications are uploaded at Google Play, while new applica-
tions are uploaded at a pace of more than 60 thousand per
month (seehttp://www.appbrain.com/stats/number-of-android-
apps, last access June 2018).

Unfortunately, the popularity of Android and the facilities
it provides todevelop anduploadapplications have side effects.

Furthermore, the variety of Android markets favors the exis-
tence of rogue markets where applications follow not-so-
stringent reviews and have propitiated even more the devel-
opment of a large malware ecosystem. In this light, Android
has become one of the most valuable targets for malware
developers. An extensive taxonomy of Android malware
applications, where up to 49malware families have been iden-
tified, can be found in [1]. In general, there has been a great
effort in the development of software security tools capable
of dealing with the continuously growing malware ecosystem
and rogue applications; despite that most of these efforts have
been focused on code-based analysis.

However, a good deal of information is already available
as metadata at Google Play and can be used to identify pat-
terns not yet pointed out in previous work, as far as we are
concerned. Application information like the name of its
developer, its category, the number of downloads, and the
number of votes received have not been studied in the past
to identify malware patterns. Suchmetadata provides a good
ground for static malware detection which does not require
behaviour analysis and provides a fast first-stage notion on
whether an application “behaves suspiciously” (shows mal-
ware patterns) or not.
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To this end, this work focuses on the analysis of such in-
direct features and their ability to unveil malware.We analyse
metadata to find a subset of features which have proven pre-
dictive power and use them to develop and test different
machine learning (ML) models. Specifically, the main con-
tributions of this work are

(i) analysing and assessing Android metadata and per-
missions as effective malware predictors,

(ii) proposing a machine learning malware detection
model that relies on metadata information publicly
available at Google Play,

(iii) evaluating such model and assessing its potential as a
first-stage malware filter to detect Android malware.

2. Related Work

The ability to early detect malicious Android applications is
vital to enhance user security, since Android apps can be
tagged, reported, and removed from themarket and their sig-
natures can be blacklisted. This can be seen as a classifica-
tion problem and, therefore, many authors have attempted
to use machine learning over diverse Android-application-
based feature sets.

In fact, a survey on machine learning techniques applied
to malware detection may be found in [16]. For instance,
the authors in [2] gather features from application code and
manifest (permissions, API calls, etc.) and use Support Vector
Machines (SVMs) to identify different types of malware fam-
ilies.The authors in [3] analyse Bayesian-base machine learn-
ing techniques for Android malware detection. In [4], the
authors use permissions and control flow graphs along with
Support Vector Machines (SVMs) to differentiate malware
from good applications (“goodware” in what follows). The
authors in [5] use API calls and permissions as features to
train SVMs and Decision Trees (DTs). Androdialysis [6]
explores the intents of each application as features for the clas-
sification task. Yerima et al. [7] try different algorithms over
API calls and command sets and show promising results for
ensemble methods, such as Random Forests (RFs).

In general, Android permissions have been extensively
studied under the assumption that these are critical in iden-
tifying malware; see [8, 17–19]. Actually, in [8] the authors
discover that malware applications use less permissions than
goodware ones.

The authors in [9] attempt malware detection by inspect-
ing other application run-time parameters, such as CPU us-
age, network transmission, and process and memory infor-
mation. Mas’ud et al. [20] also include Android system calls
in the detection strategy. Furthermore Elish et al. [10] propose
a single-feature classification system based on user behaviour
profiling. DroidChain authors [11] propose a novel model
which analyses static and dynamic features of applications
assuming different malware models. Recently, VirusTotal has
released Droidy [21], a sandbox system capable of extracting
information regarding malware samples such as Network and
SMS activities, Java reflection calls, and filesystem interac-
tion.

In a different approach, the authors of [15] design a differ-
ential-intersection analysis technique to identify repackaged
versions of popular applications, which is a common way to
disguise malicious applications.

Concerning malware detection systems, there exist two
main trends: (1) online services which aim to procure
efficient and lightweight solutions to cope with malware
detection from the mobile device and (2) offline services to
engage in fast analysis of large amounts of applications in
order to mark potentially harmful code, either for removal
or extended inspection. In this light, several authors have ex-
plored both trends, obtaining results such as the systems ex-
posed in [2, 12, 22] which provide online solutions to inform
or warn the user on the device or more general, hardware-
dependent systems such as [13, 14] which are scalable systems
capable of dealing with huge amounts of applications at once,
enabling fast and cheap detection mechanisms for entities
like application markets to improve the quality of their apps.
The authors of [23] extensively survey the types and works
regarding malware detection system.

In addition, obtaining asmuch information as possible on
threats and other undesired applications is really necessary,
and various authors propose methodologies and systems to
collect diverse and huge amounts of data. For example, Bur-
guera et al. [24] propose a framework for collecting applica-
tion trace and identify uncommon behaviours of common
applications. Moreover, the authors of [25, 26] propose a sys-
tem to gather signatures and malware information automati-
cally.

Finally, Table 1 summarises strong and weak points of dif-
ferent works in the literature together with their reported per-
formance. Although many approaches obtain very high accu-
racy rates, they mainly require the apk file and code inspec-
tion to perform their analysis.Oppositely, our approach based
on metadata focuses on a novel feature set consisting in pub-
licly available metadata, allowing a simpler approach to mal-
ware detection. Indeed, that feature set has not been used
before; only the authors in [27] partially addressed metadata
by performing sentiment analysis over users’ comments in
Android applications.

The remainder of this work is organized as follows: Sec-
tion 3 describes the dataset under study, including number of
applications and types of features analysed. Section 4 explains
the methodology, whereas Section 5 reports the experiments
and results obtained. Finally, Section 6 concludes this work
with a summary of the findings.

3. Dataset Description and Preprocessing

Table 2 provides a summary of the dataset used in this article.
The dataset comprises around 118 thousand Android applica-
tions collected from Google Play Store during year 2015.This
dataset has been obtained using the Tacyt cyber-intelligence
tool developed internally at Eleven Paths (Telefónica Group;
see Acknowledgments for further details). For each appli-
cation, we have extracted not only intrinsic features of the
Application PacKage (apk) file, e.g., size in bytes or list of
permissions used, but also other metadata available at Google
Play, including that related to the application developer or
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Table 2: Dataset overview. Date of collection: 2015.

Dataset element Dataset Figures
Number of Applications 118, 846

Applications flagged as malware 69, 918

Number of Single-detection applications 34, 025

Number of Developers 53, 780

Number of Certificate Issuers 44, 244

Number of different permissions 21, 541

Number of intrinsic features 15

Number of social-related features 7

Number of reputation features 2

the number of votes or average star rating (see Table 3 for an
overview of the metadata extracted).

Next section overviews the features derived from such
data; some of them will be extremely powerful in identifying
potential malware.

3.1. Intrinsic Application Features. These relate to concise ap-
plication information, including its size (bytes), application
category, and number of images and files used by the appli-
cation. This group comprises 14 features.

Other intrinsic features considered in the analysis include
the permissions used by each apk.There are over 21Kdifferent
permissions used by the applications in our dataset; most
popular ones are

(i) android.permission.internet (found in 96.07% of
apps),

(ii) android.permission.access network state (91.15%),
(iii) android.permission.read external storage (54.5%),
(iv) android.permission.write external storage (54.12%),
(v) android.permission.read phone state (39.81%).

Many permissions appear only once in the dataset as they
are often self-defined permissions. Thus, the binarized per-
mission features comprise a very-sparse high-dimensional
matrix. In these cases, feature hashing [28] is an effective
strategy for dimensionality reduction; it works by grouping
applications according to some hash functions. We will
leverage the hashing trick in the paper to reduce the number
of intrinsic application features as compared to using permis-
sions in their raw form.

3.2. Social-Related Features. These are 7 features and involve
feedback collected fromusers in themarket. AsGoogle Play is
strongly connected with the social network Google+, features
like total number of votes or average rating are provided. For
each possible ratings (1, 2, 3, 4, and 5 stars) we acquire the
number of votes given. Then, it is possible to easily compute
the mean average of any application in the market as well as
the total number of votes for that application.

3.3. Entity-Related Features: Developers andCertificate Issuers.
Android markets often provide information about the appli-
cation developers (name, email address, website, etc.) and the
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Figure 1: Histogram of AV detectors per malware application.

certificate information of the application signature (expedi-
tion or expiration dates, issuer or subject names, etc.).

In our dataset, there are around 53K different developer
names and 44K certificate issuer names.The readermust note
that Google Play allows self-signed applications, i.e., applica-
tions where the issuer is the same as the developer. As a result,
inmany cases, the issuer of a certificate and the developermay
be the same entity. However, their reputations may change,
as many issuers may not only sign their own applications and
not all developers self-sign their applications (and even if they
do, they use different accounts).

Following [29], we have created two new features called
developerRep and issuerRep which account for the percent-
age of applications that each developer and certificate issuer
have tagged as malware. These metrics are computed during
the training phase of the ML algorithm with information
available from the training data; in other words, the test set
is never used in the computation of this metrics.

3.4. Malware Detection Attributes. Once downloaded, all
applications have been inspected for malware using the
VirusTotal web service (free online virus, malware, and URL
scanner, available at http://www.virustotal.com/, last access
June 2018). VirusTotal checks each application against a
large number of malware engines, producing a binary result
(malware/goodware) per engine (McAfee, AVG, VIPRE,
TrendMicro, etc.). In our dataset, around 69K applications
have beendeclared asmalware by at least one of these engines.

Concerning the number of detectors per malware appli-
cation, a Zipf-like behaviour is observed; i.e., most malware
applications are only detected by a single antivirus (AV)
engine, while a few number of malware applications are de-
tected bymany AV engines. In particular, 25% of the malware
applications are detected by 1AVengines or less (1stQuartile),
50% are detected by 2 AV engines or less (median), and 75%
malware applications are detected by 4AVengines or less (3rd
Quartile). We shall use the label “isMalware” (TRUE/FALSE)
to denote whether an application is tagged as malware or not.

Figure 1 shows a histogram of the frequency of each
application detection count. The Zipf-like behaviour is clear
in the picture, as most applications are only detected by

http://www.virustotal.com/
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Table 3: Summary of features, description, and values of the metadata collected from Google Play.

Name Description Value
Intrinsic features

1 size Application size in bytes Numeric
2 categoryName Assigned Google Play Category Categoric
3 ageInMarket Number of days the app has been on Google Play Numeric
4 lastSignatureUpdate Number of days from last app signature update Numeric
5 timeFromCreation Number of days since the application was developed Numeric
6 lastUpdate Number of days since the application was last updated Numeric
7 certVal Number of days from which application is valid Numeric
8 oldestDateFile Number of days from the creation of the oldest file in the application Numeric
9 numPerm Total number of permissions required by the application Numeric
10 numFiles Total number of files the application contains Numeric
11 numImages Total number of images the application contains Numeric
12 numDownloads Total number of times the application has been uploaded Numeric
13 versionCode Google Play reported version of the application Numeric
14 f+number features Each of the different Feature hashes Numeric
Social-related features

15 totalVotes Total number of rating votes given to the application Numeric
16 OneStarRatingCont Number of one-star votes received Numeric
17 twoStarRatingCont Number of two-star votes received Numeric
18 threeStarRatingCont Number of three-star votes received Numeric
19 fourStarRatingCont Number of four-star votes received Numeric
20 fiveStarRatingCont Number of five-star votes received Numeric
21 meanStar weighted average rating of the application Numeric
Entity-related features

22 developerRep Developer reputation metric Numeric
23 issuerRep Issuer reputation metric Numeric

Label
L isMalware True if flagged by one or more AV engines Boolean
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Figure 2: Goodware/malware boxplot comparison for three features: number of downloads, number of days since the application was
uploaded, and developer reputation.

a single engine (34, 025 applications), while the average detec-
tion count is 3. Furthermore, there is one application detected
as malware by as many as 53 AV detectors.

Due to this disparity and disagreement among AVs, we
will consider the aforementioned quantiles (1-AV, 2-AV, and
4-AV detection) as different thresholds to establish ground
truth rules within the detection scheme.

In summary, Table 3 shows a comprehensive description
of all features in the dataset, their description, and the type of
variable they are.

4. Methodology and Data Analysis

4.1. Initial Approach. Feature selection is key to reduce com-
plexity and improve performance. We expect some features
to have more predictive power than others, as noted in
Figure 2. In this figure, three boxplots for malware/goodware
classes are shown for three sample features: the number of
times the application has been downloaded from the market
(Figure 2(a)), the time the applicationhas been inGoogle Play
(Figure 2(b)), and the developer reputation (Figure 2(c)).
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As observed, the number of downloads is not a very useful
feature, since both goodware and malware show similar 25-
percentile (around 10) as well as 75-percentile (48) values.
Concerning the number of days in Google Play (centre), the
25-, 50-, and 75-quantile measures of malware differ from
goodware, showing some predictive power. Finally, devel-
opers reputation (Figure 2(c)) clearly reveals that malware
developers tend to develop more malware while goodware
developers create almost no malware.

4.2. Classification Models and Performance Evaluation. In a
binary classification problem, we are often given a training set
with labeled data {𝑋

𝑖
, 𝑦
𝑖
}
𝑁
𝑡𝑟

𝑖=1
, where 𝑦

𝑖
∈ {0, 1} and𝑋

𝑖
is a vec-

tor containing the values of 𝑃 predictors or features, namely,
𝑋
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑃
). In our case, the labels𝑦 refer to the catego-

ric variable “isMalware”, whereas the predictors𝑋
𝑖
comprise

512 feature hashes of permissions, 15 intrinsic features, 7
social-related features, and both Issuer and Developer repu-
tations.

Machine learning algorithms are in charge of construct-
ing a function 𝑔(𝑋) from the training set that separates the
two classes withminimum error. In our experiments, we have
used logistic regression (LR), Support VectorMachines (SVMs),
and Random Forests (RF) as three well-known supervised ML
algorithms.

Once a model is obtained, the following stage comprises
testing its ability to predict the result of unobserved data
samples, i.e., evaluating the model’s generalization capabili-
ties. Tenfold cross-validation has been used to evaluate test
error, measured using well-known metrics: Receiver Oper-
ating Characteristic (ROC) curves and the Area Under ROC
Curve (AUC-ROC), Precision, Recall, and F1-score.

Regarding model’s intrinsic hyperparameters, tenfold
cross-validation over the training sets has been used. In other
words, at each iteration, the training data is divided again in
10-fold used to find optimal hyperparameter tuning using the
well-known Grid Search strategy.

4.2.1. Validation and Significance. Tenfold cross-validation
consists in splitting the entire dataset in 10 chunks of equal
size and perform 10 iterations over them, selecting at each
turn a different chunk to be the testing set and the reminding
ones to be the training. Using this method, one can perform
hyperparameter tuning, but also provide results with statisti-
cal significance (i.e., robust results which do not depend on
the selection of training/test instances).

4.3. Feature Selection. Some features are critical in the dis-
crimination of good/malware while others are not, either due
to correlation or small predictive power. For selecting the
most relevant features, we have used the following methods.

4.3.1. Pearson’s Chi Squared Test. Statistical test used to deter-
mine whether any difference among variables occurs by
chance or there is indeed a statistical relation.

4.3.2. Entropy-Based Methods. In information theory, entro-
py measures the amount of unknown information a certain
source provides.The followingmeasurements are considered:

(i) Information Gain (IG) or mutual information be-
tween a feature 𝑋

𝑖
and the outcome 𝑦.

(ii) Gain Ratio (GR) is the result of dividing the informa-
tion gain by the intrinsic information of the feature,
aiming at reducing bias towards features with high in-
formation gain value on its own rather than a good
relationship with the output variable 𝑦.

4.3.3. RandomForest Importance. Random forest importance
refers to the contribution of each node in the algorithm. In
particular, we consider the Mean Decrease in Node Impurity,
which measures how unequal the nodes in each tree of the
forest are.

For further reference of machine learning and statistical
methods for data analysis, the reader is referred to [30].

5. Experiments and Results

In the experiments, we have used the well-known R open-
source statistical software, along with a number of libraries
for machine learning and feature selection (MASS, random-
Forest, kernlab, glmnet, mlr, and caret). From the original
dataset, we have built nine different subsets of 50K apps with
different compositions. Concisely, for each subset we vary
either the amount of malware it contains (2%, 25%, or 50% of
malware over the total) or the threshold used for considering
an application as malware (1-AV, 2-AV, and 4-AV detection).
As an example, we shall refer to the (1-AV, 25%) malware
dataset as a dataset that contains 25% malware and 75%
goodware applications where malware is randomly selected
among all applications whereby at least 1-AV detector was
fired.

There is an exception: the (4-AV, 50%) dataset. This data-
set contains 36K samples as a result of the lack of malware
applications detected as such by more than 4 AV engines.

5.1. Predictive Power of Permissions. Asnoted in the introduc-
tion, several researchers have studied the permissions used
by an application and their ability to detect malware. For
instance, the authors in [31] achieve F1-score values in the
range of 0.6 to 0.8.

In order to evaluate the effects that feature hashing has on
permissions, we try different hashing spaces (32, 64, 128, 256,
512, 1024, and 2048 hashes) to evaluate the feature amount-
performance trade-off. To measure performance, we run 10-
fold cross-validation for threshold tuning in a logistic regres-
sion algorithm and compute different AUC (Area Under the
Curve) measurements for each of the hashing spaces.

In our case, Figure 3 shows the ROC curve and AUC-
ROC values using logistic regression with different number
of hashes for the (4-AV, 50%) dataset. As observed, the more
hash functions used, the higher AUC achieved in the range of
0.7 for 256 hashes and above, in line with [31]. In conclusion,
the permissions set alone offer a moderate approach to detect
Android malware.

Hence, we choose 512 hashes as a good trade-off between
model accuracy and the number of features introduced, as
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Figure 3: ROC curve for malware detection using feature hashing on permissions only.

more features improve performance at the cost of consider-
ably larger complexity. In this case, average F1-score is 0.675,
whereas the area under the Precision-Recall (PR) curve is
0.685 for logistic regression. Regarding other algorithms, 512
feature hashes on their own achieve F1-score values of 0.659
for SVMs and 0.653 for RFs.

In the next sections we study the remaining 26 metadata
features (i.e., intrinsic, social, and entity-related) along with
512 feature hashes and apply feature selection techniques to
identify the most relevant ones.

5.2. Feature Selection. Beginning at 535 features in the data-
set, variable selection is performed to reducemodel complex-
ity. Generally, larger predictor collections do not necessarily
imply better performance but larger complexity. In fact, the
more predictors considered, the easier to bump into the
well-known “Curse of dimensionality”, which occurs when
there is a large proportion of predictors with respect to data,
penalizing global performance.

In the first experiment, Figure 4(a), we have used the
four feature selection methods described in Section 4 to
evaluate the importance of each feature in the dataset. The
results show such features sorted by each selection index and
normalized with respect to the largest (names of features are
self-explanatory). This experiment was conducted using the
(4-AV, 50%) dataset.

As shown in Figure 4(a), the top-7 most relevant features
in the dataset are, in order of importance, developerRep,
issuerRep, ageInMarket, lastSignatureUpdate, timeForCre-
ation, lastUpdate, and certVal (see Table 3 for a description
of them). In contrast, the feature hashes on the permissions
are not relevant when compared with the others.

In order to establish the number of valid features formod-
eling, Figure 4(b) shows the tenfold cross-validated F1-score

versus the number of predictors involved for each algorithm
(RF, LR, and SVM), where new predictors are added at each
iteration in decreasing order of relevance. There, Random
Forest provides the highest F1-score (around 0.89), while LR
and SVM reach around 0.86 and 0.87, respectively. Moreover,
the figure shows that highest performance on any algorithm
may be achieved with only the top-15 features.

In addition, it is worth remarking that developerRep
alone achieves an F1-score above 0.8, showing that this metric
alone ismore powerful than any other, including permissions.

5.3. MalwareDetection Model. We perform a full benchmark
test on the 9 composed datasets using only their top-
15 features, namely, developerRep, issuerRep, ageInMarket,
lastSignatureUpdate, timeForCreation, lastUpdate, certVal,
numPerm, numFiles, numDownloads, versionCode, oneS-
tarRatingCont, f216, size, and meanStar. As a result, Table 4
shows the training/test values of F1-score, precision, and
recall metrics for each dataset and the three models under
study (LR, SVM, and RF).

The results show that algorithms achieve similar results,
slightly better in the case of RF. Second, it might be observed
that general performance improves as the percentage of mal-
ware samples increases, showing best results when malware
accounts for 50% of the applications. Actually, in the 2%-
malware case, the difference between train and test error
suggests that the algorithms are overfitting the data. Finally,
the algorithms perform best at identifying those malware
applications tagged by several AV engines. Clearly, when the
algorithms are trained with malware applications tagged by
two engines or more, they reach up to 0.87 F1-score in the
test set (bottom line in the table), thus providing a high-level
prediction confidence.



8 Security and Communication Networks

f6
7

f1
9

f4
6

f5
1

f2
1

f2
7

f9
3

f5
5

de
ve

lo
pe

rR
ep

iss
ue

rR
ep

ag
eI

nM
ar

ke
t

la
st

Si
gn

at
ur

eU
pd

at
e

tim
eF

ro
m

Cr
ea

tio
n

la
st

U
pd

at
e

ce
rt

Va
l

nu
m

Fi
le

s
nu

m
Pe

rm

nu
m

D
ow

nl
oa

ds
ve

rs
io

nC
od

e
on

eS
ta

rR
at

in
gC

on
t

f2
16 siz

e
m

ea
nS

ta
r

to
ta

lV
ot

es

th
re

eS
ta

rR
at

in
gC

on
t

tw
oS

ta
rR

at
in

gC
on

t
fiv

eS
ta

rR
at

in
gC

on
t

fo
ur

St
ar

Ra
tin

gC
on

t
f1

04
f2

92
f1

61
f3

52
f2

11

f1
13

f4
56

f1
87

f1
76

f3
84

f4
38

f2
82

f2
28

f4
50

f1
05

f3
85

f1
29

f2
62

f2
22

f2
47

f4
14

f3
10

f3
48

f2
72

f2
77

f2
93

f1
99

f2
20

f4
91

f3
82

nu
m

Im
ag

es
f3

46

Pearson’s 2

Gain Ratio
Information Gain
Mean Decrease in Node Impurity
Average

0

0.2

0.4

0.6

0.8

1
va

lu
e

Chi

(a) Features sorted by importance

f6
7

f1
9

f4
6

f5
1

f2
1

f2
7

f9
3

f5
5

de
ve

lo
pe

rR
ep

iss
ue

rR
ep

ag
eI

nM
ar

ke
t

la
st

Si
gn

at
ur

eU
pd

at
e

tim
eF

ro
m

Cr
ea

tio
n

la
st

U
pd

at
e

ce
rt

Va
l

nu
m

Fi
le

s
nu

m
Pe

rm

nu
m

D
ow

nl
oa

ds
ve

rs
io

nC
od

e
on

eS
ta

rR
at

in
gC

on
t

f2
16 siz

e
m

ea
nS

ta
r

to
ta

lV
ot

es

th
re

eS
ta

rR
at

in
gC

on
t

tw
oS

ta
rR

at
in

gC
on

t
fiv

eS
ta

rR
at

in
gC

on
t

fo
ur

St
ar

Ra
tin

gC
on

t
f1

04
f2

92
f1

61
f3

52
f2

11

f1
13

f4
56

f1
87

f1
76

f3
84

f4
38

f2
82

f2
28

f4
50

f1
05

f3
85

f1
29

f2
62

f2
22

f2
47

f4
14

f3
10

f3
48

f2
72

f2
77

f2
93

f1
99

f2
20

f4
91

f3
82

nu
m

Im
ag

es
f3

46

Random Forest
Support Vector Machine
Logistic Regression

0.75

0.80

0.85

0.90

F1
-S

co
re

(b) Performance of classifiers with different number of features

Figure 4: Experiment results for feature selection.
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Table 4: Full benchmark test with top-15 predictors.

Malware NumDetectors F1-score Precision Recall
Logistic Regression (train/test)

2% 1 0.82/0.1 0.76/0.06 0.89/0.24
25% 1 0.89/0.57 0.87/0.46 0.91/0.73
50% 1 0.93/0.79 0.94/0.82 0.93/0.77
2% 2 0.8/0.18 0.74/0.12 0.88/0.33
25% 2 0.9/0.68 0.89/0.59 0.9/0.79
50% 2 0.94/0.82 0.95/0.78 0.93/0.86
2% 4 0.81/0.27 0.75/0.19 0.89/0.47
25% 4 0.91/0.73 0.9/0.65 0.91/0.83
50% 4 0.95/0.84 0.97/0.79 0.94/0.89

Support Vector Machine (train/test)
2% 1 0.85/0.08 0.76/0.05 0.96/0.23
25% 1 0.93/0.68 0.92/0.69 0.93/0.67
50% 1 0.96/0.82 0.96/0.87 0.95/0.77
2% 2 0.82/0.16 0.72/0.1 0.95/0.35
25% 2 0.93/0.73 0.93/0.7 0.93/0.76
50% 2 0.96/0.84 0.97/0.9 0.94/0.8
2% 4 0.81/0.26 0.7/0.17 0.97/0.54
25% 4 0.94/0.77 0.94/0.72 0.93/0.83
50% 4 0.96/0.87 0.98/0.89 0.95/0.84

Random Forest (train/test)
2% 1 0.99/0.12 0.99/0.07 0.99/0.33
25% 1 0.99/0.73 0.99/0.7 0.99/0.77
50% 1 0.99/0.84 0.99/0.88 0.99/0.8
2% 2 0.99/0.22 0.99/0.15 0.99/0.46
25% 2 0.99/0.77 0.99/0.73 0.99/0.83
50% 2 0.99/0.87 0.99/0.89 0.99/0.86
2% 4 0.99/0.32 0.99/0.22 0.99/0.59
25% 4 0.99/0.81 0.99/0.76 0.99/0.87
50% 4 0.99/0.89 0.99/0.88 0.99/0.9

Furthermore, it can be observed that the performance of
metadata with respect to permissions only is highly superior,
reaching larger F1-score values and using almost no permis-
sion hash in the process.

5.4. Robustness of the Model. The reader must note that
malware developers, after reading this article, may decide
to use different email accounts and certificates to evade this
detection mechanism. However, the malwarish behaviour of
applications is fingerprinted in several features redundantly,
not only in the reputations. Truly, considering more than
13–15 features is completely unnecessary, as no extra predic-
tive power is gained by adding new features (as shown in Fig-
ure 4); despite that, no less features should be selected, since
most of them are redundant for performance, ensuring a
certain degree of robustness for themodel.This is very impor-
tant, specially for cases when some features are corrupted or
unavailable (i.e., the developer has changed accounts).

To show this, Table 5 shows the F1-score results of rerun-
ning the RF algorithm to different subsets of features. Essen-
tially, the first column shows the same train/test F1-score

values as in Table 4 since both use the same top-15 features.
The second column shows the F1-values when training and
testing with features from 3 to 17 of Figure 4 (i.e., top-15 with-
out developerRep and issuerRep). In this case, the F1-score
value is slightly worse than before, but still the algorithm is
able to classify malware accurately. Similarly using features
5-19 introduces a small decrease in F1-score, but still good
performance is achieved. F1-score quickly drops when using
the features from position 7 onwards in the ranking.

5.5. Performance and Impact of This Approach. The proposed
methodology can be implemented as an early detection
system that analyses metadata when a new application is
submitted to an Android market. In this light, any delay
introduced by this system in the market submission process
could seriously impact the number of applications uploaded,
as users are typically time-aware and not very keen onwaiting
too much. Thus, application analysis time is a key indicator
for the success of the approach.

In our case, we have conducted an experiment to meas-
ure the time taken to build and test the models along with
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Table 5: F1-score value of Random Forests with different feature sets.

F1-score Random Forest (train/test)
NDet 1-15 feats. 3-17 feats. 5-19 feats 7-21 feats 9-23 feats. 11-25 feats 13-27 feats
1 AV 0.99/0.84 0.99/0.86 0.99/0.84 0.99/0.74 0.96/0.72 0.88/0.67 0.80/0.64
2 AV 0.99/0.87 0.99/0.87 0.99/0.86 0.99/0.79 0.96/0.75 0.88/0.71 0.75/0.66
4 AV 0.99/0.89 0.99/0.88 0.99/0.87 0.99/0.80 0.96/0.77 0.89/0.73 0.77/0.69

querying the model for a new app. The following numbers
summarise our results in an Intel Xeon E5-2630 server with
24 cores and 190 GB of RAMmemory:

(i) Logistic Regression: Query: 0.1 𝜇𝑠; Building model
(train+test): 46 𝑚𝑠; Building model (train) with Hy-
perparameter tuning (validation): 2 𝑚 6 𝑠,

(ii) Support Vector Machines: Query: 16 𝑚𝑠; Building
model (train): 2.4 𝑠; Building Model (train) with Hy-
perparameter tuning: 8ℎ 20𝑚,

(iii) Random Forest: Query: 32 𝜇𝑠; Building model
(train+test): 3.5 𝑠; Building Model (train) with Hy-
perparameter tuning: 47 𝑚 32 𝑠.

6. Summary and Discussion

In summary, this work has shown that Google Play metadata
provides valuable information to detect Android malware
applications, reaching F1-score values near 0.9, for example,
when feeding metadata to a Random Forest. In particular, it
has been shown that using no more than 15 features, malware
applications can be accurately identified.

Furthermore, this work has also shown that inherent fea-
tures, in particular application permissions, offer moderate
prediction power (AUC-ROC about 0.7) compared to other
metadata, such as the developer’s reputation (percentage of
malware applications uploaded by the same developer in the
past) or certificate issuer reputation. This allows constructing
efficient classification models for the early detection of mal-
ware applications uploaded at an Android market, as a prior
step to more sophisticated techniques, namely, code inspec-
tion or sandboxing.

The results of this work show that metadata can be used
as a simple static predictor for malware, specially suited to
analyse at once large amounts of Android applications. This
way, any application submitted to a market can be analysed
to determine whether it has to be further inspected or can be
directly uploaded. In addition, it is also possible to develop an
in-device system which informs users about the appearance
of each application and the risk of installing them in the
device beforehand.

Furthermore, this methodology can be applied to other
application markets like Aptoide or Amazon market, as they
contain most of the metadata fields in Table 3, or equivalent
ones that can be mapped to them.

In a nutshell, the contributions of this work are the follow-
ing:

(i) We evaluated the capabilities of permission-based
detection approaches and their limitations by means
of the hashing trick as feature reduction technique.

(ii) We showed that inherent application features, such
as the developer’s reputation (percentage of malware
applications uploaded by the same developer in the
past) or certificate issuer’s reputation, offer very good
performance for detecting Android malware.

(iii) We proposed a model for Android malware detection
based on metadata and machine learning techniques
capable of detecting most Android threats, which can
be leveraged both at market level and in-device appli-
cation analysis.

(iv) We evaluated our proposed model over different
benchmarking tests for performance and robustness
of the algorithm.

Data Availability
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& Privacy and, for strategic reasons, it cannot be disclosed.
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