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Abstract

The exponential growth of the internet has resulted in an overwhelming in-

flux of big data. However, traditional batch learning models face significant

obstacles in effectively learning from these vast and constantly evolving data

streams and generating up-to-date outcomes. To overcome these limitations,

Stream Learning (SL) has emerged as a promising solution that enables con-

tinuous learning from evolving data streams and adapts to changes in input

distributions.

This thesis focuses on the classification task of SL, specifically investi-

gating streaming gradient-boosted trees and Neural Network (NN)s. Firstly,

we introduce Streaming Gradient Boosted Trees (SGBT), a novel gradient-

boosted method designed explicitly for SL classification. Next, we propose

Continuously Adaptive Neural Networks for Data Streams (CAND), an ar-

chitecture agnostic NN approach for evolving data stream classification. Both

SGBT and CAND outperform current state-of-the-art bagging and random

forest-based SL methods, demonstrating their superiority in handling evolving

data stream classification tasks.

Online Continual Learning (OCL) addresses the issue where NN learning

from an evolving data stream forgets its past knowledge when confronted with

a distribution shift. Online Domain Incremental Continual Learning (ODICL)

is a specific variant of OCL where the input data distribution changes from

one task to another. We propose two innovative methods: Online Domain In-

cremental Pool (ODIP) and Online Domain Incremental Networks (ODIN),

for ODICL. The proposed methods leverage existing well-researched SL tech-

niques described in Online Streaming Continual Learning (OSCL). ODIP and

ODIN outperform current regularization methods without needing a replay

buffer. ODIN achieves competitive results compared to replay-based methods.

Both methods are ideal candidates for privacy-concerned ODICL scenarios,

offering alternatives to regularization-based approaches.

Overall, this thesis explores advancements in SL classification and ODICL,

presenting novel techniques that surpass existing approaches in their respective

domains. These contributions have significant implications for addressing the

challenges posed by evolving data streams in the era of big data.
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Chapter 1

Introduction and Background

This chapter introduces the dynamic field of evolving data stream classifica-

tion, encompassing the motivation behind our work and the challenges that

arise in this domain. It also emphasizes our contributions in tackling these

challenges, which offers a framework for navigating the remainder of the the-

sis.

1.1 Introduction

Figure 1.1: Training compute (FLOP) of milestone ML learning systems over

time. Source [1].



2

Over the last decade, the proliferation of the internet has resulted in an un-

precedented surge of big data, creating an urgent need for rapid advancements

in the field of Machine Learning (ML). As a rapidly evolving field, ML can

now extract knowledge and identify patterns from large data sets. It has found

widespread applications in various domains, such as healthcare, finance, online

marketing, and many others, to solve real-world problems using big data [5, 6].

The progress in computing has facilitated ML systems to keep up with this

trend by utilizing larger models [7, 1]. As a result, ML has moved closer to

achieving Artificial General Intelligence (AGI). However, this has come at the

cost of increased computing power. Figure 1.1 illustrates this trend, with the

most recently proposed ML methods requiring a significantly large computing

budget.

1.1.1 Motivation

Current batch learning methods typically require training models on the entire

dataset with multiple epochs, leading to significant energy and computing

resource consumption [5]. However, in real-world settings, the underlying data

distribution can change over time, causing ’concept drift’1 to deteriorate the

model’s performance [8, 9]. As a result, models must be retrained periodically,

incorporating data from new distributions to remain relevant. Therefore, there

is a pressing need to develop efficient ML algorithms which can evolve.

Online learning methods aim to address this issue, allowing the model to

learn from new data as it arrives without access to the entire dataset. These

methods enable the model to adapt to new data distributions, making it more

robust and capable of handling real-world data with changing patterns. As

learning happens online, these models need to be computationally efficient

and able to predict at any time.

However, many learning algorithms tend to forget past knowledge when

learning from a new data distribution. This phenomenon is well-documented

1The idea of ’concept drift’ is further explained in section 2.1.1.1.
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for popular Neural Network (NN)s and identified as ’catastrophic forgetting’ in

literature [10, 4]. The naive approach to overcome this is to retrain the model

from scratch with old and new data, which is computationally expensive. Thus,

Continual Learning without retraining is essential to an online learning agent

when learning from an evolving data stream.

1.1.2 Learning from evolving data streams

Stream Learning (SL) is a machine learning technique that operates on

data streams. Stream learning algorithms are designed to handle the dynamic

nature of data streams and must continuously adjust to new concepts that

emerge over time [9]. Here the main emphasis is to adjust to the current

concept efficiently. Similar to batch learning, Stream Learning methods are

categorized into supervised, semi-supervised, and clustering [9, 11].

Supervised SL assumes that each instance in the dataset has a cor-

responding target value. There are two main categories of supervised SL:

classification and regression. Classification methods aim to predict the cate-

gory or class of a given instance in the data stream. Section 2.1.1.2 contains

an in-depth review of classification methods for supervised SL. On the other

hand, regression methods aim to predict a continuous numerical output value

for a given instance in the data stream.

Semi-Supervised SL relaxes the always-label availability assumption in

supervised SL for some instances. For those instances, target values may only

become available at a later time or not be available at all. Semi-Supervised

SL categorizes label availability into four groups: (i) Immediate and fully

labelled, (ii) Delayed and fully labelled, (iii) Immediate and partially labelled,

and (iv) Delayed and partially labelled [12]. The majority of data stream Semi-

Supervised Learning (SSL) is devoted to understanding (iii). However, [12]

highlights the importance of understanding the delayed and partially labelled

(iv) setting. Furthermore, the authors categorize streaming SSL methods
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into: (i) intrinsically SSL, (ii) self-training, and (iii) learning by disagreement.

Intrinsically SSL methods exploit the unlabelled instances directly as part of

their objective function or optimization procedure [12]. Self-training methods

are based on the idea that a classifier learns from its previous mistakes and then

reinforces itself [12]. It can act as a wrapper algorithm that uses any arbitrary

classifier. Learning by disagreement works by learners teaching other learners.

Models are trained with multiple viewpoints of the same data2, which results

in disagreeing models. The key idea behind learning by disagreement is to

generate multiple learners and let them collaborate to exploit the unlabelled

data [12].

Clustering Stream Learning assumes the unavailability of target vari-

ables. It can be categorized into: partition clustering, micro-cluster-based

clustering, density-based clustering, and hierarchical clustering [11]. Instances

from a stream are divided into segments without a class label. The objective

of this type of SL is to discover patterns in the stream in an online fashion

with a minimum amount of resources. Also, algorithms deployed in this setting

should be able to cope with the evolving nature of the stream. The survey [13]

contains a recent and extensive study on this field.

Continual Learning (CL) aims to preserve already-acquired knowledge

while adjusting to new concepts. The main difference between SL and CL is

that it contains the additional requirement to preserve old knowledge while ad-

justing to the new concept. Online Continual Learning (OCL) aims to achieve

this dual objective while learning online from an evolving data stream. This al-

lows learning agents to continuously acquire new knowledge without resorting

to retraining on the entire data set. The literature identifies three main cate-

gories of CL: task-incremental, class-incremental, and domain-incremental [4].

It further identifies three main approaches to avoid catastrophic forgetting in

NNs: regularization, replay, and parameter isolation [4]. Section 2.1.2 explains

2This could be achieved through techniques such as bootstrapping aggregation.
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the above CL settings and current methods to alleviate catastrophic forgetting

in detail.

Online Streaming Continual Learning (OSCL) is identified as the in-

tersection between SL and OCL in this thesis. It allows well-researched SL

fields such as efficient stream learners, concept drift detection, and adaptation

strategies to enhance or develop new OCL methods. This emerging field of

OSCL is further explored in section 2.1.3. It also compare SL and OCL in

depth.

1.1.3 Challenges

In Stream Learning, models must always be available to make pre-

dictions as new data arrives [9]. This requires the model to be updated

continuously. Also, the models are expected to adapt to concept drifts to

ensure the predictions remain accurate and up-to-date [9]. Efficiency is also

crucial in SL as the model learns online, and the processing time is limited.

Hence, SL algorithms must be computationally efficient [9]. OCL adds

another requirement for SL models by expecting them to preserve already

acquired knowledge while adjusting to a new concept [4].

In recent years, bagging-based ensemble learners have emerged as powerful

methods for SL, outperforming boosting-based methods. Among these learn-

ers, Adaptive Random Forest (ARF) [14] and Streaming Random Patches

(SRP)[15] have shown particularly promising results. Even state-of-the-art

gradient boosted SL methods like Adaptive eXtreme Gradient Boosting (Axgb)

[16] and Adaptive Iterations (AdIter) [17] have failed to surpass the perfor-

mance of ARF and SRP.

• In this thesis, we propose a gradient-boosted SL classification method

that surpasses the current state-of-the-art bagging and random forest-

based SL methods.
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Neural Network (NN)s have demonstrated remarkable success in process-

ing high-dimensional data sets in batch learning. However, they often require

large data sets and multiple epochs of training to learn effectively. Addi-

tionally, NNs are vulnerable to hyperparameters, and retraining is necessary

to produce an effective model when concept drift occurs. To fully harness the

advantages of NNs for SL, it is essential to train and test NNs efficiently with-

out hyperparameter tuning, where predictive NNs are resilient and adaptive

to concept drifts.

• Given their significance, this thesis also explores the possibility of utiliz-

ing Neural Networks for data stream classification.

When employing NNs for Online Continual Learning, it is crucial to overcome

the challenge of catastrophic forgetting [10, 4], where NN forgets its past

knowledge when faced with a distribution shift while learning from a non-IID

data stream.

• The thesis explores using Online Streaming Continual Learning, the fu-

sion of SL and OCL, to propose novel techniques for Online Domain

Incremental Continual Learning. Here, we aim to alleviate catastrophic

forgetting of NNs while performing well on current distribution for OD-

ICL using SL techniques and methods.

1.1.4 Contributions

The thesis presents two novel methods for Stream Learning classification.

• Gradient Boosting is a widely-used machine learning technique highly

effective in batch learning. However, its effectiveness in stream learning

contexts lags behind bagging-based ensemble methods, which currently

dominate the field. One reason for this discrepancy is the challenge of

adapting the booster to new concepts following a concept drift. Reset-

ting the entire booster can lead to significant performance degradation

as it struggles to learn the new concept. Resetting only some parts of
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the booster can be more effective, but identifying which parts to reset

is difficult, given that each boosting step builds on the previous predic-

tion. To overcome these difficulties, we propose Streaming Gradient

Boosted Trees (SGBT), which incorporate trees with a tree replace-

ment strategy to detect drifts and enable the algorithm to adapt without

sacrificing performance. An empirical evaluation of SGBT on various

streaming datasets with challenging drift scenarios demonstrates that it

outperforms current state-of-the-art methods: SRP, AdIter, and On-

line Smooth Boost (OSB) [18].

• Neural networks have enjoyed tremendous success in many areas over the

last decade. They are also receiving more and more attention in learning

from data streams, which is inherently incremental. An incremental set-

ting poses challenges for hyperparameter optimization, which is essen-

tial for satisfactory network performance. We propose Continuously

Adaptive Neural Networks for Data Streams (CAND) to over-

come this challenge. For every prediction, CAND chooses the current

best network from a pool of candidates by continuously monitoring the

performance of all candidate networks. The candidates are trained us-

ing different optimizers and hyperparameters. An experimental com-

parison against three state-of-the-art stream learning methods: SRP,

ARF and Autonomous Deep Learning (ADL) [19] over various streaming

datasets confirms the competitive performance of CAND, especially on

high-dimensional data. We also investigate two orthogonal heuristics for

accelerating CAND, which trade-off small amounts of accuracy for sig-

nificant run-time gains. We observe that training on small mini-batches

yields similar accuracy to single-instance fully incremental training, even

on evolving data streams.

The two novel SL methods: SGBT and CAND, presented in this thesis

surpass existing state-of-the-art random forest and bagging-based methods

such as ARF and SRP. Some of the ideas from CAND: like the drift in the
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NN’s loss is analogues to the end-of-the-concept signal, and the estimated

loss of NN reveals its current performance, are later used to propose two

Online Streaming Continual Learning methods for Online Domain Incremental

Continual Learning (ODICL).

• To overcome the challenges (alleviate catastrophic forgetting while per-

forming well on current distribution) of ODICL, we propose Online

Domain Incremental Pool (ODIP), a novel method to cope with

catastrophic forgetting in ODICL. ODIP also employs automatic con-

cept drift detection and does not require task ids during training. ODIP

maintains a pool of learners, freezing and storing the best one after train-

ing on each task. An additional Task Predictor (TP) is trained to select

the most appropriate NN from the frozen pool for prediction. The em-

pirical evaluation suggests that ODIP outperforms popular regulariza-

tion methods: Elastic Weight Consolidation (EWC) [10] and Learning

without Forgetting (LwF) [20] for ODICL.

• Ideas from ODIP were further extended to propose Online Domain

Incremental Networks (ODIN). Compared to ODIP, ODIN only

trains a single NN. But, it maintains a pool of NNs, each frozen for

further updates at the end of a task. ODIN also employs the same task

prediction and detection strategies as ODIP. But it utilizes the incre-

mental or decremental drifts in the loss detected by the drift detector to

dynamically increase or decrease the learning rate. With these changes,

ODIN surpasses popular regularization methods: EWC [10] and LwF

[20] and produces competitive results to replay methods: Experience Re-

play (ER) [21] and Maximally Interfered Retrieval (MIR) [22] without

requiring an instance buffer like in replay methods for ODICL.

Both ODIP and ODIN are able to detect the end of the task signal. As

both of them do not require an instance buffer for Online Domain Incremen-

tal Continual Learning, they are more suited for privacy-concerned ODICL
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settings.
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1.1.6 Outline

The thesis is composed of seven chapters. The first chapter introduces the ba-

sic concept of learning from evolving data streams and provides an overview.

Chapter 2 covers preliminary and related work, including Stream Learning,

Online Continual Learning, and Online Streaming Continual Learning. Chap-

ters 3 and 4 propose two Stream Learning methods for evolving data streams:

SGBT and CAND. Chapters 5 and 6 present two ODICL methods: ODIP

and ODIN. Finally, Chapter 7 offers conclusions and future research directions

when learning from evolving data streams.



Chapter 2

Preliminaries and Related Work

This chapter attempts to understand Online Streaming Continual Learning:

the intersection of two closely related fields: SL and OCL, considering their

underlying setting, evaluation methods, and applications.

2.1 Learning from evolving data streams

DD

D1|        |D2|      |D3|          …      |Di|        …              |DT

Te
st

Drift detector (DD) attempts to detect the end of the 
distribution.

SL

Model
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only at task-incremental testing.

End of the distribution signal provided to the model at 
training (model may be unaware of this signal).

OCL

Tr
ai

n
Te

st
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n
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Figure 2.1: Comparison between SL and OCL settings.

SL: uses Drift Detector (DD)s discussed in section 2.1.1.1 to detect distribution

shifts, and evaluation is discussed in section 2.1.1.3. OCL: uses evaluation

metrics (equations 2.1, 2.2, 2.3, and 2.4) discussed in section 2.1.1.3. The

models in this setting do not detect distribution shifts. OSCL proposes some

of the techniques used in SL to be used in OCL.

This section provides an overview of supervised classification methods for

learning from evolving data streams, covering several key topics and their

related work. The section starts by introducing Stream Learning (SL). It
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then discusses the phenomenon of concept drift and methods to detect con-

cept drifts. The section also discusses several popular supervised SL methods.

The evaluation of SL methods, including commonly used metrics for assess-

ing accuracy and efficiency, is also covered in the section. Next, it explores

Continual Learning (CL). Several CL methods are discussed in the section.

Evaluation methods for CL are also presented, including metrics for measuring

performance on both old and new tasks. Finally, the section explores Online

Streaming Continual Learning (OSCL): the intersection of SL and Online

Continual Learning (OCL). Overall, this section provides a comprehensive

overview of the key concepts, methods, and applications of supervised clas-

sification methods for learning from evolving data streams. Figure 2.1 gives

a general comparison between SL and Online Continual Learning. It also

provides a guide to the rest of the subsections.

2.1.1 Stream Learning

In Stream Learning, a model learns from an evolving data stream (non-IID

data), processing one instance at a time. The learner must predict at any given

moment using limited processing and memory [9, 8]. Also, it should adjust

to distribution changes in the underlying data stream [9, 23]. The literature

identifies these distribution shifts as ’concept drifts’[9, 23, 8].

2.1.1.1 Concept Drift

Concept drifts can be categorized according to their impact on the decision

boundary, the evolution of the relationship between features and the target,

the speed of change, reach, and recurrence [24].

• Effect on the decision boundary (impact): the literature describes real

and virtual concept drifts. The former effects the the decision boundary

of the model. This affects the performance of the model. The latter

does not affect the decision boundary. Hence the model performance is

unaffected [2].
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Fig. 1. Two main types of concept drift with respect to their influence over decision boundaries. 

Fig. 2. Six types of drifts with respect to the ratio of changes. Graphs show transitions between the concepts along during the data stream progress. 
reappear D j+1 = D j−k and it may happen once or periodically. 
Blips , also known as outliers which should be ignored as the 
change it represents is random [16] . Noise , which represents 
insignificant fluctuations of the concept and should be filtered 
out [17] . Mixed concept drift is a hybrid phenomenon, where 
more than a single type of concept drift may appear during the 
stream mining process. One should note that in real-life sce- 
narios types of changes to appear are unknown beforehand and 
must be determined during the stream processing. Visualization 
of these types of drifts are presented in Fig. 2 . 

• Minku et al. [18] proposed severity criterion which allows to 
distinguish between local and global drift. The local drifts 
mean that changes affects only the small region of the feature 
space, while global drift affects the overall feature space, what 
cause that it is easier detected than the local one [19] . Addition- 
ally, we may also face with so-called ”feature drift” [10] , where 
the changes affect only selected attributes. 

• Unfortunately, in real classification tasks concept drift may ap- 
pear as a mixture of mentioned above changes. 
As mentioned before, managing concept drift is a crucial issue 

in learning from data streams. Here we may use on of three so- 
lutions: (a) retrain classification system from scratch every time a 
new instance or chunk becomes available; (b) detecting changes 

and retraining classifier only when the degree of changes has been 
considered as significant enough; and (c) using adaptive learning 
method that can follow the shifts and drifts in stream on its own. 
Obviously, the first approach is characterized by an unacceptable 
computational cost and therefore two remaining solutions are used 
in this field. 

Let us now discuss four main approaches to efficiently tackling 
drifting data streams: 
• Concept drift detectors are external tools used together with 

the classification module. They measure various properties of 
data stream, such as standard deviation [20] , predictive error 
[21] , instance distribution [22] , or stability [23] . Any changes 
in these properties are attributed to the potential presence of 
drift and thus allow to monitor the continuous progress of 
data stream. Most of drift detectors work in a two-stage set- 
ting. A warning signal is emitted when the changes start to oc- 
cur, being a single to the learning system that a new classifier 
should be trained on the most recent instances. A detection sig- 
nal informs the learning system that current degree of changes 
is severe and the old classifier should be replaced by a new 
one. This solution is also known as explicit drift handling. One 
should notice that ensembles of detectors start to attract the 

Figure 2.2: Different drift types under the “Effect on the decision boundary

(impact)” category: real and virtual. Source: [2].

• Evolution of the relationship between features and the target and the speed

of change: in the literature, drifts are categorized into sudden (abrupt),

gradual, and incremental drifts, considering the evolution of the rela-

tionship between features and the target and the speed of change. With

sudden or abrupt drifts, the current data distribution changes to a new

one within a short period [2]. This transition happens gradually [24] inChallenges in Benchmarking Stream Learning 5

Abrupt

Gradual

Incremental

Time

Fig. 1 Representation of three types of concept drift over time.

An abrupt drift occurs when the underlying distribution of the data suddenly
changes into a di↵erent distribution. In other words, after an abrupt transition be-
tween two observations, all new data points belong to a concept di↵erent from the
previous one. In the incremental change, there are several intermediary concepts
between one initial concept and a final concept. Consecutive concepts within this
transition period may be indistinguishable. In the case of gradual concept drift, the
transition between two concepts occurs smoothly. However, di↵erently from incre-
mental drift, in a gradual drift, the probability of observing instances that belong
to the previous concept decreases over time while, simultaneously, the probability
of observing instances that belong to the new concept increases, even though both
concepts are remarkably distinct and stationary during the transition period. Con-
cepts that were seen in the past and are later observed again are called recurring
concepts. We note that one-o↵ random deviations in the data, such as outliers or
noise, are not considered to be concept drifts.

A practical way to identify such patterns of change is to analyze the data
distribution over sliding windows in the stream. A window represents a sample
of examples that are observed in sequence within a period. When we move the
boundaries that define the first and last data points of this window over the stream
to comprise di↵erent intervals, we have a sliding window. We note that the use
of windows imposes the choice of essential parameters. The most common is the
number of data points that will be comprised by the window, and how much is
the overlap between consecutive windows.

We can only indirectly observe the underlying concept of the data by analyzing
samples of instances in the sliding window. Therefore, the observation of concept
drift is also indirect. As the number of instances is finite, there is a discrete and
finite number of observable distributions that can be analyzed. Note that which
examples are included in the window change the perception of the distribution:
a bigger window can hide inner distributions that would be perceived as distinct
with smaller windows. On the other hand, it may be infeasible to recognize certain
concepts if we can only observe too few data points for each occurring concept.

2.3 Independent Distribution

In batch learning, a common assumption is that examples are independent and
identically distributed (i.i.d.). In data stream applications, such an assumption
usually does not conform to reality. Identically distributed means that the joint
distribution of an example and its class label is the same at any time, that is,

Figure 2.3: Evolution of different drift types under the ”Evolution of relation-

ship between features and the target and the speed of change” category: abrupt,

gradual, and incremental. Source: [3].

the case of gradual drifts. Here for a certain period, one could observe

instances from both distributions. The transition time is very long with

incremental drifts, and there may not be a statistical difference between

adjacent instances [2]. Figure 2.3 shows how the drift types mentioned

above evolve.
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• Reach of change: drifts that affect all of the features are considered

global drifts [24], and drifts that affect some of the features are called

local drifts [25].

• Recurrent concept drifts : if a particular data distribution reoccurs in the

stream after a given period, it is considered a recurrent concept drift [24].

• Random blips/outliers/noise: are situations where, for a very short time,

few instances do not belong to the current distribution popup in the

stream [24].

Drift detectors: Many types of drift detectors are explained in the litera-

ture. [3] describe three types of drift detectors for Stream Learning.

• Methods based on differences between two distributions : These methods

compare the difference between two data windows. A reference window

with old data and a detection window with recent data are compared us-

ing a statistical test to discard the null hypothesis that both data belong

to the same distribution. Drift detectors based on fixed-size windows

usually suffer from a delay in detection [3]. Works such as ADaptive

sliding WINdow (ADWIN) [23] use dynamic windows.

• Methods based on sequential analysis : These are methods founded on the

Sequential Probability Ratio Test (SPRT)[26]. CUSUM and Page–Hinkley

[27] are good examples of drift detectors of this type.

• Methods based on statistical process control : These methods consider the

classification problem a statistical process and monitor the evolution of

some performance indicators like error rate to apply heuristics to find

change points. For example, DDM [28] has three different states for the

classification error evolution: in-control when the error is in the control

level, out-of-control when the error is increasing significantly compared

to the recent past, and warning when the error is increasing but has

not reached the out-of-control level. Where DDM only looks at the
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magnitude of the errors, EDDM [29] also considers the distance in time

between consecutive errors.

We would like to direct the reader to work by [30] and [31] for a thorough

review of drift detectors for Stream Learning.

2.1.1.2 Supervised Classification Methods for Stream Learning

Supervised SL literature explains simple but effective classifiers like Naive

Bayes (NB) and Hoeffding Tree (HT) to ensemble learners like ARF and

SRP. HT [32] builds a tree using the Hoeffding bound to control its split

decisions with a given confidence. Later an adaptive version was introduced

to replace the branches when the data stream is evolving [33].

Ensemble methods have shown great success in stream learning [8], where

it allows one to use currently available efficient stream learning base learners

like Hoeffding Tree (HT) in bagging or random forest settings in conjunction

with efficient drift detectors like ADaptive sliding WINdow (ADWIN) [23] [15].

Boosting and bagging are two popular ensemble learning techniques

used in machine learning. Bagging samples instances randomly with replace-

ment to train each item of the ensemble. Boosting, on the other hand, attempts

to boost the performance of the next base learner in the ensemble consider-

ing the loss of the previous one. It combines the prediction of weak learners

addictively to produce a strong learner [34, 35]. AdaBoost [36] highly weights

the miss-classified instances by the current base learner to improve the next

base learner. Gradient boosting uses the current base learner’s gradient infor-

mation of the loss to improve the next base learner [34]. XGBoost [37] uses

this gradient information to derive a particular regression tree that predicts a

raw score at the leaf for a given instance.

Data stream boosting is challenging due to the evolving nature of the data.

Here the model needs to adjust to the new input distribution of the stream
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after a concept drift [9, 16]. OnlineBagging and Online Boosting (OB) [38]

were inspired by the observation that a binomial distribution Binomial(p,N)

can be approximated by a Poisson distribution Poisson(λ)) with λ = Np as

N → ∞. Here, N is the number of instances, and p is the probability of

success in the binomial distribution. The p is analogous to uniform sampling

with replacement in batch bagging and instance weight in batch AdaBoost [38].

Since the probability of selecting a given example is 1/N in the bagging, the

uniform sampling with replacement of the bagging algorithm is approximated

by Poisson(1) in OnlineBagging. On the other hand, in OB, λ is computed

by tracking the total weights of correctly classified and misclassified exam-

ples for each base learner. The Leveraging Bagging (LB) [39] combines the

OnlineBagging technique with the ADWIN. It selectively resets base models

whenever their corresponding ADWIN instance flags a drift. An online version

of SmoothBoost [40] was proposed in [18]. This Online Smooth Boost (OSB)

uses smooth distributions which do not assign too much weight to a single

example. When the number of weak learners and examples are sufficiently

large, OSB is guaranteed to achieve an arbitrarily small error rate [18, 15].

For imbalanced data streams, a set of online cost-sensitive bagging and boost-

ing algorithms were introduced by [41]: OnlineUnderOverBagging, OnlineS-

MOTEBagging, OnlineAdaC2, OnlineCSB2, OnlineRUSBoost, and OnlineS-

MOTEBoost. In these online algorithms, cost sensitivity to class imbalances

were introduced by manipulating the parameters of the Poisson distribution

discussed in [38]. The main aim of empirical evaluation [41] was to understand

the performance gap between online algorithms and their batch counterparts.

Evolving data streams were not considered in their evaluation. Recently, two

notable approaches were proposed by the stream learning community to lever-

age gradient boosting for data streams: Axgb [16] and AdIter [17]. Axgb

employs mini-batch trained XGBoost as its base learners and adjusts the

ensemble in response to concept drifts, which it detects using ADWIN [23].

AdIter attempts to identify the weak learners in the ensemble and prune



17

them when confronted with concept drift. It then employs multiple train-

ing iterations via majority vote among the ensemble to support different drift

types. Both Axgb and AdIter only support binary classification. But, the

streaming gradient boosting method proposed in this work supports both bi-

nary and multi class problems.

ARF [14] and SRP [15] are two popular recently proposed ensemble learn-

ing methods. They allow one to use efficient stream learning base learners like

Hoeffding Tree (HT) in random forests or bagging set up in conjunction with

efficient drift detectors like ADWIN. ARF is an online random forest im-

plementation for data streams that uses effective re-sampling strategies, drift

detection, and drift recovery strategies [14]. It simulates re-sampling, as in LB.

ARF uses a drift detection and recovery strategy based on detecting warnings

and drifts per base tree. After a warning is triggered, a background tree is

created and trained without affecting the ensemble’s performance. When the

warning is escalated to drift, the base tree is replaced with the background tree.

Compared to serial implementation, its parallel implementation yields superior

computing performance without compromising classification accuracy. SRP

is a bagging method that trains base learners on random sub-sets of features

and instances identified as sub-spaces[15]. It uses the same drift detection and

recovery strategy as ARF but produces superior results compared to ARF

[15]. SRP does not have a parallel implementation yet.

OSB performed better compared to OB in the [18] empirical evaluation.

Empirical evaluation [15] shows that even with 100 base learners, ARF and

SRP outperform OSB by a large margin. In the same evaluation, SRP out-

performed ARF. Axgb failed to outperform ARF in the [16] empirical eval-

uation. In [17] empirical evaluation AdIter also failed to surpass ARF on

synthetic data sets with 10000 instances. However, in the same evaluation,

AdIter surpassed ARF on real-world data. In that evaluation, all the other

data sets had less than 100000 instances apart from airlines. Above empiri-

cal evaluations suggest that the latest gradient boosting methods for evolving
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data streams are yet to surpass current state-of-the-art ensemble methods like

SRP.

Neural Networks have shown valuable recent advances in various fields;

however, to our knowledge, there is still a gap in the research focusing on NNs

for evolving data streams. ADL was proposed where the network’s depth and

width are dynamically managed according to drift detection, the network’s

generalization power, and the level of mutual information between hidden lay-

ers [19]. Network Significance estimates the network generalization power in

terms of bias and variance and is used to grow or prune hidden nodes. Once

a drift is detected, the model adds a new hidden layer. Based on the mutual

information analysis across hidden layers, layers with high correlations are

avoided. The network is structured differently than a standard MLP, where

each layer has a softmax layer, and the final output is obtained by weighted

voting. As this structure limits its use to classification tasks, an MLP-like

structure was proposed by keeping the same dynamic network growing and

pruning strategy [42]. Later, the same approach was extended to autoencoders

[43] and RNNs [44]. All these variants were trained with a single epoch using

mini-batches. ADL was compared against Support Vector Machine (SVM)s

and distribution-free one-pass learning in [45]. In the experiments, data were

fed in batches, and the models were trained for multiple iterations using a

given batch. Defining robustness as a relationship between one algorithm’s

accuracy and the smallest accuracy among all algorithms, the authors found

the ADL method to be one of the least robust ones.

Previous work on NNs for data stream learning was mainly focused on

using mini-batches to train and test the algorithms. It is reasonable to assume

that drift could occur in the middle of a mini-batch. The effect of mini-batch

size has been investigated for ensemble learners in a streaming setting [46].

However, to the best of our knowledge, it is yet to be scrutinized for NNs.

Also, the previous work on NNs for data streams mainly focused on dynam-
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ically adjusting the network structure. In contrast, there is less focus on in-

vestigating the effects of learning rate and optimization methods. Exploring

those fields involves the challenging aspect of hyperparameter tuning for data

streams [47]. Self hyperparameter tuning for data streams, which requires a

double pass over the data during the exploration phase, was proposed by [48].

Later, it was further improved to use a single pass [49]. During its explo-

ration phase, triggered by a concept drift detection, for n hyperparameters,

the method creates n + 1 models plus seven experimental models proposed

by the Nelder–Mead algorithm, using shallow copies of the best model. The

exploration starts by randomly selecting the n + 1 models, and it stops when

the best, good, and worst models converge. It was compared against the algo-

rithms with their default values, offline grid search, and offline random search

for various machine learning tasks, including classification, regression and rec-

ommendation. The authors point out that the results for classification were

fairly similar to those obtained by the model with the default hyperparam-

eters while promising accuracy was obtained for recommendation problems.

Also, using this method to optimize NN’s width or depth could be difficult,

as weights and biases need to be compressed or expanded to match the new

setting.

2.1.1.3 Evaluation

Several methods are explained in the SL literature for evaluating a model. The

most popular one is the test-then-train approach [9, 50]. As the name suggests,

the evaluation uses the incoming instance to test the model first and later train

the model. Here the current predictive evaluation is affected by the previous

evaluations. This may be desirable when one is interested in the model’s overall

performance. Test-then-train is also known as prequential evaluation in the

literature. The prequential evaluation may not be reliable in conveying the

current predictive performance of the model. Therefore prequential evaluation

can be equipped with a sliding window, or a fading factor, to gracefully forget
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the performance of instances from the distant past [9, 50]. Prequential evalu-

ation is still applicable for partly labelled data, as the loss can be calculated

on just the labelled subset of instances [12]. Data stream cross-validation was

introduced by [51], where models are trained and tested in parallel on different

folds of the data. Continuous re-evaluation considers the verification latency

in the streaming setting with partially delayed labels [52, 53]. This evaluation

attempts to evaluate how fast a model can transform from an initial, possibly

incorrect prediction to a correct prediction before the availability of the true

label.

There are several metrics explained in the literature to measure the per-

formance of an SL classification algorithm. The most popular one is accuracy.

If the data stream is imbalanced, accuracy can be misleading; sensitivity and

specificity are better measurement alternatives [11]. The kappa statistic com-

pares the model’s prequential accuracy against the chance classifier (one that

randomly assigns to each class the same number of instances as the model un-

der consideration) [9]. On the other hand, the kappa M compares the current

model’s performance against the majority class classifier [9]. Kappa temporal

attempts to capture the temporal dependencies in a data stream by comparing

the model performance against a ”no-change” model, which predicts the next

instance using the current instance’s label [9]1. For delayed label situations,

when multiple predictions are made for a single instance, accuracy and kappa

values can be aggregated to produce immediate measures until the true label

is available [53, 12].

Regression SL uses two main evaluation metrics: (i) Root mean squared

error (RMSE) and (ii) Mean absolute error (MAE) [11]. We direct the reader

to [9, 11] for thorough reviews of regression evaluation methods and [54] for

clustering evaluation methods. Furthermore, data stream evaluation also con-

siders computing and memory usage [9].

1These measurements are thoroughly explained in [9]
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2.1.1.4 Application

SL has been used in many situations where learning happens from an evolving

data stream. [3] used SL on data generated by optical sensors, which measure

the flying behaviour of insects to identify disease vector insects. Also, [55]

used SL methods for online crude oil price prediction. SL was used to predict

power production considering environmental conditions [56]. The study by

[57] contains some interesting applications of SL for monitoring and control

problems. It includes application tasks such as traffic management, activity

recognition, communication monitoring, controlling robots, intelligent appli-

ances, intrusion detection, fraud detection, and insider trading. The study also

contains some interesting areas where SL could provide solutions. We like to

direct the reader to [57] for a broader understanding of SL applications.

2.1.2 Continual Learning

The literature has thoroughly documented that an NN receiving non-IID data

forgets past knowledge when confronted with a concept shift [10, 4]. CL at-

tempts to learn with minimal forgetting of past concepts [10, 4]. In OCL, this

learning happens online. Three main continual learning settings are described

in the literature: task-incremental, class-incremental, and domain-incremental.

• Task-incremental : In this setting, output distributions are demarked by

external task ids, available for training and testing. In this setting, the

model can use the external task-id signal at test time [4].

• Class-incremental : Each distribution consists of classes that are unavail-

able in other distributions (tasks). This setting adapts a single-head NN

configuration. Here, output distributions differ from task to task [4].

• Domain-incremental, on the other hand, assumes output distribution

from one task to the other to be the same while having different input

distributions [4].
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! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51
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Figure 2.4: Three main CL settings discussed by [4].Task-incremental : tasks

are demarked by task id. Task id is available at the test time. Class-

incremental : different classes are present at each task. Task id is not available

at the test time. Domain-incremental : each task contains the same set of

classes, but the input distribution changes from one task to another, e.g., blur

vs. noise. Task id is not available at test time. Source: [4].

In both class-incremental and domain-incremental settings, an external

task-id that separates one task from another is assumed to be unavailable at

test time [4]. The availability of this signal at training is optional [4]. However,

some CL methods rely on this signal during training. Online Class Incremen-

tal Continual Learning (OCICL) and Online Domain Incremental Continual

Learning (ODICL) assume class-incremental and domain-incremental Online

Continual Learning settings, respectively.

2.1.2.1 Methods

CL algorithms use three popular approaches to avoid catastrophic forgetting

in NNs: regularization, replay, and parameter isolation.

Regularization methods: algorithms like EWC [10] and LwF [20] adjust

the weights of the network in such a way that it minimizes the overwriting of

the weights for the old concept. EWC uses a quadratic penalty to regularize

updating the network parameters related to the past concept. It uses the

Fisher Information Matrix’s diagonal to approximate the importance of the

parameters [10]. EWC has some shortcomings: 1) the Fisher Information
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Matrix needs to be stored for each task, and 2) it requires an extra pass over

each task’s data at the end of the training [4]. Though different versions of

EWC address these concerns [4], [58] seems suitable for online CL by keeping

a single Fisher Information Matrix calculated by a moving average. LwF

uses knowledge distillation to preserve knowledge from past tasks. Here, the

model related to the old task is kept separate, and a separate model is trained

on the current task. When the LwF receives data for a new task (Xnew,

Ynew), it computes the output (Yold) from the old model for the new data

Xnew. During training, assuming that ˆYold and ˆYnew are predicted values for

Xnew from the old model and new model, LwF attempts to minimize the loss:

αLKD(Yold, ˆYold) + LCE(Ynew, ˆYnew) + R [4]. Here LKD is the distillation loss

for the old model, and α is the hyper-parameter controlling the strength of

the old model against the new one. LCE is the cross-entropy loss for the new

task. R is the general regularization term. Due to this strong relation between

old and new tasks, it may perform poorly in situations where there is a huge

difference between the old and new task distributions [4].

Replay methods present a mix of old and current concepts instances to

the NN based on a given policy while training. This reduces forgetting as the

training instances from the old concepts avoid complete overwriting of past

concept’s weights. GDumb [59], ER [21], and MIR [22] are some of the most

popular CL replay methods. GDumb attempts to maintain a class-balanced

memory buffer using instances from the stream. At the end of the task, it

trains the model using the buffered instances. ER uses reservoir sampling to

sample instances from the stream to fill the buffer. Reservoir sampling ensures

that every instance in the stream has the same probability of being selected to

fill the buffer. ER uses random sampling to retrieve instances from the mem-

ory buffer. Despite its simplicity, ER has shown competitive performance in

ODICL[4]. Five (three buffer and two non-buffer) tricks have been proposed

by [60] to improve the accuracy of ER in the OCICL setting. The buffer
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tricks are independent buffer augmentation, balanced reservoir sampling, and

loss-aware reservoir sampling. The two non-buffer tricks are bias control and

exponential learning rate decay. Except for bias control which controls the

bias of newly learned classes, these tricks can be used in ODICL to improve

the performance of a replay method. MIR uses the same reservoir sampling

as ER to fill the memory buffer. However, when retrieving instances from the

buffer, it first does a virtual parameter update using the incoming mini-batch.

Then it selects the top k randomly sampled instances with the most signifi-

cant loss increases by the virtual parameter update for training. In the online

implementation in [4], this virtual update is done on a copy of the NN. Replay

Using Memory Indexing (REMIND) [61] takes this approach to another level

by storing the internal representations of the instances by the initial frozen

part of the network and using a randomly selected set of these internal rep-

resentations to train the last unfrozen layers of the network. REMIND can

store more instance representations using internal low-dimensional features.

In general, these replay approaches are motivated by how the hippocampus

in the brain stores and replays high-level representations of the memories to

the neocortex to learn from them [61]. The empirical survey by [4] suggests

that ER and MIR perform better on OCICL and ODICL than other OCL

methods. More recently, [62] has proposed repeated augmented rehearsal to

improve replay methods. The method utilize data argumentation for replayed

instances to avoid over-fitting on replay buffer data2. The approach seems to

improve all replay methods in general.

Parameter-isolation: The intuition behind parameter-isolation methods is

to avoid interference by allocating separate parameters for each task [4]. There

are two types of parameter-isolation-based methods: fixed architecture and

dynamic architecture. Fixed architecture only activates the relevant part of

the network without changing the NN architecture [4]. On the other hand,

2A well-documented issue in replay methods [62].
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dynamic architecture adds new parameters for the new task while keeping

the old parameters [63, 4]. Continual Neural Dirichlet Process Mixture (CN-

DPM) [64] trains a new model for each new task and leaves the existing models

untouched so that at a later point, it can retain the knowledge of the past tasks.

It comprises a group of experts where each expert contains a discriminative

and a generative model. Each expert is responsible for a subset of the data.

The group is expanded based on the Dirichlet Process Mixture using Sequential

Variational Approximation [4].

Most current ODICL methods rely on an explicit end-of-task signal dur-

ing training. EWC and LwF use this signal to optimize weights, while replay

methods can use it to update their replay buffer. However, GDumb, ER, and

MIR do not rely on this signal for replay buffer updates. Though [4] defines

ODICL as training without the end of the task signal. Implementations such

as [65] and [66] use the end of the task signal to employ CL methods such

as EWC and LwF. However, on the other hand, the implementation in [67]

assumes a gradual distribution shift in the input data distribution where in-

stances from both the new and old tasks can appear in the stream for a certain

period. We would like to direct the reader to a survey by [4] for in-depth detail

about those methods.

2.1.2.2 Evaluation

There are many evaluation metrics defined in the CL literature. On a stream

with T tasks, after training the NN from tasks 1 to i, let ai,j be the accuracy

on the held-out test set for task j. Average accuracy (Ai) at task i is defined

as:

Ai =
1

i

i∑
j=1

ai,j (2.1)

[58]. Average forgetting (Fi) at task i is defined as:

Fi =
1

i− 1

i−1∑
j=1

fi,j (2.2)
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, where

fk,j = max
l∈{ 1,...,k−1}

(al,j)− ak,j∀j < k

Here fk,j is the best test accuracy the model has ever achieved on task j before

learning task k. ak,j is the test accuracy on task j after learning task k [58].

The positive influence of learning a new task on previous tasks’ performance

is measured by Positive Backward Transfer (BWT):

BWT = max

(∑T
i=2

∑i−1
j=1 ai,j − aj,j
T (T−1)

2

, 0

)
(2.3)

[4]. The positive influence of learning a given task on future tasks’ performance

is defined as Forward Transfer (FWT):

FWT =

∑T−1
i=1

∑T
j=2 ai,j

T (T−1)
2

∀i < j (2.4)

[4]. Further to the above metrics, run-time and memory usage are also con-

sidered when evaluating OCL methods [4].

2.1.2.3 Applications

Recent research has focused on using ODICL methods to avoid costly retrain-

ing in practical situations where the model is confronted with a concept shift.

ODICL has been used in X-ray image classification to avoid costly retraining

on distribution shifts due to unforeseen shifts in hardware’s physical properties

[67]. Also, it has been used to mitigate bias in facial expression and action unit

recognition across different demographic groups [65]. Furthermore, ODICL

was used to counter retraining on concept shifts for multi-variate sequential

data of critical care patient recordings [66]. The authors highlight some replay

method’s infeasibility due to strong privacy requirements in clinical settings.

This concern is further highlighted in the empirical study by [4]. Practical

implementations such as [65] and [66] use the end of the task signal to employ

OCL methods such as EWC and LwF. However, on the other hand, practical

implementation in [67] assumes a gradual distribution shift in the input data

distribution where instances from both the new and old tasks could appear in

the stream for a certain period.
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2.1.3 Online Streaming Continual Learning (OSCL)

In Stream Learning, the objective is to adjust to the current concept in the

stream efficiently. On the other hand, OCL has dual learning objectives: adapt

to the present concept while preserving knowledge about previous concepts.

Both settings assume data is non-IID. In Stream Learning, it is assumed that

model should detect distribution changes and adapt accordingly. However, in

OCL, the end of the concept signal is provided at training time, even though

some replay methods may not use it. This end-of-the-concept signal is only

provided for task-incremental CL at test time. Figure 2.1 also shows the

differences between these two settings. Contrary to the differences, these two

fields have many intersection points. We identify these intersection points as

Online Streaming Continual Learning (OSCL). In OSCL, we mainly identify

how well-researched Stream Learning techniques and methods could be used

to enhance OCL.

SL on recurrent concept drifts attempts to adjust to an evolving data

stream where some concepts could reemerge later in the stream [24]. The

setting is similar to OCL but without the additional learning objective of

preserving old knowledge explicitly. Hence evaluation in this setting does not

consider measuring forgetting of past knowledge. Most methods explored in

this setting keep a fixed-size pool of classifiers [24]. Various mechanisms are

explored in the literature on maintaining this pool [24, 68] and using it for

prediction [24, 69]. This ”pool of classifiers” is also known as ”concept history”,

”concept list”, and ”concept repository” in the literature [24]. Measures like

concept equivalence and concept similarity were introduced to identify the

current concept in the data stream from the concept pool.

• Conceptual equivalence assumes that when two classifiers behave simi-

larly on a given time window, both describe the same concept [70].

• Concept similarity : recognizes similar concepts using Euclidean distances

between concept clusters [71]. Thus it can detect recurring drifts in
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unlabelled data.

Measures such as concept equivalence and concept similarity could be used

for model selection and data retrieval from the replay buffer in OCL. When

handling recurrent concepts, predicting the following concept is helpful so the

learner can adjust to the incoming concept ahead of time. A probabilistic

network was proposed to predict future changes by [72]. The patterns acquired

during previous drifts to predict the time of the next drift was proposed by

[73]. The method assumed a Gaussian distribution for the duration of the

concepts. A recent survey by [24] discusses the above and many more exciting

topics on SL for recurrent concept drifts.

Most of the OCL methods rely on externally provided end-of-concept sig-

nals (task ids) at training3. It is critical for an autonomous learning agent to

detect these concept shifts and adjust accordingly. While OCL research has

explored different methods to preserve old knowledge when adjusting to new

concepts, SL has done an excellent job of understanding how to detect distri-

bution shifts, especially through different drift detection methods on streams

with varying types of drift (abrupt, gradual, incremental, and recurrent) and

different label conditions (available for all instances/ delayed label/ no label).

OCL could utilize well-researched drift detectors to detect the end-of-concept

signal. Recent work by [74] has explored the use of drift detectors to identify

when to use the data from the instance buffer and how to use it in an OCL

setting. Having well-researched SL knowledge on different distribution shifts

and different drift detectors would allow OCL algorithms to be more effective

in practical OCL scenarios, like the gradual distribution shifts in x-ray images

[67].

Furthermore, semi-supervised SL could make OCL to be more practical

when label data is only sometimes immediately available. Works like ORDisCo

3Due to internal instance buffers, some OCL models may not need task ids at train

time. The performance of these models is heavily dependent upon the size of this instance

buffer [4]
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Table 2.1: Synergies and differences between SL and OCL.

Topic SL OCL

Setting Single learning objective: Dual learning objective:

adjust to current concept adjust to current concept

efficiently. and preserve old knowledge.

Drift Thoroughly studied Can be used for task detection

detection Some recent OCL work: [74].

Drift Used when dealing with Can be used for task prediction.

prediction. recurrent concept drifts. Some SL work: [72], [24].

Missing Some methods have been Yet to be fully explored. Can

labels proposed to tackle this employ some of the SL

[12]. approaches discussed in [12].

Recurrent Similar to OCL, without SL concept pool maintenance

concept explicit learning objective techniques [24] can

drifts to preserve old knowledge. be useful in maintaining

For latest research refer to references to different

[24]. NN structures in OCL

parameter-isolation methods.

Concept equivalence and

concept similarity can be used

to retrieve relevant instances or

NN structures. Many more

techniques are discussed in [24].

Evaluation Frameworks can employ OCL Employs dual learning

dual learning objective and objective.

metrics discussed in section 2.1.2.2.

So SL methods and techniques

can be evaluated under OCL

setting.

Application Suitable for applications which Suitable for applications which

needs to adjust to current concept needs to adapt to current concept

very quickly. very quickly while preserving old

knowledge.

[75] and CURL [76] have started exploring this research area. Semi-supervised

SL methods under Self-training and learning by disagreement categories [12]
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could easily be deployed in real-world OCL settings where labels are not always

present. Many more opportunities exist, considering the breadth of semi-

supervised SL methods discussed by [12].

Streaming clustering is another exciting area to explore in future OCL

work. Here, well-established streaming clustering algorithms [13] could solve

interesting OCL problems as streaming clustering algorithms extract patterns

from evolving data. A streaming clustering algorithm could extract tasks

from an unsupervised OCL setting. The extracted information, such as task

information, could be used for model selection and data retrieval from the

replay buffer. The most exciting aspect of the streaming clustering algorithms

for OCL is that they are well-studied for evolving data streams.

On the other hand, SL could adapt the dual learning objective in OCL

(adjust to the current concept while preserving knowledge about previous con-

cepts). This would allow one to evaluate the breadth of well-studied SL meth-

ods for OCL. There is some emerging work in this area where catastrophic

forgetting is explored in HTs [77]. Implementing the OCL evaluations dis-

cussed in [4] on popular SL platforms such as MOA [78] and River [79] would

speed up this area of research.

Table 2.1 summarizes the above-discussed synergies and differences be-

tween Stream Learning and OCL. It points out the differences in the settings

and lists some future research directions in Online Streaming Continual Learn-

ing.



Chapter 3

Streaming Gradient Boosted

Trees

Gradient boosting methods are less performant than bagging and random for-

est based methods in SL (see section 2.1.1.2). This chapter introduces a novel

gradient-boosted trees algorithm for evolving data streams to address this lim-

itation.

3.1 Introduction

Boosting methods have become increasingly successful in machine learning

over the past decade. While early weighed boosting algorithms such as Ad-

aBoost showed promise [36], they were later surpassed by gradient boosting

methods [35, 80]. Gradient Boosting leverages the previous base learner’s

gradient information to boost the performance of the next learner in an en-

semble. The eXtreme Gradient Boosting (XGBoost) [37] takes this approach

to another level, achieving high efficiency and superior performance on vari-

ous time-critical real-world problems. However, in many real-world scenarios,

traditional batch learning with the IID assumption cannot keep pace with

the evolving nature of the underlying data stream [8, 9]. On the other hand,

SL accounts for the possibility of change in underlying data distribution (con-

cept drift) [9]. Here, a model should respond efficiently in real-time when
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learning from an evolving data stream [9]. Streaming gradient boosting poses

challenges in terms of handling concept drift and resetting specific compo-

nents of the booster. This difficulty arises from the additive nature of the

ensemble setup. While the research community has proposed methods such

as Adaptive eXtreme Gradient Boosting (Axgb) [16] and Adaptive Iterations

(AdIter) [17] to enable gradient boosting for evolving data streams, they

failed to outperform state-of-the-art ensemble learners like Adaptive Random

Forest (ARF) [14] and Streaming Random Patches (SRP)[15]. This chapter

introduces a novel approach to setting up gradient-boosted trees for evolving

data streams.

This chapter utilizes streaming regression trees with inbuilt drift detec-

tors in a gradient-boosted setting. Overall, this work proposes a promising

new gradient-boosted tree ensemble approach for evolving data streams that

outperforms existing techniques. We outline following contributions:

1. To our knowledge, proposed Streaming Gradient Boosted Trees (SGBT)

is the first instance where the weighted squared loss derived in [37] with

hessian as the weight and gradient over hessian as the target considering

the previous boosting step’s loss, is used to develop a streaming gradient-

boosted method for evolving data streams.

2. SGBT utilises trees with an internal Tree Replacement (TR) mecha-

nism instead of externally monitoring each item in the boosting ensem-

ble for drifts and adjusting each item like Axgb [16] or resetting some

parts as in AdIter[17]. This Tree Replacement mechanism in SGBT

allows the trees in the booster to adapt dynamically to concept drifts.

Unlike binary-class gradient-boosted streaming implementations: Axgb

and AdIter, SGBT can solve multi class problems using a committee

of trees at each boosting step or a committee of SGBTs.

3. The chapter presents an extensive empirical evaluation of SGBT against

current state-of-the-art streaming bagging (SRP), random forest (ARF),
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boosting (OSB), and gradient boosting (AdIter) methods on 14 datasets

with different drift types.

3.2 Streaming Gradient Boosted Trees (SGBT)

In gradient boosting, a model ϕ can be represented as S additive functions:

ŷ = ϕ(xi) =
S∑

s=1

fs(xi), fs ∈ F (3.1)

[80, 37]. Here, F is the space of regression trees. In XGBoost [37], each fs

corresponds to an independent tree structure with leaf weights ω. Unlike other

trees, each regression tree contains a continuous score ωi at the leaf for i-th

instance. The authors proposed to sum up the corresponding scores at the

leaves of each tree for prediction. For a dataset with n instances, the learning

objective is to minimize the regularized objective:

L(ϕ) =
n∑

i=1

l(yi, ŷi) +
S∑

s=1

Ω(fs) (3.2)

Where Ω penalizes the complexity of the tree f :

Ω(f) = γT +
1

2
β ∥ω∥

T is the number of leaves in the tree. l is a differentiable convex loss function

that measures the difference between the prediction ŷi and the target yi. Fur-

thermore, the loss at the s-th step is the loss incurred by the previous (s− 1)

step and the loss incurred by tree fs plus the regularization term:

L(s) =
n∑

i=1

l(yi, ŷ
(s−1) + fs(xi)) + Ω(fs) (3.3)

This loss could be approximated using second-order Taylor approximation to:

L(s) ≃
n∑

i=1

[
l(yi, ŷ

(s−1)) + gifs(xi) +
1

2
hif

2
s (xi)

]
+ Ω(fs) (3.4)

[37]. Here gi = ∂ŷ(s−1)l(yi, ŷ
(s−1)) and hi = ∂2

ŷ(s−1)l(yi, ŷ
(s−1)) are the first and

second-order gradient statistics of the loss considering s − 1-th prediction.

Though the authors [37] use a simplified version of the above loss function by
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removing constants to derive raw score values at the leaves, the below version

was derived to explain it as a weighted squared loss with weight hi and target

gi/hi:
n∑

i=1

1

2
hi(ft(xi)− gi/hi)

2 + Ω(fs) + constant. (3.5)

At the sth boosting step, the loss function consists of a weighted squared loss,

a regularization term specific to tree s, and a constant term. Equation 3.5

provides the flexibility to utilize various streaming regression trees instead of

the one employed in XGBoost. Moreover, depending on the implementation,

the regularization term in the streaming regression tree implementation can

diverge from that employed in XGBoost 1.

In data stream learning, n could be infinite, and learning happens online,

where a model ϕi−1 learned at i−1th instance is used to predict the ith instance.

Also, from any ith instance underlying distribution of x could change (concept

drift). To adjust to the new distribution at i, model ϕi should adjust it’s

regression trees. Instead of externally monitor and reset each fs tree like

in AdIter [17], in SGBT the trees internally monitor their standardized

absolute error and train an alternate tree if it goes above a warning level. The

tree fs switches to its alternate tree once the error reaches a danger zone.

To trigger these warning and danger signals, fs tree employs a drift detector

to monitor its standardized absolute error. The rest of the thesis identifies

this strategy of replacing the active tree with an alternate tree on the drift

detection signal as Tree Replacement (TR). In the experiments, we used two

regression trees for data streams: FIMT-DD [81]2 and SGT [82] with in-

1The streaming regression trees used in the experiments do not have an explicit regular-

ization constraint. However, they utilize a Tree Replacement strategy to control tree growth,

which is explained later in this chapter. An alternative approach would be to incorporate

an explicit memory constraint similar to the one used in HT as a regularization strategy.

There could be many other efficient approaches to constrain tree growth. Thus, to avoid

scope expansion, we did not dedicate time to explicitly implement this constraint on each

regression tree used in the experiments.
2FIMT-DD does not support nominal features. It was changed to pass the index of
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Algorithm 1 training SGBT

Input: yi: label as a one-hot vector for xi, lr: learning rate, S: # boosting

steps, ŷ(0): initial prediction, l: loss function, m: % of features for training,

C: # classes.

1: if start of training then

2: Initialize M using m. ▷ M={sets of randomly picked m% of features

for each boosting step}

3: end if

4: for s := 0 to S do

5: Generate instance xi,s using feature set ms (∈M) from instance xi.

6: gi ← ∂ŷ(s−1)l(yi, ŷ
(s−1)) ▷ gradient for committee

7: hi ← ∂2
ŷ(s−1)l(yi, ŷ

(s−1)) ▷ hessian for committee

8: for c := 0 to C − 1 do

9: train fs,c(xi,s, gi,c/hi,c) ▷ train fs,c using instance xi,s and label

gi,c/hi,c

10: end for

11: ŷi ← ŷi + lr ∗ fs(xi) ▷ scale fs(xi,s) and add to ŷi

12: end for
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built drift detectors: Page-Hinckley Test (Pht) [83] and DDM [28]. The

implementation of SGT with DDM is generic, and one could replace SGT

with any other regression tree for data streams.

The loss function in equation 3.5 requires the regression trees to support

fractional weights, as hi could be a fractional value for some loss functions.

Streaming regression trees (SGT and FIMT-DD) considered in this work

only support integer weights. Supporting fractional weights for them is not

trivial. For example, SGT and FIMT-DD require the incremental calculation

of variance and co-variance for fractional weights. Though recent work by [84]

and [85] suggests this is possible, this itself is a separate research topic. Hence,

even though SGBT calculates these weights (hessians), it does not pass them

to the underlying trees for this practical reason. Alternatively, it passes a

weight of 1 to the trees.

Instead of using all the features to train at each boosting step, SGBT uses

a subset of features based on a predefined feature percentage. This approach of

using a subset of features to train each ensemble is also used in ARF and SRP

[14, 15] to leverage diversity among the base learners. Algorithm 1 explains

the training procedure of SGBT.

Two approaches are used to support multi class problems: SGBT and

SGBTMC .

• SGBT uses a committee of regression trees in a given boosting step s.

Here a single tree is trained for each class. The committee is composed

of a softmax function, so the probability that an instance, xi, belongs to

class c is given by:

ŷi,c =
exp(fs,c(xi))∑C
c=1 exp(fs,c(xi))

(3.6)

Here fs,c is the regression tree trained to predict a real-valued score for

class c at s-th boosting step, and C is the number of classes. In practice,

hard-wiring fs,C(xi) = 0 allows SGBT to reduce the number of trees

the nominal value to the split criterion. This allows one to avoid one-hot encoding of those

nominal features, as often it requires more computing due to increased dimensionality.
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being trained3. The categorical cross-entropy loss (lCE) is used to train

the model:

lCE(y, ŷ) = −
C∑
c=1

yclog(ŷc) (3.7)

Here, y is the ground truth encoded as a one-hot vector. For lCE, gradient

(g) is yc− ŷc, and hessian (h) is ŷc(1− ŷc). The regression tree committee

(composing C − 1 items) at the s-th boosting step represents the base

learner for s-th boosting step. This approach is also used in SGT[82] to

support multi class classification.

• SGBT
MC uses the same loss function (lCE) as in SGBT. But uses a

wrapper classifier to invoke a binary SGBT classifier for each class. The

task of the binary SGBT classifier is to distinguish a given class from

all the other classes. All C classifier votes for the positive outcome

are collected and normalized at prediction. The class associated with

the classifier that predicted the positive outcome most confidently is

considered the final class for the instance. This approach is very popular

in batch learning and is commonly known as one-vs-rest or one-vs-all in

literature [86]. SGBTMC reverts to SGBT for binary class problems to

avoid any computing overhead.

Unlike Axgb and AdIter, the above two approaches allow SGBT to support

gradient boosting for evolving data streams on multi class problems.

To improve the computing performance and to utilize already calculated

hessian weights, two variants of SGBT are proposed.

• SGBT
SK: In most streaming regression trees, the computation and mem-

ory complexity is affected by the number of instances they process. Some

computation and memory savings could be achieved via skip training

on random instances. SGBT could randomly skip 1/k-th of instances

(k ≥ 1,∈ N) if provided. By default, k is set to 1, so all instances are

3This practice is used in [82] as well.
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Algorithm 2 training SGBTSK
MI

Input: yi: label as a one-hot vector for xi, lr: learning rate, S: # boosting

steps, ŷ(0): initial prediction, l: loss function, m: % of features for training,

C: # classes, k: randomly skip 1/k instances (k ≥ 1,∈ N).

1: if start of training then

2: Initialize M using m. ▷ M={sets of randomly picked m% of features

for each boosting step}

3: end if

4: train int← RandInt(0, k) ▷ 0 ≤ train int < k,∈ N

5: if k = 1 OR train int ̸= 0 then ▷ skip 1/k th for k > 1

6: for s := 0 to S do

7: Generate instance xi,s using feature set ms (∈M) from instance xi.

8: gi ← ∂ŷ(s−1)l(yi, ŷ
(s−1)) ▷ gradient for committee

9: hi ← ∂2
ŷ(s−1)l(yi, ŷ

(s−1)) ▷ hessian for committee

10: for c := 0 to C − 1 do

11: T ← ceiling(hi,c ∗ 10) ▷ hi,c < 1 for lCE

12: for t := 0 to T do ▷ train fs,c T times

13: train fs,c(xi,s, gi,c/hi,c) ▷ train fs,c using instance xi,s and

label gi,c/hi,c

14: end for

15: end for

16: ŷi ← ŷi + lr ∗ fs(xi) ▷ scale fs(xi,s) and add to ŷi

17: end for

18: end if
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processed. Work by [87, 88] also exploited skip training for learning from

evolving data. Line 5 in algorithm 2 highlights this skip training.

• SGBTMI: Even though current base learners do not support fractional

weights, utilizing already calculated hessian weights is helpful. For lCE,

hessian for class c at i-th instance is always less than 1 (hi,c < 1). Even

if one passes hi,c to a ceiling4 function, it will always return 1. For all

instances, one could multiply hi,c by 10 and pass that to a ceiling function

to get a positive integer weight greater than 1 for some instances. For

all the other instances, the weight would be 1. If ceiling(hi,c ∗ 10) = T ,

SGBT can train fs,c base learner T times using instance xi,s with label

gi,c/hi,c. This approach of training a base learner multiple times based

on a calculated integer weight for an instance is quite common in stream

learning [38, 15]. Line 12 in algorithm 2 highlights this multiple training

iteration approach.

Algorithm 2 explains the above two variants of SGBT in detail. In the exper-

iments, we evaluate the effectiveness of these SGBT variants.

As SGBT allows different streaming regression trees for its base learners,

its final time and memory complexity is influenced by the base learner’s time

and memory complexity. Assuming base learner’s time and memory complex-

ity as O(f), SGBT’s time complexity can be derived as O(α(C − 1)Sf), and

its memory complexity is O(α(C − 1)Sf). Here, α (1 ≤ α ≤ 2) is the tree

generation factor controlled by the drift detector, S is the number of boosting

steps, and C is the number of classes. On the other hand, SGBTMC ’s time

and memory complexities are O(αCSf) and O(αCSf), respectively for multi

class problems. It has the same time and memory complexity as SGBT for

binary class problems. Time complexity could be further improved by parallel

training each tree in the tree committee at each boosting step for SGBT, and

each binary SGBT for SGBTMC . This allows Time complexity to get closer

4Similar to Java lang.Math.ceil(v) that returns an integer value greater than or equal to

the passed-in value v.
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to O(αSf), in both situations. If the underlying base learner trains its alter-

nate tree in parallel, then the time complexity could be further improved to

approach O(Sf).

3.3 Experiments

We begin our experiments by comparing SGBT against current state-of-the-

art streaming bagging (SRP), random forest (ARF), boosting (OSB), and

gradient boosting (AdIter) methods on 14 datasets. We also conducted a

parameter exploration to illustrate the effects of different SGBT components.

Finally, we show an in-depth analysis concerning the computational require-

ments of SGBT.

Datasets: AGRa, AGRg, electricity, airlines, LEDa, LEDg, RBFf, RBFm

and covtype are from [15]. The synthetic datasets without drifts: RandomTree,

LED, and RBF5 were generated using MOA RandomTreeGenerator, LEDGen-

erator, and RandomRBFGenerator. RBF Bm and RBF Bf were generated us-

ing MOA RandomRBFGeneratorDrift. Like in RBFm, the speed of change for

the centroids was set to 0.0001 for RBF Bm. For RBF Bf, it is set to 0.001, like

in RBFf. The synthetic datasets with drifts simulate different types of con-

cept drifts, i.e., abrupt (AGRa, LEDa), gradual (AGRg, LEDg), fast incremen-

tal changes (RBF Bf, RBFf), and moderate incremental changes (RBF Bm,

RBFm). AGRa, AGRg, LEDa, and LEDg had concept drifts occurring after

every 250000 instances, with a drift width of 50 for abrupt (AGRa, LEDa) and

50000 for gradual (AGRg, LEDg). Table 3.1 summarizes the characteristics

of the datasets. Each algorithm was executed multiple times with different

random seeds, and the average accuracy was considered in the evaluation pro-

cess5.

5Table 3.2, figure 3.1 and figure A.1 used ten iterations with random seeds: 5, 9, 17, 13,

19, 23, 29, 31, 37 and 121. All the other experiments used three iterations with random seeds:

9, 17, and 121. Code and data are available at https://anonymous.4open.science/r/SGBT-

9D43. Experiments were run on an a) Ubuntu 18.04 LST system with AMD EPYC 7702
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Table 3.1: Dataset properties: has (D)rifts, (R)eal, (S)ynthetic, dense(d),

sparse(s).

name type instances features # nominal # class dist

features classes max(%) min(%)

binary class

AGRa DSd 1M 9 3 2 52.83 47.17

AGRg DSd 1M 9 3 2 52.83 47.17

RBF Bf DSd 1M 10 0 2 51.75 48.25

RBF Bm DSd 1M 10 0 2 51.75 48.25

RandomTree Sd 100K 10 5 2 57.84 42.16

electricity Rd 45310 8 1 2 57.55 42.45

airlines Rd 539382 7 4 2 55.46 44.54

multi class

LEDa DSs 1M 24 0 10 10.08 9.94

LEDg DSs 1M 24 0 10 10.08 9.94

RBFf DSd 1M 10 0 5 30.01 9.27

RBFm DSd 1M 10 0 5 30.01 9.27

RBF5 Sd 100K 10 0 5 32.17 8.10

LED Ss 100K 24 0 10 10.00 9.96

covtype Rd 581010 54 0 7 48.76 0.47

SGBT was compared against the current state-of-the-art stream learning

baseline SRP, streaming random forest method ARF, the latest gradient-

boosted method for data streams AdIter, and the stream-boosting method

OSB. Axgb was not considered in the evaluation as it failed to outperform

ARF [16]. SRP used the same parameter configurations explained in [15].

As 100 base learners produced the best results for SRP in [15], all the baselines

64-Core Processor at 4.00GHz, and with 1000GB RAM and on b)Ubuntu 20.04.3 system

with an Intel(R) Core(TM) i7-6700K CPU at 4.00GHz, and with 64GB RAM. All CPU

Time experiments were done on the system a. The OpenJDK version was 11.0.11, and the

JVM configurations were: -Xmx96g, -Xms50m, and -Xss1g.
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Table 3.2: Accuracy: SGBTMC against other baselines (values rounded to 2

decimals).

SGBTMC SRP ARF OSB AdIter

binary class

AGRa 94.45 ± 0.01 92.81 ± 0.19 87.87 ± 0.08 90.39 ± 0.01 90.73 ± 0.18

AGRg 91.91 ± 0.01 89.68 ± 0.19 82.45 ± 0.11 87.87 ± 0.03 87.66 ± 0.34

RBF Bm 92.10 ± 0.66 90.76 ± 0.67 92.10 ± 0.63 89.27 ± 0.84 76.85 ± 1.30

RBF Bf 84.33 ± 1.22 82.15 ± 1.46 85.61 ± 1.31 78.14 ± 1.25 72.16 ± 1.17

RandomTree 86.19 ± 8.21 87.58 ± 2.78 90.15 ± 3.38 92.09 ± 2.59 68.55 ± 10.79

electricity 88.50 ± 0.06 89.68 ± 0.14 90.62 ± 0.05 89.51 ± 0.00 78.77 ± 0.08

airlines 68.79 ± 0.03 68.54 ± 0.05 66.68 ± 0.03 64.56 ± 0.00 62.72 ± 0.07

avg 86.61 85.89 85.07 84.55 76.78

rank 2.14 2.43 2.57 3.29 4.57

multi class

LEDa 74.04 ± 0.01 74.04 ± 0.01 73.95 ± 0.01 72.48 ± 0.00

LEDg 73.32 ± 0.01 73.25 ± 0.01 73.12 ± 0.01 72.11 ± 0.01

RBFm 88.00 ± 0.76 86.60 ± 0.84 87.82 ± 0.75 76.81 ± 0.99

RBFf 76.98 ± 1.34 76.91 ± 1.21 77.69 ± 1.44 50.71 ± 1.06

LED 73.82 ± 0.14 73.87 ± 0.12 73.75 ± 0.15 73.86 ± 0.18

RBF5 90.13 ± 0.84 90.56 ± 0.96 90.60 ± 0.99 85.67 ± 1.18

covtype 94.29 ± 0.03 95.34 ± 0.01 94.72 ± 0.02 92.69 ± 0.00

avg 81.51 81.51 81.66 74.90

rank 2.00 2.00 2.29 3.71

avg (both) 84.06 83.70 83.37 79.73

rank (both) 2.07 2.21 2.43 3.50

KappaM [9] results in appendix A.1 also aligns with accuracy rankings.

used 100 base learners keeping all the other parameters to default values. OSB

used the same base learner (HT) in SRP with the same hyperparameters as

in SRP.

We collected votes for each class on each instance from AdIter’s Python

implementation and ran it through dummy MOA classifiers to yield the same

evaluation as the other methods. SGBT was implemented as an MOA clas-

sifier, and it used 100 boosting steps (S) to match other baselines 100 base

learners. The SGBTMC variant was compared against the above baselines.

Here one-vs-rest wrapper classifier was also implemented in MOA. SGBT used
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All datasets

Binary class datasets

Multi class datasets

Datasets with drifts (evolving)

Figure 3.1: Nemenyi Post-hoc test with p-value 0.05 for all, binary class,

multi class, and evolving (AGRa, AGRg, LEDa, LEDg, RBF Bm, RBF Bf,

RBFm, RBFf) datasets (accuracy): SGBTMC against other baselines (10 it-

erations with different random seeds)
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Figure 3.2: Accuracy over time: SGBTMC against SRP, ARF, and OSB on

AGRg. x axis is the number of instances seen so far. Vertical dotted lines

mark a concept drift’s start, center, and end. SGBTMC [S = 100, m = 75,

lr =1.25e-2].

a learning rate of 0.0125 and 75% of the features at each boosting step. As

SGBT requires streaming regression trees as its base learners, the streaming

classifier tree HT can not be used as a base learner. Therefore streaming re-

gression tree FIMT-DD [81] was chosen as its base learner. FIMT-DD used

a variance reduction split criterion, a grace period of 25, a split confidence

interval of 0.05, a constant learning rate at the leaves, and the regression tree
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Figure 3.3: Accuracy over time: SGBTMC against SRP, ARF, and OSB on

LEDg. x axis is the number of instances seen so far. Vertical dotted lines

mark a concept drift’s start, center, and end. SGBTMC [S = 100, m = 75,

lr =1.25e-2].

Table 3.3: Time(s): SGBTMC against SRP (values rounded to 0 decimals,

except ranks).

SGBTMC
ST SGBTMC SRP

binary class

AGRa 1423 ± 34 1187 ± 32 3208 ± 143

AGRg 1401 ± 100 1160 ± 37 3838 ± 200

RBF Bm 2278 ± 134 1756 ± 190 3697 ± 293

RBF Bf 2027 ± 27 1475 ± 130 4728 ± 102

RandomTree 156 ± 7 128 ± 13 334 ± 90

electricity 44 ± 3 48 ± 5 138 ± 10

airlines 606 ± 27 507 ± 41 2892 ± 225

avg 1134 894 2691

rank 1.86 1.14 3.00

multi class

LEDa 17489 ± 2191 1667 ± 7 2920 ± 311

LEDg 16802 ± 1715 1669 ± 16 2901 ± 315

RBFm 14511 ± 1058 2767 ± 102 3228 ± 114

RBFf 13580 ± 1550 2399 ± 46 3624 ± 540

LED 1503 ± 104 163 ± 2 295 ± 20

RandomRBF5 1473 ± 119 268 ± 5 163 ± 18

covtype 20067 ± 1869 1789 ± 22 3801 ± 26

avg 12203 1532 2419

rank 3.00 1.14 1.86

avg (both) 6669 1213 2555

rank (both) 2.43 1.14 2.43

option.

Table 3.2 compares SGBTMC ’s accuracy against the baselines mentioned
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above. As one can see, SGBTMC outperforms all the baselines on binary class

problems considering average accuracy and rank. It also performs equally well

on multi class problems. It is also evident that SGBTMC outperforms other

methods on datasets with drifts: AGRa, AGRg, LEDa, LEDg, and RBFm.

This suggests that SGBTMC is a good candidate for evolving data. It also

performed well on the airlines dataset. On the other hand, SRP yielded good

results on LEDa, LED, and covtye datasets, while ARF performed well on

RBF Bm, RBF Bf, electricity, RBFf, and RBF5. OSB performed well on Ran-

domTree dataset. The streaming gradient boosting method AdIter was the

least performant among all methods. As it is a binary classifier, AdIter was

only evaluated on binary class problems 6. Figure 3.1 shows the Nemenyi

Post-hoc test results with a p-value of 0.05 for: all, binary class, multi class,

and evolving (AGRa, AGRg, LEDa, LEDg, RBF Bm, RBF Bf, RBFm, RBFf)

datasets considering accuracy. It further highlights the fact that SGBTMC

outperforms other methods on binary and evolving datasets. We investigate

each algorithm’s performance on evolving data further in figure 3.2 and figure

3.3 by comparing accuracy over time for SGBTMC , SRP, ARF, and OSB on

AGRg and LEDg. From the figures, it is clearly evident that SGBTMC had

the lowest decrease in performance around drift points.

Table 3.3 compares the evaluation time in seconds reported by MOA among

single-threaded SGBTMC (SGBTMC
ST ), multi-threaded SGBTMC , and SRP.

For binary class problems, both SGBTMC variants perform faster than SRP.

Maybe FIMT-DD in SGBTMC is a faster base learner than HT in SRP.

Compared to SGBTMC
ST , SRP performs well on multi class problems. However,

SGBTMC performed the fastest on multi class problems leveraging parallel

processing at training and prediction.

6Considering AdIter’s weak performance on binary class problems and it’s Python im-

plementation, it was not evaluated on multi class problems using MOA one-vs-rest wrapper

classifier.
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3.3.1 Multiple Steps and Multi Class Support

Table 3.4: Accuracy: Different variants of SGBT (values rounded to 2 deci-

mals).

SGBT SGBTMC SGBTMI SGBTMC
MI

binary class

AGRa 94.45 ± 0.01 94.45 ± 0.01 94.30 ± 0.01 94.30 ± 0.01

AGRg 91.92 ± 0.01 91.92 ± 0.01 91.75 ± 0.01 91.75 ± 0.01

RBF Bm 91.91 ± 0.19 91.85 ± 0.11 92.58 ± 0.13 92.58 ± 0.13

RBF Bf 84.54 ± 0.67 84.12 ± 0.13 87.36 ± 0.07 87.36 ± 0.07

RandomTree 85.72 ± 9.40 85.72 ± 9.40 84.05 ± 8.36 84.05 ± 8.36

electricity 88.54 ± 0.03 88.54 ± 0.03 90.64 ± 0.06 90.64 ± 0.06

airlines 68.77 ± 0.03 68.77 ± 0.03 67.85 ± 0.03 67.85 ± 0.03

avg 86.55 86.48 86.93 86.93

rank 2.21 2.50 2.64 2.64

multi class

LEDa 73.96 ± 0.01 74.05 ± 0.01 73.71 ± 0.01 73.99 ± 0.01

LEDg 73.22 ± 0.00 73.32 ± 0.01 72.91 ± 0.01 73.18 ± 0.01

RBFm 87.13 ± 0.71 87.96 ± 0.63 88.18 ± 0.91 88.92 ± 0.57

RBFf 75.40 ± 1.84 77.03 ± 1.39 79.28 ± 1.62 81.14 ± 1.19

LED 73.81 ± 0.17 73.81 ± 0.19 73.56 ± 0.19 73.82 ± 0.18

RBF5 88.80 ± 0.91 89.76 ± 0.72 90.05 ± 0.81 90.68 ± 0.58

covtype 94.31 ± 0.01 94.29 ± 0.02 95.18 ± 0.02 94.73 ± 0.02

avg 80.95 81.46 81.84 82.35

rank 3.29 2.43 2.71 1.57

avg (both) 83.75 83.97 84.39 84.64

rank (both) 2.75 2.46 2.68 2.11

Another study was conducted to understand the performance of different

SGBT variants: SGBT, SGBTMC , SGBTMI , and SGBTMC
MI . SGBTMC

supports multi class problems using binary SGBTs, and SGBTMI employs

multiple iterations by hessian weights. Both SGBTMC and SGBTMI are

orthogonal, so they can be fused to yield SGBTMC
MI . All SGBT variants

used the same hyperparameter configurations as in the previous experiments.

Table 3.4 shows the results of the study. Since SGBTMC reverts to SGBT

and SGBTMC
MI reverts to SGBTMI on binary class problems, if one ignores
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SGBTMC
MI and SGBTMC for binary class problems, SGBT performs well on

most of the binary class datasets compared to SGBTMI . However, SGBTMI

has a higher average accuracy for that category. This suggests it performs

exceptionally well on certain datasets such as RBF Bf and electricity. This

results on RBF Bf, which has fast-evolving drifts, is interesting, as it suggests

that multiple training iterations by hessian in SGBTMI improve SGBT’s

performance on fast-evolving data. For multi class problems, SGBTMC
MI is

the clear winner. When one compares SGBTMC with SGBT, it is clear

that multi class support using binary SGBTs performs better than SGBT

with multi class support. On the other hand, multi class results on SGBT

and SGBTMI suggest that multiple iterations by hessian improve SGBT’s

accuracy on multi class problems. This explains why SGBTMC
MI performs

best on multi class problems, as it includes multi class support using binary

SGBTs, and multiple iterations by hessian approaches. Overall performance

by SGBTMC
MI exceeds the performance of SGBTMC , which is compared against

other baselines in table 3.2. But SGBTMC was used in Table 3.2 evaluation

considering its computation efficiency compared to SGBTMC
MI . On the other

hand, SGBTMC
MI is a good candidate for evolving data stream applications

that prioritize predictive performance over computation efficiency.

3.3.2 Parameter Exploration

A parameter exploration was conducted to understand the impact of learn-

ing rate (lr), boosting steps (S), weight (hi) transfer methods, percentage of

features (m), and the independent TR mechanism at each tree via drift de-

tection on SGBTMC ’s predictive performance7. Furthermore, another study

was conducted to understand the effect of one-hot encoding on the predictive

performance of SGBTMC with FIMT-DD. The results for all these analyses

are shown in tables 3.5, 3.6, 3.7, 3.8, and 3.9.

7Experimental results for different loss functions effect (categorical cross-entropy and

squared) on SGBTMC ’s predictive performance are explained in section A.2
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Table 3.5: Test then train accuracy of SGBTMC [S = 100, m = 75,

lr ={6.25e-3, 1.25e-2, 2.50e-2}, FIMT-DD] for different learning rates (lr)

(values rounded to 2 decimals, 4 decimals were considered to select the win-

ner).

6.25e-3 1.25e-2 2.50e-2

binary class

AGRa 94.42+0.00 94.45+0.01 94.44+0.01

AGRg 91.90+0.01 91.92+0.01 91.91+0.01

RBF Bm 91.69+0.09 91.85+0.11 92.04+0.15

RBF Bf 83.42+0.39 84.12+0.13 84.82+0.05

RandomTree 85.14+9.96 85.72+9.40 86.36+9.10

electricity 87.90+0.07 88.54+0.03 89.27+0.04

airlines 68.70+0.00 68.77+0.03 68.83+0.02

avg 86.17 86.48 86.81

rank 3.00 1.71 1.29

multi class

LEDa 74.04+0.01 74.05+0.01 74.02+0.01

LEDg 73.32+0.02 73.32+0.01 73.33+0.01

RBFm 87.70+0.64 87.96+0.63 88.24+0.64

RBFf 76.12+1.45 77.03+1.39 78.05+1.38

LED 73.84+0.22 73.81+0.19 73.79+0.22

RBF5 89.58+0.70 89.76+0.72 89.97+0.78

covtype 93.86+0.02 94.31+0.02 94.78+0.01

avg 81.21 81.46 81.74

rank 2.57 1.86 1.57

avg (both) 83.69 83.97 84.27

rank (both) 2.79 1.79 1.43

Three learning rates: 6.25e-3, 1.25e-2, and 2.50e-2, were used in the study

to understand the effect of learning rate (lr) on SGBTMC ’s performance. All

the other configurations: FIMT-DD base learner, 75% of features(m), and



49

100 boosting steps(S) were kept unchanged. As per table 3.5, considering

SGBTMC [S = 100, m = 75, lr ={6.25e-3, 1.25e-2, 2.50e-2}, FIMT-DD]

configurations, in general, larger learning rates (lr) seem to favour both binary

and multi class problems.

Table 3.6: Test then train accuracy of SGBTMC [S = 20, 40, 60, 80, 100, m =

75, lr =1.25e-2, FIMT-DD] for different boosting steps (S) (values rounded

to 2 decimals, 4 decimals were considered to select the winner).

20 40 60 80 100

binary class

AGRa 94.08+0.01 94.42+0.01 94.42+0.01 94.45+0.01 94.45+0.01

AGRg 91.51+0.04 91.87+0.02 91.88+0.01 91.93+0.01 91.92+0.01

RBF Bm 90.60+0.22 91.31+0.15 91.59+0.14 91.74+0.13 91.85+0.11

RBF Bf 80.45+0.14 82.32+0.10 83.14+0.16 83.71+0.13 84.12+0.13

RandomTree 84.35+10.61 84.49+11.00 85.27+9.67 85.10+9.86 85.72+9.40

electricity 87.01+0.17 87.68+0.05 87.96+0.07 88.36+0.03 88.54+0.03

airlines 68.01+0.06 68.51+0.01 68.63+0.02 68.71+0.03 68.77+0.03

avg 85.14 85.80 86.13 86.29 86.48

rank 5.00 4.00 2.86 1.86 1.29

multi class

LEDa 74.00+0.00 73.96+0.00 74.02+0.01 74.04+0.02 74.05+0.01

LEDg 73.23+0.02 73.26+0.01 73.29+0.01 73.29+0.01 73.32+0.01

RBFm 86.42+0.72 87.25+0.70 87.59+0.65 87.81+0.65 87.96+0.63

RBFf 72.39+1.46 74.75+1.49 75.78+1.44 76.54+1.44 77.03+1.39

LED 73.81+0.21 73.82+0.22 73.83+0.16 73.84+0.17 73.81+0.19

RBF5 89.16+0.60 89.49+0.65 89.59+0.66 89.67+0.74 89.76+0.72

covtype 93.17+0.01 93.61+0.02 93.92+0.01 94.07+0.06 94.31+0.02

avg 80.31 80.88 81.15 81.32 81.46

rank 4.86 4.00 2.86 1.86 1.43

avg (both) 82.73 83.34 83.64 83.80 83.97

rank (both) 4.93 4.00 2.86 1.86 1.36

In a separate study to understand the effect of boosting steps on SGBTMC ’s
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performance, five boosting steps (20, 40, 60, 80, 100) were considered. In this

study, base learner (FIMT-DD), feature percentage (m=75%), and learning

rate (lr=1.25e-2) were kept unchanged. According to table 3.6, when con-

sidering SGBTMC [S = 20, 40, 60, 80, 100, m = 75, lr =1.25e-2, FIMT-DD]

configurations, 100 boosting steps yields better results than the smaller boost-

ing steps for both binary and multi class problems. This aligns with OSB

results in [15], where more boosting iterations performed better than fewer

boosting iterations.

In another study to analyze the impact of varying feature percentages (m)

on SGBTMC ’s performance, except m, all the other SGBTMC configura-

tions, including the base learner (FIMT-DD), learning rate (lr=1.25e-2), and

boosting steps (S=100) were kept constant. According to table 3.7, among

SGBTMC [S = 100, m = 45, 60, 75, 100, lr =1.25e-2] configurations, 75% of

features yield good accuracy on most datasets. Not having 100% of the fea-

tures helps to increase the diversity of the ensemble, which avoids overfitting

to data. These results match [14, 15] findings where ARF and SRP perform

best with 60% of the features.

A separate study examines the effect of independent TR mechanisms by

each base learner on SGBTMC ’s performance. For this study, SGT was se-

lected as the base learner since FIMT-DD has a built-in TR mechanism.

Hence a generic regressor with an inbuilt TR mechanism based on DDM’s

warning and out-of-control signals was introduced into MOA. This allows us

to enable or disable the underlying TR strategy using a generic regressor with

SGT and DDM or just using SGT. The DDM settings were: minimum num-

ber of instances before permitting a change detection = 250, warning level =

2.0, and out-of-control level = 2.5. SGT used the same default configurations

used in [82]. From table 3.8 results, one can see that having an internal TR

mechanism often improves performance. Also, all the SGBTMC configura-

tions with SGT perform poorly on RBFf. Maybe SGT’s default warmStart

(number of instances used to estimate bin boundaries for numeric values) 1000
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Table 3.7: Test then train accuracy of SGBTMC [S = 100, m = 45, 60, 75, 100,

lr =1.25e-2, FIMT-DD] for different feature percentages (m) (values rounded

to 2 decimals, 4 decimals were considered to select the winner).

45 60 75 100

binary class

AGRa 92.76+0.01 93.73+0.01 94.45+0.01 94.40+0.00

AGRg 90.29+0.02 91.20+0.00 91.92+0.01 91.97+0.01

RBF Bm 90.96+0.00 91.48+0.04 91.85+0.11 91.66+0.20

RBF Bf 82.75+0.41 83.54+0.25 84.12+0.13 83.98+0.23

RandomTree 81.89+5.95 83.99+6.63 85.72+9.40 81.38+14.50

electricity 88.42+0.09 88.57+0.06 88.54+0.03 88.06+0.00

airlines 68.85+0.03 68.83+0.04 68.77+0.03 68.47+0.00

avg 85.13 85.91 86.48 85.70

rank 3.29 2.43 1.57 2.71

multi class

LEDa 73.87+0.00 73.99+0.01 74.05+0.01 73.98+0.01

LEDg 72.91+0.01 73.26+0.00 73.32+0.01 73.27+0.01

RBFm 86.88+0.65 87.53+0.64 87.96+0.63 87.81+0.66

RBFf 75.64+1.52 76.47+1.48 77.03+1.39 76.81+1.38

LED 73.80+0.20 73.89+0.25 73.81+0.19 73.56+0.16

RBF5 89.24+0.34 89.84+0.55 89.76+0.72 85.92+1.23

covtype 94.29+0.07 94.39+0.04 94.31+0.02 93.85+0.00

avg 80.95 81.34 81.46 80.74

rank 3.57 2.00 1.43 3.00

avg (both) 83.04 83.62 83.97 83.22

rank (both) 3.43 2.21 1.50 2.86

is too large for RBFf with fast-moving drifts.

The following study examines the impact of one-hot encoding on the pre-

dictive performance of SGBTMC when used in conjunction with FIMT-DD.

In this study, all nominal features within a specified (m) percentage of selected
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Table 3.8: Test then train accuracy of SGBTMC [S = 100, m = 75, lr =1.25e-

2, SGT] for different Tree Replacement (TR) mechanisms (values rounded to

2 decimals, 4 decimals were considered to select the winner).

TR via DDM no TR

binary class

AGRa 93.86+0.00 91.40+0.02

AGRg 91.60+0.00 86.39+0.11

RBF Bm 78.85+0.92 59.77+1.20

RBF Bf 57.41+1.67 57.25+1.50

RandomTree 86.07+2.15 87.08+2.08

electricity 76.83+0.08 73.41+0.22

airlines 64.70+0.05 62.94+0.26

avg 78.48 74.03

rank 1.14 1.86

multi class

LEDa 73.68+0.00 71.73+0.00

LEDg 72.85+0.01 71.42+0.01

RBFm 66.86+1.27 36.64+0.65

RBFf 28.57+1.50 27.79+2.44

LED 72.67+0.16 72.67+0.33

RBF5 82.01+0.51 83.20+0.39

covtype 83.08+0.02 69.78+4.71

avg 68.53 61.89

rank 1.14 1.86

avg (both) 73.50 67.96

rank (both) 1.14 1.86

features are one-hot encoded before being passed to FIMT-DD. The results

presented in table 3.9 demonstrate that, except for RandomTree, one-hot en-

coding does not appear to enhance accuracy for binary class problems. Only

for RandomTree, one-hot encoding improves accuracy and reduces the stan-
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Table 3.9: Effect of one-hot encoding on test then train accuracy of SGBTMC

[S = 100, m = 75, lr =1.25e-2, FIMT-DD] (values rounded to 2 decimals, 4

decimals were considered to select the winner).

Encoding one-hot no one-hot∗

binary class

AGRa 94.41+0.00 94.45+0.01

AGRg 91.89+0.01 91.92+0.01

RBF Bm 91.85+0.11 91.85+0.11

RBF Bf 84.12+0.13 84.12+0.13

RandomTree 87.84+7.33 85.72+9.40

electricity 88.44+0.08 88.54+0.03

airlines 67.93+0.02 68.77+0.03

avg 86.64 86.48

rank 1.71 1.29

multi class

LEDa 74.05+0.01 74.05+0.01

LEDg 73.32+0.01 73.32+0.01

RBFm 87.96+0.63 87.96+0.63

RBFm 77.03+1.39 77.03+1.39

LED 73.81+0.19 73.81+0.19

RBF5 89.76+0.72 89.76+0.72

covtype 94.31+0.02 94.31+0.02

avg 81.46 81.46

rank 1.50 1.50

avg (both) 84.05 83.97

rank (both) 1.61 1.39

*: FIMT-DD use value of the index for nominal features.

dard deviation. Interestingly, passing the index value to the split criterion for

nominal attributes seem to encode dependencies between different values for

a given feature. For example, in the electricity dataset, the index values for
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’day’ (only nominal feature) contain weekend information. However, none of

the multi-class datasets analyzed in this study included any nominal features.

As a result, there was no significant difference between using one-hot encoding

versus passing value index for multi-class problems in this particular study.

3.3.3 Skip training on instances
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Figure 3.4: Accuracy over time: Different SGBTMC versions on AGRg and

LEDg. x axis is the number of instances seen so far. Vertical dotted lines

mark a concept drift’s start, center, and end. SGBTMC
SK 1/k[S = 100, m = 75,

lr =1.25e-2].

Another study was conducted using SGBTMC
SK 1/k[S = 100, m = 75, lr =1.25e-

2] with different k values to understand the effect of random skip training.

Here k was set to 1, 2, and 3 so that SGBTMC
SK 1/k would not skip, skipping

1/2 and 1/3 of instances. As per table 3.10, apart from RBF Bf and RBFf

SGBTMC
SK 1/3, produced good results even with 1/3-rd of instances skipped.

Here, slight poor accuracy in those two datasets may be because both RBF Bf

and RBFf have fast-moving drifts. On the other hand, 1/3-rd of skipping ac-
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Table 3.10: Accuracy and evaluation time(s) of SGBTMC
SK 1/k[S = 100,m =

75,lr =1.25e-2]

Accuracy (%) Time (s)

SGBTMC
SK 1/k SGBTMC SGBTMC

SK 1/k SGBTMC

k 2 (skip 1/2) 3 (skip 1/3) 1 (no skip) 2 (skip 1/2) 3 (skip 1/3) 1 (no skip)

binary class

AGRa 94.32 94.36 94.45 719.16 818.16 1386.55

AGRg 91.81 91.83 91.92 663.56 810.28 1359.81

RBF Bm 90.55 91.20 91.85 983.85 1218.42 2126.22

RBF Bf 78.11 80.89 84.12 891.39 1061.86 1749

RandomTree 84.73 85.62 85.72 74.62 93.09 148.69

electricity 85.88 87.10 88.54 31.43 37.43 54.75

airlines 67.99 68.31 68.77 309.32 378.3 584.59

avg 84.77 85.62 86.48 524.76 631.07 1058.52

rank 3.00 2.00 1.00 1 2 3

multi class

LEDa 73.91 73.97 74.05 1002.87 1197.72 1747.52

LEDg 73.18 73.22 73.32 977.22 1217.96 1718.98

RBFm 86.17 87.01 87.96 1441.83 1875.82 2773.24

RBFf 68.75 72.62 77.03 1395 1683.68 2439.11

LED 73.80 73.76 73.81 91.99 121.11 162.38

RBF5 88.51 89.06 89.76 153.97 201.3 279.21

covtype 92.23 93.15 94.28 1005.95 1318.55 1944.42

avg 79.51 80.40 81.46 866.97 1088.02 1580.69

rank 2.86 2.14 1.00 1 2 3

avg (both) 82.14 83.01 83.97 695.87 859.55 1319.61

rank (both) 2.93 2.07 1.00 1 2 3

Standard deviations are available in table A.2.

tually helps on RandomTree dataset. This could be due to simple tree-like

rules used to generate this dataset, and it does not have any drifts. So random

skipping of some instances may have helped avoid overfitting the model to the

data.

To further illustrate the influence of random skipping, another study was

conducted using SGBTMC
SK 1/k[S = 100, m = 75, lr =1.25e-2] with different k

values: 1, 2, 3 on AGRg and LEDg datasets. The idea here is to understand
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Figure 3.5: Model size over time: Different SGBTMC versions on AGRg and

LEDg. x axis is the number of instances seen so far. Vertical dotted lines

mark a concept drift’s start, center, and end. SGBTMC
SK 1/k[S = 100, m = 75,

lr =1.25e-2].

the effect of skip training instances on SGBTMC
SK 1/k’s performance for binary

and multi class problems. Both AGRg and LEDg had drifts happening at the

same time intervals. However, AGRg is a binary problem, and LEDg is a multi

class problem with 10 classes. Accuracy and model size statistics were collected

every 10000 instances. When one considers the classification accuracy in figure

3.4, skipping instances for training does not significantly hinder the accuracy

on both AGRg and LEDg. On the other hand, skipping instances result in

significant memory savings on both datasets in figure 3.5. These savings are

much more prevalent in LEDg as SGBTMC
SK 1/k needs 10 trees per boosting step

compared to 1 tree for AGRg.



Chapter 4

Continuously Adaptive Neural

Networks for Data Streams

In the previous chapter, we discussed a novel streaming gradient-boosted tree

classifier ideal for binary classification and low-dimensional data. While Neural

Networks have proven to excel in high-dimensional data domains when operat-

ing in batch settings, their effectiveness in SL is hindered by the difficulties of

hyperparameter optimization and large batch training. This chapter presents

a novel approach that enables Neural Networks to be applied to diverse, con-

tinuously evolving streaming datasets overcoming these challenges.

4.1 Introduction

Neural Networks have greatly succeeded in high-dimensional data fields such as

image classification and natural language processing (NLP). NNs need larger

datasets and multiple iterations of epoch training to learn effectively. Further-

more, NNs can be susceptible to hyperparameters and need to be re-trained

to produce a good model after a concept drift.

Hence, to reap the benefits of NNs for data streams, it is required to effi-

ciently train and test NNs without any hyperparameter tuning, where predic-

tive NNs are resilient and adaptive to concept drifts. This work addresses this

issue by employing an efficient per-instance training of a pool of Multi-Layer
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Perceptron (MLP)s, and choosing the best MLP according to its estimated

loss for every prediction.

The main contributions of this work are the following:

1. Continuously Adaptive Neural Networks for Data Streams (CAND):

We introduce training a pool of NNs per instance and selecting the best

NN considering their estimated loss for prediction to overcome the NN

hyperparameter selection for evolving data streams.

2. We propose two novel orthogonal approaches 1) selecting a sub-pool for

training, and 2) skipping backpropagation below a certain threshold of

the loss, to increase the training efficiency of CAND without compro-

mising accuracy too much.

3. We compare CAND against three current state-of-the-art stream learn-

ing methods: ADL, ARF and SRP on 17 datasets with low-dimensional,

evolving, and high-dimensional data. The results give a clear overview of

the performance and resource usage of the compared methods. Also, an

extensive empirical analysis is done to understand the effect of mini-batch

size, sub-pool size, and skip backpropagation threshold on CAND’s pre-

dictive and computing performance. Furthermore, an in-depth investi-

gation is done on one of CAND’s efficient variants to understand its NN

selection behaviour under multiple concept drifts.

In our method, we employ per-instance NN and mini-batch training in con-

trast to the recent literature focusing mainly on mini-batch training [19]. Per-

instance training allows the model to dynamically adapt to concept drifts with

as little delay as possible. One drawback of per-instance training is that it is

less efficient than mini-batch training, as mini-batch training makes better

use of the computational resources. In this work, we also explore the possi-

bility of using mini-batch training without compromising too much accuracy.

An extensive empirical study is done to understand the effect of mini-batch

size on accuracy and wall-time. To further improve the computational perfor-
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mance, we propose two orthogonal approaches: training a sub-pool of NNs at

a given moment and skipping backpropagation for some instances. Those two

approaches are orthogonal, so they could be combined for further run-time

savings.

4.2 Continuously Adaptive Neural Networks

for Data Streams (CAND)

We propose Continuously Adaptive Neural Networks for Data Streams (CAND),

which trains a pool of MLPs to overcome the hyperparameter selection issue

on NNs for evolving data streams. The MLPs are tested and trained per in-

stance (i.e. incrementally). Incoming instances are pre-processed in an online

Est Loss of MLP1 Est Loss of MLPp Est Loss of MLP|P|

MLP1 MLPp MLP|P|

MLPbestTransformed instance i Class votes for i

Figure 4.1: CAND prediction Algorithm 3

fashion (normalized and one-hot encoded) before being fed into the MLPs. For

efficiency, two orthogonal variants of CAND are proposed: 1) CAND with

a selected smaller pool for per-instance training and 2) CAND which skips

backpropagation in some instances. The following sections explain the CAND

algorithm and its two orthogonal variants in detail.

Online normalization used in this work was inspired by [81] work, where

the sum of the values and the sum of squared values are calculated for each at-

tribute per instance and used to compute the standard deviation and mean for

a given attribute. Those point-wise standard deviations and means are used
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to normalize the incoming ith instance’s attributes. As no fading factor is used

in the normalization, most recent instances have the same weight as past in-

stances. The nominal attributes are one-hot encoded per instance. Assuming a

test-then-train setting, instance i can be transformed via the above-mentioned

online normalization and one-hot encoding scheme for testing and later be

used for training.

4.2.1 Training a pool of MLPs and using it for Predic-

tion

CAND’s prediction algorithm is quite simple. For a given instance i, CAND

chooses MLPbest considering the estimated loss of each MLP in the P pool.

This MLPbest is used to predict the class label for transformed i before training.

Algorithm 3, along with figure 4.1 explains the method CAND use to find

the MLPbest using estimated loss to predict the class label for transformed

i. The loss estimation is done using the ADWIN estimator. ADWIN adapts

Algorithm 3 CAND Predict

Input: instance i, pool P of MLPs

1: MLPbest = arg minp∈P estimated loss at i (excluding loss for i)

Output: predict(i, MLPbest)

the size of its data windows very efficiently by using exponential histograms

according to the underlying data distribution changes, discarding older parts

of the data window that relate to the old distribution. This allows it to adapt

to distribution changes dynamically. A distribution change in the MLP’s loss

function is assumed to be due to a concept drift in the incoming data. This

allows us to avoid a fading factor in the normalization process as ADWIN

discards the loss related to the old distribution.

For the same instance i, all the MLPs in the P pool are trained in par-

allel using the transformed instance i. Before training, each NN updates its

estimated loss using the loss for instance i. The P pool is defined so that it
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Algorithm 4 CANDSB
sub Train

Input: instance i, pool P of MLPs, number of instances for warm-up W , |M |

pool size, skip backpropagation threshold b.

1: if the current instance count < W then

2: M=P

3: else

4: M={Half of M is selected from P by lowest estimated loss, other half

random}

5: end if

6: for all m ∈M do

7: train(i,m) ▷ invoked in |M | separate threads

8: ▷ will skip backpropagation, if the loss < b

9: ▷ will update loss estimate for m

10: end for

11: Wait for all |M | training threads to finish.

consists of MLPs with different optimizers, learning rates, and hidden layer

widths. This allows the prediction algorithm to choose the best MLP for the

current data distribution from a diverse pool of MLPs.

4.2.2 Enhancements to CAND’s Training

Training a bigger P pool with complex NNs may not be computationally

efficient. CANDsub is proposed to overcome this. CAND with these enhance-

ments is explained in algorithm 4, where a smaller M(⊂ P ) pool is chosen

for per-instance training. This M pool is chosen such that the currently best-

performing MLPs represent half of it, and the other half is randomly selected

from the remaining MLPs. This approach allows more performant MLPs to be

trained more frequently while also allowing all the other MLPs to be trained

at least occasionally. Thus even low-performance MLPs can improve over time

and become more dominant, especially after concept drifts. Here, the perfor-
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mance of an MLP is assessed considering its estimated loss at that time. In

CANDsub, there is a warm-up period where all the MLPs in the P pool are

trained. This allows all the MLPs to have a reasonable estimated loss after the

warm-up. In our experiments, this warm-up period is either 1% of the dataset

or 1000 instances, whichever is smaller. If M=P for all the dataset instances,

then CANDsub reverts to CAND.

The backpropagation procedure takes more computing resources than the

forward pass of the network. Avoiding backpropagation can lead to more sig-

nificant savings in computing resources. As an orthogonal efficient variant of

CAND, backpropagation of the loss is skipped for instances where their loss

falls below a pre-specified threshold. In the initial experiments, this thresh-

old was determined considering empirical results on low-dimensional datasets.

Later, an in-depth empirical investigation is done to understand this effect

further. This orthogonal variant is identified as CANDSB in the rest of the

thesis. As both CANDsub and CANDSB are orthogonal, one can combine

those two CAND variants for greater savings in computing resources. This

combined CAND variant is identified as CANDSB
sub in the rest of the thesis.

The time complexity of CAND is linear in the size of M : O(|M |). The

memory complexity is linear in the size of P : O(|P |).

4.3 Experiments

In the experiments, multiple variants of CAND were compared against the

streaming NN method ADL and two state-of-the-art stream learning meth-

ods: ARF and SRP, on 17 datasets in various sets of experiments. First,

we compare CAND against ADL and different configurations of ARF and

SRP using 10 learners and 30 learners. Second, we compare the best possible

baseline configurations from the first experiment against different variants of

CAND. The second experiment aims to understand the computational cost

associated with each model. To clarify the effect of mini-batch size and GPU
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Table 4.1: Dataset properties and data type: (L)ow dimensional, has (D)rifts,

(H)igh dimensional, (R)eal world, (S)ynthetic, dense(d), sparse(s). ∗ 1.00E-04.

name type instances features # class distribution

before after cla- max(%) min(%)

one-hot one-hot sses

airlines LRd 539382 7 614 2 55.46 44.54

electricity LRd 45310 8 14 2 57.55 42.45

kdd99 LRd 4898430 41 122 23 56.24 0.00*

WISDM LRd 5417 45 80 6 38.43 4.53

covtype LRd 581010 54 54 7 48.76 0.47

nomao LRd 34464 118 172 2 71.44 28.56

AGRa LDSd 1000000 9 40 2 52.83 47.17

AGRg LDSd 1000000 9 40 2 52.83 47.17

RBFf LDSd 1000000 10 10 5 30.01 9.27

RBFm LDSd 1000000 10 10 5 30.01 9.27

LEDa LDSs 1000000 24 24 10 10.08 9.94

LEDg LDSs 1000000 24 24 10 10.08 9.94

epsilon HRd 100000 2000 2000 2 50.05 49.95

SVHN HRd 26032 3072 3072 10 19.59 6.13

gisette HRd 6000 5000 5000 2 50.00 50.00

spam HRs 9323 39916 39916 2 74.40 25.60

sector HRs 6412 55197 55197 105 1.25 0.14

training on CAND, the third set of experiments compare per-instance-trained

CAND against GPU-trained CAND with different mini-batch sizes. Forth

and the fifth set of experiments were performed to identify the effects of smaller

pools size (|M |) and backpropagation skip threshold on CAND’s accuracy and

wall-time. The sixth set of experiments compares the selected efficient versions

of CAND against per-instance trained CAND.

The datasets included low-dimensional(< 2000 features) and high-dimensional(≥

2000 features) data. Except for WISDM [89]1, all the other low-dimensional

ones were used in [15] as classification benchmarks. The synthetic data streams

1available at: https://www.cis.fordham.edu/wisdm/dataset.php
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Table 4.2: CAND(|P |=10) against ADL and ensemble learners with 10 base

learners. ∗ hypothetical MLP selection criteria. ! single best MLP for the given

dataset. # at least one MLP predicted the correct label.

dataset ADL Ensemble learners CAND|P |=10

dataset ARF SRP ARF SRP Min Majo- Best At

10, 10, 10, 10, Estd rity MLP*! Least

60% 60% 10% 10% Loss Vote One*#

airlines 61.06 65.86 66.74 61.18 64.90 61.14 61.24 61.14 83.27

electricity 74.20 89.87 89.14 58.00 83.47 84.98 82.48 85.24 95.59

kdd99 99.96 99.96 99.97 99.94 99.97 99.92 99.91 99.91 99.97

WISDM 56.37 85.28 85.36 77.77 83.54 72.96 71.71 74.35 90.70

covtype 87.91 94.49 95.28 85.34 89.46 88.91 86.01 89.90 97.41

nomao 97.58 97.08 97.23 97.00 97.06 97.02 96.96 97.27 98.99

Avg Acc 79.51 88.76 88.95 79.87 86.40 84.16 83.05 84.64 94.32

Avg Rank 4.92 2.25 1.42 5.67 3.08 4.83 5.83

AGRa 63.56 85.91 92.44 64.45 77.21 89.59 87.34 89.40 97.66

AGRg 61.30 79.99 87.55 62.98 76.19 87.14 85.20 86.98 96.60

RBFf 31.93 71.20 70.84 30.01 46.88 67.26 64.76 67.67 88.43

RBFm 46.26 84.70 83.19 30.01 62.07 85.75 84.75 85.62 95.91

LEDa 73.66 73.92 73.49 56.24 37.24 74.02 73.91 73.89 84.38

LEDg 73.02 73.06 72.73 57.80 38.09 73.28 73.22 73.23 83.76

Avg Acc 58.29 78.13 80.04 50.25 56.28 79.51 78.20 79.47 91.12

Avg Rank 5.67 2.83 3.00 6.33 5.67 1.67 2.83

epsilon 77.54 50.26 50.21 58.06 55.87 85.89 79.69 85.73 96.41

SVHN 22.59 19.52 20.35 20.57 22.25 55.68 38.58 55.94 76.02

gisette 76.27 82.36 82.17 88.04 89.64 96.23 93.74 96.25 99.48

spam 98.34 96.12 96.22 96.87 96.80 97.99 97.56 98.13 99.74

sector 0.25 0.74 0.80 4.39 12.73 67.13 46.84 66.21 74.47

Avg Acc 55.00 49.80 49.95 53.59 55.46 80.58 71.28 80.45 89.22

Avg Rank 4.20 6.20 6.00 4.20 4.00 1.20 2.20

Overall Acc 64.81 73.55 74.34 61.69 66.67 81.46 77.88 81.58 91.69

Overall Rank 4.97 3.62 3.32 5.47 4.26 2.65 3.71

simulate different types of concept drifts, i.e. abrupt (AGRa, LEDa), gradual

(AGRg, LEDg), fast incremental changes (RBFf), and moderate incremen-
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Table 4.3: CAND(|P |=30) against ensemble learners with 30 base learners. ∗

hypothetical MLP selection criteria. ! single best MLP for the given dataset.
# at least one MLP predicted the correct label. underline value is worse (smaller

accuracy) than the 10 learner counterpart in table 4.2 (ranks are not considered

in this comparison).

dataset ARF SRP ARF SRP CAND |P |=30

30, 30, 30, 30, Min Majo- Best At

60% 60% 10% 10% Estd rity MLP*! Least

Loss Vote One*#

airlines 66.46 67.97 61.18 66.77 61.44 61.87 61.63 86.77

electricity 90.57 89.48 58.09 84.57 91.55 88.15 92.16 98.64

kdd99 99.96 99.97 99.94 99.98 99.96 99.94 99.97 99.99

WISDM 85.59 86.43 78.90 85.86 88.85 80.26 90.81 97.96

covtype 94.79 95.60 86.09 91.35 93.77 89.00 94.54 99.14

nomao 97.20 97.37 97.16 97.33 97.56 97.27 97.72 99.37

Avg Acc 89.10 89.47 80.23 87.64 88.86 86.08 89.47 96.98

Avg Rank 3.25 1.83 5.92 3.00 2.42 4.58

AGRa 87.48 92.96 64.45 79.71 89.70 87.37 89.38 98.77

AGRg 81.96 89.14 62.98 75.99 87.23 84.84 87.03 98.31

RBFf 75.02 75.43 30.01 52.17 66.98 62.34 67.67 93.02

RBFm 86.63 85.68 30.01 68.07 85.78 84.31 85.63 97.80

LEDa 73.96 73.97 62.55 53.26 74.02 73.94 73.99 87.71

LEDg 73.10 73.14 62.79 51.81 73.30 73.22 73.26 87.35

Avg Acc 79.69 81.72 52.13 63.50 79.50 77.67 79.49 93.83

Avg Rank 2.83 1.83 5.67 5.33 1.83 3.50

epsilon NA NA 61.21 60.20 85.89 50.04 85.76 99.76

SVHN 19.89 20.72 21.76 23.59 57.02 18.79 57.38 87.12

gisette 74.72 75.80 89.25 90.93 96.26 50.84 96.36 99.93

spam 95.40 NA 97.15 97.29 98.30 97.60 98.54 99.90

sector NA NA 4.72 16.95 73.56 1.71 73.19 82.62

Avg Acc 38.00 19.30 54.82 57.79 82.21 43.80 82.25 93.87

Avg Rank 5.20 5.00 3.00 2.40 1.00 4.40

Overall Acc 70.75 66.10 62.84 70.34 83.60 70.68 83.82 94.95

Overall Rank 3.68 2.76 4.97 3.65 1.79 4.15

tal changes (RBFm). They were also from [15]. AGRa, AGRg, LEDa and

LEDg had concept drifts occurring after every 250000 instances, with drift
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width size 50 for abrupt (AGRa, LEDa) and 50000 for gradual (AGRg, LEDg).

The high-dimensional datasets are commonly used in the NNs literature 2.

Table 4.1 summarizes the characteristics of the datasets and the number of

features after online one-hot encoding. Each algorithm was executed three

times. The average accuracy and wall-time were considered in the evaluation

process. Standard deviations were omitted from the tables due to space con-

straints. But are mentioned in the tables if necessary. CPU experiments were

run on an Ubuntu 20.04.3 system with an Intel(R) Core(TM) i7-6700K CPU

at 4.00GHz, and with 64GB RAM. The OpenJDK version was 11.0.11, and

the JVM configurations were: -Xmx32g, -Xms50m, and -Xss1g. The GPU

experiments were run on the same system using an NVIDIA Quadro GV100

GPU with 32508 MiB memory.

ADL was selected as it is the currently available streaming NN method.

As per the authors of [49], their online hyperparameter tuning method did not

produce significantly better results for classification tasks than a model with

the default hyperparameters. Hence it was not selected as a baseline in the

experiments. SRP and parallel ARF were also selected as the comparison

baselines as they are the current state-of-the-art streaming algorithms. For

ADL, the Python implementation was used in the experiments 3 and the same

parameter configurations as in [19] were used as the thresholds (αD = 0.0001,

αW = 0.0005, δ = 0.05, ζ = 0.001). For SRP, HT (50 as the grace period

and 0.01 as the split confidence) was selected as the base learner, with 10

and 30 as the ensemble sizes, 60% and 10% as the subspace sizes. For ARF,

Adaptive Random Forest HT (same grace period and split confidence as in

SRP) was selected as the base learner, with 10 and 30 as the ensemble sizes,

60%, and 10% were selected as the feature percentages considered for each

split, 6.0 for the lambda hyperparameter and 10 (in 10 ensembles setting) and

30 (in 30 ensembles setting) jobs to run in parallel. ADWIN was selected as

2from: https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
3available at: https://github.com/ContinualAL/ADL Pytorch



67

Table 4.4: Accuracy (%) for selected ensemble settings against CAND vari-

ants. C=CAND(CPU trained).

dataset ARF SRP ARF SRP C Csub CSB=0.6
sub C

10, 10, 30, 30, |P |=10 |P |=30 |P |=30 |P |=30

60% 60% 10% 10% |M |=10 |M |=10

airlines 65.86 66.74 61.18 66.77 61.13 61.40 61.10 61.44

electricity 89.87 89.14 58.09 84.57 84.97 90.21 90.59 91.55

kdd99 99.96 99.97 99.94 99.98 99.92 99.96 99.96 99.96

WISDM 85.28 85.36 78.90 85.86 72.72 89.68 90.54 88.85

covtype 94.49 95.28 86.09 91.35 88.91 94.37 93.79 93.77

nomao 97.08 97.23 97.16 97.33 97.15 97.61 97.13 97.56

Avg Acc 88.76 88.95 80.23 87.64 84.13 88.87 88.85 88.86

Avg Rank 4.58 3.17 6.83 3.67 7.00 3.08 4.42 3.25

AGRa 85.91 92.44 64.45 79.71 89.64 89.31 88.16 89.70

AGRg 79.99 87.55 62.98 75.99 87.19 87.17 86.83 87.23

RBFf 71.20 70.84 30.01 52.17 67.20 67.06 66.84 66.98

RBFm 84.70 83.19 30.01 68.07 85.77 85.18 84.69 85.78

LEDa 73.92 73.49 62.55 53.26 74.03 74.03 73.89 74.02

LEDg 73.06 72.73 62.79 51.81 73.27 73.28 73.10 73.30

Avg Acc 78.13 80.04 52.13 63.50 79.52 79.34 78.92 79.50

Avg Rank 4.33 3.67 7.67 7.33 2.58 3.08 5.00 2.33

epsilon 50.26 50.21 61.21 60.20 85.86 85.89 83.11 85.89

SVHN 19.52 20.35 21.76 23.59 55.60 55.08 54.12 57.02

gisette 82.36 82.17 89.25 90.93 96.38 96.28 94.40 96.26

spam 96.12 96.22 97.15 97.29 98.03 98.42 97.64 98.30

sector 0.74 0.80 4.72 16.95 67.51 71.61 72.20 73.56

Avg Acc 49.80 49.95 54.82 57.79 80.68 81.46 80.29 82.21

Avg Rank 7.60 7.40 5.80 5.20 2.60 2.10 3.60 1.70

Overall Acc 73.55 74.34 62.84 70.34 81.49 83.33 82.83 83.60

Overall Rank 5.38 4.59 6.82 5.41 4.15 2.79 4.38 2.47

the drift and warning detector for both SRP and ARF. For SRP, the delta

value for ADWIN was 0.00001 for the drift detector and 0.0001 for the warning

detector. In the ARF case, it was 0.001 for the drift detector and 0.01 for the
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warning detector. As online one-hot encoding and normalization are in-built

in CAND, the same data were fed into all algorithms. For both ARF and

SRP, different random seeds (9,19,121) were used in each iteration.

Table 4.5: Wall time (s) for selected ensemble settings against CAND variants.

C=CAND(CPU trained).

dataset ARF SRP ARF SRP C Csub CSB=0.6
sub C

10, 10, 30, 30, |P |=10 |P |=30 |P |=30 |P |=30

60% 60% 10% 10% |M |=10 |M |=10

airlines 127.56 208.50 22.46 381.44 15888.01 9784.03 7626.94 28999.15

electricity 6.10 9.95 3.47 24.17 120.99 81.10 67.75 196.99

kdd99 49.67 111.36 100.27 151.76 1853.02 2201.20 844.08 5311.52

WISDM 3.07 3.92 2.77 3.57 20.21 15.76 11.17 41.64

covtype 140.12 252.40 123.21 339.30 2769.45 1682.24 949.38 4981.91

nomao 13.59 26.15 10.01 18.89 185.05 140.53 42.49 384.48

Avg 56.69 102.05 43.70 153.19 3472.79 2317.48 1590.30 6652.62

Avg Rank 1.83 3.33 1.17 3.67 6.83 6.17 5.00 8.00

AGRa 113.89 253.63 45.16 3137.58 4165.67 3286.07 2025.02 7680.91

AGRg 125.14 298.59 46.13 2688.19 4161.60 3410.06 2131.33 7679.61

RBFf 105.93 249.15 54.87 363.33 2852.29 2331.26 1992.29 4850.71

RBFm 102.48 216.62 54.08 352.31 2855.15 2121.74 1691.46 4858.58

LEDa 73.50 168.49 135.07 675.34 4395.22 3213.00 2335.20 6599.98

LEDg 74.15 171.34 137.01 634.07 4452.85 3044.41 2246.57 6593.23

Avg 99.18 226.30 78.72 1308.47 3813.80 2901.09 2070.31 6377.17

Avg Rank 1.67 3.00 1.33 4.33 7.00 6.00 4.67 8.00

epsilon 2006.44 2298.30 1170.11 1464.35 4987.39 5059.79 2481.79 11576.26

SVHN 1033.51 2392.79 403.31 1053.32 2739.18 2044.38 1787.48 5549.00

gisette 246.95 272.70 178.46 153.06 560.66 678.26 187.56 1332.19

spam 3144.16 3742.61 5163.25 1759.17 10414.31 8410.42 2174.42 25601.24

sector 112244.68 88245.67 38638.48 20272.19 15046.42 10573.59 8981.35 30843.94

Avg 23735.15 19390.41 9110.72 4940.42 6749.59 5353.29 3122.52 14980.53

Avg Rank 4.00 5.20 3.00 2.20 5.80 5.40 3.00 7.40

Overall 7035.94 5818.95 2722.83 1968.94 4556.91 3416.34 2210.37 9004.78

Overall Rank 2.41 3.76 1.76 3.47 6.59 5.88 4.29 7.82

CAND was implemented in MOA[78] using the Deep Java Library (DJL)

as an interface to call the PyTorch. MOA was chosen because it had an effi-
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cient implementation of SRP and ARF. The MLPs in the P pool used two

types of optimizers: Adam and SGD, each with five learning rates: 5e-1, 5e-2,

5e-3, 5e-4,and 5e-5. All the MLPs were single-layer, with either 28, 29, or 210

neurons in the hidden layer. All the above 30 configurations of MLPs were

considered for the |P |=30 setups, while only the 29 neurons in the hidden

layer configurations were considered for the |P |=10 setups. Other parameters

for Adam and SGD were set to Pytorch defaults (betas = [0.9, 0.999], eps

= 1e−8, weight decay = 0, amsgrad = False for Adam, and momentum =

0, dampening = 0, weight decay = 0, nesterov = False for SGD). Pytorch

CrossEntropyLoss was used for the loss calculation. Along with CAND, ef-

ficient CANDsub and CANDSB
sub were used in the experiments. In the initial

experiments, for CANDsub smaller pool size (|M |) was set to 10, to match

the smallest ensemble size. For CANDSB
sub, the backpropagation threshold was

empirically determined using low-dimensional datasets and set to 0.6 in the ini-

tial experiments. In the later experiments, these hyperparameters were further

explored.

4.3.1 CAND against ADL and ensemble learners

These experiments compare CAND against ADL and different ARF and SRP

configurations, using both 10 and 30 base learners. We also evaluated two vote

aggregation methods for CAND: 1) majority vote and 2) minimum estimated

loss: a special case of vote aggregation which discards all MLPs except the one

with the least estimated loss at a given point. We also include two hypothetical

baselines: 1) the accuracy of the single best MLP, as determined at the end of

an experiment (Best MLP), and 2) an accuracy estimate based on how often

at least one MLP had predicted the correct label and assuming it would have

been selected (AtLeastOne). For these experiments, except for ADL, all the

other methods were run using CPUs. ADL experiments were run using GPUs.

As per table 4.2, considering average accuracy and average rank, one can

see that CAND(|P |=10) with minimum estimated loss as the vote aggre-
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gation method performs better than ADL, different ensemble settings and

CAND with the majority vote. Also, on average, it outperforms the hypo-

thetical Best MLP. It only lags behind the hypothetical AtLeastOne. In gen-

eral, CAND variants seem to perform well on high-dimensional data. Also, on

high-dimensional data, ARF and SRP with the smaller split percentage (10%)

and subspace size (10%) perform better compared to higher values (60%). An-

other notable aspect for both ARF and SRP is that they perform poorly on

high-dimensional data with more than two classes (SVHN: 3072 features and

10 classes, sector: 55197 features and 105 classes). The higher ARF split

percentage(60%) and higher SRP subspace size(60%) hinder the performance

in this case, which is worth investigating. But beyond the scope of this re-

search. ADL also performs poorly on high-dimensional data with more than

two classes. Overall, ADL is one of the worst performers in these experiments.

Experimental results for CAND(|P |=30) against ensemble learners with

30 base learners are summarized in table 4.3. The table also compares the 30

learner values against 10 learner values in table 4.2. On epsilon and sector

datasets, both ARF with 60% split percentage and SRP with 60% subspace

size failed to complete. Also, the same happened on the spam dataset for SRP

with the same settings. On spam, only one run of ARF with the same settings

was completed with random seed 19. The re-runs of those failed experiments

with higher -Xmx, which is greater than the initial 32GB, also failed. For the

failed parameter combinations, 0.00% accuracy was assumed when computing

the average accuracy and ranks. One can observe the same phenomenon where

CAND with minimum estimated loss outperforms all the other methods in

the 30 learner setting as well. If one excludes CAND with the majority vote

and all the failed ARF and SRP cases, a higher number of learners generally

have slightly improved the accuracy of all the methods. If one compares the

average accuracy of the hypothetical AtLeastOne method to its 10 learner

counterpart, an increase of 3% can be seen. This suggests that the prediction
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Table 4.6: Chosen percentage(%) of each hyperparameter type: network width,

optimizer and learning rate for CANDsub(|M |=10, |P |=30). Learning rate 5e-

1 was chosen <0.05% for all except on kdd99 (8.71%).

dataset # neurons optimizer learning rate

28 29 210 Adam SGD 5e-2 5e-3 5e-4 5e-5

airlines 31.92 38.29 29.79 78.04 21.96 9.89 31.00 25.45 33.66

electricity 39.25 44.45 16.30 91.59 8.41 1.41 30.26 7.27 61.06

kdd99 29.49 52.19 18.32 88.17 11.83 12.88 23.17 19.54 35.71

WISDM 19.92 67.34 12.74 99.66 0.34 0.05 24.39 0.39 75.15

covtype 32.77 52.07 15.16 98.67 1.33 0.01 2.33 0.92 96.72

nomao 31.32 45.54 23.13 59.75 40.25 6.96 21.67 9.33 61.65

Avg(%) 30.78 49.98 19.24 85.98 14.02 5.20 22.14 10.48 60.66

AGRa 12.14 80.38 7.47 88.34 11.66 0.64 21.21 7.84 70.31

AGRg 21.95 58.06 20.00 98.14 1.86 0.37 3.89 1.42 94.32

RBFf 16.37 70.74 12.89 97.50 2.50 0.00 27.16 2.29 70.55

RBFm 24.73 56.07 19.19 89.12 10.88 0.00 11.70 1.00 87.30

LEDa 26.64 55.27 18.09 68.49 31.51 1.00 31.26 10.33 57.42

LEDg 34.02 54.73 11.25 83.65 16.35 0.04 16.09 7.17 76.70

Avg(%) 22.64 62.54 14.82 87.54 12.46 0.34 18.55 5.01 76.10

epsilon 22.63 71.33 6.04 71.98 28.02 0.01 27.73 0.25 72.01

SVHN 9.62 88.40 1.98 91.05 8.95 0.00 7.85 0.81 91.34

gisette 26.76 72.95 0.29 70.61 29.39 0.64 27.03 6.65 65.65

spam 21.11 64.30 14.58 98.56 1.44 0.01 23.44 1.42 75.13

sector 15.19 73.77 11.03 96.11 3.89 0.06 12.28 3.31 84.32

Avg(%) 19.06 74.15 6.78 85.66 14.34 0.14 19.67 2.49 77.69

Overall(%) 24.46 61.52 14.01 86.44 13.56 2.00 20.14 6.20 71.12

potential of CAND can increase with the number of learners.
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4.3.2 Different Variants of CAND against best ensem-

bles

To further investigate the cost associated with the number of learners, ensemble

learner configurations which yielded good results on all datasets were compared

against different CAND configurations: CAND(|P |=10), CANDsub(|M |=10,

|P |=30), CANDSB=0.6
sub (|M |=10, |P |=30), and CAND(|P |=30). Here, all ex-

periments were run using CPUs.

Table 4.4 summarizes the average accuracy for each method on each dataset.

In general, CAND variants yield good results on all datasets. They perform

particularly well on high-dimensional data. Also, they yield good results on

all the synthetic datasets with concept drifts. On airlines, CAND variants

lag slightly behind ARF and SRP. This could be since the tree-based al-

gorithms converge quicker on low-dimensional data. When considering aver-

age accuracy and average rank, CANDsub(|M |=10, |P |=30) is very close to

the top-performing CAND(|P |=30). Also, CANDSB=0.6
sub (|M |=10, |P |=30)

is not far behind compared to the CANDsub(|M |=10, |P |=30). The sum-

mary of the average wall-time for each algorithm on each dataset is shown

in table 4.5. Both ARF and SRP have a smaller average wall-time on

low-dimensional datasets. This is well in line with the general understand-

ing of tree-based algorithms performing efficiently on such data compared to

NNs. ARF variants seem to be faster than the other algorithms on low-

dimensional data. But in sector, ARF is slower compared to its SRP coun-

terparts. Among all CAND variants, CAND(|P |=30) seems to take a lot

of time. It is the slowest among all the methods. This aligns with the gen-

eral understanding that training more NNs consume more resources. Except

for CANDSB=0.6
sub (|M |=10, |P |=30), all CAND variants seem to take more

time on all datasets other than sector, which is high-dimensional and multi-

class. Interestingly, CAND(|P |=10) takes more time than CANDsub(|M |=10,

|P |=30). This could be due to some of the smaller (28) predictive MLPs
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Figure 4.2: a): MLPs estimated losses, b): MLPs estimated losses

(zoomed-in), c): chosen counts of MLPs. MLP colour scheme: cooler

colours for the most chosen, and warmer colours for the least chosen MLPs.

Vertical dotted lines: start of concept drift.

missing in CAND(|P |=10). CANDSB=0.6
sub (|M |=10, |P |=30) is the fastest

CAND version, which is expected, as it performs the lowest number of net-

work updates among all the CAND variants. Considering both accuracy and

wall-time, CANDSB=0.6
sub (|M |=10, |P |=30) strikes a good compromise, yield-

ing good accuracy and being reasonably computationally efficient, especially

so for high-dimensional data.
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4.3.3 Discussion on CANDsub(|M |=10, |P |=30)

To further understand the behaviour of CAND, we computed the chosen per-

centage of MLPs (for prediction) by different hyperparameter types: network

width, optimizer, and learning rate. Table 4.6 summarises those results. MLPs

with 29 hidden neurons were selected most often. But MLPs with 28 and

210 hidden neurons have contributed differently for different datasets. Unsur-

prisingly, most chosen MLPs have Adam as the optimizer. As expected in

per-instance stream learning, most chosen MLPs have the lowest learning rate

(5e-5).

To further understand the CANDsub(|M |=10, |P |=30) behaviour on con-

cept drifts, an in-depth analysis was done on LEDa dataset. Figure 4.2.a and

figure 4.2.b illustrate the estimated loss of each MLP on the same dataset with

time. Figure 4.2.b is a zoomed-in version of figure 4.2.a. Also, figure 4.2.c de-

picts the chosen count of each MLP with time. Figure 4.2.a and figure 4.2.b

clearly show that MLPs estimated losses increase immediately after a concept

drift. This suggests that, when learning from an evolving data stream, the

estimated loss gives us a good indication of the predictive performance of an

MLP at a given moment. As expected, according to figure 4.2.a, figure 4.2.b,

and figure 4.2.c CAND correctly chooses the MLP with the least estimated

loss most of the time. This is evident in figure 4.2.c, with different MLPs

contributing to prediction at a given moment.

4.3.4 Effect of Mini-batch Size and GPU Training

Another set of experiments was carried out to understand the effect of mini-

batch size and GPU training on CAND’s predictive and computing perfor-

mance. Here, CANDsub(|M |=10, |P |=30, mini-batch size=1, CPU training)

was compared against CANDsub(|M |=10, |P |=30, GPU training) with differ-

ent mini-batch sizes: 1, 4, 16 and 32. The evaluation was done per-instance

as usual for all the experiments.

As per table 4.7, per-instance CPU and GPU training yield similar predic-
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Table 4.7: Effect of mini-batch size on accuracy and wall time (s) for

CANDsub(|M |=10, |P |=30).

Acc Wall Time

device CPU GPU CPU GPU

batch size 1 1 4 16 32 1 1 4 16 32

airlines 61.4 61.44 61.21 61.21 61 9784.03 5090.33 1104.13 405.24 291.46

electricity 90.21 91.51 86.94 79.28 76.11 81.1 341.76 95.15 37.43 27.69

kdd99 99.96 99.96 99.93 99.85 99.78 2201.2 6833.39 1950.46 979.91 816.73

WISDM 89.68 89.55 78.64 64.36 60.39 15.76 41.55 14.89 7.8 6.57

covtype 94.37 93.74 89.52 88.15 88.26 1682.24 5027.07 1254.86 491.59 364.15

nomao 97.61 97.62 97.46 96.31 95.85 140.53 248.85 72.4 30.15 23.02

Avg 88.87 88.97 85.62 81.53 80.23 2317.48 2930.49 748.65 325.35 254.94

Avg rank 1.67 1.33 3 4.17 4.83 4 4.83 3.17 2 1

AGRa 89.31 89.35 89.13 89.05 88.91 3286.07 8428.79 2178.76 749.77 534.47

AGRg 87.17 87.11 87.11 87.31 87.23 3410.06 9227.59 2213.58 761.32 537.64

RBFf 67.06 67.05 67.28 60.71 59.71 2331.26 9412.32 2176.72 802.27 584.56

RBFm 85.18 85.22 85.61 86.13 86.03 2121.74 10264.88 2226.64 800.08 582.6

LEDa 74.03 74.07 74.03 74.03 74 3213 10514.25 2192.45 878.36 656.89

LEDg 73.28 73.3 73.29 73.3 73.3 3044.41 9421.42 2198.36 881.17 660.23

Avg 79.34 79.35 79.41 78.42 78.2 2901.09 9544.88 2197.75 812.16 592.73

Avg rank 3.5 2.33 3 2.5 3.67 3.83 5 3.17 2 1

epsilon 85.89 85.74 85.92 85.52 85.62 5059.79 807.52 332 205.65 180.77

SVHN 55.08 55.34 54.6 49.54 53.11 2044.38 241.18 109.96 75.3 69.67

gisette 96.28 96.1 96.09 96.14 95.66 678.26 61.72 34.53 26.3 24.75

spam 98.42 98.38 97.52 96.93 94.85 8410.42 401.02 284.44 244.99 237.41

sector 71.61 68.69 73.29 72.72 73.37 10573.59 429.81 213.59 152.86 140.67

Avg 81.46 80.85 81.48 80.17 80.52 5353.29 388.25 194.9 141.02 130.66

Avg rank 2 2.8 2.6 3.8 3.8 5 4 3 2 1

Overall 83.33 83.19 82.21 80.03 79.6 3416.34 4517.26 1097.23 442.95 337.61

Overall rank 2.41 2.12 2.88 3.47 4.12 4.24 4.65 3.12 2 1

tive performance as expected. For instance, in the sector dataset, per-instance

CPU and GPU are fairly identical in terms of accuracy when we take into

account the standard deviations (i.e. CPU batch size std 1: 1.81, GPU batch

sizes std 1: 1.41, 4: 0.55, 16: 0.05, 32: 0.68). However, for low dimensional

data, per-instance GPU training is slower. This could be due to per-instance

data transfer happening between CPU and GPU. But for high-dimensional
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data, even with batch size 1, GPU training seems to be faster. Nevertheless,

GPU training with larger mini-batch sizes is faster. However, this improved

efficiency comes with a decay in prediction accuracy. The bigger the mini-

batch size, the lower the accuracy compared to per-instance training. Overall,

mini-batch size 4 yields good accuracies for all data types. Also, it performs

faster compared to per-instance CPU or GPU-trained CAND. Furthermore,

these results verify our initial assumption that a larger mini-batch size could

inversely affect NN’s quick adaptability to concept drifts.

These experiments were run using a single training iteration of a given mini-

batch. Experiments on multiple (mini-batch size) training iterations using the

same mini-batch did not reveal any significant results compared to per-instance

training. Hence they are not included in this work.

4.3.5 Effect of smaller pool size (|M |)

In the previous experiments, smaller pool size (|M |) was set to 10 for CANDsub(M ,

|P |=30) to align with the smallest ensemble size. These experiments explore

the effect of |M | on CANDsub(M , |P |=30)’s accuracy and wall time using

mini-batch size 1 and GPU training. We experiment with smaller pool sizes:

2, 4, 6, 8, and 10.

As shown in table 4.8, on average CANDsub(M , |P |=30) with larger M

pool sizes performs slightly better than the smaller pool sizes. But this comes

with an increased computation cost. On average, even the smallest M pool

size 2, is not so far behind compared to |M |=10 setting. Its only consid-

erable performance decreases are only on high-dimensional data with more

than two classes (SVHN: 3072 features and 10 classes, sector: 55197 features

and 105 classes). Overall CANDsub(|M |=2, |P |=30) is at lest 1.6 faster than

CANDsub(|M |=10, |P |=30). Generally, M pool sizes 6 and 8 yield competi-

tive results considering their computation costs.
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Table 4.8: Effect of |M | on accuracy and wall time (s) for CANDsub(M ,

|P |=30, mini-batch size=1, GPU-trained)

Acc Wall Time

|M | 2 4 6 8 10 2 4 6 8 10

airlines 61.2 61.34 61.36 61.45 61.44 3160.08 4325.67 3802.3 4266.72 5090.33

electricity 90.42 91.23 91.51 91.53 91.51 268.44 230.25 298.64 292.05 341.76

kdd99 99.95 99.96 99.96 99.96 99.96 5239.57 6145.11 7269.31 6575.8 6833.39

WISDM 88.37 90.05 89.67 89.69 89.55 27.39 31.02 34.56 38.02 41.55

covtype 92.87 93.46 93.62 93.73 93.74 4111.38 3409.18 4114.78 5481.37 5027.07

nomao 97.18 97.44 97.54 97.5 97.62 149.03 166.27 267.65 297.18 248.85

Avg 88.33 88.91 88.94 88.98 88.97 2159.31 2384.58 2631.2 2825.19 2930.49

Avg rank 5 3.5 2.83 1.83 1.83 1.33 2 3.5 3.83 4.33

AGRa 87.7 88.62 89.2 89.27 89.35 5148.26 6423.45 8107.53 8705.5 8428.79

AGRg 86.64 86.9 86.99 87.13 87.11 6164.74 6559.55 7992.71 8733.13 9227.59

RBFf 66.09 66.35 66.5 67.13 67.05 5729.67 6746.42 7325.99 9727.68 9412.32

RBFm 84.65 84.63 84.73 84.7 85.22 6006.38 8089.97 8139.33 9401.23 10264.88

LEDa 73.85 73.97 74.01 74.03 74.07 5081.26 6321.63 7547.84 9247.49 10514.25

LEDg 73.13 73.25 73.31 73.28 73.3 5765.69 6868.67 8526 8297.06 9421.42

Avg 78.68 78.95 79.12 79.26 79.35 5649.33 6834.95 7939.9 9018.68 9544.88

Avg rank 4.83 4.17 2.5 2 1.5 1 2 3.17 4.17 4.67

epsilon 85.21 85.71 85.82 85.74 85.74 577.48 630.77 700.2 740.24 807.52

SVHN 45.24 45.43 52.03 55.45 55.34 173.19 188.86 207.82 224.1 241.18

gisette 95.64 95.66 95.77 96.12 96.1 50.43 52.96 56.39 59.28 61.72

spam 98.31 98.29 98.31 98.34 98.38 317.62 322.72 334.1 349.55 401.02

sector 57.51 62.68 65 68.21 68.69 205.13 218.29 267.81 323.11 429.81

Avg 76.38 77.55 79.38 80.77 80.85 264.77 282.72 313.27 339.26 388.25

Avg rank 4.6 4.2 2.8 1.8 1.6 1 2 3 4 5

Overall 81.41 82.06 82.67 83.13 83.19 2833.87 3337.1 3823.12 4279.97 4517.26

Overall rank 4.82 3.94 2.71 1.88 1.65 1.12 2 3.24 4 4.65

4.3.6 Effect of skip backpropagation threshold

In the previous experiments skip backpropagation threshold was set to 0.0

for all CAND variants except for CANDSB=0.6
sub (|M |=10, |P |=30), where it

was set to 0.6. These experiments further explore the effect of skip backprop-

agation threshold on CANDSB
sub(|M |=10, |P |=30)’s accuracy and wall time

using mini-batch size 1 and GPU training. For that, we experiment with skip

backpropagation thresholds: 0.0, 0.3, 0.6, and 0.9.
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Table 4.9 shows the accuracy and wall time for different skip backpropa-

gation thresholds. Generally, higher thresholds result in more significant wall

time savings. This behaviour is expected as larger thresholds allow more in-

stances to avoid costly backpropagation. Typically, this wall time savings

comes with a decrease in predictive performance. But, interestingly, a smaller

threshold of 0.3, causes an increase in the accuracy with a less computing cost

compared to no skip backpropagation (threshold of 0.0). Maybe the skip back-

propagation threshold act as a regularizer and no skip backpropagation (0.0)

allows the model to overfit.

4.3.7 Efficient CAND Variants

Considering previous experiments on mini-batch sizes, mini-batch size 4 yields

competitive results with less wall-time. Also, experiments on the effect of M

pool size suggest that M pool sizes 6 and 8 yield competitive results while

being wall-time efficient. Furthermore, experiments on the effect of the skip

backpropagation threshold reveal that 0.3 yields the best results compared

to not using skip backpropagation. Hence, the next set of experiments at-

tempts to find the most efficient variant of CAND, considering the above

empirical outcomes. Here we compare CAND with the above parameter com-

binations against CANDSB=0.0
sub (|M |=10, |P |=30, mini-batch size=1). Here all

the CAND variants were trained using GPUs.

As per table 4.10, on average CANDSB=0.3
sub (|M |=10, |P |=30, mini-batch

size=4) and CANDSB=0.3
sub (|M |=8, |P |=30, mini-batch size=4) seem to yield

very competitive results with less than a quarter of the wall-time used by

CANDSB=0.0
sub (|M |=10, |P |=30, mini-batch size=1). For high-dimensional data,

CANDSB=0.3
sub (|M |=10, |P |=30, mini-batch size=4) yields the best results.

Considering all the above, CANDSB=0.3
sub (|M |=10, |P |=30, mini-batch size=4)

seems to be the best CAND variant with good computation efficiencies.
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Table 4.9: Effect of skip backpropagation threshold on accuracy and wall time

(s) for CANDSB
sub(|M |=10, |P |=30, mini-batch size=1, GPU-trained)

Acc Wall Time

SB 0 0.3 0.6 0.9 0 0.3 0.6 0.9

airlines 61.44 61.49 60.64 60.11 5090.33 4766.42 4608.48 2321.72

electricity 91.51 91.94 91.65 90.06 341.76 279.75 213.11 230.6

kdd99 99.96 99.97 99.96 99.96 6833.39 4591.33 4477.32 4055.24

WISDM 89.55 89.42 90.16 89.4 41.55 33.87 32.4 31.29

covtype 93.74 93.66 93 80.96 5027.07 3796.15 2958.63 2911.57

nomao 97.62 97.36 97.16 96.38 248.85 139.07 133.69 126.54

Avg 88.97 88.97 88.76 86.15 2930.49 2267.76 2070.6 1612.83

Avg rank 1.83 1.67 2.67 3.83 4 3 1.83 1.17

AGRa 89.35 89.34 87.89 64.87 8428.79 7369.06 6736.86 4547.55

AGRg 87.11 87.21 86.65 62.56 9227.59 7254.49 7120.22 4202.88

RBFf 67.05 67.47 66.89 64.19 9412.32 9185.03 8323.73 9024.21

RBFm 85.22 85.34 84.68 82.81 10264.88 10063.59 7064.63 8166.7

LEDa 74.07 74.06 73.87 72.95 10514.25 8394.46 7671.93 7726.84

LEDg 73.3 73.28 73.13 72.23 9421.42 7975.14 7633.01 6979.15

Avg 79.35 79.45 78.85 69.93 9544.88 8373.63 7425.06 6774.56

Avg rank 1.5 1.5 3 4 4 3 1.5 1.5

epsilon 85.74 85.24 82.89 73.93 807.52 661.79 665.37 534.69

SVHN 55.34 55.54 54.64 54.07 241.18 234.22 230.48 227.24

gisette 96.1 95.72 94.16 93.07 61.72 50.14 48.55 47.19

spam 98.38 98.5 97.05 89.06 401.02 317.46 313.54 310.94

sector 68.69 71.16 69.54 70.26 429.81 372.4 359.39 354.87

Avg 80.85 81.23 79.66 76.08 388.25 327.2 323.47 294.98

Avg rank 2 1.4 3 3.6 4 2.8 2.2 1

Overall 83.19 83.33 82.59 77.46 4517.26 3852.02 3446.55 3047.01

Overall rank 1.76 1.53 2.88 3.82 4 2.94 1.82 1.24



80

Table 4.10: Accuracy and wall time (s) for efficient CANDSB
sub(M , |P |=30,

GPU-trained) variants.

Acc Wall Time

|M | 10 10 8 6 10 10 8 6

batch size 1 4 4 4 1 4 4 4

SB 0 0.3 0.3 0.3 0 0.3 0.3 0.3

airlines 61.44 61.21 61.21 61 5090.33 1104.13 405.24 291.46

electricity 91.51 86.94 79.28 76.11 341.76 95.15 37.43 27.69

kdd99 99.96 99.93 99.85 99.78 6833.39 1950.46 979.91 816.73

WISDM 89.55 78.64 64.36 60.39 41.55 14.89 7.8 6.57

covtype 93.74 89.52 88.15 88.26 5027.07 1254.86 491.59 364.15

nomao 97.62 97.46 96.31 95.85 248.85 72.4 30.15 23.02

Avg 88.97 85.62 81.53 80.23 2930.49 748.65 325.35 254.94

Avg rank 1 2 3.17 3.83 4 3 2 1

AGRa 89.35 89.13 89.05 88.91 8428.79 2178.76 749.77 534.47

AGRg 87.11 87.11 87.31 87.23 9227.59 2213.58 761.32 537.64

RBFf 67.05 67.28 60.71 59.71 9412.32 2176.72 802.27 584.56

RBFm 85.22 85.61 86.13 86.03 10264.88 2226.64 800.08 582.6

LEDa 74.07 74.03 74.03 74 10514.25 2192.45 878.36 656.89

LEDg 73.3 73.29 73.3 73.3 9421.42 2198.36 881.17 660.23

Avg 79.35 79.41 78.42 78.2 9544.88 2197.75 812.16 592.73

Avg rank 2 2.67 2.17 3.17 4 3 2 1

epsilon 85.74 85.92 85.52 85.62 807.52 332 205.65 180.77

SVHN 55.34 54.6 49.54 53.11 241.18 109.96 75.3 69.67

gisette 96.1 96.09 96.14 95.66 61.72 34.53 26.3 24.75

spam 98.38 97.52 96.93 94.85 401.02 284.44 244.99 237.41

sector 68.69 73.29 72.72 73.37 429.81 213.59 152.86 140.67

Avg 80.85 81.48 80.17 80.52 388.25 194.9 141.02 130.66

Avg rank 2 2 3 3 4 3 2 1

Overall 83.19 82.21 80.03 79.6 4517.26 1097.23 442.95 337.61

Overall rank 1.65 2.24 2.76 3.35 4 3 2 1



Chapter 5

Online Domain Incremental

Pool

In chapter 4, estimated loss of a NN was used to identify the best-performing

NN from a pool of networks for SL. Section 2.1.2 introduces Online Domain

Incremental Continual Learning, which pertains to a specific form of OCL.

ODICL involves NN learning from a data stream where the input data dis-

tribution changes when different tasks are encountered. Compared to SL, a

learning algorithm in this setting has the additional requirement of preserving

past knowledge. Additionally, section 2.1.3 discuses OSCL, the fusion of SL

and OCL to derive new solutions to Online Continual Learning. This chapter

presents a novel approach for ODICL, leveraging some of the SL techniques

outlined in section 2.1.3.

5.1 Introduction

In recent years, ODICL has been applied to various domains, including health-

care, facial expression and action unit recognition among different demograph-

ics (refer to section 2.1.2.3). However, some replay-based ODICL methods

raise privacy concerns due to their reliance on storing and replaying sensitive

data [4, 66]. On the other hand, regularisation methods do not perform as

well as replay-based methods for ODICL [4].
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Many existing ODICL methods use the explicit end-of-task signal during

the training process. For instance, methods like EWC [10] and LwF [20] opti-

mize their weights by incorporating this signal, while replay-based approaches

such as ER [21] employ it to update their replay buffer. However, the GDumb

[59] does not require this signal for replay buffer updates. Furthermore, as

discussed in section 2.1.3, SL techniques such as drift detectors and task pre-

diction in recurrent concepts can be employed to detect the end-of-task signal

and concept prediction in ODICL. Also, as per CAND experiments in sec-

tion 4.3.3, NN’s loss gives a good indication of the current performance of the

NN. It also closely resembles the underlying input distribution shifts. Using a

drift detector, this idea could be leveraged to detect end-of-the-task signals in

ODICL.

Considering the practical importance of non-replay Online Continual Learn-

ing, this work proposes a non-replay-based method that alleviates catastrophic

forgetting in NNs for ODICL using OSCL techniques. The main contribu-

tions of this work are the following:

1. Online Domain Incremental Pool (ODIP): we introduce a novel method

to alleviate catastrophic forgetting for Online Domain Incremental Con-

tinual Learning without using instance replay. Here, a small pool of tiny

CNNs is trained, and the best one is frozen at the end of each task. Task

Predictor is trained to predict the best frozen CNN for evaluation for

a given instance. The experiment results reveal that ODIP yields su-

perior accuracy than regularization baselines. Furthermore, an in-depth

investigation is done to understand better the effectiveness of different

TPs on three ODICL datasets.

2. Instead of relying on an external task id signal during prediction, ODIP

uses an automatic Task Detection mechanism to detect tasks in the in-

coming data. This allows ODIP to select the most appropriate frozen

network to produce predictions for each instance. ADWIN detects drifts

in CNN’s loss to determine a new task. To the best of our knowledge,
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this automatic Task Detection for Online Domain Incremental Continual

Learning has not been proposed before.

The experimental results demonstrate that ODIP, both with and without

automatic TD, outperforms existing popular regularization methods. Since

ODIP does not rely on a replay buffer for ODICL, it emerges as a promising

choice for such settings with heightened privacy requirements.

5.2 Online Domain Incremental Pool (ODIP)
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Figure 5.1: Proposed Online Domain Incremental Pool (ODIP)

The ODICL is defined as the training set composed of multiple concepts

of non-IID data, where each concept has a different input distribution with

the same label distribution [4]. The goal of the learning algorithm is to min-

Algorithm 5 train OC with LR

Input: Task Predictor TP : One Class Classifier with Logistic Regression , z:

extracted features

1: score, in class ← train OC(z)

2: train LR(score, in class)

imize catastrophic forgetting of the past concepts while performing well on

the current concept [4, 61]. Initially, at training, we assume that the task id

that signals the end of a concept is available to the learning model. However,



84

this information is not available to the model during evaluation. Later, the

proposed method(ODIP) is extended to discard this external task id signal.

Algorithm 6 ODIP training algorithm

Input: P : pool of training CNNs, F : pool of frozen CNNs, T : task set, Xt:

training set for task t, TP : Task Predictor

1: Initialize pool F = {}

2: for all task t ∈ T do

3: for all mini-batch bt in training set Xt for task t do

4: z ← features from mini-batch bt for task t

5: for all learner p ∈ P do

6: Compute loss Lp of mini-batch bt and train CNNp

7: Update ADWINp with Lp

8: if task predictor TPp is One Class Classifier with LR then

9: train OC with LR(TPp, z)

10: end if

11: end for

12: if task predictor TP is Naive Bayes or Hoeffding Tree then

13: train TP (z, t)

14: end if

15: end for

16: Append the CNN with lowest loss estimated using ADWIN to F

17: end for

We propose an Online Domain Incremental Pool (ODIP), where P pool

of tiny CNNs are trained for each concept t with a given Task Predictor. The

Task Predictors could be None, Naive Bayes (NB), Hoeffding Tree (HT), and

One Class Classifier (OC) with Logistic Regression (LR). The Task Predic-

tor is trained for mini-batch bt using extracted features from a static feature

extractor. At the end of each task’s training, CNN with the lowest estimated

loss is frozen and added into the frozen pool F . In the special case of OC with

LR, the relevant OC with the LR is also part of the frozen CNN. Algorithm 6,
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along with figure 5.1, further explains this training approach.

Algorithm 7 Predict OC with LR

Input: Task Predictor TP : One Class Classifier with Logistic Regression, z:

extracted features.

1: score, in class ← predict OC(z)

Output: predict LR(score)

ODIP has two vote aggregation methods for prediction: Weighted Voting

(WV) or votes from the best CNN (CNNbest). For Weighted Voting, the

probabilities of the Task Predictor are used as weights. In the CNNbest case,

it is either selected randomly from the F pool or the one predicted by Task

Predictor. Algorithm 8 further explains this. Recently proposed ODICL al-

gorithms rely on an explicit end of the task signal (task id) to identify the

start of a new task. ODIP is also relying on these explicit task ids to distin-

guish different tasks. This reliance on an explicit task id may preclude one

from employing current ODICL algorithms in real-life settings where it may

be challenging to identify such a signal explicitly.

ODIP is extended to identify concept drifts in the incoming stream auto-

matically. ADaptive sliding WINdow (ADWIN) [23] is used as a task detector.

ADWIN has nice properties where it uses exponential histograms for memory

efficiency and discards the buffer related to the previous concept once con-

fronted with a drift. Every CNN in P pool has its ADWIN. They are updated

with each CNN’s loss after training. Once updated, a new task is identified if

any ADWIN detects a drift in the loss. Here a drift in the loss is assumed to

be related to the drift in the input stream. Algorithm 9 explains this training

with automatic Task Detection in detail. In the experiments, the effectiveness

of ODIP was compared against popular regularization baselines.
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Algorithm 8 ODIP prediction algorithm

Input: xt: instance of task t, F : pool of frozen CNNs, TP : Task Predictor,

useWeightedVoting

1: z ← features from instance xt of task t

2: if useWeightedVoting then

3: if TP is Majority Vote then

4: votes ← 1/|F |
∑|F |

f=1Predict(f, xt)

5: else if TP is One Class Classifier with LR then

6: votes← 1/|F |
∑|F |

f=1Predict OC with LR(TPf , z)×Predict(f, xt)

7: else

8: votes ← 1/|F |
∑|F |

f=1 Predict(TP, z)×Predict(f, xt)

9: end if

10: else

11: if TP is Random then

12: Select CNNselected randomly from pool F

13: else if TP One Class Classifier with LR then

14: CNNselected ← arg maxf∈F Predict OC with LR(TPf , z)

15: else

16: CNNselected ← arg maxf∈F Predict(TPf , z)

17: end if

18: votes ← predict(CNNselected, xt)

19: end if

Output: votes
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Algorithm 9 ODIP training algorithm with Auto Task Detection

Input: P : pool of training CNNs, F : pool of frozen CNNs, T : task set, Xt:

training set for task t, TP : Task Predictor

1: Initialize pool F = {}

2: Initialize taskId = 0

3: for all task t ∈ T do

4: for all mini-batch bt in training set Xt for task t do

5: taskEnd← false

6: z ← features from mini-batch bt for task t

7: for all learner p ∈ P do

8: Compute the loss Lp of mini-batch bt and train CNNp

9: Update ADWINp with Lp

10: if ADWINp detects change then

11: taskEnd← true

12: end if

13: if task predictor TPp is One Class Classifier with LR then

14: train OC with LR(TPp, z)

15: end if

16: end for

17: if task predictor TP is Naive Bayes or Hoeffding Tree then

18: train TP (z, taskId)

19: end if

20: if taskEnd then

21: taskId← taskId + 1

22: Append the CNN with lowest loss estimated using ADWIN to

F

23: end if

24: end for

25: end for
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Table 5.1: Datasets

Dataset # instances per # Channels, H, W

tasks train/test task classes

CORe50 11 2000/1000 10 3, 32, 32

RotatedCIFAR10 4 50000/10000 10 3, 32, 32

RotatedMNIST 4 60000/10000 10 1, 28, 28

5.3 Experiments

The experiments attempt to understand the effectiveness of ODIP against

popular regularization baselines. They also try to identify the efficacy of Task

Predictors. Lastly, they attempt to determine the effectiveness of ODIP with

automatic Task Detection against regularization baselines.

Different versions of ODIP were compared against regularization baselines:

LwF and EWC. The replay methods were not considered as a baseline for

these experiments1. The baselines use CNNs with 4.3 times the parameters

(144234) than in ODIP experiments (33450). For ODIP, ResNet-18 was used

as the static feature extractor and flattened last-layer features were used to

train the TPs. Five types of TPs were used in the experiments: random,

Majority Vote (MV), NB, HT2, and OC 3 with LR. Also, two types of vote

aggregation methods were considered in the experiments: WV and the use of

votes from CNNbest. Furthermore, two variants of automatic Task Predictor

were considered in the experiments: α) include the best training CNN for

prediction when the frozen pool is empty, β) include the best training CNN

for prediction when the frozen pool is empty OR when the predicted network

is related to the current concept. P pool size for ODIP was set to 6 CNNs. In

the experiments, we also considered a hypothetical scenario of ODIP, where

1Chapter 6 compares ODIP against replay methods.
2Use skmultiflow[90] online versions of NB and HT
3Online One-Class SVM: https://scikit-learn.org/stable/modules/sgd.html#sgd-online-

one-class-svm.
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the task id is available at evaluation, and it is used to determine the correct

frozen CNN. This is presented as the ”Tid known” in the results. This allows

one to determine the hypothetical upper bound of ODIP.

The experiments were done on three datasets: CORe50 [91], Rotated-

CIFAR10, and RotatedMNIST. With RotatedCIFAR10 and RotatedMNIST,

90°rotations (0°, 90°, 180°, -90°) of the original images from CIFAR10 [92] and

MNIST [93] were considered separate tasks. There were four tasks in each

of those two datasets. With CORe50, 11 distinct sessions (8 indoor and 3

outdoor) of the same object were considered as separate tasks: tasks 0-2,4-8

indoor, 3,9, and 10 outdoor. Here the 10 object categories were considered

as the class labels. Though it uses the same dataset as in [91] for ODICL,

task separation is more natural than the random separation in [91]. Also,

our CORe50 version had a separate evaluation set for each task rather than a

mixed evaluation set, as in [91]. This allows one to better understand forget-

ting in the ODICL setting. In the above datasets, all classes were presented

in all the tasks. Such rearranging was done to the original datasets to adhere

to the ODICL definition described in [4].

Table 5.2: Average accuracy after training on the last task

dataset Baselines ODIP

EWC LwF Tid known Random MV HTWV OCWV NBWV NBNoWV NBTDα NBTDβ

CORe50 0.41 0.41 0.69 0.42 0.53 0.63 0.56 0.66 0.61 0.44 0.47

RotatedCIFAR10 0.44 0.48 0.48 0.38 0.45 0.44 0.46 0.43 0.40 0.40 0.42

RotatedMNIST 0.51 0.72 0.97 0.48 0.66 0.53 0.65 0.79 0.78 0.79 0.79

Avg 0.45 0.54 0.72 0.42 0.55 0.53 0.56 0.63 0.60 0.54 0.56

All experiments were run using Avalanche [94] Continual Learning platform

4. Average accuracy and forgetting defined in [4] are used in the evaluation.

All experiments were run three times, and relevant averages and standard

deviations were considered in the evaluation. The standard deviations were

omitted from this manuscript due to space constraints.

Table 5.2 contains the average accuracy of each method after training on

4ODIP source code available at: https://github.com/nuwangunasekara/ODIP.
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Figure 5.2: Effectiveness of Task Predictor: Naive Bayes. ROC curves for the

predicted task id and AUC scores for the same.
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Figure 5.3: Effectiveness of Task Predictor: HT. ROC curves for the predicted

task id and AUC scores for the same.
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Figure 5.4: Effectiveness of Task Predictor: OC with LR. ROC curves for the

predicted task id and AUC scores for the same.
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Table 5.3: Average forgetting after training on the last task

dataset Baselines ODIP

EWC LwF Tid known Random MV HTWV OCWV NBWV NBNoWV NBTDα NBTDβ

CORe50 0.10 0.07 0.00 0.01 -0.02 0.02 -0.03 0.01 0.00 0.00 0.20

RotatedCIFAR10 0.10 0.00 0.00 0.01 -0.03 0.05 -0.03 -0.01 0.00 -0.03 -0.01

RotatedMNIST 0.63 0.24 0.00 0.20 0.16 0.59 0.12 0.12 0.12 0.12 0.12

Avg 0.28 0.11 0.00 0.07 0.04 0.22 0.02 0.04 0.04 0.03 0.10

the last task. As one can see from the table, ODIP NBWV produces the best

results. ODIP Random and EWC yield poor results. In general, all methods

with Weighted Voting produced good results compared to the two baselines.

However, weights from a good Task Predictor seem to boost the performance

significantly. Also, ODIP NBTDβ, which has automatic Task Detection, yields

better results than regularization baselines. It is also on par or better than

the other ODIP methods, which use task ids, except for NB. Considering the

hypothetical ”Tid known” scenario, it is evident that just selecting the correct

frozen CNN is sufficient to outperform current baselines by a considerable

margin. This is further evident in table 5.3, with ”Tid known” having a zero

average forgetting across all datasets after training on the last task. Note here

that a smaller average forgetting is better.

To further understand the effectiveness of the Task Predictors, the pre-

dicted task id was compared against the true task id in non-auto-TD mode

against all datasets. This comparison was made for all evaluation instances

after training on the last task. Figures 5.2, 5.3 and 5.4 show the ROC curves

for the predicted task id and the relevant AUC scores for each TP on each

dataset. According to the figure, it is clear that NB is a better Task Predictor

for all datasets. This further strengthens the overall strong NB results in ta-

ble 5.2. Figure 5.5 further explains the effectiveness of NB as a Task Predictor

when predicting each task in a given dataset. From the per-task ROC curves

and AUC scores, it is clear that NB performs similarly on all the tasks for a

given dataset. Nevertheless, it does perform slightly better on specific tasks.

This is evident in CORe50, with NB performing somewhat better for tasks
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Figure 5.5: Effectiveness of Naive Bayes as a TP. ROC curves and AUC scores

for predicted task id for each task.

3,4,5,9, and 10. This suggests, in general, that NB is a good Task Predictor.



Chapter 6

Online Domain Incremental

Networks

This chapter extends the work discussed in chapter 5 by presenting an en-

hanced algorithm for ODICL. The proposed approach further leverages OSCL

to achieve improved results. Additionally, the method incorporates constraints

to ensure a fairer comparison with the baselines, including replay-based meth-

ods.

6.1 Introduction

In the previous chapter, having a pool of training NNs allowed ODIP to select

the best one to freeze at the end of the concept. But this makes it unfair for

other baselines as they only use a single NN configuration throughout training

on all the tasks. The baselines used a larger NN with 4.3 times the parameters

than the ones used by ODIP to overcome this. We only train a single NN

in Online Domain Incremental Networks (ODIN) to enable all methods to

use a single NN architecture. It also employs the same task prediction and

detection strategies as ODIP. But it utilizes the incremental or decremental

drifts in the loss detected by ADWIN to increase or decrease the learning

rate dynamically. Furthermore, ODIN was compared against popular replay

methods: ER and MIR. With this Dynamic Learning-Rate, ODIN surpasses
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popular regularization methods and produces competitive results to replay

methods without requiring an instance buffer for ODICL.

The main contributions of this work are the following:

1. Online Domain Incremental Networks (ODIN): we introduce a novel

method to alleviate catastrophic forgetting for Online Domain Incre-

mental Continual Learning without using instance replay. Here, a frozen

copy of the training CNN is saved in a pool at the end of each task.

A Task Predictor is trained to predict the best frozen CNN for evalu-

ation for a given instance. The experiment results reveal that ODIN

yields better accuracy than regularization and competitive performance

to replay baselines. Furthermore, an in-depth investigation is done to

understand better the effectiveness of different TPs on three ODICL

datasets.

2. Instead of relying on an external task id signal during training, ODIN

uses an automatic Task Detection mechanism to detect tasks in the in-

coming data. ADaptive sliding WINdow (ADWIN) is used to detect

drifts in CNN’s loss. An incremental drift in the loss is determined as

the end of a task. Furthermore, incremental or decremental drifts in

CNN’s loss detected by ADWIN allow ODIN to increase or decrease

the learning rate dynamically. To the best of our knowledge, this au-

tomatic Task Detection with Dynamic Learning-Rate (DL) adjustment

for ODICL has not been proposed before.

6.2 Online Domain Incremental Networks (ODIN)

We propose an Online Domain Incremental Networks (ODIN), where CNN

p is trained on each concept t with a given Task Predictor (TP). The TPs

could be Naive Bayes or Hoeffding Tree. The TP is trained on mini-batch bt

using extracted features from a feature extractor. Feature extractors extract

features from high-dimensional data. Hence, it allows one to use simple learn-
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Figure 6.1: Proposed ODIN: 1) train network p with incoming mini-batch bt

for tth task, 2) train TP using extracted features and task id, 3) freeze a copy

of p at the end of task t 4) at prediction, if enabled, TP predicts CNNchosen

via extracted x features 5) predict using CNNchosen or Majority Vote.

ing algorithms on high-dimensional data [95]. Usually, a pre-trained network

is used as a feature extractor [95], and its last layer features are used to train

the TP. At the end of each task’s training, a copy of p is frozen and added

to the frozen pool F . Algorithm 10, along with figure 6.1, further explains

this training approach. In ODIN, there are two vote aggregation methods for

prediction: Weighted Voting (WV) or votes from the best CNN (CNNbest).

Weighted Voting uses the TP’s probabilities for each frozen CNN as weights.

In the CNNbest case, it is either selected randomly from the F pool or the one

predicted by TP. Algorithm 11 further explains this.

Generally, NN’s loss distribution changes when the underlying input dis-

tribution changes as the network weights need to be readjusted to match the

new distribution. Once a drift in the loss is detected, 1) it would be helpful

to learn following the direction of the loss, where the network learns faster

if there is an upward drift in the loss, and it learns slower if the drift in the

loss decreases. Usually, in ODICL, NN’s loss gradually decreases for a given

task with non-IID training instances. Hence, 2) it would be helpful to reduce

the magnitude of the learning for the incoming instances further away from

the task’s start so that the later instances of the same task do not disturb



98

Algorithm 10 Training algorithm

Input: p: training CNN, F : frozen CNN pool, T : task set, Xt: training set

for task t, TP : Task Predictor

1: Initialize: F = {}

2: for all task t ∈ T do

3: for all mini-batch bt in training set Xt for task t do

4: Train p with the computed the loss Lbt for mini-batch bt

5: if task predictor TP is Naive Bayes or Hoeffding Tree then

6: z ← extract features from mini-batch bt via feature extractor

7: train TP (z, t)

8: end if

9: end for

10: Append a copy of p to F

11: end for

the learned weights too much. Here we use the drift detector ADWIN [23]

to monitor the loss of p. ADWIN uses exponential histograms for memory

efficiency and discards the buffer related to the previous concept once a drift

is detected. It also estimates the mean of the current items in the buffer. Once

ADWIN detects a drift in the loss, one can compare the current estimated loss

against the previous estimated loss to identify the direction of the loss. This

helps determine whether to increase or decrease the learning rate (point 1).

Also, the number of instances seen after the drift can be used to decrease the

magnitude of the learning rate (point 2).

The easiest way to manage the learning of a NN is to adjust the learning

rate. ODIN increases the learning rate to learn faster for the upward drifts

in the loss detected by ADWIN. For the downward drifts, it decreases the

learning rate to prevent against large changes of presumably already well-

adjusted weights. Also, to reduce the magnitude of the learning in either

direction, it uses a decaying factor dn where d is 0 < d < 1 and n is the

number of instances seen since the last drift. This decaying factor is discussed
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Algorithm 11 Prediction algorithm

Input: xt: instance of task t, F : frozen CNN pool, TP : Task Predictor,

useWeightedVoting

1: z ← features from instance xt of task t

2: if useWeightedVoting then

3: if TP is Majority Vote then

4: votes ← 1/|F |
∑|F |

f=1Predictf (xt)

5: else

6: votes ← 1/|F |
∑|F |

f=1PredictTP (z)f ×Predictf (xt)

7: end if

8: else

9: if TP is Random then

10: Select CNNchosen randomly from pool F

11: else

12: CNNchosen ← arg maxf∈F PredictTP (z)

13: end if

14: votes← PredictCNNchosen
(xt)

15: end if

Output: votes

Algorithm 12 Dynamic Learning-Rate

Input: lr0: learning rate at start, d: decay factor(0 < d < 1), n: instances

seen since last drift, upwardDrift: whether the estimated loss going up

1: if upwardDrift then

2: lr ← lr0 ∗ (1 + dn)

3: else

4: lr ← lr0 ∗ (dn)

5: end if

Output: lr
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Algorithm 13 Training algorithm with DL

Input: p: training CNN, F : frozen CNN pool, T : task set, Xt: training set

for task t, TP : Task Predictor, lr0: learning rate at start, d: decay factor

1: Initialize: F = {}, n = 0, upwardDrift = true

2: for all task t ∈ T do

3: for all mini-batch bt in training set Xt for task t do

4: Compute the loss Lbt of mini-batch bt for p

5: Update ADWINp with Lbt

6: if ADWINp detects change then

7: n← 0

8: if change is upward then

9: upwardDrift← true

10: else

11: upwardDrift← false

12: end if

13: else

14: n← n + 1

15: end if

16: if task predictor TP is Naive Bayes or Hoeffding Tree then

17: z ← extract features from mini-batch bt via feature extractor

18: train TP (z, t)

19: end if

20: lr ← Dynamic Learning-Rate(lr0, d, n, upwardDrift)

21: train p with loss Lbt and lr

22: end for

23: Append a copy of p to F

24: end for
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Algorithm 14 Training algorithm with DL and Automatic TD

Input: p: training CNN, F : frozen CNN pool, T : task set, Xt: training set

for task t, TP : Task Predictor, lr0: learning rate at start, d: decay factor

1: Initialize: F = {}, n = 0, upwardDrift = true, taskId = 0

2: for all task t ∈ T do

3: for all mini-batch bt in training set Xt for task t do

4: Compute the loss Lbt of mini-batch bt for p

5: Update ADWINp with Lbt

6: if ADWINp detects change then

7: n← 0

8: if change is upward then

9: upwardDrift← true

10: taskId← taskId + 1

11: Append a copy of p to F

12: else

13: upwardDrift← false

14: end if

15: else

16: n← n + 1

17: end if

18: if task predictor TP is Naive Bayes or Hoeffding Tree then

19: z ← extract features from mini-batch bt via feature extractor

20: train TP (z, taskId)

21: end if

22: lr ← Dynamic Learning-Rate(lr0, d, n, upwardDrift)

23: train p with loss Lbt and lr

24: end for

25: end for
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in [60]. However, they continually decrease the learning rate from the start of

learning in their work. Hence it forces NN not to learn too much from instances

of later tasks. On the other hand, this Dynamic Learning-Rate (DL) in ODIN

allows p to best adjust to the current task. Algorithm 12 and algorithm 13

explain ODIN’s Dynamic Learning-Rate adjustment mechanism.

Some of the proposed ODICL algorithms rely on an explicit end of the

task signal (task id) to identify the start of a new task. The initial ODIN

version also relies on explicit task ids to distinguish different tasks for training.

This reliance on an explicit task id may preclude one from employing current

ODICL algorithms in real-life settings where it may be challenging to identify

such a signal explicitly.

One can assume the upward drift in p’s loss detected by ADWIN is due

to the distribution shift in the underlying input features. Hence, ODIN de-

termines the end of the task when an upward drift is detected. Line 10 in

algorithm 14 explains this automatic Task Detection (TD) in ODIN. Line

22 of algorithm 14 further integrates DL with this automatic TD. With auto-

matic TD, if the new task is similar to the past task, ADWIN might not detect

an upward drift in the loss, as the learning on the new task can improve the

prediction of the previous task due to backward knowledge transfer[4]. Hence,

detected task ids may not align with actual task ids. Therefore in automatic

task detection, the current training network p is included in the F pool only

for prediction. In the experiments, the effectiveness of different versions of

ODIN were compared against popular regularization and replay baselines.

6.3 Experiments

The experiments attempt to understand the effectiveness of ODIN against

popular online CL baselines. Also, they try to identify the efficacy of Dynamic

Learning-Rate adjustment. Furthermore, experiments attempt to determine

the effectiveness of the Task Predictor. Lastly, they attempt to identify the
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efficacy of ODIN with automatic Task Detection against online CL baselines

that do not use the external end-of-task signal.

We used the same ODICL datasets used in section 5.3 experiments: CORe50,

RotatedCIFAR10, and RotatedMNIST1. Different versions of ODIN were

compared against regularization baselines: LwF, EWC, and replay baselines:

ER and MIR. For ER, an extended buffer version was considered in the ex-

periments. Instead of randomly replacing an item from the buffer, we replace

an instance from the most represented task’s most represented class. It is ref-

erenced as ERTbCb in this work. This ERTbCb is a further extension of [60],

where we attempt to balance the buffer concerning both task and class. This

extended ERTbCb was considered so that ODIN without automatic TD can

be compared against a good replay method that utilizes the external end of

task signal. All the replay methods used a 1k instance buffer. Also, all the

methods use a simple CNN (33450 parameters) with four convolution layers.

Two types of TPs were used in the experiments for ODIN: NB2, and HT2.

Quantized ResNet-18 was used as the feature extractor, and flattened last-layer

features were used to train the TPs: NB and HT. ResNet was chosen consid-

ering [95], where HT was trained on extracted features by the ResNet feature

extractor for images. Also, three types of vote aggregation methods were con-

sidered in the experiments: Majority Vote (MV), Weighted Voting (WV), and

CNNbest. In the experiments, we also considered a hypothetical scenario of

ODIN, where the task id is available at evaluation and is used to determine

the correct frozen CNN. This is presented as the ”knowntid” in the results. It

indicates achievable performance if task prediction is perfect. In the results

for ODIN, TPWV represents Task Predictor with Weighted Voting, TPNoWV

represents: Task Predictor without Weighted Voting, TPDL
WV represents: Task

Predictor with Weighted Voting and Dynamic Learning-Rate, TPDL
NoWV repre-

sents: Task Predictor without Weighted Voting and with Dynamic Learning-

1Please refer to table 5.1 on section 5.3 for dataset information.
2Source code is available at: https://github.com/nuwangunasekara/ODIN and it uses

online NB and HT[90]
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Rate, TPTD
WV represents: Task Predictor with Weighted Voting and automatic

Task Detection and, TPDLTD
WV represents: Task Predictor with Weighted Vot-

ing, Dynamic Learning-Rate and automatic Task Detection3. ODIN Dynamic

Learning-Rate used the same learning rate decay factor (0.999995) as in [60]’s

continuous learning rate decay.

All experiments were run using the Avalanche [94] CL platform. The

online buffer implementations of ER and MIR were from [4]. Best performing

ODIP from chapter 5 without and with Task Detection: ODIP NBWV and

ODIP NBTDβ are also considered in the evaluation. But as pointed out in

section 6.1, training a pool of NNs, makes it difficult to compare ODIP against

other methods which train a single NN. Nonetheless, ODIP is considered

to understand the advantages or disadvantages of training a pool of NNs.

Average accuracy and forgetting, defined in [4] were used in the evaluation.

All experiments were run three times, and relevant averages and standard

deviations were considered in the evaluation.

Table 6.1 contains the average accuracy and forgetting after training on

the last task for each method that uses task ids. Considering the average

accuracy ranks, ODIN NBDL
WV produces the best results. It also has very little

forgetting, considering average forgetting ranks. Extended ERTbCb has better

average accuracy but lags a bit behind ODIN NBDL
WV when considering the

average accuracy ranks. All ODIN versions achieve better accuracy than the

regularization baselines EWC and LwF except for ODIN random. Both of the

regularization baselines have quite a high forgetting rate. ODIN NBWV yields

better results than ODIN NBNoWV with less average forgetting. This shows

that Weighted Voting boosts accuracy. Also, ODIN NBWV produces better

accuracy than ODIN HTWV with less forgetting. This indicates that NB is

a better Task Predictor compared to HT. This is further explored in later

experiments. Both NBDL
WV and NBDL

NoWV yield superior accuracy compared to

NBWV and NBNoWV.

3In the legend of the plots, superscripts and subscripts are in lowercase letters
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This suggests that Dynamic Learning-Rate improves accuracy. In general,

a good Task Predictor, Weighted Voting, and Dynamic Learning-Rate improve

ODIN’s accuracy. Considering the hypothetical ODIN knowntid scenario, it

is evident that just selecting the correct frozen CNN is sufficient to outper-

form current baselines by a considerable margin. ODIN knowntid also has

zero average forgetting across all datasets after training on the last task. This

suggests further improvements to the Task Predictors can result in good accu-

racy gains. Finally, when one considers ODIP NBWV results training a pool

of networks does not make much difference when task id is available at the

training time.

Table 6.2: Average accuracy and forgetting after training on the last task (do

not use end of the task signal)

dataset ODIN ER MIR ODIP

NBTD
WV NBDLTD

WV NBTDβ

Accuracy

CORe50 0.47 ± 0.04 0.52 ± 0.03 0.61 ± 0.03 0.62 ± 0.03 0.47 ± 0.04

RotatedCIFAR10 0.42 ± 0.01 0.44 ± 0.00 0.27 ± 0.01 0.28 ± 0.01 0.42 ± 0.01

RotatedMNIST 0.71 ± 0.03 0.69 ± 0.04 0.78 ± 0.03 0.77 ± 0.01 0.79 ± 0.00

Avg 0.53 ± 0.02 0.55 ± 0.02 0.56 ± 0.02 0.56 ± 0.02 0.56 ± 0.02

Avg Rank 4.00 3.00 3.00 2.67 2.33

Forgetting

CORe50 0.18 ± 0.03 0.17 ± 0.03 -0.09 ± 0.01 -0.10 ± 0.04 0.20 ± 0.03

RotatedCIFAR10 0.00 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 -0.01 ± 0.00

RotatedMNIST 0.22 ± 0.04 0.25 ± 0.04 0.06 ± 0.02 0.07 ± 0.02 0.12 ± 0.00

Avg 0.14 ± 0.03 0.14 ± 0.03 -0.01 ± 0.02 -0.01 ± 0.02 0.10 ± 0.01

Avg Rank 3.33 3.67 2.67 2.33 3.00

Table 6.2 only compares ODICL methods that do not use task ids: ODIN

NBTD
WV, ODIN NBDLTD

WV , ER, MIR and ODIP NBTDβ, for a fairer compar-

ison. Here, the ODIN versions and ODIP NBTDβ use ADWIN as a Task

Detection. Also, ER and MIR can be included in the same category as they

do not rely on an external task id signal. Contrary to the previous setting,

having a pool of training networks in ODIP NBTDβ seems to help with slightly
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better average accuracy when the task id is unavailable. If one ignores ODIP

NBTDβ from the results for this category, it is evident that replay methods

slightly outperform ODIN NBDLTD
WV . Also, replay methods have better forget-

ting in this category. However, compared to the ODIN methods, they perform

quite badly on RotatedCIFAR10. Maybe being task aware gives ODIN meth-

ods an edge against replay methods on RotatedCIFAR10. Here also, one can

see the positive effect of DL on ODIN’s accuracy when comparing NBDLTD
WV

with NBTD
WV. Considering the results in tables 6.1 and 6.2, it is evident that

ODIN NBDL
WV performs better than ODIN NBDLTD

WV . This highlights the

importance of good Task Detection. Furthermore, when comparing the two

tables, ERTbCb performs better than ER. This highlights the importance of

ER to be task aware. In general, when one considers the results of both tables,

it is evident that being task aware gives an edge to an ODICL method. Con-

sidering the results in both tables, one can conclude that NBDLTD
WV performs

well in all the datasets.

To get a deeper understanding of each method’s predictive performance

on old tasks after training on a new task, figure 6.2, figure 6.3, and figure

6.4 plot the accuracy of old tasks after training on a new task for selected

methods on CORe50, RotatedCIFAR10, and RotatedMNIST datasets. Here

top two ODIN methods from each category (with and without the end of

the task signal): ODIN NBDL
WV, ODIN NBDLTD

WV were compared against the

baselines that use the end of the task signal: EWC, LwF, ERTbCb, and base-

lines that do not need the end of the task signal: ER and MIR. Hypothetical

ODIN knowntid is also included in the plots to better understand the upper

bound of ODIN’s Task Predictor. ODIP variants were not considered in this

in-depth study, due the incompatibility caused by using a pool of NNs at

training. From figure 6.2, it is evident that replay methods perform quite well

on past tasks. Especially task-aware ERTbCb. However, their performance has

degraded for recent tasks. On the other hand, ODIN NBDL
WV has relatively

stable performance across all tasks.
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Figure 6.3: Evaluation accuracy for each task after training on a given task

for RotatedCIFAR10

Hence on average, ODIN NBDL
WV performs well on CORe50. This explains

its good average accuracy on CORe50 in table 6.1. Also, ODIN NBDLTD
WV has

a similar accuracy pattern to ODIN NBDL
WV. But with less performance. Reg-

ularization baselines are quite poor on this dataset. They also have a very high

variance. However, as per figure 6.3, LwF performs well as ODIN versions on

RotatedCIFAR10. Nevertheless, the replay methods ER and MIR perform

poorly on that dataset except for ERTbCb. It seems that the learning model

needs to be aware of the task identities to perform well on RotatedCIFAR10.

As per figure 6.4, replay baselines generally perform well on RotatedMNIST.

However, except for ERTbCb, the performance gap between ODIN NBDL
WV and

other replay methods (ER and MIR) seem to narrow for recent tasks. ODIN

NBDL
WV performed better on the last task than ER and MIR on this dataset.
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Figure 6.4: Evaluation accuracy for each task after training on a given task

for RotatedMNIST

This shows ODIN NBDL
WV’s ability to perform well on current tasks as well as

on past tasks. In all three plots, ODIN with hypothetical TP knowntid never

forgets after training on a new task. However, it does not improve as well.

This explains 0.0 average forgetting for ODIN knowntid in table 6.1.

To further understand the TP’s effectiveness, the predicted task id by each

TP was compared against the actual task id in non-auto-TD mode against all

datasets. This comparison was made for all evaluation instances after training

on the last task. Figures 6.5, 6.6 , 6.7 and 6.8 show the ROC curves for the

predicted task id and the relevant AUC scores for each TP on each dataset.

According to the figures, it is clear that NB is a better Task Predictor for all

datasets. This further strengthens the overall strong NB results in table 6.1.

Figure 6.6 further explains the effectiveness of NB as a TP when predicting
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Figure 6.5: Effectiveness of NB as a TP considering predicted task id. Micro-

average ROC curves and AUC scores.

each task for a given dataset. From the per-task ROC curves and AUC scores

in figures 6.6 and 6.8, it is clear that NB performs similarly on all the tasks

for a given dataset. Nevertheless, it does perform slightly better on certain
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Figure 6.6: Effectiveness of NB as a TP considering predicted task id. Per-

task ROC curves and AUC scores.

tasks. This is evident in CORe50, with NB performing slightly better for tasks

3,4,5,9 and 10. NB’s generally uniform predictive capability makes it a better

Task Predictor than HT.
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Figure 6.7: Effectiveness of HT as a TP considering predicted task id. Micro-

average ROC curves and AUC scores.
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Figure 6.8: Effectiveness of HT as a TP considering predicted task id. Per-

task ROC curves and AUC scores.



Chapter 7

Conclusions and Future Work

The thesis introduces a novel gradient-boosted tree algorithm, called Stream-

ing Gradient Boosted Trees, for SL classification that outperforms existing

bagging and random forest methods. Streaming gradient boosting is challeng-

ing due to adapting the booster after a concept drift without sacrificing per-

formance. SGBT addresses this challenge by using streaming regression trees

with an internal Tree Replacement strategy, enabling them to adapt to drifts

dynamically. Experimental results demonstrate that SGBT, specifically the

SGBTMC variant with FIMT-DD as the base learner, achieves superior per-

formance compared to state-of-the-art methods when applied to large evolving

datasets with multiple drifts.

Recognizing the significance of Neural Networks in batch learning, the the-

sis explores their integration into evolving data stream classification. However,

incorporating NN into the SL poses the challenge of hyperparameter optimiza-

tion, which is crucial for achieving satisfactory network performance. The

thesis proposes Continuously Adaptive Neural Networks for Data Streams to

address this challenge. CAND dynamically selects the best NN from a pool

of NNs for Stream Learning classification, employing online hyperparameter

selection. Experimental results demonstrate that CAND outperforms current

state-of-the-art Stream Learning methods, particularly on high-dimensional

data. Notably, CANDSB
sub, a variant that selectively updates only some net-
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works, balances computation efficiency and accuracy. Additionally, the ex-

periments indicate that small mini-batches achieve similar accuracy to single-

instance fully incremental training, even on evolving data streams. CANDSB
sub

effectively mitigates overfitting by avoiding costly backpropagation for in-

stances that yield minimal loss. These promising results set the stage for

exploring more complex NN architectures in future CAND variants.

Certain concepts from CAND, such as estimating the loss of an NN to re-

veals its current performance and NN’s loss resembles drifts in input data, are

leveraged in chapters 5 and 6 to develop two novel methods for Online Domain

Incremental Continual Learning: ODIP and ODIN. Both methods build upon

Online Streaming Continual Learning techniques outlined in Section 2.1.3.

ODIP maintains a pool of NNs and freezes the best-performing one after

training on each task. It also trains a Task Predictor as an additional stream

learner to select the most suitable NN from the frozen pool for prediction.

ODIP delivers competitive results in ODICL compared to regularization-

based approaches. An extended version of ODIP incorporates drift detectors

to automatically detect tasks in ODICL based on each NN’s loss. ODIP with

and without automatic Task Detection achieve competitive results compared

to popular regularization baselines, such as LwF and EWC. Consequently,

ODIP emerges as a promising alternative to regularization methods in the

ODICL setting.

In contrast, ODIN focuses on training a single NN instead of a pool of

NNs like ODIP. It employs similar Task Detection and Task Predictor mech-

anisms as ODIP. But, extends the Online Streaming Continual Learning tech-

niques used in ODIP to incorporate Dynamic Learning-Rate, considering up-

ward and downward drifts detected by the Task Detection component. ODIN

surpasses current regularization-based approaches and achieves competitive

results comparable to popular replay-based methods for ODICL without re-

quiring an instance buffer. As a result, ODIN is an appropriate choice for

privacy-concerned ODICL scenarios.
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7.1 Future Work

SGBT-calculated hessian weights often result in fractions for most loss func-

tions. To our knowledge, none of the existing streaming regression trees sup-

ports non-integer weights. SGBT assigns a weight of 1 or a transformed weight

that yields a positive integer to the base learner as a workaround. However,

as a future direction, it would be valuable to investigate the incremental cal-

culation of variance and covariance, as proposed in [85] and [84], to support

fractional weights for SGT and FIMT-DD base learners. Furthermore, one

could include regularization constraints in the base learners to avoid large

trees. The easiest method would be to have a memory constraint like in Ho-

effding Tree. Another avenue for future SGBT research involves selectively

skipping the training of certain instances based on the loss exceeding a cer-

tain threshold rather than randomly skipping instances. This approach would

lead to computational and memory savings without significantly compromising

accuracy.

We could consider looking into more intricate Neural Network architectures

for future CAND variants, as this would open up opportunities for application

in diverse domains. Also, only the smaller M pool could be loaded into the

GPU memory when using GPUs for training and prediction to reduce the GPU

memory usage.

It could be beneficial to incorporate a fixed-size frozen pool size to avoid

an ever-growing frozen pool for both ODIP and ODIN. For that, information

from the Task Predictor could be leveraged to identify the CNN to train

or replace when the frozen pool is full. Better Task Predictors and more

responsive Task Detection mechanisms also could improve the performance of

ODIP and ODIN. More effective Dynamic Learning-Rate mechanisms could

improve ODIN’s performance in ODICL.



Appendix A

Chapter 3 Additional Results

A.1 KappaM results

Table A.1 and figure A.1 contains KappM results for learners: SGBTMC ,

SRP, ARF, OSB and AdIter on all datasets discussed in sect3.3. KappaM

measures learner’s performance against a majority class classifier [9]. It is used

to evaluate learner’s performance on an imbalanced dataset [9]. Here learner

rankings in table A.1 and figure A.1 align with rankings in table 3.2 and figure

3.1.

Figure A.1: Nemenyi Post-hoc test with p-value 0.05 for all datasets (Kap-

paM ): SGBTMC against other baselines (10 iterations with different random

seeds).

A.2 Results for different loss functions

Squared loss:

lSL(y, ŷ) =
1

2
(y − ŷ)2 (A.1)
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Table A.1: KappaM (percentage): SGBTMC against other baselines (values

rounded to 2 decimals).

SGBTMC SRP ARF OSB AdIter

binary class

AGRa 88.23 ± 0.02 84.76 ± 0.40 74.28 ± 0.16 79.62 ± 0.02 80.35 ± 0.37

AGRg 82.85 ± 0.02 78.11 ± 0.39 62.80 ± 0.23 74.29 ± 0.06 73.83 ± 0.72

RBF Bm 81.28 ± 2.96 78.41 ± 3.52 81.55 ± 2.98 74.63 ± 3.21 46.33 ± 3.03

RBF Bf 62.76 ± 6.67 58.13 ± 8.04 66.22 ± 6.91 48.39 ± 5.26 35.39 ± 4.54

RandomTree 67.72 ± 17.18 69.50 ± 7.06 74.98 ± 10.45 80.31 ± 7.28 25.36 ± 19.02

electricity 72.91 ± 0.14 75.69 ± 0.33 77.91 ± 0.12 75.30 ± 0.00 49.99 ± 0.19

airlines 29.93 ± 0.07 29.37 ± 0.11 25.20 ± 0.06 20.43 ± 0.00 16.31 ± 0.17

avg 69.38 67.71 66.13 64.71 46.79

rank 2.14 2.43 2.57 3.29 4.57

multi class

LEDa 71.11 ± 0.01 71.11 ± 0.01 71.01 ± 0.01 69.37 ± 0.01

LEDg 70.31 ± 0.01 70.23 ± 0.01 70.08 ± 0.01 68.96 ± 0.01

RBFm 83.12 ± 1.56 81.14 ± 1.79 82.85 ± 1.58 67.40 ± 2.13

RBFf 67.61 ± 2.94 67.51 ± 2.85 68.59 ± 3.04 30.73 ± 3.08

LED 70.82 ± 0.15 70.87 ± 0.13 70.73 ± 0.16 70.86 ± 0.20

RBF5 86.10 ± 1.55 86.70 ± 1.74 86.76 ± 1.77 79.84 ± 2.03

covtype 88.85 ± 0.05 90.91 ± 0.03 89.69 ± 0.04 85.74 ± 0.00

avg 76.84 76.92 77.10 67.56

rank 2.00 2.00 2.29 3.71

avg (both) 73.11 72.32 71.62 66.13

rank (both) 2.07 2.21 2.43 3.50

For lSL, gradient (g) is y − ŷ, and hessian (h) is 1.

Table A.3 summarizes the results of the study aimed at investigating the

impact of the loss function. The loss functions evaluated in this study were

the squared loss and the categorical cross-entropy loss. For squared loss, no

special weight handling was required as the hessian is 1. All the other param-

eters: base learner (FIMT-DD), learning rate (lr=1.25e-02), feature percent-

age (m=60%), and boosting iterations (s=80), were set unchanged. From the

results, it is evident that categorical cross-entropy loss outperforms squared

loss as a loss function for SGBTMC across all data sets.
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Table A.2: Average Accuracy and evaluation time(s) with Standard Deviation

for SGBTMC
SK 1/k[S = 100,m = 75,lr =1.25e-2]

(values rounded to 2 decimals, 4 decimals were considered to select the winner)

Accuracy (%) Time (s)

SGBTMC
SK 1/k SGBTMC SGBTMC

SK 1/k SGBTMC

k 2 (skip 1/2) 3 (skip 1/3) 1 (no skip) 2 (skip 1/2) 3 (skip 1/3) 1 (no skip)

binary class

AGRa 94.32+0.02 94.36+0.01 94.45+0.01 719.16+64.47 818.16+7.11 1,386.55+51.40

AGRg 91.81+0.01 91.83+0.03 91.92+0.01 663.56+5.70 810.28+27.69 1,359.81+74.20

RBF Bm 90.55+0.17 91.20+0.15 91.85+0.11 983.85+18.69 1,218.42+97.26 2,126.22+299.86

RBF Bf 78.11+0.31 80.89+0.20 84.12+0.13 891.39+23.25 1,061.86+67.40 1,749.00+251.29

RandomTree 84.73+8.10 85.62+8.99 85.72+9.40 74.62+3.95 93.09+8.07 148.69+6.50

electricity 85.88+0.05 87.10+0.26 88.54+0.03 31.43+2.72 37.43+0.67 54.75+4.68

airlines 67.99+0.03 68.31+0.07 68.77+0.03 309.32+12.37 378.30+12.75 584.59+47.24

avg 84.77 85.62 86.48 524.76 631.07 1,058.52

rank 3.00 2.00 1.00 1.00 2.00 3.00

multi class

LEDa 73.91+0.01 73.97+0.03 74.05+0.01 1,002.87+17.89 1,197.72+101.18 1,747.52+149.75

LEDg 73.18+0.01 73.22+0.01 73.32+0.01 977.22+25.89 1,217.96+57.35 1,718.98+128.82

RBFm 86.17+0.82 87.01+0.73 87.96+0.63 1,441.83+210.95 1,875.82+227.84 2,773.24+164.02

RBFf 68.75+1.97 72.62+1.58 77.03+1.39 1,395.00+92.88 1,683.68+38.21 2,439.11+200.90

LED 73.80+0.20 73.76+0.17 73.81+0.19 91.99+6.92 121.11+9.15 162.38+15.80

RBF5 88.51+0.82 89.06+0.79 89.76+0.72 153.97+2.43 201.30+13.50 279.21+32.25

covtype 92.23+0.00 93.15+0.00 94.28+0.00 1,005.95+49.29 1,318.55+48.46 1,944.42+262.60

avg 79.51 80.40 81.46 866.97 1,088.02 1,580.69

rank 2.86 2.14 1.00 1.00 2.00 3.00

avg (both) 82.14 83.01 83.97 695.87 859.55 1,319.61

rank (both) 2.93 2.07 1.00 1.00 2.00 3.00
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Table A.3: Test then train accuracy of SGBTMC [S = 80, m = 60, lr =1.25e-

2, FIMT-DD] for different loss functions.Values rounded to 2 decimals, and

4 decimals were considered to select the winner.

loss categorical cross-entropy squared

lCE lSL

binary class

AGRa 93.63+0.02 93.45+0.00

AGRg 91.09+0.02 90.96+0.02

RBF Bm 91.45+0.25 91.22+0.28

RBF Bf 83.62+0.89 82.85+1.31

RandomTree 83.10+6.95 82.09+7.45

electricity 88.39+0.04 87.57+0.09

airlines 68.76+0.04 68.63+0.02

avg 85.72 85.25

rank 1.00 2.00

multi class

LEDa 73.75+0.01 69.28+0.01

LEDg 72.95+0.01 68.64+0.01

RBFm 86.57+0.88 83.76+2.00

RBFf 74.47+2.15 68.72+4.68

LED 73.46+0.13 69.23+0.21

RBF5 88.99+0.89 87.77+1.56

covtype 94.08+0.05 91.49+0.05

avg 80.61 76.98

rank 1.00 2.00

avg (both) 83.16 81.12

rank (both) 1.00 2.00
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and F Herrera. A survey on data preprocessing for data stream mining:

Current status and future directions. Neurocomputing, 2017.

[3] Vinicius MA Souza, Denis M dos Reis, Andre G Maletzke, and Gus-

tavo EAPA Batista. Challenges in benchmarking stream learning algo-

rithms with real-world data. Data Min. Knowl. Discov., 2020.

[4] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and

Scott Sanner. Online continual learning in image classification: An em-

pirical survey. Neurocomputing, 2022.

[5] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha

Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles

Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov,

Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-

Hsin Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain,

Mike Rabbat, and Kim Hazelwood. Sustainable ai: Environmental im-

plications, challenges and opportunities. In D. Marculescu, Y. Chi, and

C. Wu, editors, Proceedings of Machine Learning and Systems, volume 4,

pages 795–813, 2022.

[6] Zhenghua Chen, Min Wu, Alvin Chan, Xiaoli Li, and Yew-Soon Ong. Sur-

vey on ai sustainability: Emerging trends on learning algorithms and re-

search challenges. IEEE Computational Intelligence Magazine, 18(2):60–

77, 2023.

[7] Pablo Villalobos Jaime Sevilla and Juan Felipe Cerón. Parameter counts

in machine learning, 2021. Accessed: 2023-5-10.

[8] Heitor M Gomes, J P Barddal, F Enembreck, and Albert Bifet. A survey

on ensemble learning for data stream classification. ACM (CSUR), 2017.



123
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