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Abstract: Three-dimensional (3D) printing plays an important role in cardiovascular disease through
the use of personalised models that replicate the normal anatomy and its pathology with high
accuracy and reliability. While 3D printed heart and vascular models have been shown to improve
medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance
communication with patients, 3D bioprinting represents a potential advancement of 3D printing
technology by allowing the printing of cellular or biological components, functional tissues and organs
that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting
technology have shown the ability to support vascularisation of large-scale constructs with enhanced
biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or
organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease
with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart
valves and myocardium. Limitations and future research directions are highlighted.

Keywords: 3D bioprinting; cardiovascular disease; cells; tissues; 3D printing

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death and is a major contributor
to disability worldwide, with a prevalence of 523 million people who suffer from CVD
and an estimated 18.6 million deaths annually [1]. Clinical diagnosis and management
of CVD largely relies on less invasive imaging modalities, such as the use of computed
tomography (CT), magnetic resonance imaging and echocardiography [2,3]. Despite being
frequently used in daily practice, it is challenging to translate two-dimensional images
of cardiovascular anatomy and pathology to three-dimensional (3D) structures based
on these imaging modalities and this is especially obvious when visualising complex
cardiovascular structures and pathologies, such as congenital heart disease, which usually
involves multiple cardiac structures with a spectrum of abnormalities. Three-dimensional
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(3D) printing technology has overcome these limitations by providing realistic models, thus
offering superior advantages over current image visualisations [4–10].

The use of 3D printing in cardiovascular disease has been increasingly reported in
the literature, with applications mainly focusing on the following areas: education value
for medical students and health professionals, preoperative planning and simulation of
complex cardiovascular procedures, development of medical devices for improvement of
outcomes, optimisation of CT protocols using 3D phantoms to minimise radiation exposure
to patients during routine CT scans for diagnosis and follow up, and the bioprinting of
scaffolds or cardiovascular constructs [11–18]. Figure 1 summarises these current applica-
tions. Three-dimensionally printed models serve as valuable tools for medical education
by enhancing understanding of anatomy and pathology when compared with current
education approaches. Nearly 50% of the current applications of 3D printing lie in the
pre-surgical planning of cardiovascular procedures, with results from single and multi-
centre studies showing changes in surgical decision-making when 3D printed models are
employed [7,14,19–27]. Three-dimensionally printed models are also used to simulate
interventional cardiology or radiology procedures, such as endovascular aneurysm repair,
increasing confidence through training and practice [28–40].
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While there is sufficient evidence available to prove that 3D printed personalised
heart and vascular models play an important role in clinical applications, 3D bioprinting
represents a promising field that could revolutionise the future of cardiovascular disease
treatment. Three-dimensional bioprinting uses mostly the same additive manufacturing
technologies but prints functional living structures from biological components such as
living cells, biomaterials and growth factors [41,42]. This can eliminate the gap between the
current animal study and human trials and may in future contribute to the repair or replace-
ment of damaged tissues or organs and the optimisation of drug delivery techniques [43–47].
Although still in an early stage with many challenges to overcome, substantial progress has
been made over the last decade in the printing of cardiovascular constructs as well as in
cardiovascular regeneration [48–50].

This review provides an overview of 3D bioprinting in cardiovascular disease, with a
focus on the applications in cardiac tissues, vascular constructs and grafts, myocardium



Biomolecules 2023, 13, 1180 3 of 29

and heart valves. We first review different bioprinting techniques, with advantages and
limitations highlighted, then provide a detailed summary of 3D bioprinting and its ap-
plications in cardiac tissues, tissue-engineered vascular constructs and grafts in treating
coronary artery disease and other vascular diseases. We also provide a summary of 3D
printed heart valves in treating valvular heart disease, and 3D printed cardiac patch and
heart model in managing myocardial infarction and heart failure. Lastly, future directions
and perspectives of 3D bioprinting in cardiovascular disease are highlighted.

2. Three-Dimensional Bioprinting: Where Are We Now?

Heart transplant remains the gold standard treatment for selected people with end-
stage heart failure [48]. However, the number of people requiring a heart transplant far
outweighs the available donor hearts and the long-term outcome of heart transplantation
remains uncertain, with acute rejection, cardiac allograft vasculopathy, malignancies, infec-
tion and the development of chronic kidney disease still significant complications [49,50].

Apart from organ transplantation, current treatment options for cardiac disease in-
clude cell therapy, implanted devices (stents or stent grafts), and bypass grafting [51–53].
Of these treatments, cell therapy using 3D bioprinting with patient-specific cells to repair
damaged cardiac tissues or to replace end-stage organ failure through tissue engineering
is promising [48,54]. It is also theoretically able to bypass the limitations of poor bio-
compatibility, biofunctionality, and immune rejection as well as the drastic shortage of
organ donors [55–58].

Although recent advances in bioprinting methodologies and technologies have ad-
dressed limitations associated with bioprinting, it is still not clinically feasible to directly
translate 3D printed cardiovascular tissues to patient therapy. The main limitation is the
inability to construct thick tissues. Currently, only 1 mm tissues can be produced with
the incorporation of multiple cell types and induction of tissue differentiation of growth
factors [59,60]. A further limitation is a lower density of cells compared with native tissues,
restricting the clinical value in cases such as myocardial ischemia [61].

3. Three-Dimensional Bioprinting—Bioinks

Three-Dimensional bioprinting involves the deposition of living cells, bioactive molecules
and biomaterials in a layered pattern to allow the generation of 3D structures [62,63]. Dif-
ferent from the standard 3D printing process which use various printing materials from
rigid to soft and elastic depending on usefulness or application, bioinks serve as a medium
to deliver living cells [64]. Bioinks possess viscoelastic properties with higher water content
to protect the cells during the printing procedure from external risk factors. Bioinks used
for cardiac tissue engineering mainly refer to the use of hydrogels which mimic the 3D ex-
tracellular matrix, with its biocompatibility, biodegradability and mechanical support [65].

4. Three-Dimensional Bioprinting Technologies

Bioprinting methods include inkjet-based, extrusion-based, and light-based printing
to create geometrically complex and scalable tissues.

4.1. Inkjet-Based Bioprinting

Inkjet bioprinters store bioink in a cartridge and a printer head, with the printer
heads deformed by thermal, piezoelectric, electrostatic or electrohydrodynamic actuators
to eject droplets in a controlled fashion [63]. This is a low-cost method with a high printing
speed [64] and around 80–90% for fibroblast cell viability [65,66], but is limited by a low
range of printable viscosities (<30 mPa.s) [67].

4.2. Extrusion-Based Bioprinting

Extrusion-based bioprinting is the most common technique used. Bioink is loaded into
a syringe, then printed as continuous strands using mechanical or pneumatic forces [68].
This can print biomaterials with a wide range of viscosities (up to >6 × 107 mPa/s) [69] and
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a high level of structural integrity [70]. However, cell viability decreases with increasing
pressure and/or decreasing nozzle diameter [71]. Although extrusion-based bioprinting
is a convenient and inexpensive platform with reasonable costs, it has limited resolution
which is inferior to other bioprinting techniques.

4.3. Light-Based Bioprinting

Laser-assisted bioprinting projects a laser beam onto a thin layer of bioink causing
a precise droplet to fall onto the printing surface [72]. Xiong et al. [73] have successfully
printed both straight and Y-shaped vascular constructs; however, fibroblast cell viability
was 68.1% and 70.8% for these constructs, respectively. The main advantages of laser-based
bioprinting include high resolution, the ability to produce cardiac constructs with a high
cell density (up to 108 cells per mL), and bioprinting with low viscosity bioinks. The
main disadvantages are complexity in controlling laser pulses, challenges in fabricating
cell-embedding hydrogel constructs before printing and high cost of the laser system.
Table 1 summarises these 3D bioprinting techniques with advantages and limitations
highlighted [55,74–78].

Table 1. Advantages and limitations of 3D bioprinting techniques. Reprinted with permission from
Khanna et al. [55].

3D Bioprinting
Technique Advantages Limitations Ref.

IBB

• Uses thermal, electromagnetic or
piezoelectric technology to deposit inkjets
of “ink”(materials).

• Rapid printing speeds and high resolution.
• Capable of printing low viscosity

biomaterials.
• Availability and ease of replacement

of bioinks.
• High cell viability and relatively low cost.

• Low material viscosity (<10 Pas) and
low inkjet directionality.

• Lack of precision with respect to
inkjet size.

• Requirement for low viscosity bioink.
• Nozzle clogging and cellular

distortion due to high cell density.

[74]

EBB

• Ability to print biomaterials with high cell
densities (higher than 1 × 106 cells/mL)
comparable to physiological cell densities.

• Can produce continuous stream of material.
• Can successfully print high viscosity

bioinks such as polymers, claybased
substrates.

• Low printing resolution (> 100 µm)
and slow printing speeds.

• Loss of cellular viability and
distortion of cellular structure due to
the pressure required to expel the
bioink.

[75]

LBB

• Rapid printing speeds and ability to print
biomaterials with a wide range of
viscosities (1–300 mPa/s).

• High degree of precision and resolution (1
cell/inkjet).

• Can successfully print high density of cells
108/mL.

• Time consuming—need to prepare
reservoirs/ribbons.

• Lower cellular viability compared to
other methods. Loss of cells due to
thermal damage.

• SLA requires intense UV radiation for
crosslinking process.

• Requires large amount of material.
• High cost.
• Long post processing time and fewer

materials compatible with SLA.

[76–78]

Abbreviations: IBB—inkjet-based bioprinting; EBB—extrusion-based bioprinting; LBB—laser-based bioprinting);
SLA-stereolithography.

5. Three-Dimensional Bioprinting of Cardiac Tissues
5.1. Human Pluripotent Stem Cells and Cardiac Tissue Engineering

Recent advancements in bioprinting of the cardiovascular system includes areas involv-
ing human pluripotent stem cells (hPSCs) and cardiac tissue engineering [79]. Promising
benefits have been shown in the use of current hPSCs and cardiac tissue engineering tech-
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nologies to construct biocompatible materials for the repair and regeneration of diseased
cardiac tissue. Traditionally, cardiomyocytes are among those that are known to be dif-
ficult to expand and culture. As reprogramming of differentiated human cells back into
a pluripotent state has been made possible in recent decades, the potential for creating
patient and disease-specific stem cells in nearly any patient is becoming a possibility for the
future [80,81]. Additionally, hPSC technologies show great potential over conventional 2D
monolayer culture systems for studying the development of the human heart, the heart’s
response to therapeutic interventions in drug testing, and for disease modelling of acquired
and inherited diseases [79,82,83]. Figure 2 provides a schematic view of the application
of cardiac tissue engineering for disease modelling and drug screening in genetic heart
diseases. Cardiovascular tissue engineering is a rapidly evolving field of medicine which
involves multiple sophisticated components such as different cell types, biocompatible
scaffold materials, cell differentiation factors and growth factors [84]. As this is an area of
research that is still in its infancy, there are several issues which are yet to be solved.
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5.2. Cellular Maturity

hPSCs such as human embryonic stem cells (hESCs) and human-induced pluripo-
tent stem cells (hiPSCs) are promising approaches for heart regeneration and have the
potential to be differentiated efficiently into cardiomyocytes, vascular endothelial cells,
and vascular smooth muscle cells [79]. Although there is much international research in
this space, there are concerns over the inadequate maturation of the tissues created [80].
The maturity of current hPSC-derived cardiomyocytes resembles the characteristics of
foetal cardiomyocytes [85].

To promote maturation, many approaches have been proposed, including the use of
biochemical stimuli (such as hormonal treatments), mechanical strain stimulation, electrical
stimulation, topographic cues such as patterned surfaces and substrate stiffness, and
interactions with other cells or extracellular matrixes [82,83,86]. However, the optimal
state of cellular maturity for hPSC cardiomyocytes is yet to be determined; immature
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cardiomyocytes may cause ventricular arrhythmias and other electrical disturbance, but
have increased survival compared with adult cardiomyocytes upon transplantation into a
host myocardium [79].

5.3. Microvasculature Constructs

Creating functional microvasculature constructs is a challenging area in the 3D bio-
printing of complex tissues, such as those of the heart which is highly vascularised to allow
for adequate gas exchange, nutrient diffusion and waste disposal [87]. As diffusion of
oxygen through tissues is limited to approximately 100–200 µm, careful incorporation of
microvasculature into bioprinted materials is a fundamental step for tissue survival [87].
Characteristics which are fundamental for proper microvascular perfusion to tissues in-
clude the presence of a hollow and endothelialised lumen, a hierarchy-based branched
vascular network, and a complex signalling milieu [88]. Many biofabrication technolo-
gies, such as extrusion-based 3D bioprinting, induced sprouting, electrospinning, and
lithographic approaches, have been explored to address these issues, each with their own
advantages and disadvantages [88,89]. These techniques generally involve microfluidics-
based moulding with numerous other strategies such as the addition of proangiogenic
factors (e.g., vascular endothelial growth factor (VEGF)) within the biomaterial scaffold-
ing [90]. Figure 3 is a schematic framework proposed by Seymour et al. to address the
current issues in biofabricating microvasculature [88].
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and (C) a complex signalling milieu. Seymour et al. propose three steps to biofabricate mature
microvasculature involving (D) an extrusion-based bioprinting technique to create the hollow lumen
foundation, (E) use of proangiogenic signalling for capillary formation, and (F) stabilisation of the
vascular network with supporting cell types. Reprinted with permission from Seymour et al. [88].
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Despite rapid improvement in mimicking the vascular networks of the human cardio-
vascular system, there is yet to be developed an approach which is able to address all of the
required characteristics of microvasculature in order to maintain perfusion and survival of
tissues. Specifically, the spatiotemporal precision required for appropriate physiological
function is still lacking [90]. Further exploration of biomaterials and bioprinting strategies
to address the structural and physiological complexity of microvascular networks will be a
key stepping-stone in the research field of 3D bioprinting of cardiovascular tissues.

5.4. Other Issues

Other issues that are faced in the 3D bioprinting of cardiovascular tissue include but
are not limited to cellular heterogeneity in different anatomical regions of the heart [79],
proliferation of primary cells in vitro entering senescence [86], foreign body reaction [91],
and the risk of tumours such as teratomas in undifferentiated cell populations [92]. Op-
timization of the ratio for co-culturing different types of other cardiac cells along with
cardiomyocytes is also an issue that needs to be addressed in 3D printed cardiac patches.
Anil Kumar et al. have tested the feasibility of the heterocellular coupling of cardiomy-
ocytes and fibroblasts/endothelial cells, and their results show the association between
endothelial cells and cardiomyocytes in human heart tissues [93–95]. These findings prove
the established connection between cardiomyocytes and networks of endothelial cells
and fibroblasts [93].

Although we are still far from a safe and functional 3D bioprinted cardiovascular
construct, this field of research has been developing and improving rapidly. Future studies
should focus on tackling the critical issues of cardiomyocyte maturation, improved mi-
crovasculature constructs and on the creation of a safe microenvironment for cell culture
and biocompatibility. Another promising area of using 3D bioprinting technique is to
design cardiac constructs for drug response and cardiotoxicity tests which could contribute
to new drug development [96,97].

6. Three-Dimensional Bioprinting of Vascular Constructs and Grafts

Vascular grafts are vital in the surgical treatment of coronary artery disease and
peripheral vascular disease, arterio-venous fistulae in haemodialysis, and repair of large-
vessel aneurysms and congenital defects [98]. Autologous grafts remain the gold standard;
however, 30% of patients lack suitable grafts [99,100]. Synthetic grafts suffer significantly
lower patency than autologous equivalents [101] and are limited in <5 mm-vessel repairs
by a high incidence of thrombosis [100]. Three-dimensional bioprinting to create tissue-
engineered vascular grafts (TEVGs) offers a promising future alternative for the production
of individualised grafts.

6.1. Requirements of a TEVG

TEVGs must be able to generate functional endothelium, be non-immunogenic, and
possess similar mechanical properties to human vessels [102]. Vascular grafts should be
tested for several mechanical properties. Burst pressure is the maximum pressure a vessel
can withstand and is measured with burst pressure or burst probe testing [103]. Vessels
must be compliant in order to accommodate pulsatile blood flow. The suture-ability of
grafts is measured with suture retention testing, the maximum force required to cause the
suture or graft wall to fail [104]. TEVGs also require an intact layer of endothelial cells
(ECs), tested using cell viability studies [105].

6.2. Methods of the 3D Bioprinting of TEVGs

Biological grafts require complex structures, including branched and cellular vessels.
Inkjet-based printing is either ‘vertical’ or ‘horizontal’: if the nozzle’s primary direction
of movement is parallel to the vessel’s circumference, it is vertical; in horizontal print-
ing, the primary direction of movement is parallel to the vessel’s longitudinal axis [106].
Xu et al. successfully combined vertical and horizontal inkjet bioprinting to create vessels
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with multi-planar bifurcations. Fibroblast cell viability was >90% after 24 h incubation.
Cellular tubes (‘zigzag’ tubes) have also been successfully produced using inkjet techniques,
with a cell viability of >82% after a 72 h incubation [107].

Despite these advances in inkjet bioprinting, its use for TEVGs has been limited. Inkjet
printer head orifices can become clogged by bioinks of higher viscosity and the use of
lower viscosity bioinks is unfavourable for mechanical strength [108], a quality essential
for vascular grafts.

Hinton et al. [109] used extrusion-based bioprinting with a ‘freeform reversible embed-
ding of suspended hydrogels’ (FRESH) support bath technique to create part of the right
coronary artery, with accurate anatomical and mechanical fidelity to the 3D model. The
support bath behaved as a rigid body at low shear stresses, but as a fluid at higher shear
stresses, allowing for low resistance to the printer nozzle and high resistance to movement
of the printed construct (Figure 4) [109].
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proliferation, adhesion, and spreading, while the alginate sheath provided mechanical 
strength. Jia et al. [116] used a novel bioink of GelMA, sodium alginate, and 4 arm poly 
(ethylene glycol)-tetra-acrylate. The combination of three bioinks stabilised the vessel and 
supported the maturation of vascular cells, their triaxial printing technique was able to 
achieve a wide range of diameters and wall thicknesses, and the printed vessels main-
tained high fidelity to their models, even when printing tortuous structures. 

Figure 4. (A) model of a section of the right coronary arterial tree, printed with FRESH. (B) The
arterial tree printed in alginate (black) and embedded in the support bath. (C) A section of the arterial
trees printed in fluorescent alginate (green), demonstrating a hollow lumen. (D) A zoomed-in view,
showing the vessel wall of <1 mm thickness. (E) A dark-field image of the arterial tree mounted in
a perfusion fixture to position a syringe in the root of the tree. (F) A time-lapse image of black dye
perfused through the arterial tree demonstrating the absence of leaks through the wall. Reprinted
with permission under open access from Hinton et al. [109].

Co-axial extrusion bioprinting utilises multiple distinct nozzles arranged coaxially,
in order to print several concentric layers of biomaterial [110]. Hong et al. [111] have
bioprinted vascular-like structures using a rapid-gelling gelatin–PEG–tyramine polymer
with a dual coaxial nozzle. The viability of printed cells (fibroblast and endothelial cells)
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was 80–90%, and patency was confirmed with flushing of trypan-blue solution through
the tube.

Composite bioinks can improve stability [112]; alginate and carboxymethylcellulose
were combined by Milojević et al. [113] to print vessels with good biocompatibility and
sufficient mechanical stability (Figure 5). Wang et al. [114] and Liu et al. [115] (Figure 6)
added gelatin methacryloyl (GelMA) to alginate, producing vessels with enhanced EC
proliferation, adhesion, and spreading, while the alginate sheath provided mechanical
strength. Jia et al. [116] used a novel bioink of GelMA, sodium alginate, and 4 arm poly
(ethylene glycol)-tetra-acrylate. The combination of three bioinks stabilised the vessel and
supported the maturation of vascular cells, their triaxial printing technique was able to
achieve a wide range of diameters and wall thicknesses, and the printed vessels maintained
high fidelity to their models, even when printing tortuous structures.
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Mandrel-based printing uses a rotating rod as the support structure for the surround-
ing printed vessel. Gao et al. [117] used coaxial nozzles to print hollow alginate filaments in
a spiral configuration along the rotating support rod, creating a macro-channel (equivalent
to the vessel lumen) and microchannels within the vessel wall. This approach produced
biocompatible blood vessels with relatively strong mechanical strength. In a recent study,
Jin et al. [118] used a novel approach in which nanofiber electrospinning was used to
create an inner EC tube, and mandrel-based extrusion printing to create an outer layer
of smooth muscle (SM) cells (Figure 7). This process yielded >90% cell viability, tensile
strain sufficient to withstand blood pulsation, and suture retention strength greater than
the common carotid artery. The combination of biocompatibility and mechanical strength
render these processes promising for clinical application.
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Figure 6. Bioprinting of 3D hollow microfibrous constructs. (A–F) A 10 layer construct with a
distance between the continuous microfibers of (A–C) 2.3 mm, and (D–F) 0.0 mm. GelMA and
alginate producing hollow perfusable vessels with good biocompatibility and mechanical strength.
Reprinted with permission from Liu et al. [115].
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Xu et al. [119] created a vascular construct with both strong biocompatibility and
mechanical strength using a novel integrated tissue–organ printer [120]. Two syringes
of bioink were used, one for the inner layer of ECs and the other for the outer SM cells.
The porosity of the GelMA bioink was varied, creating different-sized pores for each layer,
essential for the different sizes of endothelial and SM cells. Gold et al. [121] disposed with a
supporting sacrificial structure and used direct extrusion printing to fabricate vessels with a
novel bioink: nanoengineered extracellular matrix (nECM). Their nECM comprised GelMA,
poly (ethylene glycol) diacrylate, and two dimensions nanosilicates. This nECM had
high printability and fidelity, cell viability >80%, and mimicked the thromboinflammatory
response of native vessels.

Stereolithographic bioprinting uses patterned UV light to photocrosslink multiple lay-
ers of bioink at once. In contrast with extrusion or inkjet printing, it does not print in points;
as such, it more easily produces larger-scale vascular structures [122]. Krishnamoorthy
et al. [123] used this layer-by-layer approach to print vascular constructs using fibroblasts
encapsulated within GelMA bioink. Cell viability after 48 h incubation was 80%. They
identified an ideal cure depth (photocrosslinking thickness of an individual layer) range of
200 µm for this printing process, which gave the best shape fidelity and resolution. Thomas
et al. [124] trialled multiple photoink formulations to find the ideal sacrificial photoink in
which to embed ECs. A percentage of 1.5% methacrylated hyaluronic acid (HAMA) was
found to be superior due to its rapid digestion time, resulting in a faster release of ECs. The
authors created a sophisticated bifurcating vessel with sufficient EC proliferation (Figure 8).
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6.3. Summary

Three-dimensional bioprinting represents an important potential solution to the short-
age of biocompatible vascular grafts. Multiple techniques have been trialled in vitro, with
extrusion-based printing being the most common approach. These studies demonstrate
excellent viability and proliferation of printed ECs. Relatively few studies have tested the
mechanical properties of printed structures which need to be robust under arterial pressure
and inform future in vivo trials [113,117–119].
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7. Three-Dimensional Bioprinting of Heart Valves

Valvular heart disease is a serious global health problem, affecting 3.1% of the adult
population and projected to claim 23.6 million lives by 2030 [125,126]. Of the four valves
in the heart, the aortic valve bears the greatest haemodynamic load, pumping 3–5 L
per minute and undergoing 30–40 million cycles per year [127]. Degenerative aortic
valve disease is the most common cause of valvular heart disease representing at least
65.2% of cases (aortic stenosis 47.2%, aortic regurgitation 18.0%) [125,128]. The current
clinical solution for a diseased valve is replacement with a prosthetic one which can
be classified as either mechanical (made from metal or carbon) or bioprosthetic (made
from chemically fixed animal cardiac tissue). These prosthetic valves have transformed
the treatment of valvular heart disease; however, they are not without their problems.
Although mechanical valves are the most durable they require lifelong anticoagulation
therapy [129,130]. Conversely, bioprosthetic valves do not require anticoagulation therapy
but suffer from limited durability [130–133]. Furthermore, both types of prosthetic valves
require replacement (mechanical valves ~20 years, bioprosthetic valves as short as 5 years
in younger patients) which is of growing concern as the population ages, and as younger
patients are being treated with the adoption of lower-risk procedures such as transcatheter
valve implantation [126,134].

Tissue engineered heart valves (TEHVs) present a possible solution to this problem,
with the potential to provide a valve that does not require anticoagulation therapy and could
last a lifetime [135–137]. However, a successful TEHV has complex requirements including
the ability to encourage cells to infiltrate, differentiate and proliferate in a highly specific
manner, as well as exhibit adequate mechanical and haemodynamic functionality [138–140].
These, along with complex regulatory approvals and patient-to-patient variability means
that TEHVs are yet to reach the clinic.

Bioprinting is one possible avenue to creating a successful TEHV, with the ability to
construct patient-specific, hierarchical, cell-laden constructs that can also match the complex
microstructure of a native valve. A handful of attempts have been made using extrusion-
based, light-based and bioplotting bioprinting techniques and are described below.

7.1. Extrusion Based TEHVs

Extrusion-based printing can rapidly fabricate anatomically correct heterogenous
TEHVs using two types of cell-free poly-ethylene glycol-diacrylate (PEGDA) which are able
to support porcine aortic valve interstitial cells (PAVICs) after 21 days [141]. Furthermore,
the same researchers incorporated SM cells and valve interstitial cells (VICs) into anatomi-
cally correct extrusion bioprinted valve roots and leaflets made from alginate and gelatin
(Figure 9) [142]. Both SMCs and VICs were viable (>80%) after 7 days and expressed ele-
vated alpha-smooth muscle actin (aSMA) and vimentin, respectively. Cell-laden constructs
initially exhibited weaker ultimate tensile strength, failure strain and Young’s modulus
than their cell-free counterparts, although over 7 days the cell-laden valves maintained
their mechanical strength as opposed to cell-free constructs which weakened. Subsequently,
human aortic valvular interstitial cells (HAVIC) were extrusion bioprinted into a simpli-
fied heart valve geometry (Figure 10) [143]. Different ratios of methacrylated hyaluronic
acid (Me-HA) and methacrylated gelatin (Me-Gel) impacted cell spreading, mechanical
properties, and printability of constructs. After three days in a static culture tube, the
encapsulated cells below the surface started to remodel the hydrogel by depositing collagen
and glyosaminoglycans (GAGs).
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Figure 9. Bioprinted heart valves. (i) Extrusion-based bioprinted heart valve containing algi-
nate/gelatin encapsulated with VIC/SMC, respectively, with (ii) fluorescent cell labelling of SMCs
in green and VICs in red and the expression of aSMA and vimentin after 7 day culture and inset
live/dead assay for encapsulated (iii) VIC and (iv) SMC. ** p < 0.01. Reprinted with permission from
Duan et al. [142].
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Figure 10. Simplified extrusion bioprinted heart valve printed from Me-Gel encapsulated with
HAVIC with (i) live/dead staining showing cell viability through a cross section of the valve from
surface to 300 um, (ii) inset showing simplified morphology, (iii–v) histological staining of bioprinted
leaflets after 7 day culture. (iii) Safranin-O staining was used to stain the GAGs red, which also
stained the Me-HA within the hydrogel red, (iv) Masson’s Trichrome staining was used to stain
collagen blue. Reprinted with permission from Duan et al. [143].
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These initial studies demonstrated the feasibility of extrusion bioprinting for the cre-
ation of TEHVs, however, they did not address concerns regarding the extreme mechanical
requirements. Accordingly, there have been multiple investigations to reinforce the me-
chanical integrity of cell-laden hydrogels. These include the incorporation of nanoparticles
such as nanocrystalline cellulose [144], variations in photocrosslinking methods [145], and
reinforcement with electrospun polyacrylonitrile (PAN) fibres [146]. Despite demonstrating
the ability to tailor mechanical properties, none of these studies have shown mechanical
properties sufficient to match those of native heart valves.

7.2. Light-Based TEHVs

Stereolithography printing was the first technique to successfully 3D print a TEHV,
albeit cell-free [147]. However, since then there has only been one attempt at light-based
bioprinting which used PEGDA:GelMA seeded with cardiac fibroblasts [148]. The valve
showed 80% cell viability after 7 days, although it was not tested for haemodynamic or
mechanical properties. Since then, there have been no further attempts at light-based
bioprinted TEHV, perhaps due to the lack of material heterogeneity achievable with the
method, or more likely due to the relatively low mechanical strength.

7.3. Bioplotted TEHVs

More recently, TEHVs have been fabricated using a technique that derives from
extrusion-based bioprinting, called bioplotting. Here, the bioink is deposited into a medium
of matching density, enabling the suspension of the bioink in 3D space. A novel bioplotting
method called freeform reversible embedding of suspended hydrogels (FRESH) has been
used to fabricate an entire neo-natal scale human heart exhibiting multiple anatomical
structures, such as the ventricular chambers and aortic valves (Figure 11) [149]. In the
same study, tri-leaflet valves were fabricated using a cell-free collagen-based ink. While
this valve did not, strictly speaking, contain cells, the same technique has been used to
print cell-laden vessels with diameters of 8–50 µm. It must be noted, however, that prior to
mechanical testing the valves were decellularized to enhance their mechanical properties.
The valve was tested in a physiological flow loop setting as per ISO 5840 and demonstrated
an adequate total regurgitation fraction, although an insufficiently high effective orifice
area and transvalvular pressure gradient for the aortic setting.

The same technique has been used to evaluate the recellularization potential of sim-
plified cell-laden TEHVs in a subcutaneous rat model (Figure 12) [150]. Rat mesenchymal
stem cells (rMSCs) were printed using a bioink of highly concentrated Type I collagen
hydrogels (Lifeink 200) and implanted for 2, 4, 8, and 12 weeks to assess cell infiltration,
inflammation, and uni-axial tensile mechanical properties. The scaffolds expressed aSMA
and vimentin biomarkers, demonstrating an acceptable inflammatory response, although
there was limited cellular infiltration into the scaffold. Tensile mechanical properties var-
ied throughout the duration of the 12 weeks, potentially showing variations of scaffold
resorption and remodelling, although they were statistically insignificant. Following this,
a similar study was conducted accompanied by finite element computational analysis
in an attempt to characterise the remodelling of mechanical properties [151]. The study
concluded that the subcutaneous culture was insufficient for the replication of native tissue
mechanical properties and that a dynamic cellularization environment such as a bioreactor
would be necessary.
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Figure 11. (i) Decellularized bioplotted TEHV from collagen-based bioink, (ii) entire collagen heart,
(iii) sequence of valve opening under pulsatile flow over approximately 1 s with doppler flow
velocimetry of a single cycle and multiple cycles, and maximum transvalvular pressure of printed
alginate and collagen valves compared with the operating pressure for native valves. Reprinted with
permission from Lee et al. [149].

Thus, despite the promise shown in the printing of heterogenous cell-laden valves
with patient-specific geometries, bioprinting of purely bioink-based TEHVs has insufficient
mechanical properties. Novel methods of mechanical reinforcement such as incorporation
of nanoparticles [152,153], new methods of physical or chemical crosslinking [154], and
soft network composites may help [155,156].
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Figure 12. Simplified bioplotted valve made from (i) PCL frame and (ii) bioplotted type I collagen
hydrogels and rMSCs, with (iii) showing subcutaneous explanation from Sprague–Dawley rat
after 12 weeks, (iv) H&E staining showing increase in host cellular concentration found at the
periphery (red arrow) and infiltrating within the scaffold, (v) Masson’s trichrome showing a diffuse
blue expression representative of collagen, scale bars = 300 µm, (vi) stress–strain plot of the heart
valve scaffolds at 2, 4, 8, and 12 weeks. Reprinted with permission under the open access from
Maxson et al. [150].

8. Three-Dimensional Bioprinting of Myocardium and Heart

Injury to the heart in the form of myocardial infarction (MI) or heart failure, can be
treated with medication, angioplasty and stenting, bypass surgery and lifestyle changes,
however, the only remaining option for end stage disease is a heart transplant. With the
well-known drawbacks that transplants entail, including donor shortage and procedure-
associated risks, tissue engineering and regenerative medicine (TE&RM) approaches have
been gaining ground as potential solutions.

Current views in TE&RM support the notion that the best way to achieve adequately
engineered tissue capabilities is by attempting to replicate native composition, structure and
properties as closely as possible [56,157]. Bioprinting technologies, with their capability to
pattern cells and biomaterials with great spatial resolution, are standing out as unparalleled
tools for myocardial TE&RM and will be examined in the following paragraphs and are
summarised in Table 2.

Many myocardial bioprinting studies focus on the optimisation of printing conditions,
bioink formulation and/or functionalisation to incorporate additional benefits. Hence,
one research group formulated a bioink based on cardiac extracellular matrix (ECM) [158],
while another incorporated gold nanorods (GNRs) under the hypothesis that it would
beneficially contribute to the electrical conduction of the construct [159]. For their part,
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Erdem et al. attempted to create an oxygen-releasing bioink by adding calcium peroxide to
their GelMA-based formulation, which improved survival and function of the construct
under hypoxic conditions [160]. All reported good feasibility and cell viability, together
with the desired effect, albeit to a limited degree.

More recently, Ahrens et al. focused on imparting cardiomyocyte (CM) alignment in
their bioprinted cardiac constructs [161]. The particularity of this approach relies on the fact
that the cellular component of the bioink is not dissociated cells, but rather preassembled
aggregates of tens of thousands of cardiac cells, denominated anisotropic organ building
blocks (OOBs), that are generated by seeding and culturing a mixture of CMs derived from
iPSCs, human neonatal dermal fibroblasts and a collagen hydrogel in a micropillar array.
This resulted in highly aligned, densely cellularized (+200 × 106 cells/mL) cardiac struts
and sheets.

The anisotropy of the bioprinted constructs came from both the auxotonic mechanical
conditioning of the OOBs by the micropillars, and the shear stress direction imparted by
the extrusion through the nozzle. The cardiac constructs contracted synchronously and
with greater force than spheroid-based controls and could sustain pacing up to 3 Hz [161].

Similarly, Ong et al. also chose to print with cell aggregates (spheroids) rather than
cell suspensions, but they did not add any supporting hydrogel under the assumption that
it may hinder cell–cell interactions. Their constructs beat spontaneously and synchronously
and responded to electrical pacing. When varying the ratio between CMs, ECs and cardiac
fibroblasts, results suggest that the latter can delay and even block electrical conduction if
present in too high a quantity [162]. When implanted in a rat MI model, the cardiac patch
resulted in a smaller scar area and greater vascularization than the control (omental patch),
as well as better functional output (ejection fraction and cardiac output), however these
were not statistically significant [163].

Interestingly, bioprinting of cells can be complemented by the simultaneous depo-
sition of other materials that will perform a specific function. For instance, one study
incorporated a polycaprolactone (PCL) frame around the bioprinted construct to subject it
to auxotonic stress during culture, as well as micro-springs that enabled measurement of
the patches’ contractile force. After 4 weeks in culture, samples showed the presence of
aligned and dense sarcomeres, as well as connexin 43. Moreover, the cardiac constructs
displayed physiologic response when subjected to drugs known to alter contraction force
and frequency, namely epinephrine and carbachol [44].

In another example, Asulin et al. combined the bioprinting of three distinct compo-
nents to create a cardiac construct with integrated electronics allowing for both the sensing
of the patch’s activity and its pacing. One bioink consisted of a mixture of CMs and ECM,
while the other two material inks were made of polydimethylsiloxane (PDMS) and either
graphite flakes for conduction, or surfactant for passivation (passivation is essential for
achieving accurate spatial sensing and stimulation while reducing noise) (Figure 13) [164].

In a major step towards implant personalization, Tal Dvir et al. used patient omental
biopsies to create patient-specific bioinks [165]. These consisted of a mixture of the patient’s
own cells, reprogrammed into iPSCs and later differentiated into the desired phenotypes
(endothelial and CMs), and the patient’s extracellular matrix, turned into a thermorespon-
sive collagen hydrogel. Using these they bioprinted thick (2 mm) vascularized cardiac
patches, made of CMs and perfusable channels 300 µm in diameter, lined with endothelial
cells. Furthermore, they sought to print constructs in a more architecturally relevant, larger
size, for which they developed a support medium allowing bioink curing and construct
extraction without damage to the cells. This allowed them to bioprint an anatomically
accurate, miniaturized heart (20 × 18 mm) (Figure 14) [149]. The heart displayed two
hollow chambers as ventricles and was surrounded by perfusable channels modelled to
imitate coronary arteries.



Biomolecules 2023, 13, 1180 18 of 29

Biomolecules 2023, 13, x FOR PEER REVIEW 19 of 30 
 

displayed physiologic response when subjected to drugs known to alter contraction force 
and frequency, namely epinephrine and carbachol [44]. 

In another example, Asulin et al. combined the bioprinting of three distinct compo-
nents to create a cardiac construct with integrated electronics allowing for both the sens-
ing of the patch’s activity and its pacing. One bioink consisted of a mixture of CMs and 
ECM, while the other two material inks were made of polydimethylsiloxane (PDMS) and 
either graphite flakes for conduction, or surfactant for passivation (passivation is essential 
for achieving accurate spatial sensing and stimulation while reducing noise) (Figure 13) 
[164]. 

 
Figure 13. Bioprinted cardiac patch with integrated electrodes. (a) The patch is soft and flexible and 
the electrodes can be seen in black. I–IV show the patch being picked up and returned to the culture 
plate. (b) Immunostaining for sarcomeric actinin (pink) and nuclei (blue). Scale bars are 50 and 10 
μm for I and II, respectively. (c) Recordings of action potentials from four distinct locations. (d) 
Calcium transients from three distinct locations after pacing at 7 V and 1 and 2 Hz. The pacing 
pattern is shown at the bottom of the panel. Reprinted with permission under open access from 
Asulim et al. [164]. 

In a major step towards implant personalization, Tal Dvir et al. used patient omental 
biopsies to create patient-specific bioinks [165]. These consisted of a mixture of the pa-
tient’s own cells, reprogrammed into iPSCs and later differentiated into the desired phe-
notypes (endothelial and CMs), and the patient’s extracellular matrix, turned into a ther-
moresponsive collagen hydrogel. Using these they bioprinted thick (2 mm) vascularized 
cardiac patches, made of CMs and perfusable channels 300 μm in diameter, lined with 
endothelial cells. Furthermore, they sought to print constructs in a more architecturally 
relevant, larger size, for which they developed a support medium allowing bioink curing 
and construct extraction without damage to the cells. This allowed them to bioprint an 
anatomically accurate, miniaturized heart (20 × 18 mm) (Figure 14 [149]. The heart dis-
played two hollow chambers as ventricles and was surrounded by perfusable channels 
modelled to imitate coronary arteries. 

Similarly, Noor et al. also utilized a support bath to print human CMs derived from 
embryonic stem cells and collagen into an ellipsoidal shell, which contracted in unison 
and could be paced up to 2 Hz (Figure 15) [166]. Finally, Kupfer et al. focused on bioprint-
ing complex structures, this time adapting an MRI scan of the heart to contain an inlet and 
outlet channel through which unidirectional flow could be propagated. A key aspect of 
this work is that the authors chose to bioprint hiPSCs in situ, differentiating them from 

Figure 13. Bioprinted cardiac patch with integrated electrodes. (a) The patch is soft and flexible
and the electrodes can be seen in black. I–IV show the patch being picked up and returned to the
culture plate. (b) Immunostaining for sarcomeric actinin (pink) and nuclei (blue). Scale bars are
50 and 10 µm for I and II, respectively. (c) Recordings of action potentials from four distinct locations.
(d) Calcium transients from three distinct locations after pacing at 7 V and 1 and 2 Hz. The pacing
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Figure 14. Three-dimensionally printed ventricle model. (A) Schematic of the dual-material printing
in a support medium. (B) Ventricle model with the cell compartment depicted in pink, while the
green represents a collagen-based bioink. (C) Micrograph of the bioprinted ventricle. Reprinted with
permission from Lee et al. [149].

Similarly, Noor et al. also utilized a support bath to print human CMs derived from
embryonic stem cells and collagen into an ellipsoidal shell, which contracted in unison and
could be paced up to 2 Hz (Figure 15) [166]. Finally, Kupfer et al. focused on bioprinting
complex structures, this time adapting an MRI scan of the heart to contain an inlet and
outlet channel through which unidirectional flow could be propagated. A key aspect of
this work is that the authors chose to bioprint hiPSCs in situ, differentiating them from
cardiac lineages after construct formation. This way, the rupture of CM-to-CM connections
for bioink generation is avoided, which the authors argue results in enhanced cell density
and tissue connectivity [167].
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Figure 15. Patient-derived cardiac patch and whole heart model. (a) Model of the vascularised
patch, the two bioinks shown in different colours. (b,c) Immunostaining for sarcomeric actinin (red)
and nuclei (blue) from the patch; (c) is a higher magnification of the dotted area in (b). Scale bars
correspond to 50 and 25 µm in (b,c), respectively. (d) Computerized model of the miniaturized heart.
(e) After printing, the two compartments were injected with blue and red dyes to demonstrate the
presence of hollow chambers and a septum in between, scale bar = 1 mm. (f) Confocal image of the
printed heart, with CMs in pink and ECs in orange. Scale bar corresponds to 1 mm. Reprinted with
permission from Noor et al. [166].

Very recently, to tackle the issues of construct size and cell survival during and after
bioprinting, a six-degrees-of-freedom robotic arm was modified to serve as a bioprinter.
This surpasses the capabilities of any cartesian printer, which only permits bottom-up
manufacturing, and allows for printing in any direction. In this approach, tubular scaffolds
in the manner of vascular conduits, through which culture medium is constantly circulated,
act as a backbone onto which layers of endothelial cells and CMs are deposited. The
process is iterative, consisting of rounds of bioprinting and culturing, to give time for
cell attachment between the new layer and the previously deposited ones, and vascular
network growth. The printing is performed in a chamber, filled either with an oil bath
to ensure adhesion of the bioink to complex-shaped surfaces, or culture media. Though
the authors did not demonstrate the printing of a full heart, this work provides proof of
concept and shows clear potential for use in the generation of complex tissues and entire
organs (Figure 16) [168].
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Figure 16. Six-degrees-of-freedom robotic arms are able to bioprint in complex shapes. (a) Setup
with two robotic arms, one bioprinting red-stained CMs and the other green-stained ECs on top of a
mould resembling the coronary tree. (b) All zones of the template are accessible for the robots, as
demonstrated with the selectively deposited bioink droplets. (c) CMs and ECs are assembled in two
distinct layers, bioprinted on one branch of the coronary template. Reprinted with permission under
open access from Zhang et al. [168].
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Table 2. Summary of myocardial bioprinting approaches. Abbreviations: hiPSC—human-induced pluripotent stem cells; CM—cardiomyocytes; CB—cardiac
fibroblasts; EC—endothelial cells; GelMA—gelatin methacryloyl; GNR—gold nanorods; Cx43—connexin 43; hCPCs—human cardiac progenitor cells; ECM—
extracellular matrix; PCL—poly-ε-caprolactone; hESC—human embryonic stem cells; CPO—calcium peroxide; ColMA—collagen methacryloyl; SMC—smooth
muscle cells; PDMS—polydimethylsiloxane.

References Construct Form
Bioinks Key Aspect of Study Examined Benefits

Cells Hydrogel

[162] Patch Spheroids of hiPSC-derived CM,
CB and EC - Biomaterial free Spontaneous contraction, ability to pace constructs,

rudimentary vascularization, in vivo engraftment

[159] Grid Neonatal rat CM + CF GelMA + alginate + GNR GNR to improve electrical conduction Higher Cx43 expression, higher synchronous
contractile frequency than constructs without GNR

[158] Grid, patch hCPCs ECM + GelMA Cardiac–ECM specific bioink
Higher cardiac and endothelial-specific gene

expression than GelMA-only constructs, retention
and vascularization after in vivo implantation

[50] Patch Neonatal rat CM Fibrinogen + gelatin PCL frame to impart auxotonic
mechanical stress

Cell alignment, physiologic response to drugs
altering force and frequency of contraction

[149] Ellipsoid hESC-CM Collagen Ventricle-like shape Spontaneous, synchronous contraction, pacing at
1 and 2 Hz.

[166] Patch, two-chambered ellipsoid hiPSC-derived CM and EC ECM Patient specificity,
vascularization, shape

Cardiac patch with perfusable, vascular-like
channels. Spontaneous and

synchronous contraction

[163] Patch Spheroids of hiPSC-derived CM,
CF and EC - In vivo study of patch described in (7)

Smaller scar, greater vascularization than control
(omentum patch). Greater ejection fraction and

cardiac output, although not significant

[160] Grid Neonatal rat CM +
mouse fibroblasts GelMA + CPO Oxygen-releasing bioink Enhanced viability and function under

hypoxic conditions

[167] Chambered ellipsoid hiPSCs GelMA + ColMA Ventricular-like shape, pump-like
function, differentiation after printing

Differentiation from CM, SMC and EC. Spontaneous
and synchronous contraction, a physiologic
response to isoproterenol, for up to 6 weeks

in culture

[164] Patch Neonatal rat CM/hiPSC-CM ECM, PDMS + graphite,
PDMS + surfactant

Integrated electrodes for sensing
and pacing

Good cell viability, spontaneous contraction and
actinin expression. Sensing and pacing at 1 and 2 Hz

[161] Struts, patch hiPSC-CM microtissues Fibrinogen + gelatin High cellular density, alignment Higher directionality, conduction velocity and force
generation than spheroid-based constructs

[168] Lining of vascular model hESC-CM + EC - Ability to print in any direction
No damage in viability or activity after printing,

evidence of vasculogenesis, synchronous and
spontaneous contraction
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9. Summary and Concluding Remarks

Recent developments in 3D printing technology have revolutionized medical practice
by using personalised 3D printed heart and vascular models in the enhancement, diagnosis,
and treatment of cardiovascular disease. Technological advancement in 3D bioprinting
has great potential and is a powerful tool utilising tissue engineering principles to bio-
print cardiac cells, vascular and tissue constructs. New advancements in 3D bioprinting
have made it possible to construct organ-mimicking myocardial or cellular structures
with high precision and flexibility. A variety of biomaterials in combination with various
bioprinting methods have been shown to demonstrate great potential in 3D bioprinting
cardiac constructs and grafts, myocardium and heart valves. Despite promising results
and rapid progress further research and investigation is required to better understand the
cross over between a native organ and amalgamation of bioprinted heterogeneous tissue
constructs. Although mechanical properties are in some cases being reproduced, novel
methods of mechanical reinforcement are essential to enable translation in vivo. Whilst the
area of valve replacement is advancing rapidly, we see less exploration of bioprinting of
vascular grafts. Whole organ bioprinting is not yet achievable due to the many challenges
that exist in the inherent biology of the process and of the bioink materials and of the
post-bioprinting/fabrication maturation process (comprising mechanical, electrical and
perfusion) [42,169]. Bioprinting of functional tissues such as myocardium is a complex phe-
nomenon due to their complex anatomical structures, thus in vitro fabrication of myocardial
tissues requires an arrangement of multiple cell types in order, including vascular network,
lymphatic vessels and muscle tissues, within engineered cardiac construct tissues [42]. As
the ultimate goal in 3D bioprinting is to print the injured or damaged organ in situ, attention
should be paid to the sterilization and safety of the in situ bioprinting processes [170].

Integration of nanotechnology and biopharmaceuticals along with 3D printing
(nanoprinting) represents a new direction in 3D bioprinting, leading to the development of
personalized nanomedicines with innovative perspectives [171–173]. Three-dimensionally
printed microfluidic chips have made it possible to improve patient compliance by adapting
to an individual patient’s anatomy through the delivery of personalized medicine. The
main barriers that hinder these developments derive from the lack of clear regulatory
guidelines to fabricate 3D bioprinting in clinical settings and the limited accessibility to
good manufacturing practice printers [174]. As barriers and challenges are gradually
overcome, 3D bioprinting will continue to play an important role in changing the treatment
of cardiovascular diseases with clinical applications becoming possible in the near future.
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