
1. Introduction
Laboratory studies in rock mechanics, including friction experiments, have been transformational in our 
understanding of earthquake physics. Earthquake nucleation arises from frictional instability on fault 
planes that can be modeled at the macro-scale using small (second-order) changes in friction coefficient 
(Ampuero & Rubin, 2008; Dieterich & Kilgore, 1994; Marone, 1998; Ruina, 1983; Rubin & Ampuero, 2005). 
To help relate the overall frictional response to the numerous physical mechanisms taking place at the mi-
cro-scale (healing, wear development, grain sliding/crushing, among others), laboratory settings are often 
instrumented with ultrasonic transducers for recording acoustic emissions (AE) (equivalent to microseis-
micity in the field) (Goebel et al., 2017; Kwiatek et al., 2014; Lockner et al., 1991; McLaskey et al., 2014; 
Passelegue et al., 2013; Rivière et al., 2018; Marty et al., 2019; Scholz, 1968) and time-lapse active source 
monitoring to probe fault zone properties (Kaproth & Marone, 2013; Kilgore et al., 2012; Nagata et al., 2014, 
2008; Scuderi et al., 2016; Shreedharan et al., 2020). Such instrumentation can provide temporal (Bolton 
et al., 2020; Lubbers et al., 2018; Passelegue et al., 2013) or spatio-temporal evolution (Dresen et al., 2020; 

Abstract Small changes in seismic wave properties foretell frictional failure in laboratory experiments 
and in some cases on seismic faults. Such precursors include systematic changes in wave velocity and 
amplitude throughout the seismic cycle. However, the relationships between wave features and shear 
stress are complex. Here, we use data from lab friction experiments that include continuous measurement 
of elastic waves traversing the fault and build data-driven models to learn these complex relations. We 
demonstrate that deep learning models accurately predict the timing and size of laboratory earthquakes 
based on wave features. Additionally, the transportability of models is explored by using data from 
different experiments. Our deep learning models transfer well to unseen datasets providing high-fidelity 
models with much less training. These prediction methods can be potentially applied in the field for 
earthquake early warning in conjunction with long-term time-lapse seismic monitoring of crustal faults, 
CO2 storage sites and unconventional energy reservoirs.

Plain Language Summary Laboratory experiments and field observations show that wave 
velocity, amplitude and frequency vary systematically over time during seismic cycles. These wave char-
acteristics drop before failure (shear stress drop) albeit at different times and thus are believed to contain 
precursory information about the upcoming failure event. Here, we continuously record ultrasonic data 
during a series of experiments designed to simulate earthquakes in the laboratory or laboratory quakes. 
We investigate whether machine learning can predict the occurrence of laboratory quakes from ultrasonic 
data. We apply XGBoost and a suite of deep learning methods to this data and present models that can 
accurately predict the laboratory quake timing, size or both. We compare the performance of different 
models in terms of accuracy and training time. Also, we interpret the developed models. Finally, we show 
that these models successfully transfer from one data set to another obtained using different experimen-
tal constraints. Consequently, the training time and amount of data necessary to develop models for 
new datasets are significantly reduced. The developed prediction models can be used for seismic hazard 
assessment and warning, safe management of CO2 storage sites and unconventional energy reservoirs in 
conjunction with continuous and long-term seismic monitoring.
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Goebel et al., 2017; McLaskey & Lockner, 2016; McLaskey et al., 2014; Trugman et al., 2020) of AE events 
(equivalent to seismic catalogs) as well as local changes in elastic wave velocity and/or amplitude (Bran-
tut, 2018; Shreedharan et al., 2021).

We focus here on unstable laboratory faults and document a series of slow and fast stick-slips, analogous to 
seismic cycles in nature. Past studies have reported that wave velocities and amplitudes vary systematically 
along the seismic cycle, with an increase during the initial phase of elastic loading, followed by a distinct 
reduction prior to fault failure (Hedayat et al., 2014a; 2014b, 2018; Kaproth & Marone, 2013; Shreedharan 
et al., 2019, 2020), as the fault slowly unlocks. The precursory time at which wave velocity and amplitude 
start to decrease often differ (Shreedharan et al., 2020). This delay seems to be associated with the compet-
ing effect of stress increase as failure approaches. While wave amplitude seems to be primarily sensitive 
to slip rate on the fault, wave velocity is sensitive to both slip rate and surrounding stress (Shreedharan 
et al., 2020). During most of the pre-seismic phase, when slip rate is increasing but still relatively small, 
wave velocity continues to increase due to large surrounding stress, while wave amplitude has already start-
ed to decrease (see Shreedharan et al., 2021 for further details).

In recent years, machine learning (ML) has been used on AE data to predict shear failure during labora-
tory friction experiments. Unsupervized approaches were successful at clustering the initial loading phase 
from the critical phase that precedes failure (Bolton et al., 2019). Supervised approaches have shown that 
the timing (Hulbert et al., 2019; Rouet-Leduc et al., 2017), shear stress (Hulbert et al., 2019; Rouet-Leduc 
et al., 2018) as well as magnitude and duration (Hulbert et al., 2019) of laboratory earthquakes could be 
well predicted, and that the variance of AE time-series was by far the most predictive feature. These ML 
approaches have also been tested on field data (slow slip sequences along the Cascadia Subduction zone 
(Hulbert et al., 2020; Rouet-Leduc et al., 2019, 2020). Beyond the direct applicability to field prediction of 
seismic events (Niu et al., 2008), these approaches are of great interest at the laboratory scale, to help un-
ravel the mechanisms that dictate earthquake nucleation. The large quantity of constrained laboratory data 
also enables one to carefully examine the capabilities/limits of these ML approaches—to test, for instance, 
how predictive models perform under differing experimental conditions.

In this study, we use ML on active source ultrasonic data to predict frictional failure based on the evolution 
of the ultrasonic wave features. We compare the performance of several models that predict shear stress, 
time to failure or both given wave velocity, amplitude and frequency. We demonstrate that deep learning 
models can learn the complex relationships between wave features and shear stress and accurately predict 
both the timing and size of an irregular sequence of laboratory quakes. Among the methods applied, long 
short-term memory (LSTM) network (Hochreiter & Schmidhuber, 1997) that takes advantage of the time 
evolution of the features produces the most accurate predictions followed by multilayer perceptron (MLP) 
and XGBoost. Prediction models that use both velocity and amplitude features perform better than those 
that only use either velocity or amplitude features. In addition, we demonstrate that a model trained on 
a data set collected from one experiment can be adapted to a different experiment by further training the 
model on a relatively small amount of extra data (without this pre-training from the first experiment, a 
much larger training data set is needed from the second experiment). This indicates that the models are 
generalized and transferable across different datasets.

2. Data and Methods
We use several machine learning methods to predict failure in a set of friction experiments with continuous 
recording of elastic wave characteristics. Details of the experiments were reported previously (Shreedharan 
et al., 2020, 2019). The friction experiments use a double direct shear (DDS) configuration and rough, West-
erly granite surfaces coated with a thin layer of quartz powder. The fault normal stress was held constant 
at 10 MPa and a constant shear rate of 11 μm/s was imposed. The nominal frictional and real contact areas 
remain constant throughout the experiment (5 × 5 cm2 for each fault). In these experiments the loading 
stiffness was adjusted to produce a spectrum of lab earthquakes from fast to slow (Shreedharan et al., 2019) 
and a complex slip history as expected near the frictional stability boundary (e.g., Leeman et al., 2016). We 
focus on measurements of shear stress and fault shear displacement measured with a displacement trans-
ducer mounted on the central block. All stresses and displacements are continuously recorded at 10 kHz 
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throughout the experiment and averaged to rates of 100 Hz. The experiments included continuous record-
ing of elastic waves that traversed the lab fault zones and serve as probes of the evolution of fault elastody-
namic properties. The elastic waves were generated and recorded with compressional wave piezoelectric 
transducers embedded within the loading platens of the DDS assembly (inset Figure 1a). Half-sine pulses of 
a nominal center frequency 500 kHz were transmitted every 1 ms across the two faults on one side, received 
by the other transducer within the opposite side block and digitized at 25 MHz throughout the experiment 
(Figures 1b and 1c). Three distinct features are extracted from each recorded ultrasonic waveform: Wave 
velocity, spectral amplitude (at 400 kHz, close to the center frequency of the waveforms) as well as the dom-
inant frequency of the first-arrived wave packet, which is around 450 kHz. The systematic variation of these 
wave characteristics over the seismic cycle (as shown in Figure 1b for the amplitude) suggest that they carry 
precursory information about the stick-slip frictional failure of the laboratory faults. In Figure 1a, shear 
stress increases during initial load-up and reaches a plateau (stable-sliding regime) that is only interrupted 
by two shear unload/reload cycles at a load-point displacement ul of 1.5 and 3 mm. Around ul = 7 mm, 
the faults slowly transition to a stick-slip regime (Leeman et al., 2016). Complex behavior such as irregular 
stick-slips and period doubling can be observed, as shown in the inset of Figure 1a. Such complex sequences 
are likely more representative of observations made in nature and pose a greater challenge for predictive ML 
models, compared to periodic cycles.

We use ML techniques to predict the timing and size of laboratory quakes using the distinct features extract-
ed from ultrasonic data recorded continuously throughout the experiment. The features are: Wave velocity, 
amplitude, and center frequency (Figure 2). The mathematical expressions describing each feature are giv-
en in Equations 1–4 below.

Wave velocity vi is calculated by dividing the specimen thickness di by the sum of reference signal’s time of 
flight TOF0 and time delay Δti as defined in Equation 2

v d TOF t
i i i
 /( )0  (1)
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where Δti is the time delay calculated using a cross correlation between S0, the reference ultrasonic signal, 
and Si, the ith recorded ultrasonic record at ti within a finite window of size T extending from time w1 to 
w2 = w1 + T. Here, we use a window of size T = 4.4 μs extending from w1 = 20.76 μs to w2 = 25.16 μs. This 
time window includes the first arrival wave packet arriving at TOF0 = 20.74 μs (highlighted in red in the 
inset of Figure 1c). The reference signal S0 is a waveform recorded at the beginning of the experiment, once 
shear stress reaches a plateau (t = 2,065 s and ul ≈ 7.4 mm in Figure 1). Time delays Δti can be calculated 
using cross-correlation because waveform shapes change little throughout the experiment (the cross-corre-
lation coefficient remains always greater than 0.97).

The second feature is spectral amplitude Ai calculated as the amplitude (absolute value) of the Fourier 
transform ( ) of the windowed signal Si at frequency f = 400 kHz.

A S t w t w
i i i i f kHz
   | ( ( : ))| , 1 2 400 (3)

The third feature corresponds to the central frequency fi of the received wave packet that is, frequency at 
which the spectrum is maximum:

f S t w t w
i

f
i i i

  argmax | ( ( : )) | , 1 2 (4)

The pre-processing steps include smoothing the data by low-pass filtering of the raw feature time histories 
using a 10-point backward looking moving average window. The temporal evolution of these filtered fea-
tures is shown in Figure 2 along a few seismic cycles. In addition, in order to remove the long term trends 
in data caused by the gradual development of wear product on the fault planes, a second set of features are 
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Figure 1. Experimental data and setup. (a) Shear stress (τ) as a function of load-point displacement ul. Normal stress 
(σn) is held constant throughout the experiment. Following initial loading and a stable-sliding phase, the laboratory 
faults transition to a stick-slip regime (starting around ul = 8 mm). One inset on the left shows a sketch of the double-
direct shear configuration with two ultrasonic transducers (one transmitter (T) and one receiver (R) depicted as yellow 
rectangles) used to probe the laboratory faults (red vertical bars). The second inset shows a close-up view of a few 
stick-slips. Notice the irregular stick-slip cycles. (b) A close-view of shear stress for three cycles superimposed on the 
raw ultrasonic waveforms. Only the peak of these waveforms is shown (amplitude ranging from 0.85 to 1) to highlight 
the amplitude changes as shear stress evolves (red arrows). (c) A close-up view on a few waveforms (looking like gray 
vertical bars at this scale) that are recorded every millisecond. Shear stress is essentially constant at this time scale. The 
inset shows a close-up view of a single waveform. Features used as inputs for the machine learning (ML) models are 
extracted from the first-arrived wave packet (highlighted in red).
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defined by normalizing two of the three features above (i.e., Vi and Ai) with respect to the corresponding 
value at the onset of each seismic cycle as described in Equation 5 for feature xi:

x x x x
i i

  ( )/0 0 (5)

where x0 represents the feature value at the beginning of each seismic cycle. These normalized versions are 
shown for wave velocity and amplitude in Figures 2b and 2c (right-hand side y-axes). Finally, since the ul-
trasonic signals (and thus corresponding features) are recorded at a different rate (1 kHz, i.e., one ultrasonic 
waveform every millisecond) than shear stress and other mechanical data (sampled at 100 Hz), the two time 
series are matched using linear interpolation.
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Figure 2. Temporal evolution of wave velocity, amplitude and frequency, all used as features in the machine learning 
(ML) models. (a) Shear stress. (b) Wave velocity (m/s) (left) and percent change in wave velocity referenced to the 
beginning of each seismic cycle (right). (c) Wave amplitude at 400 kHz (left) and percent change in wave amplitude 
referenced to the beginning of each seismic cycle (right). (d) Central frequency of the received ultrasonic pulse.
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Our goal is to predict shear stress σ and time to failure (target variables) given the recorded ultrasonic fea-
tures (input variables: iV , iA , if , îV , ˆ

iA ). It is worth noting that the relationship between these wave features 
and shear stress is highly nonlinear and complex (Figure 2), that is, no one-on-one mapping between either 
wave feature and shear stress exists (as highlighted in Figure S1 where plots of wave velocity and amplitude 
are shown as a function of shear stress). This makes the laboratory quake prediction challenging, requiring 
advanced statistical approaches (i.e., ML).

In order to implement ML algorithms, the data are divided into training, validation and testing sections. 
The training data are used to fit the machine learning model, the validation data are used for hyperparam-
eter tuning (e.g., to help select values for non-differential parameters), while the testing data are used for 
evaluation of the model. Since the testing data are never used during the learning process, they provide a 
good estimate of the performance of the model. We note that the validation set is a crucial part of machine 
learning methodology. Hyperparameters should never be chosen using the test set as that would result in 
overfitting the test set (and non-reproducible results). Furthermore tuning hyperparameters using the vali-
dation set rather than the training set helps avoid overfitting to the training set. For example, the number of 
training epochs (for deep learning) or trees (in XGBoost) are parameters that can overfit the training data if 
set too large. By monitoring the error on the validation set, one can decide when additional training epochs 
(or trees) become harmful to model accuracy.

For an ML model to work efficiently, it is necessary to provide a large training data set. Hence, 72% of the 
data are reserved for the training purpose, another 8% are used as validation data and the remaining 20% 
are used for testing the model. Moreover, we treat this problem as a time-series prediction task. Thus, in 
order to take advantage of the sequential (time) dependency, we do not shuffle the data set while splitting it.

Three different supervised machine learning models are employed namely, XGBoost (Chen & Gues-
trin, 2016), an LSTM network (Hochreiter & Schmidhuber, 1997) and an MLP network. While implement-
ing these models, we exploit the corresponding seismic history of 300 observations (equivalent to 3 s of data) 
to make predictions at the current time. Although the shear stress cycles are aperiodic, the average duration 
of one cycle in this data set is about 3–4 s. Hence, we provide the data history over a period of 3 s prior to the 
current time to predict the current shear stress and/or time to failure. That is, to predict shear stress (or time 
to failure) at observation number n, we only use features from observations n-300, …, n-1. We implement 
three different models for each ML algorithm: single output model to predict shear stress, single output 
model to predict time to failure and a multi-output model to simultaneously predict shear stress and time 
to failure. Brief descriptions of each method together with the model architecture and hyperparameters are 
provided in the supplementary materials.

3. Results and Discussion
The first analysis step consists of establishing the baseline performance; we use basic methods to predict 
shear stress in order to provide a meaningful basis for comparison. We employ a number of baseline meth-
ods including simple linear regression as well as several autoregressive methods such as average method, 
rolling average, naive forecast, and seasonal persistence methods. Among the autoregressive methods, roll-
ing average method gives the best test data R2 score of −0.0003 which clearly indicates that the prediction 
task is not an autoregression problem but a feature-dependent regression problem. A linear regression anal-
ysis results in an R2 score of 0.85054 for shear stress on the test data. This serves as the baseline performance 
in this study.

Next, we apply XGBoost, MLP, and LSTM to predict shear stress or/and time to failure from the five ultra-
sonic features defined in Equations 1–5 and shown in Figure 2 namely, wave velocity, normalized wave 
velocity, wave amplitude and normalized wave amplitude as well as the center frequency. All three models 
are trained and validated using the very same features. Figure 3 compares the performance of these three 
methods in predicting shear stress (see Figures 3a, 3b and 3c) or time to failure (see Figures 3d and 3e). For 
shear stress predictions (using single output models), LSTM and MLP models with test R2 scores of 0.94825 
and 0.92782 clearly outperform the XGBoost model that gives a test R2 score of 0.90497. A close examination 
of the three predictions and the residuals in Figures 3b and 3c indicate that the XGBoost model especially 

SHOKOUHI ET AL.

10.1029/2021GL093187

6 of 12



Geophysical Research Letters

SHOKOUHI ET AL.

10.1029/2021GL093187

7 of 12

Figure 3. Performance of single output models. (a) Shear stress prediction using the XGBoost, MLP and LSTM models. The blue region corresponds to the 
training set (72%), the green region corresponds to the validation set (8%) and the pink region corresponds to the test set (20%). (b) Detailed view for regular 
cycles of shear stress with the corresponding residual error. (c) Detailed view for irregular cycles of shear stress with the corresponding residual error. (d) 
Detailed view for regular cycles of time to failure with the corresponding residual error. (e) Detailed view for irregular cycles of time to failure with the 
corresponding residual error. LSTM, long short-term memory; MLP, multilayer perceptron.
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underpredicts the shear stress toward the end of seismic cycles, shortly before failure. When predicting time 
to the next failure event, the LSTM model with a test R2 score of 0.90601 again outperforms both MLP and 
XGBoost models that show test R2 scores of 0.87780 and 0.83184, respectively. The model performances are 
compared in Table S1.

LSTM models outperforming the MLP and XGBoost models is not surprising considering the time sequence 
nature of the features and prediction tasks. In other words, due to their design, LSTM models are expected 
to better capture the precursory information in the systematic time-evolution of the wave velocity, am-
plitude and frequency features. The XGBoost models appear most susceptible to overfitting the training 
data—showing good performance in training and validation phases, but poor performance on testing data. 
In contrast, MLP and LSTM perform very well without overfitting. We note that the training and prediction 
time required for these models vary widely. The XGBoost model can be trained in ∼20 min and can predict 
the test shear stress data in 0.4 s. The MLP model takes ∼2.5 min to train and 1 s to predict the test data. 
The LSTM model requires 10 min for training and 8 s for prediction. It is evident that including the data 
history significantly improves the predictions at the cost of extra training/prediction time. All the models 
reported here are run using Google Colab which provides GPU acceleration with 2.20 GHz Intel(R) Xeon(R) 
processor and 16 GB memory.

Comparing the performance of the LSTM models described above with models that use only amplitude or 
velocity features (Figures S2 and S3), we find that exploiting all the extracted ultrasonic features provides the 
most accurate predictions for shear stress (test R2 score of 0.94825). LSTM models that only rely on velocity 
features provide better predictions (test R2 score of 0.93878) than those that only use amplitude features 
(test R2 score of 0.92491). We argue that this is due to the higher sensitivity of wave velocity to shear stress 
than wave amplitude. Shreedharan et al. (2021) recently showed that during the seismic cycle, the changes 
in transmitted wave amplitude are primarily correlated with slip rate while velocity changes are dictated 
by both slip rate and stress changes. Figure S4 compares the output of models that simultaneously predict 
both shear stress and time to failure, which we refer to as multi-output models. The multi-output models 
perform as well as the single-output models. Similar to single-output models, LSTM models show the most 
accurate predictions while MLP predictions outperform XGBoost models. Again, XGBoost model is slowest 
to train and test followed by LSTM and MLP models. The observed similarity between the shear stress and 
time to failure prediction models is expected given that time to failure is deduced from shear stress history. 
However from practical standpoint, it is useful to have models that predict both timing and size of labora-
tory quakes (equivalent to the shear stress drops) simultaneously. Finally, we note that although including 
normalized features (Equation 5) slightly improves the model performances, it is not necessary to obtain 
models with good performance (Figure S5).

Next, we explore the transportability of the models to a distinct data set. To that end, we use the XGBoost 
and LSTM model trained for the original data set (experiment p5270) to make predictions for a second data 
set pertaining to another experiment (p5271) with a different loading stiffness. This process is known as 
transfer learning, where a pre-trained model is used for a different prediction task having similar features 
and target variable(s). For neural network models, this is most easily accomplished using a practice called 
fine-tuning, where the parameters of the pre-trained model are updated by further training on the new ex-
periment using a small number of iterations. This is not possible for XGBoost as its primary goal in training 
is to add new trees that perform an additive correction to the predictions of the previous trees (rather than 
modifying the structure and parameters of the previous trees). When an XGBoost model is further trained 
on new data, additional trees are added that essentially model the difference between the old and new pre-
diction problems.

Experiment p5271 is different from experiment p5270 in that a different machine loading stiffness is ap-
plied. This is realized by using acrylic springs of different cross-sectional areas in series with the shear 
loading piston. Transfer learning is achieved by initializing the model using the parameters associated with 
the model trained on p5270 and then further training the model on p5271. Generally, when we train a 
deep learning model with random initialization, it takes a considerable amount of input data and training 
time until the model converges. However, if we “reuse” a pre-trained model on another data set with sim-
ilar features (experiment p5271), the initial weights associated from the models trained on a source data 
set (experiment p5270) serve as good starting points for further training on the new experiment. Hence, 
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even with less training data and fewer number of epochs i.e., with fewer iterations, we can acquire good 
predictions faster. Here we only use the validation set to determine when to stop training. That is, we use 
validation error after every epoch to decide when to stop training the deep learning models and similarly 
we use validation error to decide how many additional trees to use with XGBoost. We compare the trans-
portability of the deep learning models with the transportability of XGBoost. For XGBoost, the re-training 
process for p5271 data set takes approximately the same amount of time as that for the training on p5270 
data. As shown in Figure 4, the use of transfer learning via fine-tuning speeds up the LSTM training process 
and even with 54% (down from 72%) of the new data reserved for training, a good prediction model with an 
R2 score of 0.92832 is attained. In comparison, the XGBoost model does not transfer as well giving a lower 
R2 score of 0.86723. LSTM model’s superior transferability to a different data set again reveals the power of 
deep learning in capturing the essential features of the data.

Our findings suggest that the features from active source seismic data can accurately predict both the timing 
and size of shear failures. The good performance of the deep learning models is not surprising considering 
the friction evolution laws and the conceptual connection between the state variable and the seismic fea-
tures (Marone, 1998). The rate and state friction law is written in the form:

    0 0 0( / ) ( / )ca ln V V b ln V D (6)

where μ0 is a constant representing the stick-slip at velocity V0, V is the frictional slip rate, θ is a state variable 
and a and b are empirical constants. The state variable θ is commonly interpreted as a characteristic contact 
time, which can be indirectly probed using seismic/ultrasonic data. That is, a longer contact time would 
increase the interfacial stiffness kI, which in turn would influence both wave velocity v and amplitude A 
through the following relationships (Tattersall, 1973):
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Figure 4. Transfer Learning on Experiment p5271 for shear stress prediction. (a) The predictions of XGBoost and LSTM models, which are pre-trained on the 
80% (train and validation sets) of the p5270 experiment data set, are reused as a starting point for predicting shear stress in the p5271 experiment. Even with 
54% data set reserved for training (blue region) and 6% for validation (green region), we can acquire an R2 score of 0.92832 for the test set (pink region). The 
XGBoost model gives R2 score of 0.86723 on the test data. (b) Detailed view of the predictions. LSTM, long short-term memory.
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where T is the transmission coefficient, A0 is a reference amplitude, ρ is the density of the material sur-
rounding the fault and ω = 2πf is the angular frequency. Additionally, to describe the variations in frictional 
strength, the constitutive law in Equation 6 must be coupled with another relation to include elastic inter-
actions between the frictional surfaces of the fault and their surroundings:

d dt k V V
l

 / ( )  (8)

where Vl is the velocity of the shear load point and k is the stiffness of the system. The system stiffness k is a 
summation of the loading apparatus stiffness K and the interfacial stiffness kI, which is related to both wave 
amplitude and velocity following Equation 7. This relation suggests an additional physical underpinning 
for our data-driven models.

In sum, our results demonstrate that deep learning on time-lapse active ultrasonic monitoring data can ac-
curately predict the timing and size of laboratory fault failure. This suggests that active seismic monitoring 
of tectonic faults could in theory yield similar predictions in nature. However, it must be acknowledged that 
such an approach is not readily applicable in nature. Compared to laboratory experiments, instrumentation 
in the field is typically far from the targeted fault. Further, field surveys often probe multiple fault strands 
and fracture zones with complex stress patterns, at far lower frequencies (orders of magnitude, 1–1,000 Hz) 
than the lab-based techniques, all of which could affect the models. Additionally, while multiple seismic 
cycles can be used in the lab for training, it is generally not the case in nature, with one notable exception 
being the small earthquake repeaters that have been detected in great numbers over the last two decades. 
Beyond earthquake repeaters, one possible pathway would be to create ML models based on field data from 
multiple tectonic sites worldwide (Pritchard et al., 2020), as well as laboratory data. Our transfer learning 
approach is a step in this direction.

Finally, the excellent performance of the presented models indicate a strong physical link between the ex-
tracted seismic features and friction constitutive laws. The developed data-driven models may help better 
understand the relation between frictional state variable and seismic data.

4. Conclusions
We demonstrate that machine learning models can predict the timing and/or size of laboratory quakes 
from continuously recorded active source ultrasonic data where deep learning models yield accurate pre-
dictions despite irregular seismic cycles. These models rely on ultrasonic wave velocity, amplitude and 
frequency features. Prediction models that use all the features produce more accurate results than those 
that use velocity or amplitude features alone. The LSTM model, which takes into account the data history 
and captures the time-evolution of the features gives the most accurate predictions. Our transfer learning 
study shows that unlike the XGBoost model, the LSTM model trained on one data set can easily transfer to 
a distinct data set, requiring only a small amount of fine-tuning that significantly reduces the training data 
size and time (compared to training from scratch) while still providing accurate predictions. We conclude 
that deep learning in conjunction with time-lapse active source seismic monitoring data can accurately 
predict the time of occurrence and size of laboratory quakes. This finding could have important impli-
cations for active seismic monitoring of carbon storage sites as well as geothermal and unconventional 
reservoirs. Additionally, these models can provide insight into the connection between seismic data and 
friction constitutive laws.

Data Availability Statement
The data used in this study was collected as part of US Department of Energy grants DE-SC0020512 and 
DE-EE0008763 to C. Marone. Raw data are available from the Zenodo repository (https://doi.org/10.5281/
zenodo.4273891) or by contacting S. Shreedharan.
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