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cLaboratoire de Signaux et Systèmes (CNRS, Centrale-Supelec, Université
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Abstract

In this paper, a new distributed protocol is proposed to force consensus
in a discrete-time network of scalar agents with an arbitrarily assignable
convergence rate. Several simulations validate the performances and the
improvements with respect to more standard protocols.

Keywords: Linear systems; Consensus control and estimation; Network
analysis and control.

1. Introduction

Numerous problems in engineering and beyond can be lead to enforcing
consensus in a network of discrete-time dynamics as, for instance, controlling
multi-agent systems under sampled-data communication [1], modeling opin-
ion dynamics and social networks [2, 3], non-cooperative or selfish routing
in network systems [4], identification and filtering in, among many, sensor
networks [5]. In all those cases, the problem consists in defining a suitable
distributed interconnection protocol driving the dynamics of all agents of the
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network to a shared behavior, commonly referred to as consensus [6]. In gen-
eral, such an interconnection is performed by emulating the continuous-time
counterpart. Despite such a rule is simple to implement, it guarantees con-
sensus of the network only under very restrictive conditions on the coupling
strength (the gain weighting the influence of the network on each agent).
As a matter of fact, even for networks of discrete-time scalar agents, the
standard connection protocol guarantees convergence to an agreement state
only if the coupling is small enough with respect to the network size [7, 8].
Accordingly, these results provide conservative values for the gain that are
generally inversely proportional to either the smallest non zero eigenvalue of
the Laplacian (which must be known to all agents) or, alternatively, the num-
ber of agents involved in the network. As a consequence the coupling gain
decreases with the size of the network affecting both the convergence rate to
consensus, slowed down significantly for large networks, and the amount of
information the agents need to exchange before reaching an agreement. A
few solutions to this problems involve the introduction of suitable weights
over each edge so to make the corresponding discrete Laplacian stable. How-
ever, in that case, the consensus value is altered by the choice of the weights
and might be thus significantly different from the one that one would have
in continuous time. In addition, in that case it is assumed that each node
can indeed separate and modify the contribution of the information coming
from each neighbors, that might not be possible in practice.

In such a context, this paper aims at designing a new distributed protocol
overcoming the aforementioned issues for a network of discrete-time scalar
dynamical agents.

A first step toward this goal is in [9], where a new coupling control is
provided for discrete-time networks forcing consensus for all the coupling
strength values that can be then arbitrarily set. However, despite well-
performing in the nominal cases, the proposed protocol suffered from two
main issues: (i) it cannot be implemented in a distributed manner as the
coupling protocol is implicitly defined; (ii) the convergence rate cannot be
fixed arbitrarily as directly proportional to the coupling gain.

Starting from this result, the contribution of this paper is twofold. First,
the centralized protocol in [9] is improved by allowing to fix the convergence
rate to consensus arbitrary fast as directly proportional to the coupling gain.
However, such a protocol is implicitly defined by a linear equality whose
solution, defining the control action, cannot be instantaneously and indepen-
dently computed by each node. Accordingly, as second and major contribu-
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tion, we propose a distributed version of the aforementioned protocol allowing
to approximately solve, in an arbitrary number of steps, the linear equation
that defines the coupling input. The resulting design approach is reminis-
cent of a time-scale separation procedure typically employed in distributed
filtering [10, 11, 12]. Roughly speaking, two consensus processes are nested
over a time window of length γ, so resorting to a multi-rate consensus con-
troller. The local control at step t, ui(t), is computed via an intra-consensus
forward computation over a time window of length γ. At all steps t+τ (with
τ = 1, . . . , γ), each agent computes an approximate solution (say vi(t, τ))
to the equation defining the consensus protocol only based on the available
(local) information and then sends it to the corresponding neighbors. At
step t + γ, the actual control is deduced as the result of the approximating
consensus phase after γ steps, i.e., ui(t) = vi(t, γ). The so deduced controller
is ensured to enforce consensus for all values of γ with performance of the
centralized implementation recovered as γ increases.

The rest of the paper is organized as follows. In Section 2 the problem
is formulated with the centralized and decentralized solutions presented in
Section 3. Simulations are given in Section 4 with concluding remarks and
perspectives in Section 5.

Notations. C, R and N denote the set of complex, real and natural num-
bers including 0 respectively. | · | ∈ R denotes, depending on the argument,
either the cardinality of a set S or the absolute value of a complex number
λ ∈ C. I and 0 denote respectively the identity and zero matrices of suitable
dimensions. I denotes the identity matrix of suitable dimension whereas
0 denotes zero matrix (of suitable dimension) and the zero scalar. 1c de-
notes the c-dimensional column vector whose elements are all ones. Given a
matrix A ∈ Rn×n, σ{A} ⊂ C is its spectrum, ∥A∥ its norm and ρ(A) its spec-
tral radius. A matrix is said non-negative if all its entries are non-negative.
Given x : t 7→ x(t) with t ∈ N and x(t) ∈ Rn, we denote for simplicity
x = x(t) and x+ = x(t + 1). For a scalar real-valued function H : Rn → R,
∆H(x) = H(x+)−H(x) is the corresponding one step increment.

2. Problem statement and recalls

2.1. Recalls on graph

We consider an unweighted directed graph (or digraph for short) G =
(V , E) with |V| = N , E ⊆ V × V . The set of neighbors to a node i ∈ V
is defined as Ni = {j ∈ V s.t. (j, i) ∈ E}. For all pairs of distinct nodes
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i, j ∈ V , a directed path from i to j is defined as i ⇝ j := {(r, r + 1) ∈
E s.t. ∪ℓ−1

r=0 (r, r + 1) ⊆ E with 0 = i, ℓ = j and ℓ > 0}. The reachable set
from a node i ∈ V is defined as R(i) := {i} ∪ {j ∈ V s.t. i ⇝ j}. A set R
is called a reach if it is a maximal reachable set, that is, R = R(i) for some
i ∈ V and there is no j ∈ V such that R(i) ⊂ R(j). Since G possesses a finite
number of vertices, such maximal sets exist and are uniquely determined
by the graph itself. Denoting by Ri for i = 1, . . . , µ, the reaches of G, the
exclusive part of Ri is defined as Hi = Ri\∪µ

ℓ=1,ℓ ̸=iRℓ with hi = |Hi|. Finally,
the common part of G is given by C = V\ ∪µ

i=1 Hi with cardinality c = |C|.
The Laplacian matrix associated to G is given by L = D − A with D ∈

RN×N and A ∈ RN×N being respectively the in-degree and the adjacency
matrices. L possesses one eigenvalue λ = 0 with both algebraic and geometric
multiplicities coinciding with µ, the number of reaches of G [13, Corollary 1].
In the following, it is assumed that µ = 1, that is the network only possesses
one reach.

2.2. Motivation and problem formulation

Consider a multi-agent system exchanging information via a communica-
tion digraph G = (V , E) with each vertex i ∈ V being a dynamical unit of
the form

x+
i =xi + ui (1)

with xi, ui ∈ R and i = 1, . . . , N . When coupling all agents via the standard
protocol [7, 6]

ui = −κl

∑
νj∈N (νi)

(xi − xj) (2)

consensus is achieved only if the coupling gain κl > 0 is small enough. More
precisely, denoting the agglomerate vectors

x =col{xi, i = 1, . . . , N} ∈ RN

u =col{ui, i = 1, . . . , N} ∈ RN .
(3)

the network dynamics

x(t+ 1) =(I − κlL)x(t) (4)
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possesses dynamic matrix I−κlL with one eigenvalue in λd = 1 with unitary
geometric multiplicity; however, all agents converge to a suitable consensus
xs ∈ R only if all other eigenvalues lie within the open unit circle, that is
when

κl ≤
1

λmax

, λmax = max
λ>0

{λ ∈ σ{L}}. (5)

Accordingly, if κl is not small enough consensus might be lost and the network
might be unstable. In addition, even in the best case scenario (when consen-
sus is preserved), because κl should be small, the exchange of information is
significantly filtered by all agents so notably affecting both the convergence
rate to consensus and the amount of information that must be exchanged.
Finally, λmax might not be known by all agents and, even if upper bounds
can be computed, the transient performances might not be acceptable.

In [9], a new consensus protocol solving part of the issues above has been
proposed. However, the proposed solution is centralized and cannot assign
an arbitrary convergence rate to consensus.

In this paper, we try to make a step farther investigating and solving the
problem of designing, if any, a local and distributed control law of the form

ui(t) = κφi(xi(t), col{xj(t), uj(t− 1) s.t. j ∈ Ni})

making all agents asymptotically converge to some consensus xs ∈ R for all
κ > 0; namely, as t → ∞

x(t) → 1Nxs, (6)

for suitably defined consensus value xs ∈ R.

3. Main result

3.1. A refined centralized consensus protocol

First, we refine and extend the centralized algorithm proposed in [9] where
it has been proved that a direct input dependence is necessary on the output
that all agents exchange through the network.

Theorem 3.1. Consider a network of N discrete-time agents of the form
(1) with communication digraph G with only one reach, i.e. the Laplacian L
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has a zero eigenvalue with multiplicity 1. Then, for all i = 1, . . . , N the local
control law

u = −κ
(
IN + κgL

)−1
Lx (7)

whose components are solutions to

ui =− κ
∑
j∈Ni

(yi − yj) (8a)

yi =xi + gui (8b)

guarantee consensus for all κ > 0 and g ≥ 1
2
; namely, for the network dy-

namics

x(t+ 1) = Θc(κ, g)x(t) (9)

Θc(κ, g) =
(
IN + κgL

)−1(
IN + κ(g − 1)L

)
(10)

as t → ∞, one gets that (6) holds with

xs = v⊤1 x(0) (11)

with v⊤1 ∈ RN such that v⊤1 L = 0 and v⊤1 1N = 1.

Proof: The proof follows along the lines of [9, Thorem 4.1] noticing that
for all choices of κ, g ∈ R, the eigenvalues of Θc(κ, g) are given by

λi
d(κ, g) =

1 + κ(g − 1)λi

1 + κgλi
, for all λi ∈ σ{L}. (12)

Thus, Θc possesses an eigenvalues in λd = 1 with multiplicity 1, correspond-
ing to the eigenvalue λ = 0 of the Laplacian L. In addition, all other eigen-
values are in the open unit circle if and only if κ > 0 and g > 1

2
. As a

consequence, the center subspace associated to the eigenvalue 1 yielded by

Vc = ker{L} = span{1N}

is attractive and coincides with the consensus subspace. Introducing now(
xs

xr

)
= v⊤1 x =

(
V ⊤
0

V ⊤
r

)
x (13)
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with

V −⊤ = Z =
(
1N Zr

)
V ⊤LZ =

(
0 0
0 Λr

)
, Λr = diag{σ{L}\{0}}

one gets that

V ⊤Θc(κ, g)Z =

(
1 0
0 Λr

d

)
Λr

d(κ, g) = diag{σ{Θc(κ, g)}\{1}}.

In detail, xs ∈ R is the projection of the trajectories onto Vc, whereas xr ∈
RN−1 is the orthogonal component that converges to zero, by construction
of κ and g. When consensus is achieved (i.e., x ∈ Vc), one gets xr ≡ 0 and

x = 1Nxs

so that the proof follows. ■

Remark 3.1. The output (8b) that all agents exchange through the network
is the one making all agents Input-Feedforward Passive [14]; i.e., fixing the
storage S(xi) =

1
2
x2
i one gets the dissipation inequality

∆S(xi) ≤ uiyi − (g − 1

2
)u2

i . (14)

Accordingly, as g > 1
2
, ui 7→ yi is strictly passive and passive for g = 1

2
.

Remark 3.2. When fixing g = 1
2
, the consensus protocol proposed in [9]

is recovered. However, in this case, one cannot fix the convergence rate to
consensus arbitrarily small via κ > 0. As a matter of fact, one cannot
compute the gain κ to make all eigenvalues of Θc(κ,

1
2
)

λi
d(κ,

1

2
) =

1− κ
2
λi

1 + κ
2
λi
, for all λi ∈ σ{L}.

arbitrarily close to 0. On the other side, the value of the largest eigenvalue
(in module) can be minimized depending on the particular spectrum of L,
which must be thus known to all nodes apriori.
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Figure 1: Plot of the farthest eigenvalue of Θc from 0 for increasing values of κ > 0 and
g ≥ 1

2 .

Remark 3.3. When fixing g = 1 in the consensus protocol (8), one can mod-
ulate the convergence rate to consensus arbitrarily via κ > 0 independently
on the size of the network. Precisely, the eigenvalues of Θc(κ, 1)

λi
d(κ, 1) =

1

1 + κλi
, for all λi ∈ σ{L}

are as close to 0 (in module) as κ increases; namely, trajectories of the
network (9) converge to the multi-consensus with a velocity that is directly
proportional to κ > 0. With this in mind, contrarily to the case [9, 6], one
can assign the convergence rate arbitrarily small picking κ → ∞, with no
knowledge of the spectrum of the Laplacian. For a randomly generated graph
of 10 nodes, Fig. 1 depicts the location of the slowest eigenvalue of Θc(κ, g)
for increasing values of both κ and g.

The coupling rule (8) defining the consensus control (7) is implicitly de-
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fined and, in general, cannot be computed (at least statically) in a fully
distributed manner. As a matter of fact, at each step k ∈ N, the ith agent
needs the input uj of all its neighbors for computing the corresponding ui so
creating a bottleneck that cannot be solved locally.

The feedback (7) can be rewritten as

u =− κW (κ, g)Lx (15)

W (κ, g) :=(IN + κgL)−1 (16)

with the termW (κ, g)L being a new weighted Laplacian. This new Laplacian
is associated to a new dummy graph in which new (and weighted) edges
appear within connected components due to the presence of the weighting
matrix W (κ, g) which depends on the original Laplacian L. Such a matrix
cannot be computed locally by each agent unless all of them possess exact
knowledge on the original topology of G.

3.2. A distributed implementation of the new protocol

In this section we study the problem of a distributed (dynamic) imple-
mentation of the coupling rule defined by (8). The problem is not trivial,
as it is evident for general reasons. Since, as remarked in Remark 3.3, (8)
allows for an arbitrary rate of convergence to consensus, it follows that its
distributed implementation would yield distributed practical convergence in
any finite number of steps, including 1. However, this is not possible, since
the speed of the information trough a graph with discrete-time communica-
tions is obviously limited.

One possible way to overcome this conceptual limitation is to separate
the time-scale of the information exchange and of the system evolution by
resorting to a multi-rate controller. The idea of multiple information ex-
changes per time unit is not new and it has been used extensively in the field
of distributed filtering [10, 11]. The coupling rule defined by (8) reads

ui = −κ
∑
j∈Ni

(xi − xj)− gκ
∑
j∈Ni

(
ui − uj

)
. (19)

By solving with respect to ui one gets, with di = |Ni|,

ui = − κ

1 + gκdi

∑
j∈Ni

(xi − xj) +
gκ

1 + gκdi

∑
j∈Ni

uj, (20)
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Approximate γ steps implementation of (8) at node i.

1: At each time t ≥ 0, send xi(t) to the neighbors.

2: Receive xj(t) from the neighbors, j ∈ Ni, and compute, with di = |Ni|,

vi(t, 0) = − κ

1 + gκdi

∑
j∈N(i)

(
xi(t)− xj(t)

)
(17)

3: For h = 0, . . . , γ − 1 do:

3.1: Send vi(t, h) to the neighbors

3.2: Compute

vi(t, h+ 1) = vi(t, 0) +
gκ

1 + gκdi

∑
j∈Ni

vj(t, h) (18)

4: Set ui(t) = vi(t, γ).

Figure 2: Distributed approximate multi-step implementation of (8)
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where the first term of the right-hand is immediately available at each time
t, whereas the second one can be approximated by a truncated fixed-point
iteration with γ ∈ N steps. The resulting approximate distributed imple-
mentation of (8) is summarized in Fig. 2.

Theorem 3.2. If the graph G has exactly one reach, then at each node i and
time t the sequence vi(t, γ) generated by (18) is such that, for all κ, g > 0
and γ ∈ N,

lim
γ→∞

vi(t, γ) = ui(t), (21)

with ui(t) the i-th component of u = −κ
(
IN + κgL

)−1
Lx.

Proof: Introduce the matrices

D̃ =(IN + κgD)−1 (22)

G =(IN + κgD)−1κgA = κgD̃A. (23)

G is non-negative with ρ(G) < 1, i.e. G is Schur. G is non-negative because
D̃, A are non-negative. Since each row i of G is obtained from the corre-
sponding row of A divided by 1 + κgdi, an application of the Gerschgorin
criterion [15] to the rows of G allows to conclude that ρ(G) < 1 for any
positive values of κ and g. In fact, Gii = 0 is the center of the circles and the
radius is

∑
j ̸=i Gij = κgdi/(1 + κgdi) < 1, that implies ρ(G) < 1. In vector

form (18) reads

V (t, γ) = −κ
(
IN +G+ · · ·+Gγ

)(
I + κgD

)−1
Lx(t). (24)

From L = D − A we obtain(
IN + κgL

)
=IN + κgD − κgA = D̃−1(IN − κgD̃A)

=(IN + κgD)(IN −G) (25)

one gets

V (t, γ) = −κ

γ∑
h=0

Gh
(
IN + κgL

)−1
Lx(t).

Since when ρ(G) < 1 it holds that (IN − G)−1 =
∑∞

i=0G
i one concludes, as

γ → ∞,

V (t, γ) → −κ
(
IN + κgL

)−1
Lx(t)
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that is exactly the centralized control (7). ■
Theorem 3.2 shows that with a sufficient number of consensus steps for

time unit, the proposed approximate coupling recovers the one defined by the
equation (7) with a desired approximation order. In particular with g = 1 it
is possible to choose any rate of convergence to the consensus value.

In practice, it is reasonable to ask if the consensus can be reached in a
finite number of consensus steps γ. We therefore investigate the consensus
properties of the control ui(t) = vi(t, γ). The following result is instrumental
to this goal.

Lemma 3.1. With the control law ui(t) = vi(t, γ) the network dynamics
takes the form

x(t+ 1) = Θd(κ, g, γ)x(t) (26)

with

Θd(κ, g, γ) = IN − κ(IN −Gγ+1)W (κ, g)L (27)

and where W (κ, g) = (IN + κgL)−1 in (16) is non-negative.

Proof: The proof follows from (24), (25) and
∑γ

h=0G
h = (IN −Gγ+1)(IN −

G)−1. We get

V (t, γ) = −κ
(
I −Gγ+1

)
W (κ, g)Lx(t) (28)

with G as in (23) and W (κ, g) as in (16). Thus, x(t + 1) = x(t) + u(t) can
be written

x(t+ 1) =
(
IN − κ

(
IN −Gγ+1

)
W (κ, g)L

)
x(t)

=Θd(κ, g, γ)x(t). (29)

Finally, (25) impliesW = (IN−G)−1D̃ and since both (IN−G)−1 =
∑∞

h=0G
h

and D̃ are non-negative, W is non-negative too. ■

Notice that by using (15) the matrix Θc(κ, g) in (10) can be written
Θc = IN − κWL and, since G is Schur, limγ→∞ Θd(κ, g, γ) = Θc(κ, g), in
accordance with Theorem 3.2.

The following result specifies conditions allowing to enforce consensus
under the distributed approximation in (18) with no consensus iteration (i.e.,
when γ = 0).
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Lemma 3.2. When κg ≥ 1 and the graph contains only one reach, the con-
trol law ui = vi(t, 0) (i.e. γ = 0) makes the agents converge to the same
consensus value.

Proof: From (24), V (t, 0) = −κD̃Lx(t) and (27) reads

Θd(κ, g, 0) = IN − κD̃L. (30)

Θd(κ, g, 0) is row-stochastic, i.e. Θd(κ, g, 0)1N = 1N . Moreover, if κg ≥ 1
then Θd(κ, g, 0) is non-negative. An application of the Gerschgorin circles
to the rows of Θd(κ, g, 0) yields ρ(Θd(κ, g, 0)) ≤ 1. Since it is immediate
to verify that λ1 = 1 ∈ σ{Θd(κ, g, 0)} with right eigenvector u1 = 1N we
have ρ(Θd(κ, g, 0)) = 1. When the graph is strongly connected, Θd(κ, g, 0)
is irreducible and, by the presence of at least a non zero element on the
diagonal, primitive [15]. Consequently, λ1 = 1 is the only eigenvalue on the
unit circle and it has algebraic and geometric multiplicity 1 by the Frobenius-
Perron theorem. Thus, x(t) tends to the eigenspace of λ1, that is, to a vector
of the form 1Nxs, xs = v⊤1 x(0) ∈ R, where v1 is the corresponding left
eigenvector of Θd(κ, g, 0) for λ1 = 1 satisfying v⊤1 1N = 1. When the graph
is weakly connected and with one reach only, the multiplicity of λ1 = 1 is
still 1 (see [16, Theorem 3.2]). In this situation, the set of roots of the graph
form a strongly connected sub-graph and therefore they reach consensus.
The consensus of the remaining nodes of the graph follows from a simple
partioning of L between root and non-root nodes (see [17, Section 2]). ■

Theorem 3.1 and Lemma 3.2 show that the distributed control (18) on
weakly connected digraphs with only one reach (i.e. µ = 1) guarantees
consensus for, respectively, γ = ∞ and γ = 0 consensus iterations. Our
main result, here below, states that this property holds for any number of
consensus iterations and for all γ ≥ 0, κ > 0, g ≥ 1.

Theorem 3.3. If the graph G has exactly one reach, then the control ui(t) =
vi(t, γ) generated by (18) makes the agents converge to the same consensus
value xs ∈ R for all γ ≥ 0, κ > 0, g ≥ 1.

Proof: We know from Lemma 3.1 that the collective dynamics of the nodes
is x(t + 1) = Θd(κ, g, γ)x(t) with Θd(κ, g, γ) given in (27), that can be re-
written as

Θd(κ, g, γ) =IN − κW (κ, g)L+ κGγ+1W (κ, g)L

=Θc(κ, g) + κGγ+1W (κ, g)L. (31)
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Let W = W (κ, g) for concision. We now prove that W = IN − κgWL. In
fact,

IN − κgWL =W (W−1 − κgL) = W · IN = W.

Consequently, κWL = (IN −W )/g and

Θc(κ, g) =IN − κWL = IN − 1

g
(IN −W )

Replacing into (31) yields

Θd(κ, g) = IN − 1

g
IN +

1

g
Gγ+1 +

1

g

(
IN −Gγ+1

)
W. (32)

We notice that, for g ≥ 1, IN − 1
g
IN > 0 and Gγ+1 > 0 because G is positive.

Finally, (
IN−Gγ+1

)
W =

γ∑
h=0

Gh(IN−G)W =

γ∑
h=0

GhD̃ ≥ 0, (33)

where we have used (IN − G)W = D̃ that descends from (25), and D̃ ≥ 0.
We can now conclude Θ(κ, g, γ) ≥ 0 whenever g ≥ 1, κ > 0, γ ≥ 0. Since
Θ(κ, g, γ)1N = 1N we can repeat the same steps as in Lemma 3.2 to conclude
that ρ(Θ(κ, g, γ)) = 1, with exactly one eigenvalue λ1 = 1 on the unit circle,
and this guarantees consensus. ■

4. Simulations

In this section, we report the results of the proposed algorithm (in both
the centralized and distributed implementation) when applied to different
networks. Performances are compared with respect to the standard discrete-
time protocol (2) when fixing the coupling gain as the largest value guar-
anteeing that (5) holds. For evaluating performances, we use the following
parameters: the M%-consensus settling time tMs defined as the minimum
amount of steps that is required for the trajectories of the network to reach
M% of the corresponding consensus value. For (2), and the proposed cen-
tralized algorithm in Proposition 3.1, tMs provides an estimate of the mini-
mum number of iterations that are required for consensus to be achieved; for
the distributed implementation in Theorem 3.3, such a quantity is given by
(γ + 1)tMs , with γ ∈ N as in (28) and M = 10−1.
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Figure 3: Network of N = 100 scalar agents over an undirected graph.

In Fig. 3, an undirect network of N = 100 is simulated when fixing,
for the proposed algorithm, κ = 10 and γ = 1. Despite the amount of
agents, the network controlled via the centralized algorithm converges to
consensus in three iterations (and t10

−1

s = 3); the distributed implementation
yields t10

−1

s = 10 so getting convergence with good performances even when
γ = 1 and, in this case, in exactly 20 time steps. Those performances are
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Figure 4: Network of N = 15 scalar agents over a digraph.

far better than the ones exhibited by the standard consensus algorithm for
which t10

−1

s = 100.
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In Fig. 4, the simulations are performed for a directed network of N = 15
agents. Similar considerations as in the previous case hold. In particular,
fixing κ = 1 consensus is achieved in 14 iterations in exactly 20 time steps; the
corresponding distributed implementation with γ = 1 requires 148 iterations
to converge to consensus (with t10

−1

s = 74). Such a result is notably better
than the one provided by the standard algorithm for which approximately
t10

−1

s = 298. We underline that, as highlighted in Fig. 4, performances
of the distributed algorithm improve (over the big-consensus steps) as γ
increases. In that case, the distributed algorithm approaches the nominal
performances (i.e., the ones under (7)) for finite and reasonable values of
γ at the price of larger computational delays introduced by the consensus
steps. Summarizing, performances achieved by the distributed algorithm are
always far better than the usual one even when γ is small and fixed to 1, the
worst case scenario.

Remark 4.1. κl is in general fixed smaller and inversely proportional to
the size of the network [7] . However, in our specific case, we have fixed
it as the minimal value guaranteeing that network dynamics (2) is critically
stable with, thus, an attractive consensus. This choice has been performed to
compare the solution we propose with the most favorable implementation of
the algorithm in the literature.

5. Conclusions and perspectives

The centralized consensus protocol proposed in [9] has been generalized
to assign the convergence rate to consensus arbitrarily fast, independently
on the size of the network. Then, a distributed implementation of such an
algorithm is proposed. It is based on a multi-rate forward computation over
an arbitrary number of consensus steps. Future works include the extension
of this protocol to deal with multi-consensus of heterogeneous networks in
discrete time in presence of delays too [18]. Work is progressing to allow
each agent to fix a different value of the weighting parameter in (8a) possibly
adopting adaptive control strategies.
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