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Nucleation in systems with a metastable liquid-gas critical point is the prototypical example
of a two-step nucleation process, in which the appearance of the critical nucleus is preceded by
the formation of a liquid-like density fluctuation. So far, the majority of studies on colloidal and
protein crystallization have focused on one-component systems, and we are lacking a clear description
of two-step nucleation processes in multicomponent systems, where critical fluctuations involve
coupled density and concentrations inhomogeneities. Here, we examine the nucleation process of
a binary mixture of patchy particles designed to nucleate into a diamond lattice. By combining
Gibbs-ensemble simulations and direct nucleation simulations over a wide range of thermodynamic
conditions, we are able to pin down the role of the liquid-gas metastable phase diagram on the
nucleation process. In particular, we show that the strongest enhancement of crystallization occurs
at an azeotropic point with the same stoichiometric composition of the crystal.

INTRODUCTION

The ability to guide dilute solutions of properly de-
signed colloidal particles to spontaneously turn into spe-
cific ordered structures is crucial for a large-scale appli-
cation of the self-assembly paradigm [1, 2]. One relevant
example of this strategy is provided by the DNA-origami
nanotechnology, nowadays a mature methodology which
allows the design and production of nanometric parti-
cles with controllable shape and interactions [3]. It has
been demonstrated that these particles, once properly de-
signed, are able to self-assemble into ordered crystalline
lattices even starting from quite dilute conditions [4, 5],
suggesting the exploitation of complex nucleation path-
ways that are still not fully understood.

One such pathway is the so-called two-step nucle-
ation pathway, in which a metastable gas-liquid transi-
tion can spontaneously generate local regions with high
particle concentration, thus greatly enhancing the nucle-
ation rate [6–17]. In the last decade, this process has
been observed in simple systems that are either one-
component systems, or ionic compounds: examples in-
clude hard particle fluids [18], colloids [11, 19, 20], salt
solutions [21], calcium carbonate [22, 23]. Importantly,
two-step processes play an important role in the crys-
tallization of globular proteins [19, 24–27]. For colloidal
particles, globular proteins and non globular proteins, the
short-range nature of the inter-particle interaction gener-
ates a metastable gas-liquid coexistence which provides a
mechanism for locally enhancing the density and trigger-
ing crystal formation. Spinodal decomposition and/or
liquid-phase nucleation are equally active mechanisms.
In addition, ten Wolde and Frenkel [19] have called at-
tention on the possibility to exploit critical fluctuations
as a mechanism for locally increasing density. In all these
cases, a two-step nucleation process takes place, the first

step being the local increase of density, and the second
the formation of a crystal nucleus in one or several of
such enhanced density regions.

The crystallization of specific crystal structures is not
devoid of problems [28, 29]. Kinetic pathways can drive
the assembly towards amorphous aggregates, or crystals
different from the desired one. To address this last case,
several strategies have been suggested, examples include:
optimization of preparation protocols [30–32], the accu-
rate design of the interparticle potential [29, 33–40], or
geometrical approaches where the inter-particle interac-
tions are made to match the geometric features of the
target structure [41–48]. Rather than increasing the com-
plexity of the inter-particle interactions, another success-
ful strategy is to increase the number of building blocks.
When the building blocks are modeled as patchy colloids,
i.e. particles with specific directional interactions, the
process of designing the bonding rules to assemble one
specific crystal (and selectively avoid the formation of
any other competing structure) can be turned into a set
of boolean satisfiability (SAT) equations, which can be
solved using modern SAT solver algorithms. This strat-
egy, named SAT-assembly, was shown to lead to the suc-
cessful assembly of several complex target structures, in-
cluding the coveted colloidal diamond crystal [49–51].

Compared to the one-component case, crystal forma-
tion and two-step pathways in multi-component systems
have received much less attention. In these systems, com-
position fluctuations couple with density fluctuations and
it is not a priori clear if the stochiometric properties of the
spontaneously generated liquid phase are consistent with
the corresponding properties of the selected crystal. Even
when the components are fully miscible in the solid phase
(such as Pd and Ag), it was shown that the competition
between demixing and crystallization has a big impact
on the growth process, causing large variations in the ra-
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dial composition of the nuclei [52]. Multi-component sys-
tems also display thermodynamic behaviour that is not
found in one-component systems, such as lines of binary
critical points, azeotropic points, re-entrant condensa-
tion, etc. Experimental studies have already shown that
phase separation in multi-component systems does not
preserve the original ratio between the different species
and that the phase behaviour strongly depends on the
components ratio [53–55], but it is yet unclear whether
some of the peculiar multi-component mixture features
can affect crystal nucleation.

In this manuscript we use extensive computer simula-
tions of a binary mixture of patchy particles that self-
assembles in a diamond crystal with fixed stoichiometric
ratio, with the goal of relating the phase behaviour of the
mixture with its crystallization pathway. The manuscript
is organized as follows. In the Methods section we intro-
duce the N2c8 binary mixture and briefly summarize its
phase behaviour. Numerically, we obtain the phase di-
agram with Gibbs ensemble simulations, while the crys-
tallization behaviour is observed via direct Monte Carlo
simulations. We make use of biased moves to acceler-
ate diffusional times and observe crystallization for state
points where the free-energy barrier can be overcome by
thermal fluctuations during our simulation times. The
Results section will superimpose the metastable phase
diagram with histograms of the nucleation rate, confirm-
ing the two-step nucleation pathway and allowing us to
study the relation between demixing and crystallization.
In the final section we put our results in the wider con-
text of Empty Liquids, and argue that while the two-step
nucleation pathway is an effective strategy to overcome
diffusional barriers, azeotropic points are the key to lower
compositional barriers.

METHODS

We choose patchy particles as our model system: they
describe systems with a hard-core isotropic repulsion and
attractive directional interactions. Experimentally, the
anisotropic interactions can be obtained either via the
shape [56] or via chemical patterning of the surface [57–
61], for example by attaching single strands of DNA to
well-defined positions on their surface [61–66]. We repre-
sent them computationally via the Kern-Frenkel [67, 68]
potential, in which hard-core spherical particles of diam-
eter σ interact with a square well potential VSW of depth
ε and width δ, modulated by a term f depending on the
relative orientation of the particles: in particular, two
patchy particles can establish a bond if their centers are
at distance between σ and σ+ δ, and if the line connect-
ing their centres intersects the volume of both patches
involved in the bond. In the following we measure en-
ergy in units of the square-well depth (ε) and distances
in units of the patchy particle diameter (σ). Mathemati-

cally, the interaction between particle i and j is described
by

V (rij , r̂α,i, r̂β,j) = VSW (rij)f(rij , r̂α,i, r̂β,j) (1)

where r̂α,i (r̂β,j) indicates the position of patch α (β) of
particle i (j), and

f(rij , r̂α,i, r̂β,j) =

Υ(α,i) (β,j) if
r̂ij · r̂α,i > cos (θmax)

r̂ji · r̂β,j > cos (θmax)

0 otherwise

(2)
Υ(α,i) (β,j) is the (color) interaction matrix element and

is equal to 1 if patch α on particle i interacts with patch
β on particle j, and 0 otherwise. Υ is a matrix which
encodes the interactions between both identical and dis-
tinct species. Finding the interaction matrix that will
guide the system to self-assemble into a desired struc-
ture can be cast into a inverse self-assembly problem,
whose solution can be found with the SAT-assembly al-
gorithm [49, 50].

We run two types of simulations: Gibbs-ensemble sim-
ulations to determine the liquid-gas coexistence line, and
NVT Monte Carlo simulations in an extensive range of
densities (ρ) and relative concentrations (x, i.e. the frac-
tion of species 2).

We fix the parameters of the Kern-Frenkel potential to
cos (θmax) = 0.98 and δ = 0.2, for which nucleation is
readily accessible within simulation times. Moreover, di-
rect simulations take advantage of AVB biased moves [69]
to accelerate the dynamics of bond-formation and bond-
breaking. Both methods have been described in more de-
tail in Ref. [70]. We confirmed with independent simula-
tions that nucleation events are observed also in unbiased
simulations, albeit requiring longer simulation times.

Our goal is to study the nucleation process in multi-
component mixtures such as the binary mixture de-
scribed by the N2c8 interaction matrix (so called because
it has 2 species and 8 colored patches) which was origi-
nally introduced as a SAT-assembly solution to the prob-
lem of assembling the cubic diamond crystal, while at the
same time avoiding the hexagonal diamond crystal [51].
The ability to suppress a competing polytype, thus avoid-
ing the formation of stacking faults, makes this mixture
a candidate for the experimental realization of photonic
crystals. The N2c8 solution is graphically depicted in
Fig. 1: two patchy particles species differing in the patch
types (colors); patches with matchable colors that can
bind with each others are reported in the bottom part of
the table. This mixture crystallizes in the diamond-cubic
phase, and notably cannot form the hexagonal diamond.

We highlight that the results presented in the following
section for the N2c8 solution are general; we focus on this
binary mixture since it is a meaningfull example and since
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FIG. 1. 3D representation of the azeotropic N2c8 solution
SAT-designed to self-assembly a cubic diamond crystal lat-
tice. It consists of two patchy particles species (N2), the
grey and the red one differing in the patch types. The patch
types/different colors are eight (c8) referred to by the letters
A through H. Patches that can bind with each other are re-
ported in the bottom part of the table.

we already know its phase behaviour. Indeed the phase
diagram of the mixture was studied within Wertheim
thermodynamic perturbation theory in Ref. [70], which
results we summarize in Fig. 2. The N2c8 mixture has
a reentrant binary critical point line, which goes to zero
temperature and pressure as the pure components are ap-
proached. This behaviour is immediately apparent from
the color design of Fig. 1, where it can be seen than each
species can form only two intra-species bonds, so when
the system is made of only one component it can only
form linear chains, and thus does not have a critical point
at any finite temperature [71]. The non-ideal nature of
the mixture manifests itself in a line of azeotropic points
at x = 1/2. Along such line the system always demixes
at the same composition, i.e. the liquid phase will have
an equimolar composition of both species. As we will see,
this is particularly relevant for the nucleation process, as
the crystal also has an equimolar composition. In the re-
sults section we will look at the interplay between phase
separation and nucleation.

To identify crystal particles we use local bond-order
analysis [72]. A (2l + 1) dimensional complex vec-
tor (ql) is defined for each particle i as qlm(i) =

1
Nb(i)

∑Nb(i)
j=1 Ylm(r̂ij), where we set l = 12, and m is

an integer that runs from m = −l to m = l. The
functions Ylm are the spherical harmonics and r̂ij is the
normalised vector from particle i to particle j. The
sum goes over the first Nb(i) = 16 neighbours of par-
ticle i. We then introduce a spatial coarse-graining step

Qlm(i) = 1
Nb(i)

∑Nb(i)
k=0 qlm(k) [73]. The scalar product

P

T

x

CP

CP

AP

1

0.5

P=cost

FIG. 2. Schematic PTx phase diagram of the N2c8 solution.
The blue line is the binary critical point line which goes to
(P, T ) → 0 for x → (0, 1). The red line, in the plane x =
0.5, represents the line of azeotropic points. The shaded area
represents the coexistence region on a isobaric surface.
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FIG. 3. SAT-designed N2c8 binary mixture density-
concentration phase diagrams for different temperatures T
expressed in unit of kB/ε; the coexistence region shrinks by
increasing temperature. Each binodal curve is obtained by
Monte Carlo simulations with AVB moves in the Gibbs en-
semble [69]. In particular for temperatures T = 0.08 and
T = 0.09, 500 particles were simulated while for tempera-
tures T = 0.097 and T = 0.1, 1000 particles were considered.
Dashed lines are rectilinear diameter lines indicating where
critical points are located.

between Q12,m of two particles is defined as Q12(i) ·
Q12(j) =

∑
mQ12,m(i)Q12,m(j). If the scalar product

(Q12(i)/|Q12(i)|) · (Q12(j)/|Q12(j)|) between two neigh-
bours exceeds 0.75 then the two particles are deemed
connected. We then identify particle i as crystalline if it
is connected with at least 12 neighbours.

RESULTS

We run Gibbs ensemble simulations to determine the
coexistence region at different temperatures. These are
plotted in Fig. 3 for temperatures T = 0.08 (red),
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FIG. 4. Nucleation plot for temperature T = 0.1 (in unit of
kB/ε). The binodal black curve obtained via Monte Carlo
simulations in the Gibbs ensemble is superimposed to a green
colormap reporting, for each considered state point, the ra-
tio between the number of trajectories that nucleate over the
total number of trajectories analysed. We considered as suc-
cessfully assembled the runs exhibiting a fraction of particles
in the cubic diamond phase greater or equal to 0.2. Examined
state points belong to the regular grid with ρ ∈ [0.15, 0.4] and
x ∈ [0.15, 0.5] where ∆ρ = 0.05 and ∆x = 0.05. For each
state point (centred in each rectangular of the colormap) sev-
eral Monte Carlo simulations were run with 500 particles and
AVB dynamics in the NVT ensemble. In particular we made
10 runs for each state point whose x ≤ 0.25 and we increased
them to 18 for state points with x ≥ 0.3. Purple squares
represent averages of each pair of coexisting points and, ac-
cording to the rectilinear diameter law, the best straight line
passing through them (the dashed line) provides an indication
of where the critical point is.

T = 0.09 (green), T = 0.097 (blue), and T = 0.1 (black).
The binodal line at each temperature is splitted in a liq-
uid branch, at high densities, and a gas branch, at low
densities. The two branches meet at the binary critical
point, which location can not be estimated with Gibbs
ensemble simulations [74]. The phase diagram is plot-
ted only for x < 0.5, but it is symmetric with respect to
the azeotropic line x = 0.5. The critical point is located
at the intersection of the binodal line and the rectilin-
ear diameter line (i.e. the line connecting the midpoint
of the different tie-lines), which is represented for each
temperature as a dashed line in Fig. 3. For temperatures
T = 0.08 and T = 0.09 we run single trajectories, while
for temperatures T = 0.097 and T = 0.1 simulations are
averaged over at least 8 independent simulations; the sta-
tistical noise is due to the difficulty in equilibrating the
mixtures at low temperatures.

In Fig. 4 we examine the nucleation behaviour by run-
ning simulation runs over a grid of state points at T =
0.1: ρ ∈ [0.15, 0.4] with ∆ρ = 0.05, and x ∈ [0.15, 0.5]

with ∆x = 0.05. We run up to 10 (or 18 for state points
where nucleation is more probable) independent simula-
tion runs for more than 3 · 108 steps each, and measure
the fraction of trajectories that have nucleated, which is
a quantity proportional to the nucleation rate. In the
figure we define a nucleation event as a run in which at
least 20% of the particles are found in a crystalline state,
according to the Q12 criteria described in the Methods
section. In Fig. 4 this fraction is proportional to the color
intensity of a tile centered around the state point, and the
grid is superimposed on the T = 0.1 phase diagram. The
figure shows that nucleation occurs in correspondence
of the liquid-gas coexistence region, with the probabil-
ity of nucleation being approximately the highest along
the liquid binodal. We note in fact that no nucleation
events are observed at low concentrations, from x = 0.15
to x = 0.25, i.e. outside the phase coexistence region.
Visual inspection of the nucleation trajectories confirm
that the nucleation event is preceded by the formation of
a dense liquid phase, mostly via spinodal decomposition
(i.e. liquid drops do not nucleate but instead a coarsening
liquid networks appears at the start of the simulations).

To confirm the results of Fig. 4, we run nucleation tra-
jectories in a density-concentration grid at a lower tem-
perature, T = 0.097, which makes the coexistence region
wider. The results are presented in Fig. 5(a). Compared
to the case at T = 0.1 now nucleation events occur over
a much wider region of the phase diagram, following the
widening of the coexistence region.

These results confirm the observations that were made
for one-component systems, i.e. that density fluctuations
promote nucleation [11, 15, 19, 75]. But compared to one-
component systems, in a multi-component system there
are both density and concentration fluctuations. Since
the crystal has a fixed stoichiometric composition, the
formation of a liquid phase at concentrations different
from equimolarity is expected to slow down and limit
the growth of the crystal. We show this effect in the four
panels of Fig. 5, where the colored grid plots the fraction
of independent trajectories whose crystalline particles in-
clude at least the 20% (a), 50% (b), 70% (c), and 90%
(d) of the whole system. Fig. 5 shows that, while small
crystals can form along coexistence regions, the forma-
tion of larger crystals is progressively shifted towards the
x = 0.5 line, i.e. towards the azeotropic point. At the
azeotropic point, in fact, the liquid phase forms with the
same stoichiometric composition of the crystal.

As demonstrated originally in Ref. [19], critical fluctu-
ations are able to trigger crystal nucleation. We find here
that in a binary mixture, it is the azeotropic point which
more strongly promotes crystallization. The azeotropic
point and the critical point coincide where the two corre-
sponding thermodynamic lines meet (see Fig. 2), which
corresponds to the maximum critical temperature at
x = 0.5. In Fig. 6 we study the nucleation behaviour
in the density-temperature plane at x = 0.5. The nu-
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FIG. 5. Nucleation plots for temperature T = 0.097 (in unit of kB/ε). The binodal black curve obtained via Monte Carlo
simulations in the Gibbs ensemble is superimposed to a green colormap reporting, for each considered state point, the ratio
between the number of trajectories that nucleate over the total number of trajectories analysed. We considered as successfully
assembled the runs exhibiting a fraction of particles in the cubic diamond phase (t) greater or equal to 0.2 in a), 0.5 in b), 0.7
in c) and 0.9 in d). Examined state points belong to the regular grid with ρ ∈ [0.15, 0.4] and x ∈ [0.2, 0.5] where ∆ρ = 0.05 and
∆x = 0.05. For each state point (centred in each rectangular of the colormap) were run 10 Monte Carlo simulations with 1000
particles and AVB dynamics in the NVT ensemble. Purple squares represent averages of each pair of coexisting points and,
according to the rectilinear diameter law, the best straight line passing through them (the dashed line) provides an indication
of where the critical point is. Nucleation occurs for almost each considered state point, but extended cubic diamond lattice
(t ≥ 0.7) can appear only close to the liquid branch and to the azeotropic condition.

cleation of the diamond cubic occurs again in corre-
spondence of the phase separation, confirming that nu-
cleation is aided by the formation of dense liquid re-
gions during the phase-separation process. We observe
that nucleation not only occurs in correspondence of
the critical point, but, interestingly, we observe nucle-
ation events at supercritical conditions. The system thus
shows two-step nucleation aided both by spinodal de-
composition at sub-critical temperatures, and by criti-

cal fluctuations at super-critical conditions, just as pre-
dicted by Ref. [19]. While the prediction was made for
isotropic one-component systems (globular proteins), at
the azeotropic conditions of Fig. 6 the system is indeed
thermodynamically equivalent to a one component sys-
tem [70].

In Fig. 7 we show the evolution of a typical nucle-
ation trajectory at the azeotropic point at T = 0.097
and ρ = 0.3. Panel (a) shows the evolution of the en-
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FIG. 6. Equimolar nucleation plot showing that nucleation
occurs in two steps where there is a previous locally increasing
density phenomenon. The binodal black curve obtained via
Monte Carlo simulations in the Gibbs ensemble is superim-
posed to a green colormap reporting, for each considered state
point, the ratio between the number of trajectories that nucle-
ate over the total number of trajectories analysed. We consid-
ered as successfully assembled the runs exhibiting a fraction
of particles in the cubic diamond phase greater or equal to
0.2. Examined state points belong to the regular grid with
ρ ∈ [0.15, 0.4] and T ∈ [0.095, 0.105] where ∆ρ = 0.05 and
∆T = 0.001. For each state point (centred in each rectan-
gular of the colormap) 10 Monte Carlo simulations were run
with 500 particles and AVB dynamics in the NVT ensemble.

ergy, displaying a two-step drop: initially the system is
prepared in a metastable gas phase, which then forms a
percolating liquid phase; in the second step (from 1.9·108

MC sweeps) the nucleation occurs within the liquid drop
and a diamond cubic crystal replaces all the liquid phase,
finally coexisting with a low-density gas. Panel (b) shows
a snapshot at the end of the first stage, where a liquid-gas
coexistence is established in the box. Panel (c) shows a
snapshot at the final stage of the trajectory, visually con-
firming the formation of a large crystal of the diamond
cubic phase. The absence of the hexagonal diamond
phase and stacking fault defects is a property embedded
into the color interactions of the N2c8 mixture, which
was designed with this property via the SAT-assembly
framework [51].

DISCUSSION AND CONCLUSIONS

Recent experimental advances hold the promise to fully
unlock the potential of systems with directional and
specific interactions. In particular DNA nanotechnol-
ogy already allows the fabrication of patchy particles in
the form of wireframe DNA origami [4, 5, 66, 77] and
gold nanoparticles with selective patterning [78]. DNA
strands naturally encode sequence complementary and

thus allow the assembly of structures with the desired
interactions: different interacting patches correspond to
complementary single DNA strands as well as the self-
interacting ones correspond to palindromic DNA strands.
This class of systems goes under the name of Empty Liq-
uids [79], which have unique properties compared to sim-
ple (hard-sphere like) systems, such as the existence of
low-density stable liquid phases [80], the ability to crys-
tallize in open crystals [81], and the potential to model
the phase bahaviour of biological molecules [82–85].

To obtain a complex target structure (such as a pho-
tonic crystal) requires either a complex interaction po-
tential carefully optimized to have the target as a free-
energy minima, or a mixture of simpler building blocks
that make the target structure accessible by reducing its
overall symmetry (crystal sites are occupied by different
species). Recent advances in DNA-nanotechnology, al-
lowing the design of building blocks with arbitrary inter-
action rules, are opening the door to this last approach.

Several strategies have been proposed to design the in-
teraction potential in multi-component system. One such
strategy is the SAT-assembly framework, which trans-
lates the design problem in a Boolean satisfiability prob-
lem [49, 50]. The ability to design interaction matrices to
self-assemble arbitrary structures is a necessary but not
sufficient condition for observing the nucleation of such
structures under experimental conditions. These often
involve preparing the system in very dilute conditions,
from which the classical nucleation rate is severely sup-
pressed by both diffusional and compositional barriers.

Regarding the diffusional barrier, probably the most
promising strategy to overcome it is two-step nucleation,
where the crystal nucleation is aided by the formation
of dense liquid drops. This nucleation pathway has been
the subject of intense research, especially in the context
of one-component systems.

So far not much work has been devoted to the second
barrier, i.e. the compositional barrier, which controls
the rate at which a particle of the correct species enters
in contact with the incipient nucleus. In this work we
have presented a first study in this direction. We have
examined a two-step nucleation process in a binary mix-
ture of patchy particles designed to assemble into cubic
diamond. In particular we have focused on the role of
the metastable liquid-gas phase diagram on the nucle-
ation process. Comparing Gibbs ensemble simulations
with direct nucleation runs, we have established that nu-
cleating state points coincide with the locus of metasta-
bility of the mixture, confirming the relevant role played
by the thermodynamic instabilities, generating local en-
vironments with a density enhanced in comparison to the
average value. We have shown that composition effects in
multi-component systems play a big role in the growth of
the crystal, and that crystal growth is enhanced at state
points where the emerging liquid phase has a composi-
tion close to the stoichiometric composition of the crystal.
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FIG. 7. Overview of Monte Carlo simulation with AVB moves in the NVT ensemble run at T = 0.097, x = 0.5 and ρ = 0.3
where T is in unit of kB/ε and ρ is in unit of 1/σ3. a) Potential energy per particle as a function of MC sweeps: the energy
drop signals nucleation event. b) Snapshot of a metastable configuration before the energy drop showing that we deal with a
two step nucleation since crystalline nucleus arise in the denser liquid phase. c) Snapshot of the last configuration showing that
the N2c8 binary mixture eventually self-assembles into a cubic diamond crystal. Neither patches nor the two patchy particles
species are shown while blue/green colors indicate particles belonging to the cubic diamond phase. Snapshots and crystal
identification are obtained with the Ovito software [76].

In the studied system, this corresponds to an azeotropic
point at equimolar concentration, x = 0.5. We find ev-
idence of critical-like enhanced nucleation along the bi-
nary critical line when this intersects the azeotropic line.

To unlock the promises of nanotechnology to self-
assemble new materials with desired mechanical, optical
and thermal properties, a big role will be played by the
search of general principles behind the crystallization of
multi-component systems. We believe that two-step nu-
cleation, augmented with azeotropic conditions, will be
one of such guiding principles.
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