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Abstract

We modify ETAS models by replacing the Pareto-like kernel proposed by Ogata with a Mittag-Leffler

type kernel. Provided that the kernel decays as a power law with exponentβ+1 ∈ (1,2], this replacement

has the advantage that the Laplace transform of the Mittag-Leffler function is known explicitly, leading

to simpler calculation of relevant quantities.
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I. INTRODUCTION

In 1971, Hawkes ([7, 8]) introduced a class of self-exciting processes to model contagious

processes. In their simpler version, these are point processes with the following conditional

intensity

λ(t |Ht) = lim
h→0

E(N(t , t + h)|Ht)

h
= λ+α

∫ t

−∞
f (t − u) dN(u),

where λ > 0, N(t) is a Hawkes self-exciting counting process,Ht represents the history of the

process, α is a branching ratio that must be smaller than 1 for stability, and f (t) is a suitable

kernel ( f (t) must be a probability density function for a positive random variable).

In 1988, Ogata ([11]) proposed the use of a power-law kernel for self-exciting processes of

Hawkes type in order to reproduce the empirical Omori law for earthquakes. Ogata’s models

are also known as Epidemic Type Aftershock Sequence models or ETAS models. Within this frame-

work, it is natural to replace Ogata’s power-law kernel with a Mittag-Leffler kernel and this will

be the main contribution of this chapter. We will first introduce the Mittag-Leffler distribution

for positive random variables, then we will define a “fractional” version of Hawkes processes.

Spectral properties and intensity expectation will be discussed using the fact that the Laplace

transform of the one-parameter Mittag-Leffler function of argument −tβ with β ∈ (0, 1] is

known analytically. Finally, we will present a simple algorithm based on the thinning method

by Ogata [10] that simulates the conditional intensity process.

II. MITTAG-LEFFLER DISTRIBUTED POSITIVE RANDOM VARIABLES

Consider the one-parameter Mittag-Leffler function

Eβ(z) :=

∞
∑

n=0

zn

Γ (nβ + 1)
, (II.1)

with β ∈ (0, 1]. If computed on z = −tβ for t ≥ 0, the Mittag-Leffler function Eβ(−tβ) has the

meaning of survival function for a positive random variable T with infinite mean. This function

interpolates between a stretched exponential for small times and a power-law with index β for

large times. Its sign-changed first derivative

fβ(t) := −
dEβ(−tβ)

d t
= tβ−1Eβ ,β(−tβ) (II.2)
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is the probability density function of T , where Eα,β(z) is the two-parameter Mittag-Leffler func-

tion defined as

Eγ,δ(z) :=

∞
∑

n=0

zn

Γ (nγ+ δ)
. (II.3)

Notice that the one-parameter Mittag-Leffler function coincides with the two parameter one

with γ = β and δ = 1. For a suitable function f (t) defined for positive t , let us define its

Laplace transform as

f̃ (s) =L ( f (t), s) =

∫ ∞

0

f (t)e−st d t .

The functions Eβ(−tβ) and fβ(t) have explicit Laplace transforms. The survival function has

the following Laplace transform

L (Eβ(−tβ); s) =
sβ−1

1+ sβ
, (II.4)

and the probability density function has the following Laplace transform

L ( fβ(t); s) =
1

1+ sβ
. (II.5)

Moreover, they have an explicit representation as an infinite (actually continuous) sum of ex-

ponential functions [5];

Eβ(−tβ) =

∫ ∞

0

e−θ tKβ(θ ) dθ , (II.6)

with

Kβ(θ ) =
1

π

θβ−1 sin(βπ)

θ 2β + 2θβ cos(βπ) + 1
, (II.7)

leading to

fβ(t) =

∫ ∞

0

θe−θ tKβ(θ ) dθ . (II.8)

These functions play an important role in fractional calculus. For instance Eβ(−tβ) is the solu-

tion of the following anomalous relaxation problem

dβ g(t)

d tβ
= −g(t), (II.9)

where dβ/d tβ is the Caputo derivative defined as

dβ g(t)

d tβ
=

1

Γ (1−β)
d

d t

∫ t

0

g(τ)

(t −τ)β d t − t−β

Γ (1− β) g(0
+), (II.10)

with initial condition g(0+) = 1.
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III. THE FRACTIONAL HAWKES PROCESSES

It becomes natural to use fβ(t) as kernel for a version of Hawkes processes that we can call

fractional Hawkes processes. The conditional intensity of the process is given by

λ(t |Ht) = lim
h→0

E(N(t , t + h)|Ht)

h
= λ+α

∫ t

−∞
fβ(t − u) dN(u), (III.1)

where λ > 0 and N(t) is a Hawkes self-exciting point process, leading to

λ(t |Ht) = λ+α
∑

ti<t

fβ(t − t i). (III.2)

with the branching ratio α < 1 for stability. Hainaut [6] gives a different definition of fractional

Hawkes process. Let us use his notation in the following remark. In his paper, he considers

the time-changed intensity process λSt
where, in his case, the conditional intensity λt of the

self-exciting process is the solution of a mean-reverting stochastic differential equation

dλt = κ(θ −λt) d t +ηdPt ,

where κ, θ and η are suitable parameters and the driving process Pt is given by

Pt :=

Nt
∑

k=1

ξk,

where Nt is a counting process and ξis are independent and identically distributed marks with

finite positive mean and finite variance. The time-change St is the inverse of a β -stable subor-

dinator. Our definition (III.1) is much simpler and it is directly connected with ETAS processes

given that the kernel fβ(t) has power-law tail with index β +1. [9]. In particular, given the ex-

plicit Laplace transform of fβ(t) and its representation in terms of infinite sum of exponentials,

we can derive some explicit formulas.

A. Spectral properties

From equation (11) in [7], we get the following equation for the covariance density µ(τ)

for τ > 0.

µ(τ) = α

�

Λ fβ(τ) +

∫ τ

0

fβ(τ− v)µ(v) dv +

∫ ∞

0

fβ(τ+ v)µ(v) dv

�

, (III.3)
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where Λ represents the asymptotic stationary value of the conditional intensity as derived in

equation (3.9) below. If we now take the Laplace transform of (III.3), we get

µ̃(s) = α

�

Λ f̃β(s) + f̃β(s)µ̃(s) +L
�∫ ∞

0

fβ(τ+ v)µ(v) dv; s

��

. (III.4)

Now, using (II.8) and setting

h(θ ) = θKβ(θ ) =
1

π

θβ sin(βπ)

θ 2β + 2θβ cos(βπ) + 1
,

we can write

fβ(τ) =

∫ ∞

0

h(θ )e−θτ dθ ,

so that the last summand in (III.4) becomes

L
�∫ ∞

0

fβ(τ+ v)µ(v) dv; s

�

=

∫ ∞

0

e−sτ

�∫ ∞

0

�∫ ∞

0

h(θ )e−θ (τ+v) dθ

�

µ(v) dv

�

dτ

=

∫ ∞

0

h(θ )
1

θ + s
µ̃(θ ) dθ . (III.5)

In principle, a numerical approximation of the integral in equation (III.5) plugged into (III.4)

and coupled with equation (II.5) can lead to an explicit approximate expression for the Laplace

transform µ̃(s). This will be the subject of a further paper. An alternative approach is given in

[8] where the Bartlett spectrum is defined for real ω as

f (ω) =
1

2π

∫

e−iωτµ(c)(τ) dτ, (III.6)

where, because E[(dN(t))2] = E[dN(t)] if events cannot occur multiply, the complete covari-

ance density contains a delta function

µ(c)(τ) = Λδ(t) +µ(t).

Then it is shown in [8] p. 441 that

f (ω) =
Λ

2π(1− G(ω))(1− G(−ω)) , (III.7)

where, in our case, we would have

G(ω) =

∫ ∞

0

e−iωτα fβ(τ) dτ=
α

1+ (iω)β
.
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The proof of this result depended on the assumption that the exciting kernel decays exponen-

tially asymptotically. However, this is not true for the Mittag-Leffler distribution, which decays

as a power law. Bacry and Muzy [2] prove a more general result using Laplace transforms in

the complex plane, more easily digested from section 2.3.1 in [1]. Then the Laplace transform

of the covariance density is given by

µ̃(c)(s) =
Λ

(1− Φ̃(s))(1− Φ̃(−s))
, (III.8)

where

Φ̃(s) =

∫ ∞

0

e−sτ
Φ(τ) dτ

is the Laplace transform of the exciting kernel. In our case for τ > 0, we have

Φ(τ) = α fβ(τ)

and

Φ̃(s) =
α

1+ sβ
.

Equations (III.7) and (III.8) look much the same, apart from a change of notation and a factor

2π. The difference, however, is that in (III.7) we are dealing with real ω while, in (III.8), s is

a general complex variable and we can choose its domain to obtain well-behaved functions.

B. Intensity expectation

Let us consider the expectation Λ(t) = E[λ(t |Ht)] for both a stationary and non-stationary

fractional Hawkes process. In the stationary case (process from t = −∞), from equation (III.1),

we get Λ= λ+ nΛ, leading to

Λ=
λ

1−α . (III.9)

On the contrary in the non-stationary case (process from t = 0), we can modify equation (III.1)

as follows

λ(t |Ht) = λ+α

∫ t

0

fβ(t − u) dN(u), (III.10)

so that the time-dependent expectation obeys the equation

Λ(t) = λ+α

∫ t

0

fβ(t − u)Λ(u) du. (III.11)
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Taking Laplace transforms, we get

Λ̃(s) =
λ

s
+α f̃β(s)Λ̃(s),

so that

Λ̃(s) =
λ

s

1

1−α f̃β(s)
.

Using equation (II.5) yields

Λ̃(s) =
λ

s

1+ sβ

(1−α) + sβ
. (III.12)

Equation (III.12) can be inverted numerically (or analytically for β = 1/2) to give Λ(t) as well

as the expected number of events from 0 to t as

E[N(t)] =

∫ t

0

Λ(τ) dτ.

Also, based on a continuous version of Hardy-Littlewood Tauberian theorem [3] we get

lim
t→∞

Λ(t) =
λ

1−α

as given by equation (III.9). This result is exemplified in Fig. 1 for β = 1/2, λ = 1 and α = 1/2.

In that case, we get, for t > 0

Λ(t) = 2− et/4erfc(
p

t/2).

From Fig. 1, one can see that Λ(t) goes up very fast at first and, then, slowly converges to its

asymptotic value 2. This is presumably due to the long tail of the Mittag-Leffler kernel.

IV. SIMULATION

In order to simulate the intensity process introduced in equation (III.1), we use the thinning

algorithm introduced by Ogata [10] (see also Zhuang and Touati 2015 report [12]). The func-

tion ml.m described in [4] is needed to compute the Mittag-Leffler functions described above

and can be retrieved from the Matlab file exchange. The algorithm is as follows

1. Set the initial time t = 0, a counter i = 0 and a final time T .

2. Compute M = λ+α
∑

ti<t+ǫ fβ(t + ǫ − t i), for some small value of ǫ.
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FIG. 1. Λ(t) as a function of t for β = 1/2, λ= 1 and α = 1/2.

3. Generate a positive exponentially distributed random variable E with the meaning of a

waiting time, with rate 1/M .

4. Set τ= t + E.

5. Generate a uniform random variate U between 0 and 1.

6. If U < [λ+ α
∑

ti<τ
fβ(τ− t i)]/M , set t i+1 = τ and update time to t = τ, else, just set

t = τ.

7. Return to step 2 until t exceeds T .

8. Return the set of event times (or epochs) t i

An implementation of this algorithm in Matlab is presented below.

T=5;

t=0;
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n=0;

alpha=0.9; % For stability

mu=1;

epsilon=1e-10;

beta=0.7;

SimPoints=[];

while t<T

t

M=mu+sum(alpha*ml(-(t+epsilon-SimPoints).∧beta,beta,beta,1). ...

*(t+epsilon-SimPoints).∧(beta-1));

E=exprnd(1/M,1,1);

t=t+E;

U=rand;

if (U<(((mu+sum(alpha*ml(-(t-SimPoints).∧beta,beta,beta,1). ...

*(t-SimPoints).∧(beta-1))))/M))

n=n+1;

SimPoints = [SimPoints, t];

end

end

index=find(SimPoints<10);

SimPoints=SimPoints(index);

Two examples of intensity process simulated up to t = 5 are presented in Fig. 2 and Fig. 3 for

β = 0.9 and β = 0.7, respectively.

V. OUTLOOK

In this paper, we defined a “fractional” Hawkes process and we studied its spectral properties

and the expectation of its intensity. Thanks to explicit expressions for Laplace transforms, we
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FIG. 2. λ(t|Ht) as a function of time t for β = 0.9, λ= 1 and α = 0.9.
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FIG. 3. λ(t|Ht) as a function of t for β = 0.7, λ= 1 and α = 0.9.
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could derive some analytical expressions that are only asymptotically available for power-law

kernels of Pareto type as originally suggested by Ogata. We also presented an explicit simulation

of the intensity process based on the so-called thinning method.

Further work is needed to better characterize our process. In particular, we did not deal with

parameter estimation, the multivariate version of the process, and we did not use the model to

fit earthquake data (or any other data for what matters including financial data). We do hope

that all this and more can become the subject of an extensive future paper on this process.
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