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Abstract
This paper deals with the problem of cruise itinerary planning which plays a central
role in worldwide cruise ship tourism. In particular, the Day-by-day Cruise Itinerary
Optimization (DCIO) problem is considered. Assuming that a cruise has been planned
in terms of homeports and journey duration, theDCIOproblem consists in determining
the daily schedule of each itinerary so that some Key Performance Indicators are
optimized. The schedule of an itinerary, i.e. the sequence of visited ports, the arrival
and departure time at each port, greatly affect cruise operative costs and attractiveness.
We propose a Mixed Integer Linear Programming (MILP) formulation of the problem
with the objective of minimizing the itinerary cost due to fuel and port costs, while
maximizing an itinerary attractiveness index. This latter is strongly related to the ports
visited as well as to the overall schedule of the itinerary. Therefore the problem turns
out to be a bi-objective optimization problem. We provide its solution in terms of
Pareto optimal solution points. Each single objective MILP problem which arises is
solved by using an exact algorithm, implemented in a commercial solver. We consider
the day-by-day itineraries of a major luxury cruise company in many geographical
areas all over the world. Here we report, as illustrative examples, the results obtained
on some of these real instances.
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1 Introduction and literature review

In the last two decades, cruise shipping represented one of the most growing sectors
of the shipping industry. According to Cruise Lines International Association (CLIA),
the world’s largest cruise industry trade organization [see (CLIA 2021] for the latest
report), since 1990 this sector has grown at an average annual passenger rate of 7.4%
[see also (Cruise Market Watch 2020)]. Moreover, in the annual CLIA Global Market
Report and State of Cruise IndustryOutlook, the significant role played in international
tourism by cruises is clearly evidenced: in 2019, the global cruise industry involved
nearly 30 million passengers, creating jobs for 1.8 million people and contributing
over $154 billion to the world economy. Of course the occurrence of the COVID-19
pandemic has dramatically hit the cruise industry, and all expectations for 2020 had to
be drastically reconsidered [see e.g. (CLIA 2021] and (Notteboom et al. 2021, Chapter
1.5)). However the sector relies on a sound financial resilience, able to support the
hope for better times in the next future. A revival of the sector is also expected in
the medium term thanks to the adoption of new procedures with enhanced protocols
related to passenger health and to the proposal of new attractive itineraries: according
to Seatrade Cruise News,1 27 new oceangoing cruise ships will be launched during
2021.

Cruise itinerary planning plays a fundamental role in the strategic decisions of a
cruise company. Indeed, itineraries are announced in advance and they should attract
booking asmuch as possible. Actually, itinerary planning is the last step in the decision
making process of any cruise companywhich is usually characterized by the following
three levels: (i) the cruise fleet planning,which is the highest level consisting in locating
the ships in particular geographic areas in suited season windows so as to ensure the
best weather conditions; (ii) the ship deployment, i.e. to decide which cruises must
be planned in the chosen areas in terms of embarkation port and disembarkation
port (named turnaround ports or homeports) and the cruise duration; (iii) the day-by-
day itinerary planning, i.e., given the turnaround ports, to determine the sequence of
intermediate ports (named ports of call or transit ports) to be visited by a ship and the
arrival and departure time at each port. Note that there are turnaround ports which can
also act as transit ports.

In a previous paper (Di Pillo et al. 2021), we have considered the second issue,
namely the Cruise Itinerary Optimal Scheduling problem, aiming at determining a
scheduling of cruises with the objective to maximize the revenue provided by a given
ship placed in a specified maritime area, in a selected season window. Here we focus
on the third issue, aiming at determining an optimal sequence of ports for the daily
itinerary planning, minimizing the overall costs while maximizing customer satisfac-

1 https://www.seatrade-cruise.com.

123



A two-objective optimization of ship....

tion and taking into account several constraints on the itinerary design. In particular,
we consider the cruise luxury market and this implies additional constraints usually
not required by the cruise mass market. In fact, this latter usually offers to customers
itineraries which are loops starting and ending at the same turnaround port and they
are often repeated on week basis. Conversely, since customers of the cruise luxury
market are usually returning customers, new itineraries, different from those already
tried out, must be frequently proposed [see e.g. (Barron and Greenwood 2006)] and in
many cases they are one-way itineraries (starting and ending turnaround ports do not
coincide). Of course, in the ship deployment phase, the turnaround ports are usually
chosen close to international airports and on the basis of infrastructures and services
of the ports. Transit ports in the day-by-day itinerary planning phase are selected on
the basis of a number of factors [see e.g. (Sigala 2017)] that go beyond port geographic
location and availability of good facilities. Itinerary design is a critical issue for the
success of a cruise since it strongly affects customers’ choice and hence it has a great
impact on the occupancy rate of a cruise ship [see (Lee and Ramdeen 2013; Jeon
et al. 2019)]. Different sequences of the visited ports usually result in different logistic
organization, possibly improving customer satisfaction. Moreover it is very impor-
tant to note that, as clearly pointed out in (Rodrigue and Notteboom 2013), customer
choice of a cruise is based on the “overall appeal” of an itinerary. On one hand, this
latter is certainly related to the attractiveness of the port cities visited, but on the other
hand, it depends on the overall schedule of the itinerary and its operational conditions.
Quoting from (Rodrigue and Notteboom 2013): “the cruise industry sells itinerary,
not destinations”.

Therefore the Day-by-day Cruise Itinerary Optimization (DCIO) problem to be
solved in the third level of the decision process of a cruise company involves many
different significant aspects to be taken into account. This makes the problem really
challenging both from the modellistic and computational viewpoint. Nevertheless,
literature dealing with quantitative methods in the cruise company decision mak-
ing processes and, in particular, in itinerary design is very limited. In the systematic
review reported in (Papathanassis and Backmann 2011), the authors clearly evidence
the scarcity of research on cruise shipping and this is due both to its domain’s niche
status and to a wide fragmentation which arises from the interdisciplinary nature of
cruise studies. In particular, by observing the conclusions reported in Table 2 of (Pap-
athanassis and Backmann 2011), among the papers considered (published between
1983 and 2009) only 31% of them are quantitative research papers and only 6% are in
the Engineering and Technology disciplinary domain. Even if this review refers to past
years, anyhow in more recent years only few published papers actually use a mathe-
matical approach. In particular optimization techniques are rarely used for efficiently
solving problems related to cruise shipping management. This is true nevertheless
the great growth of cruise market observed in the last years led to an increase of the
dimension and the complexity of problems in hand. Most of the recent literature on
cruise shipping is focused on Economics and Business Management, namely market-
ing strategies, revenue management, demand analysis [see (Cusano et al. 2017)]. To
confirm this, see also the recent book (Dowling and Weeden 2017) which collects 35
papers providing a wide overview of the cruise industry covering a broad range of
topics and issues. Even if the authors claim that the book has been written for a broad
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audience including planners and managers in the cruise industry, most of papers are
focused on economic aspects (business models), environmental concerns (sustainable
management), touristic issues (development of cruise tourism in particular regional
areas), cruise safety and security (managing passenger health-related crisis). Until
now, quantitative methods have been applied in maritime transport mainly dealing
with freight transportation [see e.g. (Brouer et al. 2017; Gelareh and Pisinger 2011)]
or passenger ferries [see e.g. (Wang and McOwan 2000)] rather than cruise sector.

In particular, few papers are devoted to mathematical modelling the day-by-day
itinerary planning and to use optimization methods for solving DCIO problem. We
mention the paper (Asta et al. 2018) where a Mixed Integer Linear Programming
formulation of the DCIO problem is provided aiming at determining itineraries which
maximize the revenues and customer satisfaction, andminimize the overall costs; (Cho
2019) where an Integer Programming model is proposed as a reduced variant of the
traveling salesman problem, aiming at maximizing passenger satisfaction; the paper
(Mancini and Stecca 2018) which proposes a model which is a variant of the vehicle
routing problem along with a matheuristic which enables to efficiently solve large
instances; (Wang et al. 2017) where the DCIO problem is solved by first enumerating
all sequences of transit ports and then arrival and departure times are determined by
using dynamic programming so that net profit is maximized; (Yang et al. 2016) where
the authors developed a model for determining the maximum passenger volume with
minimum operating costs by using a genetic algorithm.

Other papers on cruise itinerary design report results of empiric researches or are
based on heuristic approaches. See, e.g. (Lekaku et al. 2009) where the authors focus
on the selection of criteria to be used by a cruise company for deciding itinerary
ports; (Leong and Ladany 2001) where an heuristic approach is proposed and applied
to instances from South-East area; the paper (Li et al. 2020) which is limited to an
analysis of the characteristic of the itineraries proposed by a world cruise company;
(Santos et al. 2021) where the authors show how the distribution of nautical distances
between ports in Atlantic coast of the Iberian Peninsula and Mediterranean ports can
be used for itinerary planning.

In this paper, we consider the DCIO problem aiming at determining the day-by-day
itinerary in terms of transit ports and arrival and departure times, with the objective
of minimizing the itinerary cost due to fuel and port costs, and maximizing an attrac-
tiveness index of the itinerary. This latter is related to the ports visited and the number
of days spent at sea, i.e. without docking in a port. Therefore the problem turns out to
be a bi-objective optimization problem. As to the first objective, the fuel consumption
depends nonlinearly on the ship speed; the speed depends on the distances between
the ports and the need to meet times for entering and leaving the port; the port cost
depends on the port location and on the services provided. As to the second objective,
it is evaluated by giving a rating to each port, to the days spent at sea (when the travel
time between two successive ports exceeds 24h) and to overnights in port. Operational
constraints are due to minimum and maximum number of transit ports to be visited,
to the allowable time windows for arrival and departure in the port, to minimum and
maximum time of stay in each port, to the fact that some ports may be obliged or
prohibited, or may be visited only in given days, to minimum and maximum number
of days spent at sea, to minimum and maximum number of ports where the ship moors
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at anchor and not at the dock. In particular, as we alreadymentioned, we refer to luxury
cruises, implying several specific considerations to be taken into account, which lead
to an increased difficulty of the problem.

We propose a bi-objective Mixed Integer Linear Programming (MILP) model for
this problem. We provide its solution in terms of points of the Pareto frontier obtained
by using two “a posteriori” methods (see, e.g., Miettinen (2012)): the methods of
weights and the method of constraints. We solve all the single objective MILP which
arise by using a commercial solver. Each Pareto optimal solution provides the optimal
day-by-day itinerary, in terms of ports to be visited and times of arrivals and departures.
This model has been experimented by a major luxury cruise company to design the
day-by-day itineraries of their cruises in many geographical areas all over the world.
Here we report, as illustrative examples, the results obtained on some of these real
instances to show the computational viability of the proposed approach. In this regard,
we highlight that we adopt an exact solution approach, rather than the use of some
metaheuristic, even if for some large instances this may lead to long computing times.
This is motivated by the fact that itinerary planning is performed years in advance,
so that even a long computing time for some instances is admissible. Of course,
if the computing time exceeds a CPU time threshold value, the computational run
can be stopped early, providing an approximate solution of the problem with the
corresponding optimality gap, so that its accuracy can be assessed.

This work has been developed within a project named Magellano Project, a joint
project between ACTOR SRL, a Start-Up of SAPIENZA University of Rome and a
major luxury cruise company (which we do not mention for the sake of privacy). The
overall project involves the three levels of the decision making process of the cruise
company.

The paper is organized as follows: in Sect. 2 the description of the DCIO problem is
reported. In Sect. 3 we describe in detail themathematical model developed. In Sects. 4
we describe how to use the model. In Sect. 5 we report some experimental results on
real problem instances. Finally, some concluding remarks are drawn in Sect. 6.

2 Problem description

In this section we report all the elements that characterize the DCIO problem, with
a particular focus on a cruise company that operates in the luxury market class. The
problem data are: a ship, a maritime area, the turnaround ports, a time period (defined
by starting and ending date of the itinerary) and a set of transit ports of touristic interest
in the area. The turnaround ports are assumed to be selected in the ship deployment
second level of the company decision process.

Observe that there are two kinds of ports: those where the ship canmoor at the dock,
and those where the ship moors only at anchor. This partition is a specific feature of
luxury cruise companies, which usually operate with small tonnage ships, embarking
only hundreds of passengers and not thousands, as happens for the mass market class.
Indeed a ship of small tonnage can enter small ports of great touristic interest, by
mooring at anchor and debarking passengers by motor boats, which is not possible if
the number of passengers is too large.
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The design of a cruise itinerary first consists in selecting the transit ports and their
sequence. Usually, in an itinerary, a transit port is visited just once: only a turnaround
port can be visited twice in the case the cruise starts and ends at that port. Each day no
more than one port is visited, due to the time required by the maneuvers for mooring,
the time required for debarking and embarking passengers and the free time spent on
shore excursions by passengers. Therefore, usually a cruise ship arrives in a port in
the morning and departs in the evening. However it can be the case that an overnight
is spent in a port, if there is an event that motivates a longer stay or if the port (or some
neighborhood) is of great touristic interest and shore excursions may last more than
one day. In this case, the ship will depart in the evening of the next day. Moreover, it
is possible that, between one port and the next one in the sequence, the ship sails for
more than one day, without intermediate mooring; we call these days “days at sea”
and they could be included in an itinerary when the distance between two ports is
very long as, for instance, in oceanic cruises. However, this may happen also if the
company considers fruitful to keep passengers on board, so that they spend on board
money that otherwise would spend on shore.

Theoverall aimof the cruise itinerary planning is twofold: to determine the sequence
of ports alongwith arrival and departure time, aiming atminimizing the cruise itinerary
cost, whilemaximizing its attractiveness. It is important to note that, typically, themore
attractive is a cruise itinerary, the more its costs, therefore the problem has conflicting
objectives. In the following, we detail how the overall cost is computed on the basis of
a number of compound costs and how the attractiveness of an itinerary is determined.

The itinerary cost is obtained as the sum of fuel cost and port costs; in turns, fuel
consumption depends nonlinearly on the distance between ports and on the speed at
which the distances are covered. The cruising speed between two ports depends on
the distance between the ports and on the time windows for leaving and entering the
ports, being these latter usually prefixed by port operators. The port cost depends on
the maneuvering cost in arrival and departure, and on the cost of the stay in the port
which is given by a fixed and an hourly component.

The itinerary attractiveness is obtained as follows. At each port of the area a Port
Attractiveness Index (PAI) is assigned on the basis of the score obtained by evaluating
a list of port attributes. For the sake of brevity, we do not report here the complete list,
but we only mention the most representative: overall perception (general reputation,
is iconic, political stability, safety); port features (port infrastructures, distance to city
center); interests and activities (cultural interest, natural interest, food and beverage
interest, shopping possibilities, shore excursions options/variety); exclusivity (crowd-
ing level, exclusive cruise destination). Moreover, an index is assigned to possible
one Days At Sea (DASI). This is evaluated by giving a score to interests and activities
that can be proposed to the passengers on board. Finally, we consider another index
related to possible one Overnight In Port (OIPI). All these indices have been evalu-
ated by means of the scores assigned by people from the cruise company marketing
office involved in the project. Based on their expertise, they provided us with accu-
rate answers to a specific questionnaire we proposed. Hence, we define the itinerary
attractiveness as weighted sum of these three indices PAI, DASI and OIPI.

We now summarize the basic requests which must be considered when dealing with
the mathematical formulation of the DCIO problem:
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C1: a port cannot be visited twice in a cruise itinerary, except the embark port;
C2: some ports of the considered maritime area could be banned in given days;
C3: the visit at some ports is mandatory, i.e. they must be included in the cruise

itinerary;
C4: the visit of some ports is mandatory in prefixed days;
C5: an overnight in a given port in a given day is planned;
C6: a given day of the cruise must be a day at sea;
C7: the days at sea can not be consecutive.

Moreover, the following data must be specified when designing a cruise itinerary:

B1: theminimum andmaximumnumber of transit ports visited in the cruise itinerary;
B2: the maximum number of anchor ports included in the cruise itinerary;
B3: for each port, the time windows for arrival and departure time in the port;
B4: the minimum and maximum time of stay in each port;
B5: the maximum number of days at sea included in the cruise itinerary.

Note that some constraints are relevant to luxury cruises: in particular, B2 bounds
the number of possible anchor ports, due to the discomfort of disembarkation and
embarkation by motor boats; B5 bounds the number of days at sea and, along with
C7, aims at avoiding that the cruise could become boring.

3 Themathematical model

In this section we describe the mathematical model we propose for solving the DCIO
problem. In the following, we report all the elements of the model, i.e. the model input
data, the decision variables, the objective functions and the constraints.

3.1 The input data

The input data are divided into two groups: the scenario data, that are common to all
problem instances for the same ship in the same maritime area, and the instance data
that are peculiar to a particular instance of the problem.

3.1.1 The scenario data

The scenario of the model is defined by the following data:

• the set P of the ports of interest in the maritime area;
• the set PA ⊂ P of the anchor ports;
• the set V of the (discretized) operating cruising speeds of the ship;
• for p, q ∈ P, v ∈ V , the time required for sailing from port p to port q at speed v

denoted by t(p, q, v);
• for p, q ∈ P, v ∈ V , the fuel cost for sailing from port p to port q at speed v,
denoted by c(p, q, v);

• for p ∈ P , the fixed and the hourly cost of the stay in port p, denoted by c f (p)
and ch(p), respectively;
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• for p ∈ P , the cost of departure and arrival maneuvering in port p, denoted by
cmd(p) and cma(p), respectively;

• for p ∈ P , the time duration of departure and arrival maneuvering in port p,
denoted by tmd(p) and tma(p), respectively;

• for p ∈ P , the starting and ending time for the arrival time window at port p,
denoted by atws(p) and atwe(p), respectively; therefore, the arrival time window
is [atws(p) , atwe(p)];

• for p ∈ P , the starting and ending time for the departure time window at port
p, denoted by dtws(p) and dtwe(p) respectively; therefore the departure time
window is [dtws(p) , dtwe(p)];

• for p ∈ P , theminimumandmaximumstay time in port p, denoted byminstay(p)
and maxstay(p), respectively;

• for p ∈ P , the attractiveness index PAI of port p, denoted by a(p);
• for p ∈ P , the attractiveness index OIPI of one overnight at port p, denoted by
o(p);

• the attractiveness index DASI of one day at sea, denoted by ads.

Note that, of course both PAI and OIPI indices depend on port p, while the last defined
index (DASI), being related to the whole itinerary, does not depend on ports.

3.1.2 The problem instance data

The following data characterize a particular instance of the problem:

• the ordered set D = {0, . . . , N } of the days of the cruise itinerary; d ∈ D denotes
a day of the cruise; the cruise itinerary starts at day d = 0 of the first embarkation
and it ends at day d = N of the last disembarkation;

• the embarkation and disembarkation turnaround ports of the cruise itinerary,
denoted by pe ∈ P and pd ∈ P , respectively; it may happen that pe and pd

coincide;
• the set PT = P \ {pe, pd} of the transit ports of interest;
• the set PV ⊂ P of the ports that must be visited by the cruise;
• the minimum and maximum number of transit ports to be visited by the itinerary
cruise, denoted by npmin and npmax , respectively;

• the maximum number of anchor ports that can be visited by the itinerary cruise,
denoted by npmaxA;

• the minimum and maximum number of days at sea allowed in the cruise itinerary,
denoted by mindas and maxdas, respectively;

• the set DS ⊂ D of days {di : di ∈ D}, in which one day at sea must be planned,
namely each day di ∈ DS is such that more than 24h must be spent at sea, starting
from the embarking on the day di ;

• the set MV ⊂ P × D of couples {(pi , di ), pi ∈ P, di ∈ D} of ports pi to be
visited on day di ;

• the setMV ⊂ P × D of couples {(pi , di ), pi ∈ P, di ∈ D} of ports pi to be not
visited on day di ;
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3.2 The decision variables

Nowwe introduce the decision variables of themodel, that result to be both continuous
and integer (binary), so that we have a mixed integer problem.

• x(p, q, v) is a binary variable equal to 1 if in the itinerary cruise the ship covers
the leg from port p to port q at speed v, equal to 0 otherwise;

• y(p) is a binary variable equal to 1 is the ship visits the port p, equal to 0 otherwise
• yd(p, q, d) is a binary variable equal to 1 if the ship departs from port p headed
towards port q on the day d, equal to 0 otherwise;

• ya(p, d) is a binary variable equal to 1 if the ship arrives in port p on day d;
• das(p) is a binary variable equal to 1 if the ship arrives at port p having spent
at least one day at sea, that is sailing for at least 24h after the departure from the
preceding port; equal to 0 otherwise;

• ovn(p) is a binary variable equal to 1 if the ship moors at port p at least 24h, that
is an overnight in port p is planned; equal to 0 otherwise;

• td(p, q) is a continuous variable denoting the departure time of the ship departing
from port p towards port q; td(p, q) is expressed in terms of hours and hundredths
of hour, in the interval {0, . . . , 24 × N }, thus increasing with the days;

• ta(p) is a continuous variable denoting the arrival time of the ship in port p; ta(p) is
expressed in terms of hours and hundredths of hour, in the interval {0, . . . , 24×N },
thus increasing with the days;

• ts(p) is a continuous variable denoting the stay time of the ship in port p; ts(p) is
expressed in terms of hours and hundredths of hour, in the interval {0, . . . , 24 ×
(1 + ovn(p))}.

3.3 The objective functions

We now report the expressions of the objective functions used in our formulation of
the DCIO problem. They depend on input data and variables previously introduced.
As described in Sect. 2, we consider two objective functions: the itinerary total cost
(denoted by cost) to be minimized and the itinerary attractiveness (denoted by attr )
to be maximized. Both objectives result from the sum of different components, that
we report in the following.

3.3.1 The itinerary cost

The objective function value cost of an itinerary is given by

cost = fuelcost + staycost + mancost,

where

fuelcost =
∑

p∈P

∑

q∈P

∑

v∈V
c(p, q, v)x(p, q, v)
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is the total cost of fuel,

staycost =
∑

p∈P

(
c f (p)y(p) + ch(p)ts(p)

)

is the total cost for staying in the visited transit ports and

mancost =
∑

p∈PT

cma(p)y(p) + cma(p
d) +

∑

p∈PT

cmd(p)y(p) + cmd(p
e)

is the total cost for maneuvering in arrival and departure at the visited ports.

3.3.2 The itinerary attractiveness

The objective function value attr is given by

attr = attrpts + attrdas + attrovn,

where

attractpts =
∑

p∈P
a(p)y(p) (3.1)

is the attractiveness component due to the visited ports,

attractdas = ads
∑

p∈P
das(p)

is the attractiveness component due to the days spent at sea and

attrovn =
∑

p∈P
o(p)ovn(p)

is the attractiveness component due to the overnights spent in ports. Note that in (3.1)
pe and pd have been included in the sum even if they contribute with a constant term.

3.4 The constraints

In this section we describe the set of constraints which define the feasible set of the
DCIO problem. They are subdivided into two groups: the structural constraints com-
mon to all problem instances, and the operational constraints, peculiar to a particular
instance of the problem. In some constraints a parameter, denoted by BigM , is adopted
to allow binary variables to turn constraints on or off.
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3.4.1 Structural constraints

• Constraints ensuring that the cruise itinerary embarks and disembarks at the
turnaround ports pe, pd :

y(pe) = 1, y(pd) = 1. (3.2)

• Constraint imposing that only one leg originates from the turnaround port pe:

∑

q∈P

∑

v∈V
x(pe, q, v) = 1. (3.3)

• Constraint imposing that the ship departs from the turnaround port pe on the first
day of the cruise:

∑

q∈P
yd(p

e, q, 0) = 1. (3.4)

• Constraints imposing that on the first day of the cruise itinerary the ship cannot
depart from ports different from the embarkation turnaround port pe:

∑

q∈P
yd(p, q, 0) = 0, for all p ∈ P, p �= pe. (3.5)

• Constraints imposing that the ship cannot depart from the turnaround port pe on
days different than the first day (d = 0) of the cruise itinerary:

∑

q∈P
yd(p

e, q, d) = 0, for all d ∈ {1, . . . , N }. (3.6)

• Constraints imposing that the ship cannot arrive to the turnaround port pe on days
different from the last day (d = N ) of the cruise itinerary:

∑

p∈P
yd(p, p

e, d) = 0, for all d ∈ {0, 1, . . . , N − 1}. (3.7)

• Costraints imposing that on the first day of the cruise itinerary (d = 0) the ship
can not arrive to any port:

ya(p, 0) = 0, for all p ∈ P. (3.8)

• Constraint imposing that the there is only one leg leading to the turnaround port
pd :

∑

p∈P

∑

v∈V
x(p, pd , v) = 1. (3.9)
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• Constraints imposing that on the last but one day of the cruise itinerary (d = N−1)
the ship can not depart towards any port different from the turnaround port pd :

∑

p∈P
yd(p, q, N − 1) = 0, for all q ∈ P, q �= pd . (3.10)

• Constraints imposing that the ship cannot depart from the turnaround port pd

unless pe = pd and d = 0, first day of the cruise itinerary:

∑

q∈P
yd(p

d , q, d) = 0, for all d ∈ D, d �= 0. (3.11)

• Constraints imposing that the ship cannot depart on the last day d = N :

∑

q∈P
yd(p, q, N ) = 0, for all p ∈ P. (3.12)

• Constraints that set the variables y(p) to 1 if the port p with p �= pe is visited, to
0 otherwise:

y(p) =
∑

q∈P

∑

v∈V
x(q, p, v), for all p ∈ P, p �= pe. (3.13)

• Constraints relating the variables ya(p, d) and x(q, p, v):

∑

d∈D
ya(p, d) =

∑

q∈P

∑

v∈V
x(q, p, v), for all p ∈ P,

ya(p
d , N ) =

∑

q∈P

∑

v∈V
x(q, pd , v).

(3.14)

• Constraints on the variables y(p, q, d) imposing that in any given port, in any
given day, at most one departure is possible:

∑

q∈P
yd(p, q, d) ≤ 1, for all p ∈ P and for all d ∈ D. (3.15)

• Constraints imposing that any given port cannot be visited more than once during
the cruise itinerary:

∑

d∈D
ya(p, d) ≤ 1, for all p ∈ P. (3.16)
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• Constraints defining the arrival time of the ship in port p:

ta(p) =
∑

q∈P
td(q, p) +

∑

q∈P

∑

v∈V

(
t(q, p, v) + tmd(q) + tma(p)

)
x(q, p, v),

for all p ∈ P. (3.17)

Note that, by this constraint, it results ta(p) = 0 if the port p is not visited.
• Constraints defining the stay time of the ship in port p:

ts(p
e) = 0, ts(pd) = 0,

ts(p) =
∑

q∈P
td(p, q) − tma(p), for all p ∈ PT . (3.18)

• Sequencing constraints on the departure times:

td(p, q) +
∑

q∈P

∑

v∈V
(tmd(p) + t(p, q, v) + tma(q))x(p, q, v) −

∑

r∈P
td(q, r)

≤ BigM

⎛

⎝1 −
∑

q∈P

∑

v∈V
x(p, q, v)

⎞

⎠ , for all p ∈ PT and for all q ∈ PT .

(3.19)

• Continuity constraints:

∑

p∈P

∑

v∈V
x(p, q, v) =

∑

r∈P

∑

v∈V
x(q, r , v), for all q ∈ PT . (3.20)

• Constraints required if the set DS is not empty, i.e. if at least one day at sea is
planned:

∑

p∈P

∑

q∈P
yd(p, q, di ) = 1,

∑

p∈P
ya(p, d

i + 1) = 0, for all di ∈ DS .

(3.21)

These constraints ensure that if the ship departs from some port on day di ∈ DS ,
it does not arrive in any port on day (di + 1).

• Constraints imposing that the departure time of the ship occurswithin the departure
time window:

∑

d∈{0,...,N−1}
(dtws(p) + 24d)yd(p, q, d) ≤ td(p, q)

≤
∑

d∈{0,...,N−1}
(dtwe(p) + 24d)yd(p, q, d), (3.22)
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for all p, q ∈ P.Note that by this constraint it results td(p, q) = 0 if the leg (p, q)

does not belong to the itinerary.
• Constraints imposing that the arrival time of the ship occurs within the arrival time
window:

∑

d∈{1,...,N }
(atws(p) + 24d)ya(p, d) ≤ ta(p) ≤

∑

d∈{1,...,N }
(atwe(p) + 24d)ya(p, d),

(3.23)

for all p ∈ P.

• Constraints on the minimum and maximum stay time in each port:

minstay(p)
∑

q∈P

∑

v∈V
x(p, q, v) ≤ ts(p) ≤ maxstay(p)

∑

q∈P

∑

v∈V
x(p, q, v),

(3.24)

for all p ∈ PT .
• Constraint that sets the variable das(p) = 1 if the ship arrives at port p after
sailing for more than 24h (day at sea), and sets das(p) = 0 otherwise:

−BigM (1 − das(p)) ≤
∑

q∈P

∑

v∈V
t(p, q, v)x(p, q, v)

−24.01 ≤ BigM das(p), (3.25)

for all p ∈ P .
• Constraint that sets the variable ovn(p) = 1 if the ship moors at port p for more
than 24h (overnight in port), and set ovn(p) = 0 otherwise:

− BigM (1 − ovn(p)) ≤ ts(p) − 24.01 ≤ BigM ovn(p), (3.26)

for all p ∈ P .

3.4.2 Operational contraints

• Constraint on the minimum and maximum number of transit ports included in the
cruise itinerary:

npmin ≤
∑

p∈PT

y(p) ≤ npmax . (3.27)

• Constraint on the transit ports to be visited in the cruise itinerary:

y(p) = 1 for all p ∈ PV . (3.28)
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• Constraint on the transit ports to be visited on given arrival dates in the cruise
itinerary:

ya(p, d) = 1 for all (p, d) ∈ MV . (3.29)

• Constraint on the ports to be not visited on given arrival dates in the cruise itinerary:

ya(p, d) = 0 for all (p, d) ∈ MV . (3.30)

• Constraint on the maximum number of anchor ports included in the cruise
itinerary:

∑

p∈PA

y(p) ≤ npmaxA. (3.31)

• Constraints on the minimum and maximum number of days at sea in the cruise
itinerary:

mindas ≤
∑

p∈P
das(p) ≤ maxdas. (3.32)

By letting npmin = npmax = N − 1 in (3.27) it is possible to impose that at each
day one port is visited, thus avoiding days at sea and/or overnights in port. Instead,
by setting npmin < npmax < N − 1 more freedom is given for days at sea and/or
overnights in port. The transit port to be visited is usually refereed to a port of great
attractiveness: if the port is to be visited on this day, it means that some event occurs in
this day which could be of great interest for the cruise passengers. The transit ports to
be not visited in given days are typically referred to some shore activities that are not
allowed in these ports in these days; as an example usually cruise ships do not moors in
Civitavecchia (the port of Rome) on Monday, when in Rome all museums are closed.
Of course, note that to impose that a port has not to be visited in the whole cruise
itinerary it is enough to remove these ports from the set of ports P . Note that since
disembarking and embarking by motor boats would result somewhat uncomfortable
for the cruise passengers, a maximum number of allowed anchor ports is prefixed by
(3.31).

Finally, it is worth specifying that by constraints (3.25), one day di at sea is forced
if

∑
p∈P das(p) = 1 and

∑

p∈P

∑

q∈P
yd(p, q, di ) = 1,

∑

p∈P
ya(p, d

i + 1) = 0;

of course, in this case, it is required that the set {t(p, q, v), p, q ∈ P, v ∈ V} contains
enough time legs t(p, q, v) ≥ 24.
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3.5 The bi-objective mixed integer linear programming problem

We can now formulate the DCIO problem as the optimization problem aiming at
minimizing the objective function cost , while maximizing the objective function attr
defined in Sect. 3.3. Therefore, if we denote by Z the feasible set of the problem, i.e.
the set of decision variables which satisfy all the constraints, then the DCIO problem
can be stated as the following optimization problem

min
{
cost(z),−attr(z)

}

subject to z ∈ Z.
(3.33)

Recalling that the decision variables are both continuous and integer (binary) and
observing that both objective functions and all the constraints are linear, problem
(3.33) is a Mixed Integer Linear Programming (MILP) problem. Moreover, based on
the fact that, as we already observed, the more an itinerary is attractive, the higher
its cost problem (3.33) has conflicting objectives, i.e. it is a nontrivial bi-objective
optimization problem (for an extensive treatment on Multiobjective Optimization see,
e.g.(Miettinen 2012)).

3.6 Some remarks on the optimizationmodel

We remark that, for the sake of simplicity, the model presented here is a simplified
version of the one actually developed. In particular, as an example, some of the features
that have been omitted are the following:

• to impose that the visited ports belong to different countries, thus avoiding to pay
the “cabotage tax” (tax concerning rights of a company from one country to trade
in a different country);

• to consider two (or more) consecutive days at sea, with decreasing attractiveness;
this is of interest, in particular, for oceanic cruises;

• to consider more than one overnight in a port; this is of interest for events lasting
more than one day;

• to prevent that anchor ports are visited in consecutive days;
• to consider more than one transit port in the same day, even if this is of interest
only for cruises in the class of expeditions;

• for some given ports p ∈ P , to consider the departure time window [dtws(p),
dtwe(p)] and the arrival time window [atws(p), atwe(p)] split on two successive
days.

It is clear that including in the description of themodel all the additional featureswould
require much more room, while they are not strictly necessary for understanding the
approach we propose for tackling the cruise itinerary optimization problem.
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4 The optimization procedure

Wenowdescribe the optimizationprocedure leading to the designof the cruise itinerary
which minimize the overall cost, while maximizing its attractiveness, namely to solve
theMILP problem (3.33). To this aim, let us denote byF the two dimensional objective
functions space (cost, attr). As well known, a solution z∗ ∈ Z of problem (3.33) is
a point that maps itself on the Pareto frontier or efficient frontier in F . The latter is
defined as the set of points for which any feasible movement from z∗ which improves
the function cost on F , worsen the function attr on F and conversely. Moreover, we
consider the ideal objective values cost∗ and attr∗, i.e. the optimal values of the two
single objective optimization problems resulting by considering separately the two
objective functions, namely

min cost(z)
s.t. z ∈ Z (4.1)

and

max attr(z)
s.t. z ∈ Z.

(4.2)

Furthermore, let us denote by z∗c and z∗a the optimal points of problems (4.1) and (4.2),
respectively, namely points belonging to Z such that it results cost∗ = cost(z∗c ) and
attr∗ = attr(z∗a). Then we define attr# = attr(z∗c ) and cost# = cost(z∗a).

As well known, the twomethods elective for locating points of the Pareto frontier of
a bi-objective optimization problem are the method of weights and the method of con-
straints [see, e.g., (Miettinen 2012)]. In themethodofweights (also called scalarization
method) the bi-objective problem is transformed into the single objective optimization
problem whose objective function is the weighted sum of the two objective functions.
Namely, it consists in solving the problem

min (1 − w) · cost(z) − w · ζ · attr(z)
s.t. z ∈ Z,

(4.3)

wherew ∈ [0, 1] is a suitedweight. The scalar ζ > 0 is introduced in order to balancing
the two objectives which can even differ of some order of magnitude, depending on
the particular instance. Of course, setting w = 0 we get the objective function values
cost∗, attr#, while settingw = 1we get the values cost#, attr∗. By lettingw ∈ (0, 1)
we get other points of the Pareto frontier. More precisely, the solution of Problem (4.3)
isweakly Pareto optimal; it is Pareto optimal if the weighting coefficients are positive,
i.e., w ∈ (0, 1).

The method of constraints (ε-constraint method) consists in the minimization of
one objective function and considering the other objective as constraint, imposing that
it is bounded by some threshold value. Namely, the following two problems can be
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considered

min cost(z)
s.t. z ∈ Z

attr(z) ≥ attr
(4.4)

and

max attr(z)
s.t. z ∈ Z

cost(z) ≤ cost,
(4.5)

where the bounds attr and cost are such that

attr# ≤ attr ≤ attr∗ and cost∗ ≤ cost ≤ cost#. (4.6)

In both cases, by varying the values attr and cost , we get points of the Pareto frontier.
It is worthy noting that, as well known, the drawback of using the method of

weights is that not all the Pareto optimal solutions can be found (unless the problem
is convex). On the contrary, by means of the method of constraints it is possible to
determine every Pareto optimal solution, regardless of the convexity of the problem
[see Miettinen 2012].

5 Experimental results on some illustrative instances

The approach we propose in this paper has been experimented by a luxury cruise com-
pany for defining cruise itineraries for different ships located in various geographical
areas all over theworld. Of course, here we have no room for reporting results concern-
ing the whole set of itineraries of the areas considered. We report the results obtained
on some instances in order to show the reliability of our approach and also its com-
putational viability. As regards the latter issue, we highlight that the DCIO problem
results to be a large scale MILP problem, whose dimension increases with the car-
dinality of the sets P and D, i.e. the number of ports considered and the duration of
the itineraries. This could lead to long computing time needed to solve the problem.
However, in the framework of the decision making process of a cruise company, com-
puting time does not represent a crucial issue, since itinerary design is performed a
long time in advance, usually a couple of years. This motivated us to use a commercial
MILP solver (rather than adopt a metaheuristic solution approach), possibly stopping
solver iterations when the relative optimality gap is below a prefixed threshold value.

We coded theMILPmodel for the DCIO problem by using AMPL language (Fourer
et al. 2003) and we used theGUROBI 9.1 solver (GUROBIOptimizer reference manual
2020). All the runs have been performed on a PC with an Intel Core i7-2600 3.40 GHz
Processor and 16 GB RAM.

All the reported results are obtained by using the following parameters: as regards
the parameter BigM used in constraints (3.19), (3.25) and (3.26), by evaluating the
order of magnitude of the quantities involved, we set BigM = 103. Moreover, we
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set ζ = 103 in (4.3), on the basis of the observed values of cost(z) and attr(z) in
the considered instances. Finally, in order to obtain optimal solutions, the runs were
stopped when the relative optimality gap satisfies rel_opt_gap ≤ 10−9; however, if
this should lead to large computational times, a less tight threshold can be adopted,
still ensuring a good accuracy of the results.

As illustrative example of a real instance of theDCIOproblemweconsider cruises in
theWestMediterraneanmaritime area, embarking at Barcelona (Spain), disembarking
at Civitavecchia, the port of Rome (Italy), and lasting 7 days. The set of transit ports
includes 106 ports of Spain, France, Monaco, and Italy located in this maritime area.
As regards the port names, in the following we adopt the standard abbreviation from
the United Nations Code for Trade and Transport Locations (UN/LOCODE Code List
2020-2),2 consisting in a combination of a 2-character country code and a 3-character
location code (e.g. ESBCN stands for Barcelona, Spain).

All the scenario data listed in Sect. 3.1.1 which refer to each port p ∈ P are
given. The set of speeds V covers the operational interval [10, 18] nautical miles/hour,
discretized by a 0.5 step. The arrival time window is set to [06:00,10:00] a.m. and the
departure time window to [06:00,10:00] p.m. As regards the stay time in port we set
minstay = 8 hours and maxstay = 16 hours. Finally the index DASI is given.

As regards the problem instance data reported in Sect. 3.1.2, we have the following
ones common to all the instances reported in the following: N = 7 in the definition of
D, the turnaround ports pe=ESBCN and pd=ITCVV, the set of transit port PT (which is
not reported extensively for the sake of brevity) whose cardinality is 106, npmaxA =
1. All the remaining problem data, namely npmin, npmax , mindas, maxdas, the
sets DS ,MV andMV , are specified in correspondence of each instance. By default,
we assume: PV = ∅, DS = ∅ and MV = MV = ∅.

The results are reported in terms of values of the objectives cost and attr at the
optimal solution, namely corresponding the feasible solutionwhich satisfy the prefixed
optimality gap; the computing time (in seconds) required to get such a solution. Tables
reporting cruise itineraries include the list of the legs of the cruise itinerary3, the speed
at which each leg is traveled (in nautical miles/hour), the voyage time required (in
hours), the duration of the arrivalmaneuver (in hours), the arrival hour (within the 24h),
the stay time at port (in hours), the departure hour (within the 24h), the duration of the
departure maneuver (in hours), the index denoting if the port of arrival is a dock (D) or
an anchor port (A), and the attractiveness of the leg (i.e. related to the arrival port or to
a day at sea or to an overnight at port). Fractions of hour are expressed in hundredths.
All cost and attractiveness values are scaled by a factor which is unspecified to protect
strategic corporate data.

2 https://unece.org/trade/cefact/unlocode-code-list-country-and-territory.
3 For the sake of clearness, the explicit names of the ports listed in the tables which follow, are reported
here. Ports of Spain: Barcelona (ESBCN), Porto Mahon (ESMAH), Palma de Mallorca (ESPMI), Valencia
(ESVLC); ports of France: Ajaccio (FRAJA), Hyères (FRHYR), Marseille (FRMRS), Porto-Vecchio (FRPVO);
ports of Italy: Civitavecchia (ITCVV), Livorno (ITLIV), Portofino (ITPTF), Porto Torres (ITPTO), San Michele
di Ganzaria (ITSMG); port of Monaco: Monte Carlo (MCMCM).
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Table 1 Method of weights:
optimal point of each single
objective minimization and CPU
time (in seconds)

w Cost attr CPU time

0.0 188,892 387 58.77

0.1 188,892 387 85.00

0.2 190,181 393 186.67

0.3 190,963 395 781.78

0.4 198,559 408 1284.39

0.5 206,488 418 1383.09

0.6 219,663 429 1321.41

0.7 245,228 442 2366.44

0.8 245,228 442 3708.39

0.9 262,593 446 3282.87

1.0 267,381 446 5995.00

5.1 Instance 1

In the first instance we consider npmin = npmax = 6, mindas = maxdas = 0,
and we solve Problem (4.3) determining points of the Pareto frontiers by means of
the method of weights and the methods of constraints. It is worthy nothing that, to
provide the cruise itinerary planner with a set of (Pareto optimal) points, rather than
a single optimal point, has a great practical importance. In fact, the decision maker
can choose among the itineraries corresponding to these points according to company
preferences, ensuring optimality of the adopted solution.

5.1.1 Pareto frontier by the method of weights

We considered different values of the weight w ∈ [0, 1] obtained by discretizing the
unit interval with step 0.1. The optimal function values of cost(z) and attr(z) obtained
at each single objective minimizations are reported in Table 1, along with the elapsed
CPU time. A plot of these points of the Pareto frontier is reported in Fig. 1.

Of course, the case w = 0 corresponds to solve Problem (4.1) and it provides
the ideal cost value cost∗ (obtained by minimizing the overall itinerary cost) and
the value attr# of the corresponding attractiveness; the case w = 1 corresponds
to solve Problem (4.2) and it provides the ideal value attr∗ of the attractiveness
(obtained by maximizing the overall itinerary attractiveness) and the value cost# of
the corresponding cost. Note that the point obtained for w = 1 is weakly Pareto
optimal.

For the sake of brevity, we do not report here the cruise itinerary associated to each
Pareto optimal point. However, in order to show some detailed itineraries, we report
those obtained in the two extreme cases, namely w = 0 and w = 1. In particular, in
Table 2 the optimal cruise itinerary obtained in the case w = 0 is displayed.

Since in this case the aim is to minimize the itinerary cost, from Table 2 it can
be observed as the corresponding overall attractiveness relatively low is due to the
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Fig. 1 Points of the Pareto frontier obtained by the method of weights

Table 2 Optimal cruise itinerary for Instance 1 corresponding to w = 0 (minimization of the cost)

Port Port Speed Voy. Arr. Arr. Stay Dep. Dep. D Attr
from to m/h time man. hour time hour man. A

0 ESBCN 18.00 1.00 D 57

1 ESBCN FRHYR 16.00 13.94 1.00 9.94 12.06 22.00 1.00 D 44

2 FRHYR MCMCM 12.00 7.08 1.00 7.08 14.92 22.00 1.00 D 56

3 MCMCM ITSMG 12.00 9.00 1.00 9.00 10.08 19.08 1.00 D 42

4 ITSMG FRCLY 12.00 9.17 0.75 6.00 12.58 18.58 0.50 A 48

5 FRCLY ITPTO 12.00 9.92 1.00 6.00 15.67 21.67 1.00 D 42

6 ITPTO FRPVO 12.00 6.33 1.00 6.00 12.58 18.58 1.00 D 45

7 FRPVO ITCVV 12.00 9.42 1.00 6.00 D 53

inclusion in the selected itinerary of ports with a low PAI (see e.g. ITSMG and ITPTO).
In Table 3 we report the optimal cruise itinerary obtained in the case w = 1.

We can note that, as expected, all ports selected in this itinerary have a high attrac-
tiveness (greater than or equal to 53). Of course, the corresponding itinerary cost is
significantly increased, too.

5.1.2 Pareto frontier by the method of constraints

Taking into account that the value of the objective cost is bounded from below by the
values cost∗ = 188,892 and from above by the value cost# = 267,381, we now solve
Problem (4.5), for different values of cost . More specifically, we consider values of
cost ∈ [190,000, 260,000] obtained by discretizing the interval with step 10,000.
The optimal function values of cost(z) and attr(z) obtained at each single objective
maximization are reported in Table 4, along with the elapsed CPU time.
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Table 3 Optimal cruise itinerary for Instance 1 corresponding tow = 1 (maximization of the attractiveness)

Port Port Speed Voy. Arr. Arr. Stay Dep. Dep. D Attr
from to m/h time man. hour time hour man. A

0 ESBCN 18.00 1.00 D 57

1 ESBCN ESVLC 12.95 12.59 1.00 8.59 13.41 22.00 1.00 D 55

2 ESVLC ESPMI 16.50 8.48 1.00 8.48 11.64 20.12 1.00 D 58

3 ESPMI ESMAH 12.95 7.88 1.00 6.00 12.00 18.00 1.00 D 57

4 ESMAH FRMRS 15.50 13.74 1.00 9.74 12.26 22.00 0.50 D 55

5 FRMRS MCMCM 13.50 9.48 1.00 9.48 11.64 21.12 1.00 D 56

6 MCMCM ITPTF 12.50 6.88 1.00 6.00 12.00 18.00 1.00 A 55

7 ITPTF ITCVV 12.95 13.67 1.00 9.67 D 53

Table 4 Method of constraints:
optimal point of each single
objective maximization and
CPU time (in seconds)

Cost Cost attr CPU time

190,000 188,925 387 350.45

200,000 199,563 408 1191.98

210,000 209,293 419 853.47

220,000 219,935 429 785.48

230,000 229,113 432 1213.28

240,000 238,113 436 1942.52

250,000 247,561 442 1658.09

260,000 258,686 444 2053.06

Table 5 Optimal cruise itinerary for Instance 1 corresponding to cost = 250,000

Port Port Speed Voy. Arr. Arr. Stay Dep. Dep. D Attr
from to m/h time man. hour time hour man. A

0 ESBCN 18.00 1.00 D 57

1 ESBCN ESPMI 12.95 10.19 1.00 6.19 12.54 18.73 1.00 D 58

2 ESPMI ESMAH 11.00 9.27 1.00 6.00 12.00 18.00 1.00 D 57

3 ESMAH FRMRS 16.50 12.91 1.00 8.91 9.09 18.00 1.00 D 55

4 FRMRS FRAJA 13.50 13.70 1.00 9.70 8.30 18.00 1.00 D 51

5 FRAJA MCMCM 12.95 10.35 1.00 6.35 14.48 20.83 1.00 D 56

6 MCMCM ITPTF 12.00 7.17 1.00 6.00 12.00 18.00 1.00 A 55

7 ITPTF ITCVV 13.00 13.62 1.00 9.62 D 53

The fact that the higher port attractiveness, the higher port costs, is clearly observed.
Indeed, a good value of the overall cruise attractiveness is obtained only if cost is not
too low. A plot of the points of the Pareto frontier reported in Table 4 is displayed in
Fig. 2.

Again, for the sake of brevity, we now detail in Table 5 the complete cruise itinerary
for only one case, namely the one corresponding to cost = 250,000.
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Fig. 2 Points of the Pareto frontier obtained by the method of constraints

Table 6 Instance 2 with
w = 0.5: optimal point and CPU
time (in seconds)

w Cost attr CPU time

0.5 212,515 417 1073.66

It can be easily observed that the upper bound cost = 250,000 is high enough to
allow including in the itinerary ports with high values of attractiveness.

We remark that the method of constraints can also be applied by considering Prob-
lem (4.5) varying the value of the bound attr . We experimented this and since similar
results are obtained, for brevity, we do not report them.

5.2 Instance 2: visit of a particular port

In the preceding instance the port ITLIV is not included in any itinerary. However, since
ITLIV (Livorno, Italy) is the basis for shore excursions to Pisa and Florence, both of
great touristic interest, it could be important to impose that ITLIV is a port visited during
the cruise itinerary. Therefore, we now use the same data of the previous Instance 1,
but we set PV = ITLIV. For the sake of brevity, we only report results obtained by the
method of weights with an intermediate values w = 0.5 in Problem (4.3). This should
balance the two objectives cost and attr . Table 6 reports the obtained optimal point
and the elapsed CPU time and Table 7 displays the corresponding complete cruise
itinerary.

We can see that, as requested, the port ITLIV is visited during the cruise itinerary. In
particular, this occurs on the 6th day of the itinerary, on the way to the final turnaround
port ITCVV. However, to impose that ITLIV is among the visited ports leads to a decrease
of the itinerary attractiveness since ports with a high PAI are not included to avoid
high cost ports.
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Table 7 Optimal cruise itinerary for Instance 2 (PV = {I T L I V }) corresponding to w = 0.5

Port Port Speed Voy. Arr. Arr. Stay Dep. Dep. D Attr
from to m/h time man. hour time hour man. A

0 ESBCN 18.00 1.00 D 57

1 ESBCN ESMAH 12.00 11.33 1.00 7.33 10.74 18.07 1.00 D 57

2 ESMAH ITAHO 13.50 13.93 1.00 10.00 10.25 20.25 1.00 A 45

3 ITAHO FRPVO 12.00 7.75 1.00 6.00 16.00 22.00 1.00 D 45

4 FRPVO FRAJA 12.00 6.42 1.00 6.42 14.41 20.83 1.00 D 51

5 FRAJA MCMCM 12.00 11.17 1.00 10.00 11.58 21.58 1.00 D 56

6 MCMCM ITLIV 12.00 10.42 1.00 10.00 8.17 18.17 1.00 D 53

7 ITLIV ITCVV 12.00 9.83 1.00 6.00 D 53

Table 8 Instance 3 with w = 1:
optimal point and CPU time (in
seconds)

w Cost attr CPU time

1 232,267 440 474.86

Table 9 Optimal cruise itinerary for Instance 3 (one overnight in MCMCM port) with w = 1

Port Port Speed Voy. Arr. Arr. Stay Dep. Dep. D Attr
from to m/h time man. hour time hour man. A

0 ESBCN 18.00 1.00 D 57

1 ESBCN ESMAH 11.00 12.36 1.00 8.36 9.64 18.00 1.00 D 57

2 ESMAH FRMRS 16.50 12.91 1.00 8.91 10.26 9.17 1.00 D 55

3 FRMRS MCMCM 14.50 8.83 1.00 6.00 37.88 1.00 D 56

4 Overnight at MCMCM 56

5 MCMCM FRAJA 16.50 8.12 1.00 6.00 12.35 18.35 1.00 D 51

6 FRAJA ITPTF 17.00 9.65 1.00 6.00 15.59 21.59 1.00 A 55

7 ITPTF ITCVV 17.00 10.41 1.00 10.00 D 53

5.3 Instance 3: one overnight in a particular port

Monte Carlo is well known for themotor raceGrand Prix ofMonaco, that was disputed
on May 22–23, 2021. The next case considers the same data of Instance 1 but now
we add the request of an overnight in the portMCMCM on May 22, the 3rd day of the
itinerary. This allows the cruise passengers to attend the race. Of course in this case
the minimum stay time in MCMCM has been changed to 24 hours and the maximum
to 48 hours. Note that in this case we have npmin = npmax = 5 rather than 6, as
in all previous cases. Once again, for the sake of brevity, we only report the results
obtained by maximizing the itinerary attractiveness, namely by solving Problem (4.3)
with w = 1. Table 8 reports the obtained optimal point and the elapsed CPU time and
Table 9 displays the corresponding complete cruise itinerary.
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Table 10 Instance 4 with
w = 1: optimal point and CPU
time (in seconds)

w Cost attr CPU time

1 283,672 411 393.25

Table 11 Optimal cruise itinerary for Instance 6 (one day at sea at 5th day of the itinerary) with w = 1

Port Port Speed Voy. Arr. Arr. Stay Dep. Dep. D Attr
from to m/h time man. hour time hour man. A

0 ESBCN 18.00 1.00 D 57

1 ESBCN FRMRS 17.00 10.82 1.00 6.82 11.18 18.00 1.00 D 55

2 FRMRS ESMAH 17.00 10.82 1.00 6.82 11.18 18.00 1.00 D 57

3 ESMAH ESVLC 17.00 13.71 1.00 9.71 8.29 18.00 1.00 D 55

4 ESVLC ESPMI 13.00 10.77 1.00 6.77 11.23 18.00 1.00 D 58

5 Day at sea 20

6 ESPMI MCMCM 11.00 34.91 1.00 6.91 11.23 18.00 1.00 D 56

7 MCMCM ITCVV 15.50 13.94 1.00 9.94 D 53

Observe that, as requested, one overnight at MCMCM port is scheduled in the 4th
day of the itinerary and this affects the overall attractiveness of the itinerary cruise.
In fact, a slight decrease of the attractiveness is obtained with respect to the optimal
cruise itinerary corresponding to Instance 1 (with w = 1), from which this is derived.

5.4 Instance 4: one day at sea on a particular day of the itinerary

As last instance we consider the same data of Itinerary 1with the following additional
request: the itinerarymust include a day at sea, startingwith the departure in the evening
on the 4th day and lasting during thewhole 5th day. Of course, againwe have npmin =
npmax = 5. Taking into account that, due to the reduced number of ports, we expect
a reduced port cost and reduced attractiveness. Therefore, analogously to the previous
instance, we consider Problem (4.3) with w = 1, so that the itinerary attractiveness
is maximized. Table 10 reports the obtained optimal point and the elapsed CPU time
and Table 11 displays the corresponding complete cruise itinerary.

Of course, due to the low attractiveness which has been assigned in this case to the
day at sea (20), the overall itinerary attractiveness is decreased with respect to that
obtained in the previous Instance 3, even if its cost is significantly increased.

In order to give evidence of the large dimension of the problem in hand,we report the
number of variables and the number of constraints which characterize the instances
now considered: problems have typically around 62,600 variables of which around
2900 are continuous and the remaining are binary; the number of constraints varies
between 18,850 and 22,040.Of course, the problemdimension increases as the number
of ports considered |P| and the itinerary duration |D| increase. Therefore, solving the
MILP problems corresponding to large instances could require a long computing time.
However, as we already pointed out, usually this does not represent a serious drawback
since the itinerary planning is designed a long time in advance.
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6 Conclusions

This paper deals with the day-by-day cruise itinerary planning for a ship operating in
a given maritime area. It represents the lowest level of the decision making process
of a cruise company in designing cruises to propose to their customers. In particular,
we focused on luxury cruise market for which additional constraints must be taken
into account, with respect to cruise mass market. Actually, the problem has a twofold
objective: from one hand the aim is to minimize the overall itinerary cost and, from the
other hand, the itinerary attractiveness should bemaximized. These are two conflicting
objectives, since the more attractive the itinerary, the higher the cost. Therefore, we
formulated the DCIO problem as a bi-objective MILP problem, whose solution is
provided in terms of Pareto optimal solution points. Actually, for the sake of clearness,
in the paper a simplified version of themodel experimented by a luxury cruise company
is reported. However, the main features of the proposed approach can still be observed,
avoiding discussions on technical details regarding additional specific requests.

As illustrative example, we report the optimal cruise itineraries for some instances
in the West Mediterranean maritime areas. We highlight that the model has been used
for defining cruise itineraries in many different geographical areas all over the world,
considering many different parameter settings and particular additional requests. We
showed that themodel we propose allows the user to obtain the cruise optimal itinerary
by using a commercial MILP solver. Of course, the optimization model we propose is
to be intended as a decision support system for the company management, who is the
only one deputed to refine, improve and finalize the cruise itineraries into the cruise
catalog actually proposed to customers.

We believe that the revival of the cruise industry after the COVID-19 crisis should
be also based on decision support systems like the one proposed in this paper, aiming
at designing new and more attractive cruise itineraries, trying to contain costs.
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