
Received 12 October 2022, accepted 28 November 2022, date of publication 1 December 2022,
date of current version 7 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225975

Design and Evaluation of Buffered Triple Modular
Redundancy in Interleaved-Multi-Threading
Processors
MARCELLO BARBIROTTA , ABDALLAH CHEIKH , ANTONIO MASTRANDREA,
FRANCESCO MENICHELLI, AND MAURO OLIVIERI , (Senior Member, IEEE)
Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, 00184 Rome, Italy

Corresponding author: Marcello Barbirotta (marcello.barbirotta@uniroma1.it)

ABSTRACT Fault management in digital chips is a crucial aspect of functional safety. Significant work has
been done on gate and microarchitecture level triple modular redundancy, and on functional redundancy
in multi-core and simultaneous-multi-threading processors, whereas little has been done to quantify the
fault tolerance potential of interleaved-multi-threading. In this study, we apply the temporal-spatial triple
modular redundancy concept to interleaved-multi-threading processors through a design solution that we
call Buffered triple modular redundancy, using the soft-core Klessydra-T03 as the basis for our experiments.
We then illustrate the quantitative findings of a large fault-injection simulation campaign on the fault-tolerant
core and discuss the vulnerability comparison with previous representative fault-tolerant designs. The results
show that the obtained resilience is comparable to a full triple modular redundancy at the cost of execution
cycle count overhead instead of hardware overhead, yet with higher achievable clock frequency.

INDEX TERMS Circuit faults, digital integrated circuits, fault detection, fault tolerant computing, field
programmable gate arrays, microprocessors, multithreading, radiation hardening (electronics), redundancy,
robustness.

I. INTRODUCTION
The probability of faults due to voltage glitches induced
by ionizing particles in digital chips increase with the
reduction of the minimum feature size and voltage margins,
along with augmented statistical process variations [1],
[2], [3]. The ability to manage circuit faults to preserve
the system’s functional safety, commonly denoted as fault
tolerance (FT), is traditionally linked to space, avionics,
and military worlds. Yet, it has been recognized as playing
a central role in ground-level intelligent transportation
systems [4], which increasingly rely on digital integrated
circuits.

Radiation-hard fabrication technologies can be applied
to a few high-budget products since they are orders of
magnitude more expensive than commercial off-the-shelf
(COTS) hardware components [5], [6]. Thus, fault-tolerant

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

architecture design techniques (also known as radiation
hardening by design) are key features in many embedded
application domains that must employ COTS for commercial
sustainability. In this context, the effective implementation of
fault-tolerant soft-processor solutions in static RAM (SRAM)
based FPGAs is a significant research target [7], [8].

Several fault-tolerant processor architecture approaches
have been proposed in the literature to improve fault coverage
(FC), that is, the percentage of faults that can be detected
and resolved in the microarchitecture. These techniques
are typically based on spatial redundancy (resource repli-
cation) and/or temporal redundancy (operation repetition),
which always results in hardware overhead and/or speed
degradation [9], [10].

Broadly speaking, the existing approaches can be divided
into triple modular redundancy (TMR), which allows the
detection and correction of faults using a one-over-three
voting mechanism, and double modular redundancy (DMR),
which allows fault detection and relies on a checkpoint

126074 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1902-7188
https://orcid.org/0000-0003-4495-5960
https://orcid.org/0000-0002-0214-9904


M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

restoration mechanism to recover the correct operation. Error
correcting codes (ECC) are another form of redundancy
typically reserved to protect memories and large register files.

In recent years, much work has been done to reliably
exploit simultaneous multi-threading (SMT) and multi-
core (MC) processors for implementing TMR and DMR,
constituting the basis for many industrial fault-tolerant
systems [11], [12]. The concept behind these works is
replicating the same thread instead of executing different
threads, obtaining an FT gain instead of a performance
gain. In this study, we explore the use of interleaved
multi-threading (IMT) to obtain fault-tolerant operations.
IMT cores are single-issue in-order processors that fetch
instructions from different execution threads in each clock
cycle [13], [14]. They are interesting in low-cost embedded
systems because they achieve relatively high performance
by hiding data-dependency stalls providing a fence between
read and write access to the register file [15]. As they
support the bare-metal execution of multiple threads, they can
potentially support FT through thread replication. However,
they are less immediately usable for implementing FT
support than SMT and MC architectures because they
share some hardware resources among the threads, and the
results of the replicated instructions are not simultaneously
available.

Starting from an open-source Reduced Instruction Set
Computer-V (RISC-V) IMT softcore (Klessydra-T03 [16]),
we implemented a form of temporal-spatial redundancy
using a set of precise hardware modifications having general
validity, which we refer to as Buffered TMR. We quantified
the FT performance of the so-obtained processor core, named
Klessydra-fT03, by an extensive fault-injection campaign
with single-event upset (SEU) faults, targeting all register bits
in the architecture.

The proposed study is - to the best of our knowledge - the
first detailed evaluation of the IMT execution scheme for
implementing fault-tolerant processors, covering both design
aspects and quantitative performance analysis. This work
extends the concept presented in [17] through a deeper
design discussion, a wide fault-injection simulation campaign
with different benchmark application kernels, and a detailed
comparison with other FT architectures taken from the
literature, addressing power, frequency, hardware resource
utilization, and FC.

The contributions of the proposed work with respect to the
existing state of the art are the following:
• The work fills a gap in the literature, by analyzing the
fault tolerance potential of IMT architectures, which is
not covered by previous works in the field;

• It proposes and details the implementation of a technique
that merges spatial and temporal redundancy, referred to
as Buffered TMR;

• It quantifies the effectiveness of the proposed technique
by means of an extensive fault-injection simulation
campaign, in terms of Architecture Vulnerability Factor
and Mean Work Between Failure;

• It discusses the comparison of the approach with other
fault tolerance designs based on the same Instruction Set
Architecture.

The rest of the article is organized as follows: Section II
discusses how multi-threading has been exploited for FT
in SMT and MC architectures and provides an overview
of existing RISC-V FT cores that constitute the dataset for
performance comparison with the proposed work; Section III
discusses the proposed design solution; Section IV describes
the verification methodology and environment, followed
by the results in Section V and the comparison with
existing works in Section VI; Section VII discusses the main
outcomes, and Section VIII summarizes the conclusions.

II. RELATED WORKS
A. SIMULTANEOUS MULTI-THREADING PROCESSORS
One of the earliest approaches for exploiting redundant
threads for FT is active redundant simultaneous multi-
threading (AR-SMT), in which an active-stream thread
saves its results in a buffer and a redundant-stream thread
compares its results with the saved ones, producing an
exception in the case of a mismatch [12]. Similarly, the
simultaneous redundant thread (SRT) approach defines a
leading thread and a follower (or trailing) thread, adopting a
series of microarchitecture techniques to avoid performance
stalls in load/store instructions and manage access to
resources shared by the leader and follower threads [18]. The
SRT-with-recovery (SRTR) approach [11], [12] extends SRT
with instruction re-execution in the case of error detection.
It also introduces microarchitecture enhancements, such as a
register value queue (RVQ) to compare the value produced
by the trailing thread with that produced by the leader
thread, thereby saving the register file bandwidth. SRTR
also provides dependence-based checking elision (DBCE),
allowing only the last instruction in a dependence chain to
be saved on the RVQ. In [19], a ‘‘safe-shuffle’’ approach is
proposed to ensure that the leading and trailing threads use
different hardware resources in order to address permanent
hardware fault detection.

Other techniques have been introduced using partially
redundant multi-threading to improve performance by lim-
iting the number of redundant instructions executed by
the processor. The authors of [20] propose Slipstream,
an extension of AR-SMT in which a complex microarchi-
tecture mechanism, by analyzing redundant thread execution
possibly removes unnecessary instructions from the active
thread because they are likely not to affect the state of
the thread. In the case of state mismatch, the state of
the active thread is recovered from the redundant thread.
A similar concept is implemented in slice-based locality
exploitation [21], which executes instructions from the
leading thread, such as SRT, with a slice matrix that maintains
the instruction trace and a mechanism that tries to delete
instructions from the trailing thread by predicting the output.
Finally, opportunistic transient fault detection [22] proposes

VOLUME 10, 2022 126075



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

a methodology to limit the performance degradation due to
redundant execution by enabling or disabling the redundant
thread.

B. MULTI-CORE PROCESSORS
The underlying idea in MC fault-tolerant architectures [11],
[12] is the migration of all the techniques used in SMT cores
to multiple cores. A particular implementation of MC fault
tolerance is represented by lock-stepped cores [12], [23],
in which synchronized processor replicas execute the same
instruction in the same clock cycle (or with a fixed-time
separation of a few cycles) and the results of each instruction
are compared in real-time.

The chip-level redundant threading (CRT) approach [24],
with and without recovery, implements the SRT technique
using two cores, comparing them by sharing the branch pre-
diction queue and store/load value queue via a dedicated bus.
The Reunion approach [25] proposes a CRT that preserves
the existing memory interface, coherence protocols, and
consistency models, and uses a ‘‘‘fingerprint’’ to compress
the architecture status to reduce the comparison overhead,
while authors in [10] developed an offline scheduler syn-
thesis framework for MC processors executing real-time
applications that, even in the presence of transient faults,
can drive the system to a safe execution state. In [26]
and [27], fault-tolerant multi-core and many-core processors
are described and compared, while [28] proposes an FPGA
methodology that combines two different cores with different
performances.

Overall, the outcome of the analysis of the literature
related to FT in multi-threading processors (SMT and MC)
evidences a gap due to the absence of studies addressing IMT
processors, which is the focus of the proposed work.

C. SOFTWARE FT IN MULTI-THREADING PROCESSORS
In both SMT and MC approaches, software redundancy
methodologies have been extensively documented [12],
such as error detection by duplicated instructions operat-
ing on distinct registers and memory regions or specific
voting instructions plugged by the compiler. In software-
implemented fault tolerance with recovery (SWIFT-R) [29],
instructions are triplicated, with a simple voting mechanism
in case of a fault on single instructions, whereas in
triple redundancy using multiplication protection (TRUMP)
[29], [30], an AN-encoding copy is used instead of an
operation redundancy. The original value is multiplied by
the constant value A to obtain the encoded copy. The
recovery mechanism is activated when the encoded copy
does not match the original values multiplied by a factor
A. The work in [31] analyzes the hardened-by-replication at
the software level, observing that these techniques improve
marginally the reliability against in-memory SEUs, but
they degrade the reliability against hardware architectural
faults. In [32], a software approach is adopted, in which
many cores are used to launch partial replicas of the same
program.

Overall, a common characteristic of software-based
approaches to FT is the implementation of temporal redun-
dancy by modifying the software code to be run on the
processor. In the proposed approach, temporal redundancy
is intrinsically obtained by the automatic replication of the
threads being executed in the microarchitecture, without
the need for interventions on the application software
code.

D. RISC-V FAULT-TOLERANT PROCESSOR CORES
When evaluating different microarchitectures for FT, care
should be taken to ensure that the results may not be
influenced by the different instruction-set architectures (ISA)
on which the application benchmarks are compiled. Our
experiments target the RISC-V ISA; thus, RISC-V-compliant
fault-tolerant cores are the reference architectures for per-
formance comparison. RISC-V is an open and extendable
ISA that has gained growing interest in academia and
industry since its introduction in 2010 [33]. Numerous
RISC-V cores have been implemented for embedded system
applications [16], [34], [35], and RISC-V has recently
received attention for space applications, opening the way
for the development of fault-tolerant RISC-V microarchitec-
tures [6], [17], [28], [36], [37]. Table 1 summarizes the most
representative RISC-V-based FT works, categorized by the
applied techniques, hardened microarchitecture components,
and verification/test methodology.

In [38], the authors present CEVERO, a RISC-V System-
on-Chip that implements FT on a PULP platform [34].
It comprises two Ibex cores running in a lock-step execution,
which are compared to each other via an FT hardware module
that checks whether an error manifests in any executed
instruction. The system is tested using a fault-injection
(FI) hardware block capable of inserting bit flips in the
hardware. The authors claim that the system can detect
errors, but no numerical data about FT performance and fault
coverage are reported. In [39], the SHAKTI-F architecture
is reported, featuring spatial-temporal TMR for the ALU
and ECC for registers and memories. This paper presents
an interesting fault analysis and re-computation methodology
that can classify faults as permanent or transient. Two levels
of verification are reported, module level and system level,
with an FI block that affects the single module or the
entire system, respectively, with single-bit faults simulated
by injecting bit flips in the registers between the pipeline
stages. No exhaustive numbers are reported regarding fault
coverage, but the authors claim that the core was able to detect
and correct all injected faults. Another solution is described
in [28], where a 666 MHz Arm A9 hard core and a 25 MHz
LowRISC softcore on Zynq-7000 run in a dual-core lock-
step (DCLS) execution. Each core receives the same input,
and additional hardware compares the output. The system can
stop, restart, restore from a checkpoint, or continue execution.
Specific software modules were used to test the processor
architecture, the synchronization module, and the checker
module, respectively. Full coverage is not ensured, and

126076 VOLUME 10, 2022



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

TABLE 1. Fault Tolerant RISC-V core summary expanded and updated from [36]; the works are divided by FT techniques, units and verification
methodologies.

so-called common-mode faults may occur, i.e. faults that
affect both systems failing the computation.

In [43], the authors performed a deterministic FI campaign
to detect the critical bits of two different implementations
of the Rocket RISC-V processor: one protected by the
distributed TMR technique and one unprotected. The results
showed that the unprotected version could already obtain
correct results in 96% of the FI cases, whereas the TMR
version augmented the ratio to 99.9%. The work in [40]
uses N-modular redundancy (NMR) and Hamming codes in
architecture and pipeline registers, whereas FI is performed
using a dedicated FI block placed in different positions of the
processor architecture.

In [41], the authors propose a technique able to protect
the register file of the lowRISC processor implemented on
a Nexys 4 DDR board featuring a Xilinx Artyx-7 FPGA.
By duplicating the entire register file and using a parity-
checking mechanism, the authors can reduce the error
propagation from 10.17% to 0%. The authors of [42] present
the BL-TMR software suite, which can analyze a Xilinx
Vivado netlist and add triple redundancy to critical nodes.
The solution was applied to the design of the RISC-V Taiga
processor implemented on a Kintex Ultrascale FPGA in two
different configurations, with TMR and without, and was
tested by neutron radiation, with a 24X improvement in mean
failure rate at the cost of 5.6X overhead of logic resources.
Similarly, the same authors in [45] use the SpyDrNet tools
to apply TMR on some RISC-V processors, observing
reductions of the failures due to configuration RAM errors
between 20X to 500X, while the work reported in [44]
exploits the idea that only the most statistically frequent
ALU operations require protection to reduce hardware
overhead.

In [36], the authors propose a fault-tolerant RISC-V
processor core using Hamming code to protect the register
file and the program counter, and TMR to protect the ALU
and control logic. The single-cycle microarchitecture was
implemented on a Xilinx Zynq FPGA, reaching a frequency
of 50 MHz. The authors extended the use of the core
to a microcontroller system-on-chip (SoC), discussing the
architecture, synthesis results, and comparisons with other
cores using random FI simulations.

Overall, existing studies on RISC-V processor hardening
by design compose a heterogeneous scenario, ranging from
solutions dedicated to specific functional units to full TMR
protection of the microarchitecture, but none of them covers
the exploitation of IMT to implement FT in a RISC-V
compliant architecture. Thus, the proposed work represents
an interesting alternative to be explored in the RISC-V
context.

III. MICROARCHITECTURE DESIGN
A. BASELINE MICROARCHITECTURE
The concept of the proposed work is to quantify the FT
performance of the triple redundancy obtained by properly
adapting an IMT core that supports three hardware threads.
The open-source Klessydra-T [46] is an IMT processor core
family based on a four-stage in-order pipeline that interleaves
three or more hardware threads (Fig. 1). It is fully compatible
with the PULPino open-source microcontroller platform [34]
and supports the RV32IMA instruction set in bare-metal
execution. It also supports a custom ISA extension ‘‘K’’,
designed to accelerate vector computations. The K-extension
and related hardware units can be excluded from the synthesis
configuration to generate the Klessydra-T03 core.

Our work addresses the resilient execution of the standard
RV32IMA instruction set; therefore, we used Klessydra-T03
as the baseline on which we built the FT microarchitecture
design to be analyzed, named Klessydra-fT03. Furthermore,
although the core is compatible with the PULPino platform,
the peripherals included in the platform architecture are not
within the scope of this study and allow a fair comparison
with previous studies on other FT RISC-V cores.

B. PRINCIPLE OF IMT-BASED FT
Like other FT techniques with SMT and MC multi-threading
schemes, the proposed approach exploits the IMT scheme to
merge spatial redundancy with temporal redundancy, intro-
ducing checking/voting logic and accepting the consequent
throughput decrease. The architecture executes three threads
that are instances of the same program, maintaining the state
of the threads in redundant registers (spatial redundancy)
and sharing combinational logic among the threads by
interleaving their instructions with one cycle time distance

VOLUME 10, 2022 126077



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

FIGURE 1. Klessydra-T03 microarchitecture scheme. Colors evidence the sequential
elements that maintain the state of each thread separately.

(temporal redundancy). Each of the three threads has a
numeric identifier, and the order of the interleaved instruction
fetch is always thread 2, thread 1, and thread 0.

The original IMT architecture natively offers spatial
redundancy using a replicated program counter, register file,
and control/status registers (CSRs) to maintain the states of
the three threads being executed. Voting can be introduced
at several points in the pipeline microarchitecture among
the logic signals produced by three identical threads. Fig. 2
summarizes the different schemes that can be considered.
Each possible choice requires hardware and time overhead to
maintain a consistent program flow. In the following section,
we discuss and illustrate the design choices referring to the
specific architectural elements to be protected.

C. REGISTER DATA FLOW PROTECTION
The scheme shown in Fig. 2(a) performs voting among the
data replicas produced by the three threads at the output of the
replicated register file. Notably, voting can occur only when
the latest of the three threads (Thread 0) reads its operands
because otherwise, the three copies of the data may not be
ready in the registers. Therefore, if the voting fails, and the
faulty operand is the one read by Thread 1 or Thread 2,
the pipeline is flushed to avoid incorrect processing values,
resulting in a 2-cycle latency overhead. In addition, the
scheme is more efficient than the classical TMR implemented
at the flip-flop level inside registers because the voting logic
only operates on the output ports of the register files.

Scheme (a) cannot prevent a thread from writing in an
incorrect destination register because of a faulty bit in the

write-back buffer. While this is going to be detected by the
voting mechanismwhen the data will be read by a subsequent
instruction, it opens the way for fault amplification (one
faulty bit in the write-back buffer generates two wrong 32-bit
words, i.e. the register that is not written and the register that is
mistakenly overwritten), which increases the probability that
a subsequent single-bit fault in the register file will not be
detected.

Schemes (b) and (c) implement a more conservative
solution by buffering all the signals related to the write-back
operation of Thread 2 and Thread 1 into dedicated registers,
and then vote among the write-back operations of the three
threads when Thread 0 reaches the write-back phase before
writing into the register file. We refer to this basic mechanism
as a Buffered TMR.

Scheme (c) differs from the scheme (b) in that it renounces
having a replicated register file maintaining the states of
the three threads separately by having a single register file
equipped with ECC support. Plausibly, this scheme may
have less tolerance to multiple faulty bits in a register, with
the advantage of a smaller hardware cost. However, in a
single fault event scenario, the vulnerability factor is the
same as in scheme (b). In our analysis, all the presented
results refer to the more general structure represented by the
scheme (b).

Schemes (b) and (c) eliminate the possibility that any
thread writes to an incorrect destination register at the
expense of an additional hardware overhead. In fact,
write-back voting can occur only when Thread 0 reaches
the write-back phase; therefore, the register is only written

126078 VOLUME 10, 2022



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

FIGURE 2. Buffered TMR microarchitecture schemes; (a) (b) and (c) share the same protection mechanism
for the Load/Store (LS) unit. (a) cannot prevent a thread from writing in an incorrect destination register,
(b) and (c) buffer all the signals related to the write-back operation and then vote when Thread 0 reaches
the write-back phase. (c) does not have a replicated RF saving in HW cost.

at that point. A form of bypass logic is needed between the
write-back and decode stages to avoid stalling Thread 2 and
Thread 1 in the case of read-after-write data dependency,
as represented by the multiplexer in Fig. 2(b) and (c). The
operation is illustrated by the timing diagram in Fig. 3,
in which a specific instruction processing phase called
‘‘‘Buffered Write-back’’’ is introduced (letter ‘‘‘B’’’ in the
figure), in addition to the classical Fetch, Decode, Execute,
and Write-back.

In case write-back voting detects a fault, dedicated voting
logic ensures that the correct value is written back in the
correct register. In addition, if the faulty instruction had
forwarded an incorrect result value via the bypass logic, the
voting logic forces the subsequent instruction of the same
thread to read the corrected value again, resulting in the
repetition of the decode phase with one clock cycle penalty
in the pipeline. The timing of this mechanism is illustrated in
Fig. 4, where a specific instruction phase called ‘‘‘Halt’’’ is
introduced to represent the stall of the pipeline while waiting
for the correct value to be read.

D. MEMORY DATA FLOW PROTECTION
Schemes (a), (b), and (c) share the same protection mech-
anism related to the Load/Store (LS) unit. In contrast to
a normal multi-threading operation, the status of the three
threads is exactly replicated, so they share the same stack
region as well as static variables. Therefore, it is necessary to
implement a load/store unit that avoids performing replicated
load/store accesses to the same location, resulting in malfunc-
tions when reading from memory-mapped I/O peripherals or
inconsistent behaviour, respectively. In addition, replicated
access results in energy wastage. However, the LS unit must
avoid propagating faults to and from the memory subsystem.

The modified LS unit applies the Buffered TMR mecha-
nism to memory operations, buffering the memory access
signals of Thread 2 and Thread 1 and performing only
Thread 0 memory accesses. When Thread 0 executes
the memory operation, the buffered signals are voted on
before accessing the memory. Furthermore, to tolerate faults

occurring in memory cells, data loaded from memory are
ECC-protected so that the in-memory SEU cannot affect the
correctness of a load operation.

E. PROGRAM CONTROL FLOW PROTECTION
All three schemes in Fig. 2 vote on the program counter (PC)
to avoid a fault causing an unwanted jump in the program
execution flow. PC voting can occur only when Thread
0 fetches a new instruction; otherwise, the three PC copies
are not yet ready. In the case of a PC fault, the instruction
fetch is repeated using the correct PC value. The order of
thread interleaving must not change. Therefore, depending
on which of the three threads results in an incorrect PC value,
the fetch recovery operation may imply an overhead of up to
three clock cycles. Fig. 5 illustrates the case of a PC fault
on thread 0, resulting in a one-cycle delay in the pipeline
operation.

IV. PERFORMANCE EVALUATION ENVIRONMENT AND
METHODOLOGY
Defining a reproducible FI simulation paradigm and figure
of merit is essential for correctly evaluating the aug-
mented resilience achieved by fault-tolerant microarchitec-
ture designs. We evaluated the FT performance of the
Klessydra-fT03 core with respect to the original multi-
threading T03 core and single-thread Klessydra-S1 core
using an FI methodology aimed at evaluating and comparing
the architecture vulnerability factor (AVF) improvement.
Furthermore, we compared fT03 with the published results
obtained by existing RISC-V FT cores exposed to random
FI by reproducing the same testing environments [36]
and highlighting the differences in terms of performance,
hardware cost, and fault resilience. All the FI simulations
used in this work are cycle-accurate.

A. BASIC METHOD AND DEFINITIONS
In an RTL description, signals assigned to synchronous
processes are translated into synchronous registers in a
synthesized netlist. Thus, injecting bit flips into such signals

VOLUME 10, 2022 126079



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

FIGURE 3. Timing diagram of Buffered TMR architecture in absence of faults: Fetch (F), Decode (D), Execute
(E), Buffered Write-back phase (B). Bypass is performed only in case of data dependency, data write-back
voting is done at the end of Thread 0 write-back, while PC voting is done when Thread 0 fetches the new
instruction.

FIGURE 4. Recovery mechanism in case of data read fault in Thread 1. A fault hits the decode stage of
Thread 1. When data write-back voting is performed, a halt step (H) starts with the subsequent correction
(D*). Faulty signals/data are represented by red color.

during the RTL simulation allows us to observe the effect of
SEUs hitting synchronous registers in the microarchitecture
under analysis.

The FI campaign was implemented in a universal veri-
fication methodology (UVM) mixed-language environment
running on the QuestaSim simulator. First, a complete list of
the synchronized signals is generated by a parsing algorithm
of the RTL VHDL description of the processor. Then,
a SystemVerilog testbench reads the list of the target signals
and automatically runs the FI simulation of the VHDL code.
The simulation covers the entire execution of an application
program by the simulated processor. Each FI experiment can
simulate the injection of a value flip onto any target bit of

the processor, in one or more specific time instants selected
within the runtime of the program execution simulation.

The adopted FI approach targets every synchronous
signal of the RTL description of the processor, that will
result in flip-flops in the hardware synthesis, with bit-
level accuracy. Thus, the simulation goes beyond the
Instruction Set Architecture (ISA) resources and is capable
of injecting faults into all the internal registers of the
microarchitecture.

The functionally correct operation of the FI environment
was verified by tests based on the official RISC-V random
instruction generator with different random seeds to maxi-
mize the functional coverage of the RTL design.

126080 VOLUME 10, 2022



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

FIGURE 5. Timing diagram of the operation in case of PC fault. A fault hits the execute stage of Thread 0,
resulting in an incorrect fetch step. PC voting is performed and the correct value is re-fetched at the next
cycle. The faulty fetch (F) is represented by red color, followed by the corrected fetch (F*).

The environment can identify five different error categories
occurring during the simulation, classified according to the
outcome of the simulated execution:
• Correct outcome: The execution successfully ends with
the same content in the data memory as in the error-free
execution.

• Incorrect termination: Program execution terminates
prematurely.

• Incorrect data: Data inconsistency: The program execu-
tion terminates normally, yet the data memory content
is inconsistent with the error-free execution case (also
known as silent data corruption).

• Crash with hang: execution never ends (infinite loop).
• Crash with exception: execution results in an unrecover-
able processor exception.

For this study, we grouped the different outcome types into
two categories: success and failure, tracing all incorrect and
crash outcomes as failures. In the FI analysis, we partially
took into account latent errors. In fact, we assume that in the
target application domain – bare metal embedded systems
– the core repeatedly executes the same program and is
reset between consecutive program runs. Regarding memory
content errors, at the end of the simulated program execution,
we compared the entire memory image with the one produced
by the correct program execution. A failure was reported in
case of a mismatch. As a result, any potential latent error in
the memory that may affect the next program execution was
taken into account in our analysis.

In order to quantify the vulnerability of the architectures
under analysis, we refer to the widely adopted metric of the
architectural vulnerability factor (AVF) defined as:

AVF =
NACE
N

(1)

where N is the total number of bits in the architecture and
NACE is the average number of processor bits that influence

the architecturally correct execution (ACE) of the program
in a clock cycle [11], [12], [47]. By definition, a bit of
the hardware microarchitecture is ACE in a certain clock
cycle if a value change occurring on that bit in that clock
cycle causes a program failure. An unprotected bit of the
architecture passes from ACE to non-ACE state and vice-
versa in a deterministic way, depending on the program flow.
Since physical events causing SEUs may occur at random
instants during the program execution, a generic bit j has
a certain probability PF (j) of being in ACE state when a
SEU occurs. The average number of bits in ACE state in the
whole microarchitecture when a SEU occurs, NACE , can be
expressed as

NACE =
N∑
j=1

PF (j) (2)

In addition to the AVF parameter, we also consider the
results in terms of the Mean Work to Failure (MWTF)
metric, which expresses the average amount of work that an
application can perform until reaching a failure [48], [49],
thus introducing the impact of program duration. TheMWTF
can be obtained as

MWTF =
1

Rf · AVF · T_exec
(3)

where Rf is the raw fault rate and Texec is the application
program execution time. Since the purpose of our analysis
is the relative comparison of microarchitectures, we are
interested in the MWTF normalized with respect to the fault
rate.

B. TIME-FRAME-SPAN METHODOLOGY
The FI approach adopted to evaluate the proposed microar-
chitecture scheme is similar to that reported in [50].
In contrast to injecting randomly distributed faults during

VOLUME 10, 2022 126081



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

the program execution (Monte Carlo statistical approach),
it employs the deterministic injection of faults on each target
bit of the architecture in specific time intervals, within the
program execution duration, in order to assess the average
number of ACE bits in a cycle.

We divide the total execution time into m intervals called
time frames and we run the RTL simulation of the processor
executing the whole benchmark program, injecting a fault on
a target bit j of the processor for the duration of a time frame
and repeating the analysis for all the time frames. In general,
fault-injection on bit j reports a system failure when faults are
injected only inmF time frames out of the totalm time frames.
Assuming that SEU physical events in the real system occur
with a uniform time distribution with respect to the program
execution duration, we can estimate that the probability for
bit j of being in ACE state when a SEU occurs is

PF (j) ≤
mF (j)
m

(4)

which can be used to estimate an upper bound of NACE
according to (2). Unlike a statistical Monte-Carlo approach,
the analysis deterministically identifies the time frames in
which the system is immune to faults on bit j during
program execution. Each time frame duration was calculated
as 1/10 of the benchmark execution, in order to estimate the
probability for the target bit of being in ACE state (expressed
in percentage) with 10% steps. For instance, if only 8 out
of 10 time-frame simulations result in a program failure,
we can assume that bit j is ACE for at most 80% of the
execution time, for the given benchmark. In our experiments,
we assumed a clock cycle of 10 ns and an FI rate of one
fault every 15 cycles on the target bit of the simulation run.
This scheme leads to 6667 faults injected into each bit of the
microarchitecture every 1 ms of program execution. To the
best of our knowledge, this is the highest density of faults ever
analyzed in a fault-injection simulation campaign reported
in the literature. In order to ensure the correct program
termination, the simulation waits for a hundred clock cycles
after the end of the fault-injection in the last time frame of the
simulated execution.

C. BENCHMARK PROGRAMS
To evaluate the resilience of the proposed architecture and
the reference ones in executing real application kernels,
we referred to eight benchmarks, spanning from typical
AI kernels to cryptography kernels and signal processing
kernels, namely:
• convolution2d: 2D image convolution.
• crc32: 32-bit cyclic redundancy check decoding.
• fft: fast Fourier transform calculation.
• fir: Finite impulse response filter.
• aes-cbc: Advanced encryption standard cypher-block
chaining decryption algorithm.

• sha: Secure hash algorithm calculation.
• ipm: Inflexion point method calculation.
• fdctfst: Fast discrete cosine transform calculation.

We assumed bare-metal execution of the benchmarks,
with no operating system kernel running on the cores. For
each benchmark, the total execution time was divided into
10-time frames. Table 2 details the execution time and bit
fault count per time frame for each benchmark, for the
three cores, according to the adopted FI rate of 1 fault
every 15 cycles. While the fT03 core executes three identical
interleaved replicas of the benchmark program to implement
the RMT FT, the S1 and T03 cores execute only one thread
running the benchmark program. In particular, since T03 is
an IMT architecture interleaving three threads; we tested it
by interleaving the benchmark thread with two idle threads,
without including the idle thread failures in the failure count,
unless they also caused a failure in the benchmark thread
execution, for a fair comparison.

V. ARCHITECTURE VULNERABILITY ASSESSMENT
Several interesting results emerged from the FI campaigns for
cores S1, T03, and fT03. Fig. 6 shows the breakdown of the
system failure probabilities associated with different units of
the hardware microarchitectures if a fault hits the unit during
the execution of the benchmark program. The units selected
were those that were the most vulnerable to analysis. While
the tests addressed all the individual bits of the hardware
microarchitectures, arithmetic averages per unit were plotted
for simplicity.

For all analyzed benchmarks, there was a significant
reduction in failures associated with all hardware units in
the fT03 fault-tolerant microarchitecture with respect to the
non-hardened S1 and T03 microarchitectures. KlessydraT03
resulted in the possibility that a fault, hitting a unit executing
one of the idle threads, indirectly causes a fault in the
benchmark execution thread; thus, S1 is statistically less
vulnerable.

Comparing Fig. 6 with Table 2, the total cycle count seems
to affect theAVF in the sense that a longer benchmarks exhibit
higher AVF. This can be ascribed to the fact that a long
benchmark is likely to use (and thus expose to failure) more
hardware registers than a short benchmark.

The FI simulation produced a large quantity of data
that could be used to calculate the AVF associated with
the execution of each benchmark for each of the three
cores. The AVF results are presented in Table 3. Because
lower AVF values reflect high resilience; it was possible to
observe that in some of the benchmarks, the resilience of
the T03 core is improved by one order of magnitude in the
fT03 core.

A similar performance can be observed from MWTF
metric. Table 4 reports the MWTF normalized with respect
to the fault rate, for the three cores under comparison. In the
table, where higher values represent higher resilience, it is
possible to observe that the fT03 core still maintains an order
of magnitude advantage over other architectures.

It is interesting to observe the hardware cost of such a
significant improvement. Table 5 lists the resource utiliza-
tion of the three microarchitectures synthesized by Xilinx

126082 VOLUME 10, 2022



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

TABLE 2. Benchmark setup for fT03, T03 and S1 architectures. The total execution time is reported in [ms] with a 10-frame division and a fault every
15 clock cycles under a specific amount of faults per frame.

TABLE 3. AVF estimation from (1) for all the analyzed benchmarks, it is
possible to see the architectural vulnerability factor improved by an order
of magnitude with respect to T03 and S1, reflecting the high resilience
and low vulnerability of fT03.

TABLE 4. By applying (4), it is possible to evaluate the mean work to
failure estimation for the analyzed benchmarks under a specific radiation
rate, considering the trade-off between reliability and performance. Using
the AVF values from Table 3 and Execution time values from Table 2,
MWTF still confirm high resilience for the fT03 core.

TABLE 5. Synthesis results on a Xilinx Kintex-7 FPGA, showing that fT03
consumes more energy than T03 and S1.

Vivado 2019 on a Kintex-7 FPGA. Klessydra-fT03 can
reach 197 MHz, whereas Klessydra-T03 with Klessydra-
S1 can be successfully synthesized at a target frequency
of 220 MHz.

Regarding energy consumption, Table 5 shows that
Klessydra-fT03 consumes slightly more energy than its
non-hardened companion T03, while the single-threaded
Klessydra-S1 core does not consume 1/3 of the energy
consumed by the three-threaded cores owing to the efficiency
of the IMT microarchitecture scheme.

VI. COMPARISON WITH EXISTING FAULT-TOLERANT
RISC-V DESIGN CASE STUDIES
Generally, it is difficult to directly compare different FT cores
unless they are subjected to the same FI test. Nonetheless,
we attempted to systematically analyze and discuss the state-
of-the-art RISC-V FT results in the literature.

Existing resilience analysis studies on FT processor cores
differentiate between the type of FI technique applied
and the type of results reported. Table 6 lists the FT
RISCV processors presented in Section II, along with the
corresponding analysis characteristics extrapolated from the
literature.

The works in [28], [38], [39], and [40] use an FI hardware
block to emulate the fault events in the synthesized archi-
tecture. This approach has the advantage of being executed
on the target FPGA; however, it is strictly customized to
the target design. In [42], a neutron radiation process is
performed. The actual number of injected bit upsets is
related to the chosen radiation fluence (e.g. 2.00 x 1011

n/cm2), yet it is difficult to quantify. The works in [43],
[44], and [41] use FPGA built-in Ips, along with related
software tools, capable of inserting faulty bits into the
configuration memory of SRAM-based FPGAs. Targeting
the FPGA configuration memory addresses the eventuality
of SEU-induced modifications in the microarchitecture
structure and in the content of LUTRAMs; however, such
techniques lack the possibility of injecting faults in the logic
values contained in the architectural registers of the design
implemented by FFs on the FPGA. According to [43], 95%
of the faults injected in an FPGA configuration SRAM
do not result in any failure of the processor’s operation
in the absence of any FT countermeasure. Moreover,
state-of-the-art FPGAs have advanced built-in features for
runtime error detection and correction in configuration
SRAM [51]. However, they cannot mitigate register content
corruption induced by SEUs. Therefore, in this study,
we addressed the FI of logic values in the microarchitecture
registers.

In [36] and in the proposed work, FI is performed
by a dedicated simulation environment. In [41] and [44],
only specific microarchitecture blocks are targeted, i.e., the
register file and the integer ALU, respectively, rather than the
whole processor. Similarly, in [39], fault events are emulated
only in specific units of the microarchitecture.

VOLUME 10, 2022 126083



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

FIGURE 6. Results for fft, fir, aes, ipm, fdctfst, sha, crc3, conv2D FI tests, obtained following the setups showed in Table 2. For each benchmark, a 10-time
frames simulation is launched, injecting for each bit of the architecture the amount of faults reported in Table 2.

The works in [28], [38], [39], [40], and [44] do not report
the quantity of injected faults, whereas [36] reports a low
quantity of them with respect to the remaining works. In the

proposed study, we injected up to 8.570.000 faults into the
core microarchitecture, targeting the ACE bits on the longest
benchmark.

126084 VOLUME 10, 2022



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

TABLE 6. Fault-injection results comparison for the RISC-V cores listed in Table 1. (NFP = Normalized Failure Percentage) Annotations: (1) Authors do not
report failure rate of the unprotected architecture (2) FI affecting some specific units (3) FI affecting only the protected units (4) FI affecting only the
instruction register.

The authors of [38], [39], [40], and [41] declare that
their architectures are resilient to all the injected faults.
However, [38] and [41] refer to FI concentrated on protected
units only, and [39] refer to FI concentrated on specific
units rather than on the entire microarchitecture. On the
other hand, the design reported in [40] exhibits the highest
overhead in terms of both time and hardware resources. The
works in [43], [44], and [36] present the error percentage
for each benchmark and use a random FI on the entire
architecture, allowing us to perform a comparison, although
the confidence level of the results is limited by the differences
in the number of randomly injected faults and the statistical
error margin [50]. As introduced in [43], to compare two
different FT design approaches; it is possible to refer to the

normalized failure percentage (NFP), obtained by dividing
the failure percentage of the protected microarchitecture by
the failure percentage obtained on the unprotected version of
the same microarchitecture subjected to the same FI for all
the designs to be compared. Table 6 lists the NFP for similar
benchmarks from [36], [42], [43], and [44], and Klessydra-
fT03. In [42], the authors declare a 24X improvement in the
average time between failures; thus, we can estimate an NFP
of 1/24 = 4.1% by assuming a uniform time distribution of
radiation-induced faults.

Klessydra-fT03 exhibits a lowNFP as in [43], whereas [43]
obtains its resilience at the expense of 3X hardware overhead
(with undeclared performance overhead), the resilience of
Klessydra-fT03, based on Buffered TMR in IMT execution,

VOLUME 10, 2022 126085



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

TABLE 7. Fault-injection comparisons after 10 SEUs with respect to [36].
Results show the failure rate on both sum of vectors and Coremark
benchmarks. The non-Hardened T03 core is running with one active and
two idle threads (due to the IMT architecture).

TABLE 8. Clock frequency comparison of fault-tolerant RISC-V cores.

is obtained at the expense of 3X time overhead. An advantage
of the Klessydra-fT03 approach is that the fault-tolerant
operating mode can be disabled at any time, thereby
achieving full utilization of the hardware for multi-threading
performance when executing non-critical applications or
during periods of non-harsh operating conditions.

A particular interesting test case is detailed in [36],
which allows a direct comparison with the proposed method.
In [36], the authors performed 100 different runs by injecting
10 random faults into randomly chosenmicroarchitecture bits
during each execution run. We refer to this experiment as the
100 x 10 SEU FI simulation. We replicated the 100 x 10 SEU
tests running the same benchmarks as in [36] on Klessydra-
fT03 and -T03. Although a fair comparison using a random
FI is inherently affected by the random differences occurring
in the experiments, we summarize a set of interesting results
in Table 7, showing the percentage of runs that ended with a
failure. Klessydra-fT03 presents a very low error percentage
for both benchmarks. Interestingly, non-hardened Klessydra-
T03 also exhibits relatively low failure percentages. This
feature can be explained by the fact that to be aligned with the
operation of the other cores, Klessydra-T03 runs one active
thread and two idle threads in the IMT pipeline so that errors
hitting the state of idle threads do not produce visible effects.

To complete the comparison with the speed performance
results, Table 8 presents the clock frequencies achieved by
different fault-tolerant processors. Klessydra-fT03 reaches
the highest value among the FPGA implementations.

VII. DISCUSSION
Both the AVF and the MWTF results show that the Buffered
TMR technique improves resilience by one order of magni-
tude over the corresponding non-hardened microarchitecture.

Furthermore, the NFP results show that the resilience
achieved by the Buffered TMR approach is comparable to
protecting a single-threaded core with full TMR, at the cost
of execution time overhead instead of hardware overhead.

Like any TMR-based approach, the proposed technique
is characterized by non-negligible overhead (time overhead
for the proposed technique), and as such it is well-suited
to systems that are exposed to a relatively high fault
rate or very critical applications, at least for part of their
operation time. Yet, a significant feature of the IMT-based
approach is the possibility of switching to normal multi-
thread execution, thus offering flexibility of use when
the operating conditions or the application run do not
require sacrificing performance for resilience. In addition, the
IMT microarchitecture intrinsically reaches a higher clock
frequency than other solutions, when implemented on the
same FPGA device. The power consumption results exhibit
a small overhead of the Buffered TMR with respect to the
corresponding non-hardened IMT core.

VIII. CONCLUSION
The presented study demonstrates the possible exploitation
of IMT processor microarchitectures for FT. The results
produced by an extensive FI campaign show that the
achievable resilience is comparable to a full TMR, at the cost
of time overhead instead of hardware overhead. Yet, the
IMT-based approach demonstrates interesting perspectives in
terms of flexibility and high clock frequency.

Prospective investigations address multi-bit upsets (MBU)
and faults in combinational logic, as well as IMT-based FT in
hardware acceleration units.

REFERENCES
[1] Z. Abbas,M. Olivieri, U. Khalid, A. Ripp, andM. Pronath, ‘‘Optimal NBTI

degradation and PVT variation resistant device sizing in a full adder cell,’’
in Proc. 4th Int. Conf. Rel., Infocom Technol. Optim. (ICRITO), Sep. 2015,
pp. 1–6.

[2] U. Khalid, A.Mastrandrea, andM. Olivieri, ‘‘Novel approaches to quantify
failure probability due to process variations in nano-scale CMOS logic,’’
in Proc. 29th Int. Conf. Microelectron. (MIEL), May 2014, pp. 371–374.

[3] S. Azimi and L. Sterpone, ‘‘Digital design techniques for dependable high
performance computing,’’ in Proc. IEEE Int. Test Conf. (ITC), Nov. 2020,
pp. 1–10.

[4] M. Baleani, A. Ferrari, L.Mangeruca, A. Sangiovanni-Vincentelli, M. Peri,
and S. Pezzini, ‘‘Fault-tolerant platforms for automotive safety-critical
applications,’’ in Proc. Int. Conf. Compil., Archit. Synth. Embedded Syst.
(CASES), 2003, pp. 170–177.

[5] L. Blasi, A. Mastrandrea, F. Menichelli, and M. Olivieri, ‘‘A space-
rated soft IP-core compatible with the PICr hardware architecture and
instruction set,’’ Adv. Astronaut. Sci., vol. 163, no. 2018, pp. 581–594,
2018.

[6] L. Blasi, F. Vigli, A. Cheikh, A. Mastrandrea, F. Menichelli, and
M. Olivieri, ‘‘An FPGA-based RISC-V computer architecture orbital
laboratory on a pocketcube satellite,’’ in Proc. 5th IAA Conf. Univ. Satell.
Missions CubeSat Workshop, 2019.

[7] C. De Sio, S. Azimi, L. Bozzoli, B. Du, and L. Sterpone, ‘‘Radiation-
induced single event transient effects during the reconfiguration process
of SRAM-based FPGAs,’’ Microelectron. Rel., vols. 100–101, Sep. 2019,
Art. no. 113342.

[8] C. De Sio, S. Azimi, L. Sterpone, and B. Du, ‘‘Analyzing radiation-induced
transient errors on SRAM-based FPGAs by propagation of broadening
effect,’’ IEEE Access, vol. 7, pp. 140182–140189, 2019.

[9] C. M. Krishna, ‘‘Fault-tolerant scheduling in homogeneous real-time
systems,’’ ACM Comput. Surveys, vol. 46, no. 4, pp. 1–34, Apr. 2014.

126086 VOLUME 10, 2022



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

[10] R. Devaraj and A. Sarkar, ‘‘Resource-optimal fault-tolerant scheduler
design for task graphs using supervisory control,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 11, pp. 7325–7337, Nov. 2021.

[11] L. Osinski, T. Langer, and J. Mottok, ‘‘A survey of fault tolerance
approaches on different architecture levels,’’ inProc. 30th Int. Conf. Archit.
Comput. Syst., 2017, pp. 1–9.

[12] I. Oz and S. Arslan, ‘‘A survey on multithreading alternatives for soft
error fault tolerance,’’ ACM Comput. Surveys, vol. 52, no. 2, pp. 1–38,
Mar. 2020.

[13] A. Cheikh, G. Cerutti, A. Mastrandrea, F. Menichelli, and M. Olivieri,
‘‘The microarchitecture of a multi-threaded RISC-V compliant processing
core family for IoT end-nodes,’’ in Proc. Int. Conf. Appl. Electron.
Pervading Ind., Environ. Soc. Cham, Switzerland: Springer, 2017,
pp. 89–97.

[14] T. Strauch, ‘‘Acceleration techniques for system-hyper-pipelined soft-
processors on FPGAs,’’ in Proc. Euromicro Conf. Digit. Syst. Design
(DSD), Aug. 2017, pp. 119–128.

[15] M. Olivieri, A. Cheikh, G. Cerutti, A. Mastrandrea, and F. Menichelli,
‘‘Investigation on the optimal pipeline organization in RISC-V multi-
threaded soft processor cores,’’ in Proc. New Gener. CAS (NGCAS),
Sep. 2017, pp. 45–48.

[16] A. Cheikh, S. Sordillo, A. Mastrandrea, F. Menichelli, G. Scotti, and
M. Olivieri, ‘‘Klessydra-T: Designing vector coprocessors for multi-
threaded edge-computing cores,’’ IEEE Micro, vol. 41, no. 2, pp. 64–71,
Mar. 2021.

[17] M. Barbirotta, A. Cheikh, A. Mastrandrea, F. Menichelli, F. Vigli, and
M. Olivieri, ‘‘A fault tolerant soft-core obtained from an interleaved-
multi- threading RISC-Vmicroprocessor design,’’ inProc. IEEE Int. Symp.
Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2021, pp. 1–4.

[18] Y. Ma and H. Zhou, ‘‘Efficient transient-fault tolerance for multithreaded
processors using dual-thread execution,’’ in Proc. Int. Conf. Comput.
Design, Oct. 2006, pp. 120–126.

[19] E. Schuchman and T. N. Vijaykumar, ‘‘BlackJack: Hard error detection
with redundant threads on SMT,’’ in Proc. 37th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2007, pp. 327–337.

[20] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, ‘‘Slipstream processors:
Improving both performance and fault tolerance,’’ACMSIGPLANNotices,
vol. 35, no. 11, pp. 257–268, Nov. 2000.

[21] A. Parashar, A. Sivasubramaniam, and S. Gurumurthi, ‘‘SlicK: Slice-
based locality exploitation for efficient redundant multithreading,’’ ACM
SIGOPS Operating Syst. Rev., vol. 41, no. 11, pp. 95–105, Nov. 2006.

[22] M. A. Gomaa and T. N. Vijaykumar, ‘‘Opportunistic transient-fault
detection,’’ in Proc. 32nd Int. Symp. Comput. Archit. (ISCA), 2005,
pp. 172–183.

[23] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas,
L. Entrena, A. Martínez-Álvarez, and S. Cuenca-Asensi, ‘‘Dual-core
lockstep enhanced with redundant multithread support and control-
flow error detection,’’ Microelectron. Rel., vols. 100–101, Sep. 2019,
Art. no. 113447.

[24] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz, ‘‘Transient-
fault recovery for chip multiprocessors,’’ in Proc. 30th Annu. Int. Symp.
Comput. Archit. (SCA), 2003, pp. 98–109.

[25] J. Smolens, B. Gold, B. Falsafi, and J. Hoe, ‘‘Reunion: Complexity-
effectivemulticore redundancy,’’ inProc. 39th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2006, pp. 223–234.

[26] V. Vargas, P. Ramos, J.-F. Méhaut, and R. Velazco, ‘‘NMR-MPar: A fault-
tolerance approach for multi-core and many-core processors,’’ Appl. Sci.,
vol. 8, no. 3, p. 465, Mar. 2018.

[27] S. A. Shernta and A. A. Tamtum, ‘‘Using triple modular redundant (TMR)
technique in critical systems operation,’’ in Proc. 1st Conf. Eng. Sci.
Technol., Nov. 2018, p. 53.

[28] C. Rodrigues, I. Marques, S. Pinto, T. Gomes, and A. Tavares, ‘‘Towards
a heterogeneous fault-tolerance architecture based on arm and RISC-V
processors,’’ in Proc. IECON 5th Annu. Conf. IEEE Ind. Electron. Soc.,
Oct. 2019, pp. 3112–3117.

[29] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
‘‘SWIFT: Software implemented fault tolerance,’’ in Proc. Int. Symp. Code
Gener. Optim., 2005, pp. 243–254.

[30] G. A. Reis, J. Chang, and D. I. August, ‘‘Automatic instruction-level
software-only recovery,’’ IEEE Micro, vol. 27, no. 1, pp. 36–47, Jan. 2007.

[31] C. De Sio, S. Azimi, A. Portaluri, and L. Sterpone, ‘‘SEU evaluation
of hardened-by-replication software in RISC-V soft processor,’’ in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT),
Oct. 2021, pp. 1–6.

[32] A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi, and
A. Martinez-Alvarez, ‘‘Softerror mitigation for multi-core processors
based on thread replication,’’ in Proc. IEEE Latin Amer. Test Symp.
(LATS), Mar. 2019, pp. 1–5.

[33] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, ‘‘The RISC-
V instruction set manual. Volume 1: User-level ISA, version 2.0,’’ Dept
Elect. Eng. Comput. Sci., California Univ Berkeley, Berkeley, CA, USA,
Tech. Rep., 2014.

[34] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, ‘‘PULP: A parallel
ultra low power platform for next generation IoT applications,’’ in Proc.
IEEE Hot Chips Symp. (HCS), Aug. 2015, pp. 1–39.

[35] D. Kanter, ‘‘RISC-V offers simple, modular ISA,’’ Tech. Rep., 2016.
[36] D. A. Santos, L. M. Luza, L. Dilillo, C. A. Zeferino, and D. R.

Melo, ‘‘Reliability analysis of a fault-tolerant RISC-V system-on-chip,’’
Microelectron. Rel., vol. 125, Oct. 2021, Art. no. 114346.

[37] L. Blasi, F. Vigli, A. Cheikh, A. Mastrandrea, F. Menichelli, and
M. Olivieri, ‘‘A RISC-V fault-tolerant microcontroller core architecture
based on a hardware thread full/partial protection and a thread-controlled
watch-dog timer,’’ in Proc. Int. Conf. Appl. Electron. Pervading Ind.,
Environ. Soc. Cham, Switzerland: Springer, 2019, pp. 505–511.

[38] I. Silva, O. D. E. Santo, D. D. Nascimento, and S. X.-D. Souza,
‘‘Cevero: A soft-error hardened SoC for aerospace applications,’’ in
Anais Estendidos do X Simposio Brasileiro de Engenharia de Sistemas
Computacionais. SBC, 2020, pp. 121–126.

[39] S. Gupta, N. Gala, G. S. Madhusudan, and V. Kamakoti, ‘‘SHAKTI-F:
A fault tolerant microprocessor architecture,’’ in Proc. IEEE 24th Asian
Test Symp. (ATS), Nov. 2015, pp. 163–168.

[40] W. F. Heida, ‘‘Towards a fault tolerant RISC-V softcore,’’ Ph.D. thesis,
Delft Univ. Technol. Delft, The Netherlands, 2016. [Online]. Available:
http://resolver.tudelft.nl/uuid: cee5e97b-d023-4e27-8cb6-75522528e62d

[41] A. Ramos, A. Ullah, P. Reviriego, and J. A. Maestro, ‘‘Efficient protection
of the register file in soft-processors implemented on Xilinx FPGAs,’’
IEEE Trans. Comput., vol. 67, no. 2, pp. 299–304, Feb. 2018.

[42] A. E. Wilson and M. Wirthlin, ‘‘Neutron radiation testing of fault tolerant
RISC-V soft processor on Xilinx SRAM-based FPGAs,’’ in Proc. IEEE
Space Comput. Conf. (SCC), Jul. 2019, pp. 25–32.

[43] L. A. Aranda, N.-J. Wessman, L. Santos, A. Sánchez-Macián,
J. Andersson, R. Weigand, and J. A. Maestro, ‘‘Analysis of the critical bits
of a RISC-V processor implemented in an SRAM-based FPGA for space
applications,’’ Electronics, vol. 9, no. 1, p. 175, Jan. 2020.

[44] A. Ramos, R. G. Toral, P. Reviriego, and J. A. Maestro, ‘‘An
ALU protection methodology for soft processors on SRAM-based
FPGAs,’’ IEEE Trans. Comput., vol. 68, no. 9, pp. 1404–1410,
Mar. 2019.

[45] A. E. Wilson and M. Wirthlin, ‘‘Fault injection of TMR open source
RISC-V processors using dynamic partial reconfiguration on SRAM-
based FPGAs,’’ in Proc. IEEE Space Comput. Conf. (SCC), Aug. 2021,
pp. 1–8.

[46] A. Cheikh, S. Sordillo, A. Mastrandrea, F. Menichelli, and
M. Olivieri, ‘‘Efficient mathematic accelerator design coupled with
an IMT RISC-V microprocessor,’’ in Applepies (Lecture Notes in
Electrical Engineering), vol. 627. Cham, Switzerland: Springer, 2020,
pp. 505–511.

[47] N. George, C. R. Elks, B.W. Johnson, and J. Lach, ‘‘Transient fault models
and AVF estimation revisited,’’ in Proc. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2010, pp. 477–486.

[48] G. Abich, J. Gava, R. Garibotti, R. Reis, and L. Ost, ‘‘Applying lightweight
soft error mitigation techniques to embedded mixed precision deep neural
networks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 11,
pp. 4772–4782, Nov. 2021.

[49] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August,
and S. S. Mukherjee, ‘‘Design and evaluation of hybrid fault-detection
systems,’’ in Proc. 32nd Int. Symp. Comput. Archit. (ISCA), 2005,
pp. 148–159.

[50] M. Barbirotta, A. Mastrandrea, F. Menichelli, F. Vigli, L. Blasi, A. Cheikh,
S. Sordillo, F. Di Gennaro, and M. Olivieri, ‘‘Fault resilience analysis of a
RISC-V microprocessor design through a dedicated UVM environment,’’
in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst.
(DFT), Oct. 2020, pp. 1–6.

[51] Xilinx Corporation. Soft Error Mitigation (SEM) IP Cores Perform
SEU Detection, Correction, and Classification for Configuration Mem-
ory. [Online]. Available: https://www.xilinx.com/products/intellectual-
property/sem.html

VOLUME 10, 2022 126087



M. Barbirotta et al.: Design and Evaluation of Buffered TMR in IMT Processors

MARCELLO BARBIROTTA received the mas-
ter’s (Laurea) degree (cum laude) in electronics
engineering from the Sapienza University of
Rome, Italy, in 2020, where he is currently
pursuing the Ph.D. degree with the Depart-
ment of Information Engineering, Electronics
and Telecommunications. His current research
interests include analysis techniques and models
for fault resilience within digital microproces-
sor architectures, targeting RISC-V cores, and
microcontrollers.

ABDALLAH CHEIKH received the B.S. and
M.S. degrees in electrical engineering from Rafik
Hariri University, Lebanon, in 2014 and 2016,
respectively, and the Ph.D. degree in computer
architecture (computer organization and design
drove) from the Sapienza University of Rome,
Italy, in 2020. He is currently a Postdoctoral
Researcher at the Sapienza University of Rome.
His research interests include designing, imple-
menting, and verifying a wide range of micropro-

cessor architectures, vector accelerators, and morphing processors.

ANTONIO MASTRANDREA received the M.S.
(Laurea) degree (cum laude) in electronics engi-
neering and the Ph.D. degree from the Sapienza
University of Rome, Italy, in 2010 and 2014,
respectively. He is currently a Research Assistant
with the Department of Information Engineering,
Electronics, and Telecommunications, Sapienza
University of Rome. His current research interests
include digital system-on-chip architectures and
nano-CMOS circuits oriented toward high-speed
computation.

FRANCESCO MENICHELLI received the M.S.
(cum laude) and Ph.D. degrees in electronic
engineering from the Sapienza University of
Rome, Italy, in 2001 and 2005, respectively. He is
currently an Assistant Professor at the Sapienza
University of Rome. He has coauthored more
than 40 publications in international journals and
conference proceedings. His research interests
include low-power digital design and, in particular,
system-level and architectural-level techniques for

low-power consumption, power modeling, and simulation of digital system
platforms.

MAURO OLIVIERI (Senior Member, IEEE)
received the M.S. (Laurea) (cum laude) and
Ph.D. degrees in electronics and computer engi-
neering from the University of Genoa, Italy.
From 1995 to 1998, he was an Assistant Professor
with the University of Genoa. In 1998, he joined
the Sapienza University of Rome, Italy, as an
Associate Professor. He is currently a Visiting
Researcher at the Barcelona Supercomputing Cen-
ter in the European Processor Initiative Project.

He has authored more than 110 papers and a textbook in three volumes
on digital VLSI design. His research interests include microprocessor core
designs and digital nanoscale circuits. He has been a member of the TPC of
IEEE DATE. He was the General Co-Chair of IEEE/ACM ISLPED’15. He is
an Evaluator of the European Commission in the ECSEL Joint Undertaking.

Open Access funding provided by ‘Università degli Studi di Roma ''La Sapienza''’ within the CRUI CARE Agreement

126088 VOLUME 10, 2022


