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Abstract: In recent years, Electrospinning (ES) has been revealed to be a straightforward and in-
novative approach to manufacture functionalized nanofiber-based membranes with high filtering
performance against fine Particulate Matter (PM) and proper bioactive properties. These qualities
are useful for tackling current issues from bacterial contamination on Personal Protective Equip-
ment (PPE) surfaces to the reusability of both disposable single-use face masks and respirator filters.
Despite the fact that the conventional ES process can be upscaled to promote a high-rate nanofiber
production, the number of research works on the design of hybrid materials embedded in electrospun
membranes for face mask application is still low and has mainly been carried out at the laboratory
scale. In this work, a multi-needle ES was employed in a continuous processing for the manufacturing
of both pristine Poly (Vinylidene Fluoride-co-Hexafluoropropylene) (PVDF-HFP) nanofibers and
functionalized membrane ones embedded with TiO2 Nanoparticles (NPs) (PVDF-HFP@TiO2). The
nanofibers were collected on Polyethylene Terephthalate (PET) nonwoven spunbond fabric and char-
acterized by using Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX), Raman
spectroscopy, and Atomic Force Microscopy (AFM) analysis. The photocatalytic study performed
on the electrospun membranes proved that the PVDF-HFP@TiO2 nanofibers provide a significant
antibacterial activity for both Staphylococcus aureus (~94%) and Pseudomonas aeruginosa (~85%), after
only 5 min of exposure to a UV-A light source. In addition, the PVDF-HFP@TiO2 nanofibers exhibit
high filtration efficiency against submicron particles (~99%) and a low pressure drop (~3 mbar),
in accordance with the standard required for Filtering Face Piece masks (FFPs). Therefore, these
results aim to provide a real perspective on producing electrospun polymer-based nanotextiles with
self-sterilizing properties for the implementation of advanced face masks on a large scale.
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1. Introduction

In the last few years with the pandemic outbreak, wearing face masks has been recog-
nized by the Word Health Organization (WHO) as the main form of protection to prevent
any risk of infection from coronavirus disease (COVID-19) [1–3]. The ability of the virus to
coalesce with both large particles, ranging in size between ~2.5–10 µm, and smaller pollu-
tion ones, with diameters smaller than 1 µm, present in the atmosphere makes it extremely
infectious. This is especially true for close-distance contacts, where the respiratory infection
can be transmitted for a short period from an infected person to a healthy one during
talking, coughing, and sneezing, and it can also remain suspended in the air for a long
time, before spreading at longer distances [4–6]. In this perspective, commonly used face
masks, such as surgical and filtering half-masks (i.e., Filtering Face Pieces (FFPs)), turned
out to be essential barriers to protect the wearer from submicron particles and biological
contaminants that can be present in the form of droplets or aerosols in the atmosphere,
reducing the spreading of and infection by the coronavirus (SARS-CoV-2) [1–3,7]. In or-
der to determine the effectiveness of these face devices in preventing users from being
infected by large and small droplets, which can be potential bacteria or virus carriers,
the European Norm (EN) specifies several performance filtration criteria, which include
Bacterial Filtration Efficiency (BFE) and Particle Filtration Efficiency (PFE) [8–10]. However,
Viral Filtration Efficiency (VFE) is an unrecognized standard parameter that is commonly
employed to quantify the degree of protection of face devices from virus aerosols [11–13].
This test follows a similar procedure and setup to that recommended by EN 14683:2019
for BFE [9], where a bacterial suspension of S. aureus is employed, using instead a sus-
pension of bacteriophages, such as φx174 and MS2, that are commonly aerosolized as
nonhazardous virus surrogates for SARS-CoV-2 in laboratory experiments [14]. Despite the
fact that most of the commercial face masks are expected to effectively remove submicron
particles present in the surroundings, the filter materials used are not able to inactivate
both bacteria and viruses, thus making the utilization of these face devices disposable and
very unsafe in case they have been worn for a longer period than that recommended. An
evident proliferation of fungi and bacteria were observed in common face masks, because
of the moist air expired and inspired after prolonged use, thus representing a health risk
especially in severe cases of illness [15–19]. Therefore, the disinfection performance of
disposable masks has become a relevant issue from the start of the pandemic, in order
to avoid the risk of further contamination in the long run caused by the improper and
continuous accumulation of waste masks on the environment.

The layers forming a commercial filter media are mainly produced by means of the
Melt-Blowing (MB) method and are generally composed of polypropylene (PP), i.e., a
thermoplastic polymer, whose fiber diameters are about the submicron size [20]. Unlike
MB, Electrospinning (ES) proved to be a promising technique to customize a broad range
of synthetic and natural polymer-based electrospun membranes with fiber diameters and
pore sizes down to the nanoscale, providing remarkable performance in both Particulate
Matter (PM) capture and low pressure drop [8]. Furthermore, the implementation of
active metal oxide Nanoparticles (NPs), such as ZnO [21], TiO2 [22], and metal Ag [23], as
well as other bioactive hybrid nanocomposites, including aggregation-induced emission
(AIE)-active photosensitizer [24], metal-organic frameworks (MFO) [25], and rose bengal
(RB) [26] in polymer-based electrospun nanofiber filters, have proven to be advantageous
to design environmentally friendly face masks with tailored filtration performance as
well as photocatalytic properties, which make them able to deactivate both bacteria and
viruses after an exposure to light sources, and thus extending the lifetime quality of the
device and making it reusable [8]. The generation of Reactive Oxygen Species (ROS)
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induced at the nanofiber surface level by the irradiation of these embedded photocatalytic
nanomaterials with visible–UV light involves a complete inactivation of bacteria and viruses
by drastically affecting protein and enzyme function, due to the electrostatic interaction
with the bacterial cell walls and membranes [27–29]. Although the first steps in designing
hybrid photocatalytic materials for face mask applications based on ES have been reported
in the literature, the number of published studies is still low, and the research has been
mainly carried out at the laboratory scale using a conventional single nozzle. ES using a
single nozzle provides a low-rate productivity of ~ 0.01–0.1 g/h compared to other standard
MB setups that are commonly used for the manufacturing of commercial polymer-based
filters on a large scale [8]. In order to address the issue of long fiber deposition time due to
single-needle use, several configurations involving multi-needles and multi-nozzles have
been developed over the years [30]. These setups are based on conventional ES, but with
the utilization of a nozzle array that allows for the outflow of several polymer solutions
simultaneously, thus involving a high productivity rate of the nanofibers [31–33].

In this work, a multi-nozzle ES setup for high throughput was employed to design a
new photocatalytic nanofiber-based membrane filter based on Poly (Vinylidene Fluoride-co-
Hexafluoropropylene) (PVDF-HFP) and decorated with TiO2 NPs. Among the active metal
oxide compounds available, TiO2 NPs are commercially attractive for the manufacturing of
UV–visible light self-sterilizing face masks because of their high photocatalytic bactericidal
activity, chemical stability, low cost, and biocompatibility with several electrospun polymer
mats [28,34,35]. The TiO2 anatase can be activated by means of the irradiation of light
with energy higher than its band gap (~3.06 eV), thus promoting the formation of excited
electron–hole pairs [29]. Furthermore, the optical performance of TiO2 NPs has been shown
to remain quite stable and to provide photocatalytic activity in the UV range when also
embedded in polymer-based electrospun membranes [22,36–40]. The Poly (Vinylidene
Fluoride) PVDF proved to be an excellent polymer material support to implement TiO2
NPs as well as other active metal oxide nanomaterials on the electrospun-based nanofibers,
by maintaining their optimal surface area and photocatalytic properties [41]. Compared to
PVDF, the copolymer PVDF-HFP has better mechanical properties, as well as thermal and
chemical stabilities, which make it promising for the manufacturing of advanced filters
in applications for wearable healthcare devices [42,43]. In addition to the aforementioned
properties, the PVDF and its fluorinated copolymer PVDF-HFP are widely implemented
in health applications, including in personal protective clothing and tissue engineering,
because of their biocompatibility characteristics [44–51]. The filter designed by electrospun
PVDF-HFP nanofibers on Polyethylene terephthalate (PET) nonwoven spunbond layers
achieved an optimal filtration performance against both S. aureus and bacteriophage φx174
virus aerosols. Additionally, the PVDF-HFP electrospun membrane functionalized with
TiO2 NPs not only provides a high PM capture and optimal pressure drop that meet the
standard for FFPs, but also bactericidal activity against both gram-positive S. aureus and
gram-negative P. aeruginosa after a short exposure time to UV-A light radiation. S. aureus
and P. aeruginosa were chosen as representatives of, respectively, gram-positive and gram-
negative pathogens. They are responsible for severe infections that are challenging to treat
because they are able to resist several antibiotics, making them particularly interesting
to investigate [52–54]. Herein, we provide further insight into the production of PVDF-
HFP@TiO2 nanofiber filter membranes by means of ES for the realization of advanced
face masks, with a functionalized filter via the addition of photocatalytic TiO2 NPs mate-
rial to the PVDF-HFP solutions that can enable an optimal antibacterial capability, thus
minimizing the risk given by the handling and reuse of contaminated face masks.



Polymers 2023, 15, 4586 4 of 21

2. Materials and Methods
2.1. Method for Fabrication of Nanofibers

The electrospun fibers were synthesized with the addition of PVDF-HFP (Kynar Flex
2801 Arkema Inc., Colombes, France) at 16.5 wt.%, with respect to the total mass solution, in
N-Dimethylformamide (DMF, Sigma Aldrich, St. Louis, MO, USA, purity 99.8%) (62 wt.%)
and Methyl Ethyl Ketone (MEK, Merck, Darmstadt, Germany) (21 wt.%). To make the
dispersion of the anatase TiO2 NPs (<25 nm, Sigma-Aldrich, St. Louis, MO, USA) more
homogenous, Cetyltrimethylammonium Bromide (CTAB, Sigma Aldrich, St. Louis, MO,
USA) (0.45 wt.%) was first mixed in the solvent-based solution of DMF/MEK for 1 h and
the TiO2 NPs at 2 wt.% were successfully added into it and stirred for 1 h. After that, the
PVDF-HFP was slowly added and mixed in the precursor solution at a temperature of
60 ◦C until a homogeneous solution was obtained. The homogeneous solution was further
loaded into the plastic syringe arrays to be electrospun at room temperature by means of a
multi-nozzle NS24 ES system designed by INOVENSO (Co., Ltd., Istanbul, Turkey). This
technology setup is a high-throughput machine for the lab-scale equipped with 12 nozzles
that allows for obtaining a nanofiber coating area of about ~37 × 28 cm2. Both PVDF-HFP
and PVDF-HFP @TiO2 nanofiber mats have been electrospun in a roll-to-roll system and
collected on a substrate made of Polyethylene terephthalate (PET) nonwoven spunbond
of 35 Grams per Square Meter (GSM). During the ES process, the flow rate of the solution
loaded into the nozzle array was maintained at a constant value of 2.5 mL/h, whereas
a voltage of 28 kV was applied to the needle’s nozzle arrays with a needle tip-collector
distance equal to 13 cm.

2.2. Characterization Method

Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis
were performed on both PVDF-HFP and PVDF-HFP@TiO2 electrospun mats by means of a
Zeiss Auriga (Zeiss, Oberkochen, Germany). To avoid beam damage, the surface sample
was previously coated with ~20 nm of carbon by using a Quorum Q150T ES (Quorum
Technologies, Ltd., Laughton, East Sassex, UK) sputter machine and further analyzed with
an acceleration voltage operating at ~2 keV. To further confirm the reliability of the size
distribution of the nanofiber electrospun membranes, Atomic Force Microscopy (AFM)
measurements were also carried out on both the PVDF-HFP and PVDF-HFP@TiO2 sam-
ples. Unlike SEM analysis, the AFM sample preparation procedure does not require the
application of an ultra-thin coating of electrically conducted material by means of the
sputter machine. Therefore, a comparison between the AFM and the SEM analysis is
fundamental to ensure that sputter coating does not drastically affect the morphology of
both PVDF-HFP and PVDF-HFP@TiO2 electrospun membranes, thus avoiding possible
overestimation of the real size of the nanofibers. The AFM measurements were carried
out on the samples by means of a Cypher (Oxford Instruments, Oxford, UK) operating in
tapping mode with a nominal cantilever elastic constant of 40 N/m. The obtained SEM
and AFM images were analyzed and post-processed by using the open-source Gwyddion
Software (http://gwyddion.net (accessed on 1 May 2023)). Raman spectroscopy measure-
ments were also performed on the samples by means of high spatial resolution confocal
Raman mapping (Renishaw Invia Confocal Raman microscopy, Glouchcestershire, UK)
operating with a 532 nm green laser and recorded with a Peltier-cooled CCD detector. The
spectra have been measured in the range between 100–1800 cm−1 with a spatial resolution
of 1 cm−1.

http://gwyddion.net
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2.3. Photocatalytic and Antibacterial Experiment

The photocatalytic disinfection of bacteria was investigated for PVDF-HFP@TiO2
electrospun under UV-A light exposure, by using the PVDF-HFP electrospun membrane
as a control in the colony count method. Firstly, strains of S. aureus and P. aeruginosa were
cultured in lysogeny broth (LB) medium and incubated at 37 ◦C for 24 h. After incubation,
2 µL of both S. aureus and P. aeruginosa, with a cell density of 108 CFU/mL, were separately
pipetted in 20 mL of deionized water (DI) and then mixed. These solutions have been
further sprayed by means of nebulizers on the surface of the nanofiber mats made of PVDF-
HFP and PVDF-HFP @TiO2, which were previously cut in different pieces of area equal to
1 × 1 cm2. The surfaces of the samples loaded with the two different bacterial solutions
were further placed at 20 mm from a high-intensity UV-A light source (SST-10-UV, with a
power of 875 mW/cm2, and peak wavelengths at 365 nm) and exposed to an irradiation
time of 5 min. After the UV-A light exposure, these samples were immersed in 1 mL of LB
and mixed for five minutes by means of a vortex mixer. After that, 50 µL of these bacterial
dilutions, with an estimated cell density of around 104 CFU/mL, were spread-plated on LB
agar plates, and then incubated overnight (24 h) under a controlled growth temperature
of 36 ◦C. Finally, the number of the bacteria grown on the plates for both PVDF-HFP and
PVDF-HFP@TiO2 were counted and reported as C0 and C, respectively. These values were
used to determine the photocatalytic efficiency of the PVDF-HFP@TiO2 membrane by
means of the formula:

Antibacterial e f f iciency (%) =
C0 − C

C0
× 100

The photocatalytic activity of the PVDF-HFP @TiO2 electrospun membrane was also
investigated by the photodegradation study of methylene blue (MB) under UV-A light
source exposure. Nanofiber mats of both PVDF-HFP and PVDF-HFP @TiO2 (~30 cm2)
were soaked in 5 mL of 2 ppm MB solution for 30 min in a dark environment to achieve
adsorption–desorption equilibrium. The UV-A source (SST-10-UV, peak wavelengths at
365 nm) was kept at a distance of 20 mm from the top of the crystallizing dish containing the
MB solution with the soaked mat, and the mixture was continuously stirred with a magnetic
bar. The MB concentration was monitored over time by measuring the maximum absorption
peak observed at ~664 nm with a PG Instruments T80+ UV/Vis spectrophotometer (using
a glass cell of 1 cm path length, Leicestershire, UK). The photodegradation rate of MB
(MBt/MB0) was therefore estimated considering the MB absorbance peak value (MBt) at a
specific time (t) and the absorbance peak measured before UV-A irradiation (MB0) thanks
to the linear relationship between absorbance and concentration within the range of the
MB concentration chosen.

2.4. Filtration and Pressure Drop Testing Methods

Both Bacterial Filtration Efficiency (BFE) and Viral Filtration Efficiency (VFE) tests
were performed on the nanofiber-based PVDF-HFP electrospun membrane and certificated
by external companies such as Techno Analysis S.r.l. and Nelson Labs, according to the
European standard (EN) 14683:2019 + AC:2019 and the American Society for Testing
and Materials (ASTM) F2101, respectively. With regard to the BFE test, an aerosol of S.
aureus with a culture suspension of about 1.7–3 × 103 CFU and a mean particle size of
(3.0 ± 0.3) µm was shot with a flow rate equal to (28.3 ± 0.2) L/min through a tested
area of 50 cm2. The filtration test was replicated for five performances on five different
tested samples, and for each of the tests the BFE was reported, in percentages, by the
ratio of the difference between the average plate count total for the test control (B) and
that measured for the sample (T) to the relative B. Therefore, the final BFE value of the
PVDF-HFP electrospun membrane was estimated by the average value of the filtration tests
obtained from the five independent replicas. The VFE test follows a similar procedure to
that reported for the BFE test, but a suspension of a virus such as the bacteriophage φx174 is
aerosolized. The aerosol, maintained between 1.1 and 3.3 × 103 plaque-forming units (PFU)
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with a flow rate of around (28.3 ± 0.2) L/min and a mean particle size of (3.0 ± 0.3) µm,
was delivered to a tested area of 40 cm2. As seen above for the BFE test, the final VFE value
of the PVDF-HFP membrane was estimated as the average value of three independent
filtration tests, and the filtration efficiency measured from a single replicate, which is
expressed in percentages, was obtained by a comparison between the plate count recovered
downstream with that observed from the positive control. Also, Particle Filtration Efficiency
(PFE) and pressure drop tests were performed on the functionalized PVDF-HFP@TiO2
membrane from the Textal Materials and Machinery Research Group (TEMAG) at the
Istanbul Technical University, according to the normative EN 149: 2001 [10]. The PFE value
was measured by analyzing a tested area of 50 cm2, which was exposed to an aerosol
of uncharged sodium chloride (NaCl) with a particle mean size of around ~0.6 µm at
a constant flow rate of 95 L/min. This value is reported in percentages, as seen above
for the BFE and VFE tests. Unlike the filtration test, the measure of the pressure drop
allows us to obtain an estimate of the air flow resistance of the electrospun-based filter,
and then the result will be a useful and common parameter to assess the breathability
and the filtration performance for a mask. Differential pressure measurements (∆P) were
obtained for the PVDF-HFP@TiO2 electrospun membrane by comparing the downstream
and upstream measurements for a tested area of 50 cm2, under a constant flow condition
equal to 95 L/min.

2.5. Mechanical Properties

The tensile properties of the nanofiber-based PVDF-HFP@TiO2 electrospun membrane
were evaluated with a Zwick/Roell Z010 (Ulm, Germany) equipped with a 1 kN load cell.
The tests were performed on rectangular specimens with a length of 70 mm and a width of
10 mm using a test speed of 2 mm/min and a fixed grip-to-grip separation of 20 mm. The
experiments were carried out at least in quadruple and the results were reported as mean
values ± standard deviation.

2.6. Wettability Properties

The surface wettability of both the PVDF-HFF and PVDF-HFP@TiO2 electrospun
membranes was determined by measuring the water Contact Angle (CA) by using an OCA
20 contact angle system (Data Physics Instrument GmbH, Filderstadt, Germany) at ambient
temperature. The average CA value was obtained by measuring the CA on six different
tested samples.

3. Results and Discussion
3.1. Characterization of the Nanofibrous Membranes

The SEM imagery performed on the PVDF-HFP electrospun membranes is reported in
Figure 1a. The nanofiber mesh was observed to completely cover the support layer made
of PET. Despite the formation of some fiber bundles, the structure of the single nanofibers
proved to be continuous and smooth, thus involving a large surface-to-volume ratio and
then a higher nanofiber packing density per unit area compared to the larger PET-based
microfibers (Figure S1a). Therefore, the concentration obtained with high molecular weight
PVDF-HFP prepared at 16 wt.% was shown to promote a suitable polymer entanglement
in the solution process, leading to the formation of uniform nanofibers with a low number
of beads defects (Figure S1b) [55]. Indeed, the addition of acetone in the spinning solution
of PVDF-HFP has been reported in the literature to significantly suppress the formation of
beads for concentrations ranging between 15% and 20%, thus influencing the quality of the
resulting nanofibers [56]. Also, it led to a decrease in the high surface tension in the mixed
spinning solution, thus preventing the polymer jet from breaking into individual droplets
and allowing for the formation of uniform nanofibers during the ES process [55,57,58].
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Figure 1. A comparison between the SEM micrographs for (a) PVDF-HFP and (b) PVDF-HFP@TiO2

electrospun membranes, both obtained at 40.00 kx. Nanofiber size distribution obtained by the statis-
tical analysis performed on the SEM images acquired for (c) PVDF-HFP and (d) PVDF-HFP@TiO2,
respectively; and relative (e) box plots, for a comparison. AFM images acquired for (f) PVDF-HFP
and (g) PVDF-HFP@TiO2, respectively. Nanofiber size distribution obtained by the statistical analysis
performed on the AFM images acquired for (h) PVDF-HFP and (i) PVDF-HFP@TiO2, respectively;
and relative (j) box plots, for a comparison. For both the SEM and AFM techniques, the obtained
distributions for PVDF-HFP and PVDF-HFP@TiO2 are statistically different (p-value < 0.05).
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Morphological changes occurring at the nanofiber surface level were observed on
PVDF-HFP @TiO2 due to the inclusion of TiO2 NPs in the precursor solution. The high-
resolution SEM images performed on the functionalized electrospun membrane show that
agglomerates of TiO2 NPs were tightly adsorbed and distributed along the nanofibers’ sur-
faces (Figure 1b). Because of the low concentration of TiO2 NPs, these agglomerates appear
sparse on the single nanofibers with different sizes. However, they are distributed homo-
geneously on the electrospun membranes (Figure S2a,b). In addition, from a comparison
between the analysis of the SEM images carried out on both the untreated and functional-
ized electrospun-based membranes reported in Figure 1c,d, it can be seen that the diameter
size of the PVDF-HFP polymer-based nanofibers tends to increase from (207 ± 30) nm to
(217 ± 50) nm, as a consequence of the addition of TiO2 NPs in the precursor spinning
solution. This shift to a higher size was also observed from the analysis performed on the
AFM topographical measurements (Figure 1f,g), which provided a mean value equal to
(210 ± 42) nm and (227 ± 46) nm for the PVDF-HFP and PVDF-HFP @TiO2 electrospun
membranes, respectively (Figure 1h,i). The Welch two-sample t-tests performed on the
relative nanofiber distributions showed that a significant difference occurred between
the mean values for the PVDF-HFP @TiO2 and the PVDF-HFP obtained from both the
SEM (Figure 1e) and the AFM (Figure 1j) analysis, thus indicating that modification of
the nanofiber size is most likely induced by the functionalization process. This fact can
be linked to the capacity of the TiO2 NPS to involve a variation in both the viscosity and
conductivity properties of the polymer jet. This latter, during the ES process, can undergo
stronger bending instability under high voltage and lead to the formation of more coarse
nanofibers [59–63]. In order to analyze the chemical characterization of the functionalized
membranes, EDX analysis was conducted on a given micro area of the SEM image. The
measured EDX spectrum showed both the elements of the composite nanofibers (Figure 2a).

The intense peaks for C and F elements observed at 0.27 and 0.68 keV, respectively,
can be attributed to the CF2 groups, forming the chemical structure of the PVDF-HFP
electrospun nanofiber mats. Meanwhile, the low peaks centered at 0.4, 4.5, and 4.9 keV can
be ascribed to Ti, thus confirming the presence of TiO2 NPs on the nanofiber electrospun
membrane. The low signals measured for the Ti element were expected, since a low
concentration of TiO2 NPs was mixed in the polymer solution to functionalize the PVDF-
HFP-based electrospun membrane [64–66]. On the other hand, the further investigation
of the Raman spectra showed intense bands at a low frequency range around 145 (Eg),
199 (Eg), 396 (B1g), 518 (A1g and B1g), and 639 cm−1 (Eg) due to the Raman active mode of
the anatase [67,68] (Figure 2b). Meanwhile, the other peaks observed at 840, 881, 1279 cm−1,
and 796 cm−1 can be ascribed to the β and α crystal phase of the PVDF nanofibers (Figure 2c
and Table S1) [69,70]. The analysis carried out shows that despite the addition of TiO2 NPs
in the precursor spinning solution leading to a slight increase in the nanofiber diameter,
these nanostructures are evenly dispersed on the PVDF-HFP @TiO2 membrane during the
ES nanofiber process. The good dispersion of agglomerates on the fiber surface is advisable
on the electrospun membranes, since it can improve the contact with both pathogens and
aerosol contaminants, thus leading to a higher interception and further photocatalytic
deactivation of potential bacteria and viruses [8].



Polymers 2023, 15, 4586 9 of 21Polymers 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 2. (a) EDX spectrum and Raman spectra (b,c) performed on the PVDF-HFP @TiO2 electro-
spun membrane; these last show the active mode contributions due to the presence of (b) anatase 
TiO2 NPs and (c) PVDF-HFP-based nanofiber polymer. Both the Raman spectra have been normal-
ized to one at maximum peak. 

The intense peaks for C and F elements observed at 0.27 and 0.68 keV, respectively, 
can be attributed to the CF2 groups, forming the chemical structure of the PVDF-HFP elec-
trospun nanofiber mats. Meanwhile, the low peaks centered at 0.4, 4.5, and 4.9 keV can be 
ascribed to Ti, thus confirming the presence of TiO2 NPs on the nanofiber electrospun 
membrane. The low signals measured for the Ti element were expected, since a low con-
centration of TiO2 NPs was mixed in the polymer solution to functionalize the PVDF-HFP-
based electrospun membrane [64–66]. On the other hand, the further investigation of the 
Raman spectra showed intense bands at a low frequency range around 145 (Eg), 199 (Eg), 
396 (B1g), 518 (A1g and B1g), and 639 cm−1 (Eg) due to the Raman active mode of the anatase 
[67,68] (Figure 2b). Meanwhile, the other peaks observed at 840, 881, 1279 cm−1, and 796 
cm−1 can be ascribed to the β and α crystal phase of the PVDF nanofibers (Figure 2c and 
Table S1) [69,70]. The analysis carried out shows that despite the addition of TiO2 NPs in 
the precursor spinning solution leading to a slight increase in the nanofiber diameter, 
these nanostructures are evenly dispersed on the PVDF-HFP @TiO2 membrane during the 
ES nanofiber process. The good dispersion of agglomerates on the fiber surface is advisa-
ble on the electrospun membranes, since it can improve the contact with both pathogens 

Figure 2. (a) EDX spectrum and Raman spectra (b,c) performed on the PVDF-HFP @TiO2 electrospun
membrane; these last show the active mode contributions due to the presence of (b) anatase TiO2

NPs and (c) PVDF-HFP-based nanofiber polymer. Both the Raman spectra have been normalized to
one at maximum peak.

3.2. Antibacterial Test

The photoinactivation of S. aureus and P. aeruginosa bacteria was investigated by expos-
ing both the untreated PVDF-HFP and the functionalized PVDF-HFP @TiO2 membranes
to a UV-A light source. In order to ensure the reproducibility of the antibacterial test,
the photocatalysis studies were performed three times and, for each one, three replicates
on plates were made. For comparison, Figure 3, panel (a) and (b), displays examples of
replicates of Petri dishes obtained by a single experiment carried out for both the untreated
and functionalized electrospun membranes in the presence of the tested bacteria, after
5 min of UV-A light exposure.
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The Petri dishes collected for the control PVDF-HFP membrane display a large num-
ber of colonies for both the tested S. aureus and P. aeruginosa bacteria compared to those
observed on the plates collected for the relative PVDF-HFP @TiO2 membranes. Indeed, the
comparison between the values of the average number of colonies for the three indepen-
dent experiments, which are obtained by an estimate of the surviving colonies counted
for both the bacteria tested in the respective agar Petri dishes collected for the untreated
and the functionalized electrospun membranes, clearly indicates that the incorporation
of photocatalytic TiO2 NPs on the electrospun-based membrane induced a high inactiva-
tion rate after a short exposure time to a UV-A light source (Figure 3c). Furthermore, the
antibacterial performance estimated from the count of the average number of colonies
indicates that the photocatalysis process is more efficient in deactivating S. aureus than P.
aeruginosa bacteria (Figure 3d). Both P. aeruginosa and S. aureus cause infections recalcitrant
to many antibiotic treatments and are multi-drug resistant [71]. Moreover, P. aeruginosa
is also known for possessing intrinsic resistance mechanisms against adverse conditions
and also for developing new ones quickly, by mutations or by horizontal gene transfer [54].
Therefore, it is probable that its strong metabolic versatility confers on it a higher ability to
survive in UV-A exposure [72]. Experimental evidence showing a significant antibacterial
activity against both S. aureus and P. aeruginosa strains due to the activation of the photocat-
alytic properties of TiO2 NPs under different time exposures to a UV-A source have been
reported in the literature [73,74]. Some studies showed that the S. aureus strain is more
resistant to the photocatalytic oxidation of the inner plasma membrane induced by ROS
formation than the P. aeruginosa strain [73,75]. Such different photoinactivation behavior
has been ascribed to the characteristic structure of the relative bacterial cell walls. The
outer membranes of gram-positive bacteria, such as S. aureus, are composed of a thick layer
of peptidoglycans (PG) (20–80 nm), which need a longer time for ROS to penetrate and
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damage the inner plasma membrane causing the cell’s death [75]. Unlike gram-positive
bacteria, gram-negative strains such as P. aeruginosa have a thin overall membrane (~10 nm),
which is characterized by an external layer composed of lipopolysaccharide (LPS) and an
inner one of PG, which results in a less effective protection from oxidative stress. However,
other investigations showed that the photocatalytic inactivation for gram-negative bacteria
was comparable to that measured for gram-positive, but only for longer exposure times
of TiO2 active compounds to the UV-A source [76]. Also, in the work carried out by R. J.
Barnes et al., it was observed that S. aureus was more sensitive to the photocatalytic activity
of TiO2 NPs as a function of its concentration compared to P. aeruginosa, within the same
time of exposure to the UV-A source [74]. Moreover, a clear difference in photocatalytic
inactivation was also observed between the gram-negative E. coli and P. aeruginosa bacteria,
thus suggesting that characteristic properties of the outer relative cell’s membrane do not
strongly influence the ability of ROS to affect the cell viability. These studies therefore
indicate that the cell viability of both P. aeruginosa and S. aureus can be drastically affected
by the UV-A-induced photocatalytic activity of the TiO2 compound by the generation
of ROS, but their response to this bactericidal process can occur with different kinetic
mechanisms and can be dependent on other experimental parameter conditions given,
for instance, by the light intensity source, nanoparticle aggregation, and crystal state of
TiO2 [61,73,74]. However, recent studies showed that a longer exposure of photocatalytic
TiO2 NPs to UV–visible light sources leads to a complete bacteria disinfection efficiency
in the functionalized polymer fiber membrane, regardless of the bacteria species. Li et al,
experimentally observed that the designed electrospun filter based on PVA, PEO, and
cellulose nanofibers containing a low dose of TiO2/N-TiO2 (~29.7 mg/cm3) NPs provides
excellent antibacterial activity for both E. Coli and S. aureus (~100%), after a visible–UV
light exposure time of ten minutes [22]. In the work carried out by Chen et al., a high
inactivation rate of at least ~99% against S. aureus was obtained by exposing the PAN-based
electrospun filter functionalized at 2 wt.% TiO2 NPs to 30 min of UV irradiation [38]. Also,
since a significant resistance of Coliforms bacteria to UV-A-activated TiO2 NPs was observed
compared to E. coli in the contaminated PVDF-TiO2 fiber membrane, a longer exposure
to a UV-A source (~10 min) was required to achieve a complete inactivation of both the
bacteria [77]. These studies indicate that a higher exposure time to UV-A light can be
beneficial to achieve a better antibacterial performance against both gram-negative and
gram-positive bacteria strains, especially for the more resistant ones, in the functionalized
electrospun membranes, thus reducing the risk of disease spread, which is caused by the
handling and reuse of contaminated face masks.

The effectiveness of the photocatalytic PVDF-HFP @TiO2 membrane in promoting
the formation of ROS under exposure to a UV-A source has been assessed by the pho-
todegradation study of MB. The UV–vis absorption spectra measured for the MB solution
prepared at 2 ppm before and after UV-A light irradiation for the respective untreated and
functionalized electrospun membranes are shown in Figure 4a,b. In the absence of UV-A
light, a decrease in the absorbance peak at 664 nm was observed for both the PVDF-HFP
and PVDF-HFP @TiO2 electrospun membranes, thus suggesting an adsorption capacity
of the polymer-based electrospun membranes due to a high specific surface area [78,79].
With the occurrence of UV-A irradiation, the reduction in MB concentration was higher in
presence of the PVDF-HFP @TiO2 membrane than for PVDF-HFP. Moreover, the further
shift of the peak down to low frequency (blueshift) clearly indicates that demethylation
of MB occurs concurrently with the formation of radical species (such as hydroxyl •OH),
because of the photo-induced formation of electron–hole pairs in the TiO2 NPs-embedded
electrospun membrane [78,80,81]. Figure 4c shows that the MB degradation rate obtained
for the PVDF-HFP electrospun membrane remained quite stable at around 20% after 5 h
of UV-A light exposure, whereas a monotonous decrease occurred in the presence of the
PVDF-HFP @TiO2 membrane with a dye degradation after 5 h of treatment equal to 51%.
This different behavior of MB removal over time reflects the fact that the TiO2 NPs present
on the nanofiber surface promote the formation of electron–hole pairs under UV-A irradia-
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tion, thus resulting in the production of ROS [61,79,82–85]. The obtained results suggest
that the generation of ROS induced by the interaction among the UV-A light and the TiO2
NPs-embedded PVDF-HFP-based electrospun membrane involves the high photoinac-
tivation of both gram-positive and gram-negative bacteria at the fiber surface level. In
contrast, most of the bacteria tested on the untreated PVDF-HFP remained alive in both
cases, because of the limited antibacterial efficiency caused by the exposure of only the
electrospun membrane to the UV-A source.
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Figure 4. UV-A light dependence of the UV–visible absorbance spectra collected for the PVDF-HFP
(a) and PVDF-HFP @TiO2 (b) electrospun membranes. Time-dependent MB degradation curves (c).
Filtration efficiency values measured from the PFE test carried out on the functionalized electrospun
membrane (d). A comparison between the tensile-stress curves (e) measured for the PVDF-HFP
@TiO2 electrospun membranes after 0, 1, and 5 h of UV-A exposure time. A picture showing the
fabrication of a face mask (f) made by including the PVDF-HFP @TiO2 electrospun membrane as
a filter.

3.3. Filtration Performance

In order to evaluate the application of PVDF-HFP@TiO2 as a filter for the manufac-
turing of advanced face masks, measurements of the bacterial, viral, and particle filtration
efficiency as well as a breathability test were performed on the untreated and functionalized
electrospun membranes, according the EN 14683:2019, ASTM F2101, and EN 149 standards,
respectively. With regard to the BFE, all the values obtained from each of the five indepen-
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dent tests were significantly higher (~99%) than the limit required from the EN 14683:2019
standard, which is set to 95%, thus indicating that the PVDF-HFP electrospun membrane
provides a suitable grade of protection from the penetration of aerosol carriers for S. au-
reus bacteria. The VFE tests were performed to assess, on the other hand, the resistance
of the electrospun-based PVDF-HFP to the penetration of the φx174 bacteriophage, an
envelope virus with a similar structure to that present in SARS-CoV-2 [86]. Two out of
the three tests performed showed VFE values higher than 99.9%, while the third result
was about 99.8%, therefore providing for the PVDF-HFP electrospun membrane an overall
performance comparable with those reported for any commercial mask such as the N95
FFRs [87,88]. Previous investigations on either the bacterial or virus filtration performance
for PVDF-based electrospun membranes have been reported in the literature [89–92]. In a
recent study, Shen et al. demonstrated that PVDF electrospun membranes characterized by
a fiber diameter of around ~300 nm provided a higher capture of an aerosol solution based
on Murine hepatitis virus A59 (MHV-A59), a β-coronavirus strain with a similar structure
size to SARS-CoV-2 (size ~85 nm), compared to that observed for commercial filters with
a larger fiber size [91]. Also, in the work carried out by Felix Swamidoss et al., it was
observed that a decrease in both fiber diameter and interstitial space between the fibers due
to the addition of TiO2 nanotubes at different concentrations in the precursor solution led to
an improvement in both BFE and air permeability for the PVDF electrospun membrane [89].
Since the size of the submicron particles carried by the aerosol can be comparable with the
nanofiber diameter, a slip flow regime occurs at the single nanofiber level, involving a high
capture of particles due to the interception mechanism [93–95]. In addition, a reduction in
the drag force friction involved in this regime creates a low-momentum exchange between
the submicron particles and the nanofiber surface, resulting in a low pressure drop for the
electrospun membrane. Therefore, an optimization of both fibers and inter-fiber space in
PVDF-based electrospun membranes may result in the effective interception of aerosol
carriers of either bacteria or viruses, while providing a low pressure drop with a proper
breathability [26,89,90]. Figure 4d reports a comparison between the filtration performance
of the PVDF-HFP electrospun membrane functionalized with TiO2 NPs at 2 wt.% and those
required for the FFPs, according to the standard EN 149:2001 + A1 2009. The obtained re-
sults show that the PVDF-HFP @TiO2 provides an excellent PFE value, which is higher than
that required for FFP2 (≥94%) and in accordance with the minimum conditions required
for FFP3 face masks to ensure a high-level efficiency in submicron particle removal (≥99%).
Also, the relative pressure drops measured were found in the three-test to be comparable
to or lower than the limit value required for the FFP3 (~3.0 mbar), thus indicating that a
low air flow resistance occurs in the fabric, making breathing comfortable for the wearers.
Several studies reported that a positive correlation occurs between BFE and PFE, and a
slight difference observed in the assessment of the filtration performance of face masks
between these two methods is mainly due to the utilization of a different aerosol size
distribution [87,96,97]. The aerosol generated for the PFE test is composed of monodisperse
particles, which are characterized by a diameter of ~0.6 µm. Unlike PFE protocol, the mean
particle size of ~3.0 µm imposed by the BFE method is obtained as an average estimate of
the total count of the six stages of the aerosol cascade impactor, which is characterized by a
wide granulometric range of 0.6–7 µm. Since all particles within this range are considered
in the estimation of the BFE, a transmission of particles with sizes below 3.0 µm, even
if they are a small amount of the total generated aerosol, through the tested filter can
create a significant decrease in the BFE [96,97]. It is important to note that the value of
BFE measured for the PVDF-HFP membrane was equal at least to ~99%, thus indicating
a constant filtration through all the granulometric range, and also for particles smaller
than 3.0 µm. This value is therefore comparable with that of the PFE measured for the
PVDF-HFP@TiO2 electrospun membrane, thus suggesting that the functionalization of the
PVDF-HFP with the addition of a low dose of TiO2 NPs does not affect the high filtration
performance in removing aerosol contaminants. Although a possible concern with using
a high amount of TiO2 NPs in filtering devices could arise from their toxicity, the release
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mechanisms of these NPs and their aggregates from face masks are currently unknown and
there are no available standardized methods to determine whether or not they are released
during common use [98,99]. In a recent study, Eveline Verleysen et al. experimentally
observed that since most of the TiO2 NPs remain inside the fiber matrix during the filament
production, only those located at the fibers’ surface, which was estimated to be only a frac-
tion, ranging between 2–9%, are assumed to be released during the prolonged wearing of
face masks [98]. However, the maximum amount of TiO2 NPs loaded in an effective area of
about 166 cm2 of the PVDF-HFP@TiO2 electrospun nanofiber filter was estimated from the
initial precursor solution to be around ~260 µg, which is up to three times lower compared
to the minimum amount detected for some single-use and reusable face masks available
on the market [98]. Indeed, the functionalized electrospun membrane is characterized by
a lower basis weight (~0.8 GSM) compared to that of commercial filters, thus resulting in
the presence of a thin layer above the PET spunbond layer (Figure S3) with a consequent
reduction in the presence of TiO2 NPs [100]. Additionally, cytotoxicity studies of TiO2 NPs
proved that the cell viability of several human cell lines of diverse origin, such as lung
cells (A549), liver cells (HepG2), and neurons (SH-SY5Y), remained quite stable at above
60%, including after prolonged exposure to higher concentrations than those expected to
be released at the worst from the fiber surface of the PVDF-HFP@TiO2 during continuous
breathing (~23 µg) [101–104]. These analyses were in accordance with what was observed
in cytotoxicity assays performed on several functionalized electrospun-based membranes,
where the cell proliferation of the fibroblasts L929 and A549 proved not to be drastically af-
fected by the presence of TiO2 on the electrospun mats [105–107]. Although further research
will be needed to regulate the quality parameters to validate the risk of NPs on face masks,
these results suggest that the low dose of TiO2 NPs embedded in the electrospun filter
matrix is negligible and could not provide a high risk of tissue damage. Moreover, focusing
on the tensile properties, both the tensile strength and modulus of the PVDF-HFP @TiO2
membrane (Table S2) proved to be almost unaffected by prolonged UV-A light exposure for
1 h and 5 h. In particular, their values remain quite stable at around 6.2 MPa and 100.0 MPa,
respectively, thus demonstrating their low tendency to degrade over a prolonged irradia-
tion process (Figure 4e). In the literature, photocatalytic degradation tests of contaminated
waters revealed a high stability of the PVDF-TiO2 electrospun membrane after a long
exposure time to UV radiation [34,36,108–110]. The photocatalytic performances of these
functionalized PVDF-based electrospun membranes were observed to remain quite stable
after several repeated cycles under UV radiation in a water contaminant, thus indicating
that TiO2 NPs were tightly embedded on the fiber surface, as a consequence of the ES
process [34,109,110]. Because of the fast response obtained in the remotion of the bacterial
contaminant under a short exposure time to a UV-A source, the potential release of TiO2
NPs from the PVDF-HFP@TiO2 electrospun filter can be significantly low. Therefore, its
implementation in face masks can be advantageous to reduce the risk of NPs released into
the environment, which are observed in disposable commercial masks due to the long
exposure time to standard disinfection methods [111]. In addition, from a comparison
between the measurements of the Water Contact Angle (WCA) performed on both the
PVDF-HFP and PVDF-HFP@TiO2 and reported in Figure S4, it can be seen that the addition
of a low dose of TiO2 NPs leads to a slight increase in the surface hydrophobicity in the
functionalized electrospun membrane. This improvement in surface wettability can be
effective in preventing the deposition of droplets which can be propelled by intense coughs
and sneezes, thus decreasing not only the penetration of biological contaminants, but
also their proliferation on the photocatalytic filter device [22,112–115]. The results found
here therefore indicate that the PVDF-HFP-based electrospun membrane optimized with a
low concentration of TiO2 NPs can be beneficial as filter media for the manufacturing of
advanced face mask devices due to both the high submicron particle efficiency with optimal
pressure drop and for the bactericidal activity through photocatalytic activation under UV-
A exposure. The fabrication cost of the photocatalytic electrospun filters is also economic
and easily available on a commercial scale [116]. As shown in Figure 4f, a three-layer face
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mask device has been designed by means of the ultrasonic sewing technique, by including
the PVDF-HFP @TiO2 membrane as filter media and a third spunbond layer made of
PP, used as inner mechanical support. The PVDF-HFP@TiO2 sandwiched between the
two spunbond fabrics acts as a filtering system, without coming in direct contact with the
human face. This avoids any possible risk due to skin irritation as well as minimizing the
possibility of having a direct release of NPs from the cloth during wearing. An increase in
the manufacturing of photocatalytic electrospun nanofibers can be achieved by employing
a multi-nozzle ES setup for an industrial line equipped with an automated unwinding and
rewinding system [117]. The roll-to-roll automation system can adjust the winding speed
of the roll during the ES process, thus ensuring a continuous and uniform production of the
functionalized nanofibers on the PET substrate support sheets, with a width around 1 m
(Figure S5). Hence, the utilization of automated and programmable multi-nozzle ES setup
machines with high throughput rates would make the manufacturing of functionalized
nanofiber-based filters advantageous in applications for self-sterilizing wearable devices
on a large scale. This would lead to a wider utilization of this high-performance face mask,
thus limiting the risk of bacteria proliferation due to handling and to the prolonged use of
commercial face masks.

4. Conclusions

The aim of this research was to provide evidence that ES is an easily upscaled method
to design advanced electrospun filters with promising properties in terms of both submicron
particle filtration and antibacterial performance. Such properties can help in dealing with
the present issues originating from the outbreak of the COVID-19 pandemic, given the
contamination from bacteria on PPE surfaces due to the reusability of disposable face masks.
This study showed that the electrospun PVDF-HFP obtained by means of multi-nozzle ES
exhibits a suitable filtration efficiency toward S. aureus (BFE ~99%) and φx174 bacteriophage
(VFE > 99.8%) in accordance with the EN 14683:2019 and ASTM F2101, respectively. This
suggests its feasibility as a filter device in preventing bacterial and viral infections from
possible airborne contaminants. The observed low-diameter size of the nanofiber (~207 nm)
leads to a significant improvement in the mechanical adsorption of fine particles, thus
increasing the possibility of pollutant deposition on the nanofiber surface. We observed
that the incorporation of TiO2 NPs at 2 wt.% in the polymer precursor solution created
a significant antibacterial efficiency in the PVDF-HFP electrospun membrane against S.
aureus (~94%) and P. aeruginosa (~85%), under a short exposure time to UV-A irradiation.
Indeed, the analysis carried out for PVDF-HFP@TiO2 revealed that the photoactivation
of the TiO2 NPs embedded at the nanofiber surface promotes a suitable deactivation of
these bacteria, by generating ROS. In addition, the functionalized filter media provide
satisfying mechanical properties, i.e., a tensile modulus of 101 MPa and a tensile strength
of 6.2 MPa, and a high filtration efficiency in the removal of PM0.6 particles (~99%) with
an optimal pressure drop of around 3 mbar, according to the EN 149: 2001 standard. Such
customizability obtained by means of the multi-nozzle ES enables an interesting perspective
on the rapid manufacturing of low-cost high-filtering electrospun-based devices on an
industrial scale.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15234586/s1, Figure S1: SEM micrographs showing the
electrospun PVDF-HFP-based nanofiber mats on spunbond-based PET; Figure S2: SEM micrographs
of PVDF-HFP and PVDF-HFP @TiO2, both obtained at low magnification; Table S1: band assignment
for the Raman spectra of the PVDF-HFP@TiO2 electrospun membrane. Figure S3: SEM micrographs
showing a comparison between the thickness of the electrospun PVDF-HFP @TiO2 with that of
the commercial spunbond PET; Table S2: a comparison between the mechanical characteristics,
such as tensile strength and elongation at the break, obtained from the analysis of the stress–strain
curves carried out on the PVDF-HFP @TiO2 electrospun membranes, after different UV-A exposure
times; Figure S4: photographs showing a single water drop on PVDF-HFP and PVDF-HFP @TiO2
electrospun mats, with the related average CA values; Figure S5: photo images of a PVDF-HFP @TiO2
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electrospun membranes mats produced by means of a high-throughput multi-nozzle Electrospinning
machine for industrial production.
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