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I. DERIVATION OF THE STRAIN ENERGY FROM A GENERIC UNDEFORMED
CONFIGURATION

Figure 1. Strain energy from a generic undeformed configuration. A: The block undeformed configuration is such that the
representative material line has a natural extension equal to ∆Lα. Correspondingly, the size of any other fiber is expressible
through the relation (1), where the quantity Λ(ηα) are represented by orizontal thin red arrows. The spontaneous radius
of curvature relative to the representative fiber Rα is shown by a vertical thick red arrow. A ′: In the deformed condition,
the size of the representative fiber varies from ∆Lα to ∆lα and its radius of curvature becomes rα. In the reference frame
integral with the block, any fiber undergoes a displacement u(ηα) (green arrows). At the same time, the size of any deformed
material fiber can be expressed as ∆l(ηα) = ∆lα + λα(ηα) (red arrows).

We consider the elementary block depicted in Fig. 1. The undeformed condition is represented in panel A,
whereas its deformed state is shown in panel A′. The length of the representative fiber in the natural state is ∆Lα,
and that of a generic fiber at an height ηα is

∆L(ηα) = ∆Lα + Λα(ηα). (1)

The corresponding deformed quantities are ∆lα and ∆l(ηα) are defined by

∆l(ηα) = ∆lα + λα(ηα). (2)

Hence, the deformation that a generic material segment experiences passing from the state A to the state A′ is
expressed as

u(ηα) = ∆lα −∆Lα + Λα(ηα)− λα(ηα). (3)

The geometry of the undeformed shape satisfies the following equality [1, 2]

∆Lα

Rα
=

Λα(ηα)

ηα
, (4)
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while for the deformed configuration we have

∆lα
rα

=
λα(ηα)

ηα
. (5)

Thanks to Eqs. (4) and (5), the displacement (3) attains the final form

u(ηα) = ∆lα −∆Lα + ηα

(
∆Lα

Rα
− ∆lα

rα

)
. (6)

By substitution of Eqs. (1) and (6) into

∆Eα =
bY

2

∫ (1−α)h

−αh

[
u(ηα)

∆L(ηα)

]2
∆L(ηα) dηα, (7)

we obtain the expression:

∆Eα =
Y

2∆Lα

[
Fα (∆lα −∆Lα)

2
+ 2Sα (∆lα −∆Lα)

(
∆lα
rα

− ∆Lα

Rα

)
+ Iα

(
∆lα
rα

− ∆Lα

Rα

)2
]
, (8)

where

Fα =

∫ (1−α)h

−αh

dηα
b

1 + ηα

Rα

, (9)

Sα =

∫ (1−α)h

−αh

dηα
bηα

1 + ηα

Rα

(10)

and

Iα =

∫ (1−α)h

−αh

dηα
bη2α

1 + ηα

Rα

(11)

These three factors have different functional forms according to whether Rα is positive or negative (see Fig. 2).
The quantity Rα can be positive or negative, as required by the consistency of the Eq.(4). |Rα| becomes the radius
of the osculating circle which locally approximates the reference segment in the continuum limit, and the sign of
Rα is assigned in the following way. It is clear that the intersection C between the sidelines containing the block’s
sections lies on the axis ξ = 0 of the local reference system ξ-0-ηα. If C lies below the bottom fiber α = 0, then
Rα is positive (Fig.2A). If conversely C is above the upper fiber α = 1, then Rα is negative (Fig.2A′). It follows
that C has coordinates (0,−Rα) in the local reference system. The same prescription for the sign applies to rα.
If Rα > 0 the solutions of (9), (10) and (11) read

Fα = bRα ln

(
1 +

h

R0

)
, (12)

Sα = bRα

[
h−Rα ln

(
1 +

h

R0

)]
(13)

and
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Figure 2. Sign of the radius of curvature. The radius of curvature has a sign assigned whether its direction, connecting the
intersection C of the sidelines containing the block’s sections with the beginning of the reference segment, coincides with
that of the ηα axis of the frame integral with the block (panel A), or opposite to it (panel A′).

Iα = bRα

[(
1

2
− α

)
h2 − hRα +R2

α ln

(
1 +

h

R0

)]
, (14)

with Rα = R0 + αh. When we consider the case Rα < 0, the three integrals 10-11 can be solved yielding

Fα = −bRα ln

(
1− h

R1

)
, (15)

Sα = bRα

[
h+Rα ln

(
1− h

R1

)]
(16)

and

Iα = bRα

[(
1

2
− α

)
h2 − hRα −R2

α ln

(
1− h

R1

)]
, (17)

where Rα = R1−(1−α)h. The two opposite bending states in Fig.2 are expressible in the compact forms provided
in the main text recalling that, if Rα > 0, hence necessarily R0 < R1 (K0 > K1), whilst, for Rα < 0, therefore
|R1| < |R0| and K1 > K0. We stress the fact that the expressions of Fα, Sα and Iα are fully established once the
value of α and max[K0,K1] are furnished. In particular the following identity holds if K0 > K1

Kα =
K0

1 + αhK0
, (18)
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while for K1 > K0

Kα =
K1

1 + (1− α)hK1
. (19)

Figure 3. Beam discrete strain energy from a generic undeformed configuration. A: The polygonal, connecting the vertices
of each undeformed representative segments, is represented by a dotted black thick line. In the laboratory frame, the
vertices have planar coordinates

(
X

(i)
α , Y

(i)
α

)
shown as green dots. The spontaneous radius of curvature can be positive (as

R1
α) or negative (as R2

α). The connection between the size of representative segment, ∆L
(i)
α , and its spontaneous radius of

curvature R
(i)
α , is given by the relation (23), where the bending angles Φ(i) define the deflection of the undeformed blocks

from the external x axis. A′: each block composing the beam undergoes a deformation, such that the deformed polygonal
chains lα is constructed by the sequence of the representative segments whose vertices are

(
x
(i)
α , y

(i)
α

)
(green dots).

According to the integral expressions (9) and (11), it is always Fα > 0 and Iα > 0 because the integrand functions
are strictly positive in the integration interval. To the contrary, the sign of Sα can vary according to the value of
α and to max[K0,K1] (min[R0, R1]). For the sake of clarity, Sα > 0 for α < αU , and Sα < 0 for α > αU . The
choice of αU ensuring the stretching-bending uncoupling, guarantees that

FαU
= bh, (20)

SαU
= 0 (21)

and

IαU
=

b

KαU

(
1

2
− αU

)
h2 =

sgn (K0 −K1) bh
3

ln (1 + h max[K0,K1])

[
1

2
− 1

ln (1 + h max[K0,K1])
+

1

h max[K0,K1]

]
(22)
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The finite difference scheme, outlined so far, requires the evaluation of the discrete strain energy Eα =∑N
i=1 ∆E

(i)
α needed to deform the elastica in Fig. 3 from A to A′. Moving to the laboratory frame we find

that the relation

∆L
(i)
α

R
(i)
α

= − tan∆Φ(i). (23)

is always satisfied [3], where ∆Φ(i) = Φ(i) − Φ(i−1) and Φ(i) is the i-th cross-sectional bending angle with respect
the x axis. Since we assume the limit of small deflections, we can approximate tan∆Φ(i) ≃ ∆Φ(i). The reference
undeformed polygonal chain Lα is specified by the series of points L

(i)
α = (X

(i)
α , Y

(i)
α ), with line segments ∆L

(i)
α =∣∣∣L(i)

α − L
(i−1)
α

∣∣∣ (Fig.3A).
In the deformed state (Fig.3A′) we have

∆l
(i)
α

r
(i)
α

= − tan∆φ(i) (24)

where ∆φ(i) = φ(i) − φ(i−1), and φ(i) corresponds to the bending angle between the i−th block and the x
axis. Again we assume the small deflection limit, i.e. tan∆φ(i) ≃ ∆φ(i).The deformed chain lα has the points
l
(i)
α = (x

(i)
α , y

(i)
α ) as vertices, with ∆l

(i)
α =

∣∣∣l(i)α − l
(i−1)
α

∣∣∣. We introduce the strain measure as ε
(i)
α =

∆l(i)α −∆L(i)
α

∆L
(i)
α

,
while the bending strain measure can be obtained by two different definitions: the first is due to Kammel [4]

µ(i)
α =

∆Φ(i) −∆φ(i)

∆L
(i)
α

, (25)

and the second to Antman [5]

µ(i)
α =

∆lα
∆Lα

1

rα
− 1

Rα
. (26)

One can easily see that they are equivalent by the construction in Fig.6. Upon summation of the terms in Eq. (8),
using the definition (26), we obtain the energy

Eα =
Y

2

N∑
i=1

∆L(i)
α

{
F (i)
α ε(i)α

2
+ 2S(i)

α ε(i)α µ(i)
α + I(i)α µ(i)

α

2
}

. (27)

The expression of Fα, Sα and Iα in terms of ∆Φ, ∆Lα and α, is achieved by inserting the relation (23) into the
expressions (12)–(14) and (15)–(17):

F (i)
α =

∆L
(i)
α∣∣∆Φ(i)
∣∣ ln

(
1 + h

∣∣∆Φ(i)
∣∣

min[∆L
(i)
0 ,∆L

(i)
1 ]

)
, (28)

S(i)
α = −∆L

(i)
α

∆Φ(i)

(
h− F (i)

α

)
(29)

and

I(i)α = −∆L
(i)
α

∆Φ(i)

[(
1

2
− α

)
h2 − S(i)

α

]
. (30)
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We recall that it is convenient to take ∆Lα = ∆L0−αh∆Φ if min[∆L0,∆L1] = ∆L0, and ∆Lα = ∆L1+(1−α)h∆Φ
if min[∆L0,∆L1] = ∆L1.

The differential strain energy Eα is derived by firstly introducing two parametric expressions for the undeformed
and deformed reference material curves as Lα : [sm, sM ] → R

2 and ℓα : [sm, sM ] → R
2 respectively. Secondly we

take an arbitrary partition sm = s0 < s1 < s2 < · · · < sN = sM to which we connect the two polygonal chains Lα

and la, in such a way that the vertices satisfy Lα(si) ≡ L
(i)
α and lα(si) ≡ l

(i)
α . Moreover we define the applications

Φ : [sm, sM ] → R and φ : [sm, sM ] → R with the properties Φ(si) ≡ Φ(i) and φ(si) ≡ φ(i). From the definitions
of the two strain measures ε

(i)
α and µ

(i)
α , it follows

εα(si) =

|∆lα(si)|
∆si

− |∆Lα(si)|
∆si

|∆Lα(si)|
∆si

. (31)

µα(si) =

∆Φ(si)
∆si

− ∆φ(si)
∆si

|∆Lα(si)|
∆si

. (32)

In the continuum limit, N is increased until the lengths of the polygonal chains Lα and lα equal those of the curves
Lα and ℓα. This condition is mathematically enforced by the limiting relations

|∆Lα(si)|
∆si

→ |L ′
α(s)| ,

|∆lα(si)|
∆si

→ |ℓ′α(s)| (33)

as ∆si → 0. Correspondingly, the two tangents to the curves are defined as Tα(s) =
dLα

ds and tα(s) =
dlα
ds . Yet,

the limit ∆si → 0 entails

∆Φ(si)

∆si
→ Φ′(s),

∆φ(si)

∆si
→ φ′(s). (34)

The differential strain measures follow from the limit of Eq.s (31) and (32):

εα(s) =
|tα(s)| − |Tα(s)|

|Tα(s)|
. (35)

µα(s) =
Φ′(s)− φ′(s)

|Tα(s)|
. (36)

Now, if
∑N

i=1 ∆L →
∫ L

0
ds, plugging the definitions of Tα(s), (35) and (36) into Eq.(27) we recover the energy

reported in the main text:

Eα =
Y

2

∫ sM

sm

ds

{
Fα(s)

|Tα(s)|
[|tα(s)| − |Tα(s)|]2 −

2Sα(s)

|Tα(s)|
[|tα(s)| − |Tα(s)|] [φ′(s)− Φ′(s)] +

Iα(s)

|Tα(s)|
[φ′(s)− Φ′(s)]

2
}
,

(37)
The differential formula for the three factors Fα(s), Sα(s) and Iα(s) are obtainable from the Eq.s (28), (29)
and (30):

Fα(s) =

∣∣∣∣Tα(s)

Φ′(s)

∣∣∣∣ ln(1 + h
|Φ′(s)|

min[|T0(s)| , |T1(s)|]

)
, (38)

Sα(s) = −|Tα(s)|
Φ′(s)

(h− Fα(s)) (39)
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and

Iα(s) = −|Tα(s)|
Φ′(s)

[(
1

2
− α

)
h2 − Sα(s)

]
. (40)

It is clear that, when min[|T0(s)| , |T1(s)|] = |T0(s)|, we can express |Tα(s)| = |T0(s)| − αhΦ′(s); conversely,
when min[|T0(s)| , |T1(s)|] = |T1(s)|, then |Tα(s)| = |T1(s)|+(1−α)hΦ′(s). Thus, the functional forms of Fα(s),
Sα(s) and Iα(s) in Eqs.(38), (39) and (40) highlight the local character of these quantities and the fact that they
are fully established by the values of (α,Φ′,min[|T0| , |T1|]).
To uncouple the bending and stretching contributions in the continuum energy expression Eα, the conditions
Sα(s) = 0 in (39) requires that

αU (s) =
|T0(s)|
hΦ′(s)

− |Φ′(s)|
Φ′(s)

1

ln
(
1 + h |Φ′(s)|

min[|T0(s)|,|T1(s)|]

) , (41)

which is also expressible as

αU (s) = 1−

 |Φ′(s)|
Φ′(s)

1

ln
(
1 + h |Φ′(s)|

min[|T0(s)|,|T1(s)|]

) − |T1(s)|
hΦ′(s)

 . (42)

The two formulae (41) and (42) are equivalent and can be obtained recalling that |T1(s)| = |T0(s)| − hΦ′(s).
Therefore the uncoupling condition is a local property of the elastica and, for either choice of αU (s), the three
factors (38)-(40) reduce to

FαU
(s) = bh, (43)

SαU
(s) = 0 (44)

and

IαU
(s) = −|TαU

(s)|
Φ′(s)

[
1

2
− αU (s)

]
bh2 (45)

= −bh3 |Φ′(s)|
Φ′(s)

1

ln
(
1 + h |Φ′(s)|

min[|T0(s)|,|T1(s)|]

)
1
2
− |T0(s)|

hΦ′(s)
+

|Φ′(s)|
Φ′(s)

1

ln
(
1 + h |Φ′(s)|

min[|T0(s)|,|T1(s)|]

)
 . (46)

The neutral arc-length parametrization requires that

|TαU
(s)| = 1. (47)

Therefore, adopting this parametrization and the neutral curve as representative of the whole elastica we have
that for a generic transformation the energy is expressible as

EαU
=

bY

2

∫ sM

sm

ds

{
h [|tαU

(s)| − 1]
2 − h2

Φ′(s)

[
1

2
− αU (s)

]
[φ′(s)− Φ′(s)]

2
}
. (48)
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Figure 4. Block’s energy invariance under change of reference material line. A: In red is represented the reference frame
ξ-0-ηα integral with the block, when the reference material segment is placed at an height αh from the block’s bottom
surface. The length of the reference segment is ∆Lα. When the reference material segment is placed at a different height
βh, the corresponding frame ξ-0-ηβ is depicted in green and its size is ∆Lβ . A′: The block undergoes a deformation from
its natural shape (light blue): the size of the reference fiber changes to ∆lα or ∆lβ . The energy cost associated to this
deformation is the same whether the reference segment is placed at αh or βh.

II. ENERGY INVARIANCE UNDER CHANGE OF REFERENCE FRAME

Consider the Fig. 4. The undeformed elementary block is represented on the left A, and its shape upon de-
formation is displayed on the right A′. Let us assign to the block an integral planar reference system, where the
ξ and ηα axes define respectively the block’s longitudinal and transverse directions. The origin of such reference
system is placed at an height αh (0 ≤ α ≤ 1) from the block’s bottom surface, and on the left lateral block
boundary. The quantity ∆L(ηα) corresponds to the length of a generic material line placed at the height ηα, with
−αh ≤ ηα ≤ (1 − α)h. By definition, the value of ∆L(ηα = 0) is the representative material line length ∆Lα.
Now, a translation of the reference system along the axis ξ = 0 is equivalent to a linear change of variables:

ηβ = ηα + (α− β)h (49)

where ηβ is the new axis pointing along the block transverse direction. However, the material line lengths ∆L(ηα)
have to be invariant under the transformation (49):

∆L (ηβ) = ∆L (ηα = ηβ − (α− β)h) . (50)

It is also clear that in the reference system ξ-0-ηβ , the representative material line has length ∆Lβ = ∆L (ηβ = 0) =
∆L (ηα = (β − α)h) and −βh ≤ ηβ ≤ (1− β)h.

Let us turn to the deformed configuration A′. The deformed longitudinal length ∆l follows the same law (50)
under the shift of the reference system, i.e.

∆l (ηβ) = ∆l (ηα = ηβ − (α− β)h) . (51)

Therefore, since the extension is defined as u = ∆l −∆L, thanks to Eqs.(50) and (51) we have that the following
equality holds

u (ηβ) = u (ηα = ηβ − (α− β)h) . (52)

The strain energy of the block calculated in the ξ-0-ηα reference frame is

∆Eα =
bY

2

∫ (1−α)h

−αh

u(ηα)
2

∆L(ηα)
dηα. (53)

By applying the change of variables (49), the equality of the integral expression (53) ∆Eα = ∆Eβ follows from
the relations (50) and (52).



10

III. DERIVATION OF THE STRAIN ENERGY FROM A FLAT UNDEFORMED CONFIGURATION

Figure 5. Strain energy from a flat undeformed configuration. The block in its undeformed configuration has a longitudinal
size of ∆L (dotted black vertical line). When deformed, the size of the representative fiber varies from ∆L to ∆lα. In
the reference frame integral with the block, any fiber undergoes a displacement u(ηα) (green arrows). At the same time,
the size of any deformed material fiber can be expressed as ∆l(ηα) = ∆lα + λα(ηα), where λα(ηα) are represented by red
arrows.

Let us consider the deformation of the elementary block presented in Fig.5. The undeformed flat condition
is depicted by a dotted black line, and it has the peculiarity that the longitudinal length is equal to ∆L for
any choice of the representative segment. The plane integral reference frame is identified by the ξ and ηα axes,
pointing respectively towards the block’s longitudinal and transverse directions. The origin is placed at an height
αh (0 ≤ α ≤ 1) from the block’s bottom surface, and on the left lateral block boundary. Any fiber placed at
an height ηα attains a length ∆l(ηα) upon deformation, with ∆l(ηα = 0) = ∆lα. According to the geometrical
construction in Fig.5, the Eq.(2), is equivalent to

∆l(ηα) = ∆L+ u(ηα). (54)

From Eqs.(54), (2) and (5) the elongation of any fiber can be expressed as

u(ηα) = ∆lα −∆L+ ηα
∆lα
rα

. (55)

In this condition, the strain energy of the block takes the form

∆Eα =
bY

2

∫ (1−α)h

−αh

[
∆lα −∆L

∆L
+

ηα
rα

∆lα
∆L

]2
∆L dηα, (56)

where we hve inserted the relation (55). Solving the integral and defining the strain as εα = ∆lα−∆L
∆L , we arrive at

the expression

∆Eα =
bY

2

[
h∆Lε2α + h2(1− 2α) εα

∆lα
rα

+ h3

(
1

3
− α+ α2

)
1

∆L

(
∆lα
rα

)2
]

. (57)

It is clear that the value of α which guarantees the axial-bending uncoupling is the line of the centroids αU = 1/2.
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Figure 6. Beam discrete strain energy from a flat undeformed configuration. The polygonal, connecting the vertices of each
deformed representative segments, is represented by a dotted black thick line. In the laboratory frame, the vertices have
planar coordinates

(
x
(i)
α , y

(i)
α

)
shown as green dots. The morphological change of each block is determined by the radius of

curvature that can be positive (as r1α) or negative (as r3α). The connection between local longitudinal deformation of the
representative fiber, ∆l

(i)
α , and its radius of curvature r

(i)
α , is encapsulated in the relation (24), where the bending angles

φ(i) define the deflection of the deformed blocks from the external x axis.

The strain energy of the whole elastica is given by the sum over the block contributions, formally by Eα =∑N
i=1 ∆E

(i)
α . We aim at furnishing, however, its analytical expression in the laboratory frame (Fig. 6).

The single block’s representative segment size ∆l
(i)
α is a positive quantity, being ∆l

(i)
α =

∣∣∣l(i)α − l
(i−1)
α

∣∣∣. l
(i)
α ≡(

x
(i)
α , y

(i)
α

)
are the vertices of the reference polygonal curve lα in the lab reference system (Fig. 6). The polygonal

curve is defined as the ordered sequence of the representative segments ∆l
(i)
α . The quantity r

(i)
α , on the other side,

can be positive or negative. This is required by the consistency of the Eq.(5). As a matter of fact,
∣∣∣r(i)α

∣∣∣ becomes
the radius of the osculating circle which locally approximates the reference segment in the continuum limit, and
the sign of r(i)α is assigned in the following way. It is clear that the intersection between the sidelines containing
the block’s sections lies on the axis ξ = 0 of the local reference system integral with any block (see Fig. 2). Hence,
in this reference system the coordinate of the circle’s center are defined as

(
0,−r

(i)
α

)
: this establishes uniquely

the sign of r
(i)
α . Now, moving to the laboratory frame we find that the relation (24) is always satisfied, with

∆φ(i) = φ(i) − φ(i−1), and φ(i) corresponds to the bending angle between the i−th block and the x axis. In the
small deflection limit, i.e. tan∆φ(i) ≃ ∆φ(i), the discrete strain energy for the entire slender beam is therefore
framed as

Eα =
bY

2

N∑
i=1

[
h∆Lε(i)α

2
− h2(1− 2α) ε(i)α ∆φ(i) + h3

(
1

3
− α+ α2

)
∆φ(i)2

∆L

]
. (58)

The bending measure is defined as

µ(i) =
−∆φ(i)

∆L
(59)

or, thanks to (24), as
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µ(i) =
∆l

(i)
α

∆L

1

r
(i)
α

. (60)

Using these definitions, the energy (61) takes the following form

Eα =
bY∆L

2

N∑
i=1

[
h ε(i)α

2
+ h2(1− 2α)ε(i)α µ(i) + h3

(
1

3
− α+ α2

)
µ(i)2

]
(61)

Let us introduce two parametric expressions for the undeformed and deformed reference plane curves as Lα :
[0, L] → R

2 and ℓα : [0, L] → R
2 respectively. As a consequence, the Cartesian coordinates of the undeformed

reference curve in the laboratory frame are

Lα(s) =

{
Xα(s) = s
Yα(s) = 0,

(62)

and those of the deformed curve ℓα(s) are lα(s) ≡ (xα(s), yα(s)). Taking an uniform partition of [0, L], i.e.
0 = s0 < s1 < s2 < · · · < sN = L such that si − si−1 = ∆s ≡ ∆L for any i, we obtain that the polygonal vertices
are lα(si) = l

(i)
α and the local longitudinal strain ε

(i)
α is given by

εα(si) =
|∆lα(si)|

∆s
− 1. (63)

Analogously, the bending angles at the polygonal vertices are φ(si) = φ(i). The continuum limit is taken by
increasing N until the length of the polygonal chain lα approaches from below that of the curve ℓα, i.e. |∆lα(si)|

∆s →
|ℓ′α(s)| as ∆s → 0. The curve derivative is defined as ℓ′α(s) ≡ tα(s), where we have introduced the tangent of
the curve tα(s) =

dlα(s)
ds . Finally, if the continuum limit entails that ∆φ(si)

∆s → φ′(s) and
∑N

i=1 ∆L →
∫ L

0
ds, by

substitution of εα(s) = |tα(s)| − 1 the energy (61) takes the form

Eα =
bY

2

∫ L

0

ds

{
h [|tα(s)| − 1]

2 − h2(1− 2α) [|tα(s)| − 1]φ′(s) + h3

(
1

3
− α+ α2

)
φ′(s)2

}
. (64)

IV. STRAIN ENERGY LIMITING CASES: REGAINING THE FLAT UNDEFORMED CONDITION

In the present section we show how to recover the straight beam strain energy (57), from the energy (8) calculated
from a generic undeformed configuration. To this aim, it will be sufficient to study the behaviour of Fα, Sα and
Iα in the limit of h

min[|R0|,|R1|] → 0.
Let us firstly express the relations (9)-(11) as

Fα = |Rα| ln
(
1 +

h

min[|R0|, |R1|]

)
, (65)

Sα = Rα

[
h− |Rα| ln

(
1 +

h

min[|R0|, |R1|]

)]
(66)

and

Iα = Rα

[(
1

2
− α

)
h2 − hRα +R2

α ln

(
1 +

h

min[|R0|, |R1|]

)]
, (67)
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Then we consider the condition h
min[|R0|,|R1|] ≪ 1 and expand the logarithm to the third order:

ln

(
1 +

h

min[|R0|, |R1|]

)
≃ h

min[|R0|, |R1|]
− h2

2min[|R0|, |R1|]2
+

h3

3min[|R0|, |R1|]3
. (68)

Hence we get

Fα =


h+ h2

R0

(
α− 1

2

)
+ h3

R2
0

(
1
3 − α

2

)
min[|R0|, |R1|] = |R0|

h+ h2

R1

(
α− 1

2

)
+ h3

R2
1

[
1
3 − (α−1)

2

]
min[|R0|, |R1|] = |R1|

, (69)

Sα =


h2
(
α− 1

2

)
− h3

R0

(
1
3 − α+ α2

)
min[|R0|, |R1|] = |R0|

h2
(
α− 1

2

)
− h3

R1

(
1
3 − α+ α2

)
min[|R0|, |R1|] = |R1|,

(70)

Iα = h3

(
1

3
− α+ α2

)
. (71)

By substitution of the former relations into (8), the Eq. (57) is correctly reestablished.

V. MACROSCOPIC CONSTITUTIVE EQUATIONS UNDER CHANGE OF MATERIAL CURVE

When the natural state is flat, the strain energy function is defined as Wα = ∆Eα

∆L , where ∆Eα is given in
Eq. (57):

Wα =
bY

2

[
h ε2α + h2(1− 2α)εαµ+ h3

(
1

3
− α+ α2

)
µ2

]
. (72)

The usual choice of the middle fiber as the representative medium (α = 1/2) yields the expression commonly used
in several contexts [5–8]. However, for a generic choice of the representative fiber, the constitutive equations for
the axial force and the bending moment are readily obtained:


Nα = ∂Wα

∂εα
= bY

[
hεα + h2µ

(
1
2 − α

)]
Mα = ∂Wα

∂µ = bY
[
h2εα

(
1
2 − α

)
+ h3µ

(
1
3 − α+ α2

)]
.

(73)

the axial force exerted on a material line α in (73) can be transformed into Nβ by applying the change of material
line

εα = εβ + h(α− β)µ. (74)

It results immediately Nα = Nβ . The bending moment can be recast as

Mα = bY

[
h2εα

(
1

2
− α

)
+ h3 µ

12
+ h3µ

(
1

2
− α

)2
]
. (75)

Therefore, from the expression of the axial force we have
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Mα = M1/2 − h

(
α− 1

2

)
Nα. (76)

Hence by subtracting the expression for Mβ from (76) and recalling the axial force invariance we have

Mα = Mβ − h (α− β)Nβ . (77)

The case of a general undeformed condition can be deterimined as follows. First we notice how the strain
stransorms under cange of material line

εα =
∆Lβ

∆Lα
[εβ + h(α− β)µβ ] . (78)

Moreover, the reduced area, the reduced axial-bending coupling moments and the reduced moment of inertia
change under material line transformation as

Fα =
1

∆Lβ
[∆Lβ − (α− β)h∆Φ]Fβ (79)

Sα =
1

∆Lβ
[∆Lβ − (α− β)h∆Φ] [Sβ − (α− β)hFβ ] (80)

Iα =
1

∆Lβ
[∆Lβ − (α− β)h∆Φ]

[
Iβ − 2(α− β)hSβ + (α− β)2h2Fβ

]
. (81)

Inserting the previous relations into


Nα = ∂Wα

∂εα
= Y (Fαεα + Sαµα)

Mα = ∂Wα

∂µα
= Y (Sαεα + Iαµα) ,

(82)

it easily turns out that the equality Nα = Nβ holds also in this case. Moreover, plugging the same transformations
into the second of Eqs.(82), we recover the Eq. (77) also in the case of generic initial conditions.

VI. THE NEUTRAL FIBER: FROM FLAT TO RING AND VICEVERSA

Let us consider the deformation depicted in Fig.7A-A′, where a slender beam of length L is deformed into a
circle. Let us take as the representative fiber the curve placed at an height αh from the bottom surface, so that
the equation representative of the elastica undeformed configuration is

Lα(s) =


Xα(s) = s

Yα(s) = αh,

(83)

with s ∈ [0, L]. The tangent is expressed as

Tα(s) =


dXα(s)

ds = 1

dYα(s)
ds = 0,

(84)
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Figure 7.

and Φ(s) = 0. By deforming the representative fiber into a circle of radius rα, we easily obtain

lα(s) =


xα(s) = rα cos

(
2πs
L

)
yα(s) = rα sin

(
2πs
L

)
,

(85)

tα(s) =


dxα(s)

ds = − 2πrα
L sin

(
2πs
L

)
dyα(s)

ds = 2πrα
L cos

(
2πs
L

)
,

(86)

and φ(s) = π
2 − 2πs

L . The energy necessary for the complete bending of the beam into the circle is given by (64)

Eα(L; rα) =
bY

2L

[
h (2πrα − L)

2
+ 2πh2(1− 2α) (2πrα − L) + 4π2h3

(
1

3
− α+ α2

)]
. (87)

Without loss of generality, let us adopt the line of centroid as the representative material line, namely α = 1/2.
We know that this choice has the only advantage of yielding the axial-bending uncoupling in Eq.(87):

E1/2(L; r1/2) =
bY

2L

[
h
(
2πr1/2 − L

)2
+

π2h3

3

]
. (88)

Nonetheless, if the transformation is such that r1/2 = L
2π , i.e. the middle fiber maintains its length constant (zero

strain condition), the energy has a minimum. In other words, among all the possible deformations that transform
a bar into a circle, that one which leaves unvaried the middle fiber (the neutral fiber) costs the minimum amount
of work:

E1/2

(
L; r1/2 =

L

2π

)
=

bY π2h3

6L
. (89)

This minimum principle can be seen as the straightforward application of Parent’s principle N1/2 = 0.
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Now let us consider the opposite situation, where a naturally curved beam is flattened into a bar as in Fig.7B-B′.
The undeformed configuration is given by

Lα(θ) =


Xα(θ) = Rα cos(θ)

Yα(θ) = Rα sin(θ),

(90)

with θ ∈ [0, 2π) being the internal parameter which is now adimensional, rather than having the dimension of an
internal length.

Tα(θ) =


dXα(θ)

dθ = −Rα sin(θ)

dYα(θ)
dθ = Rα cos(θ),

(91)

so that Φ(θ) = π
2 − θ. On the other side the equation for the deformed bar of length l is

lα(θ) =


xα(θ) =

lθ
2π

yα(θ) = αh,

(92)

tα(θ) =


dxα(θ)

dθ = l
2π

dyα(θ)
ds = 0,

(93)

and φ(θ) = 0. Hence, the energy cost connected to such a transformation is

Eα(Rα; l) = πbY

{(
l

2π
−Rα

)2

ln

(
1 +

h

R0

)
− 2

[
h−Rα ln

(
1 +

h

R0

)](
l

2π
−Rα

)
+

+

[(
1

2
− α

)
h2 − hRα +R2

α ln

(
1 +

h

R0

)]}
.

(94)

In analogy to the previous case, we choose the value of α which entails the axial-bending uncoupling, namely,
according to Eq.(41),

αU =
1

ln
(
1 + h

R0

) − R0

h
. (95)

Thanks to the fact that Rα = R0 + αh, from (95) it results RαU
= h

ln
(
1+ h

R0

) . Hence the Eq.(94) becomes

EαU
(R0; l) = πbY


 l

2π
− h

ln
(
1 + h

R0

)
2

ln

(
1 +

h

R0

)
+

1
2
− 1

ln
(
1 + h

R0

)
h2 + hR0right} (96)

Thus, it is possible to see that the minimum of energy necessary to flatten the ring is achieved only if the chosen
uncoupling representative fiber keeps its length constant , i.e. l = 2πh

ln
(
1+ h

R0

) = 2πRαU
. Such amount of energy

turns out to be
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EαU

R0; l =
2πh

ln
(
1 + h

R0

)
 = πbY

R0h+

1
2
− 1

ln
(
1 + h

R0

)
h2

 . (97)

Again, the minimum of the energy is consistently required by the validity of Parent’s principle.
So far we have considered the generic situation where circle in panel B of Fig.7 and that in panel A′ are different.

If we set the same dimensions for both of them, we have R0 = L
2π − h

2 that, inserted into the energy expression
(96) yields

EαU
(L; l) = πbY

{
l2

4π4
ln

(
L+ πh

L− πh

)
+

h

π

(
L

2
− l

)}
. (98)

The amount of work needed to stretch the ring out, keeping constant the length of the neutral fiber, is

EαU

L; l =
2πh

ln
(

L+πh
L−πh

)
 = πbY h

 L

2π
− h

ln
(

L+πh
L−πh

)
 . (99)

Conversely if we want to stretch the ring keeping constant the line of the centroids, therefore it is sufficient to
replace l = L into the expression (98):

EαU
(L; l = L) = πbY

{
L2

4π4
ln

(
L+ πh

L− πh

)
− hL

2π

}
. (100)
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