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Microglia complement signaling promotes neuronal
elimination and normal brain functional connectivity
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Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However,
while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement
signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the
major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse
cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit
that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data

demonstrate a role for complement in promoting neuronal elimination in the developing cortex.
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Introduction

Complement signaling is well documented to be a critical path-
way for marking cells for phagocytic engulfment by macrophages
in multiple organs across the mammalian body. The complement
pathway is triggered by the binding of C1q (Korb and Ahearn 1997;
Taylor et al. 2000) to a variety of cell death markers presented on
the cell surface of apoptotic cells and the subsequent enzymatic
activation of a proteolytic cascade of C3, C4, and C5b-9 (Mevorach
et al. 1998; Nauta et al. 2002; Gullstrand et al. 2009). The resulting
complex of complement factors serves as an opsonization sig-
nal for recognition by macrophages expressing the Complement
receptor 3 (CR3; Mevorach et al. 1998). The discovery that com-
plement factors are expressed in the brain and that microglia,
the resident phagocytic cells, express CR3 suggested that this
pathway was also likely to contribute to neuronal phagocyto-
sis and elimination (Fraser et al. 2010a; Linnartz et al. 2012).
The phagocytic elimination of neurons by microglia during brain
development is well documented by histological studies in which
apoptotic neurons were found surrounded by microglia (Ferrer
etal. 1990; Marin-Teva et al. 2004; Peri and Nisslein-Volhard 2008;
Wakselman et al. 2008; Sierra et al. 2010; Abiega et al. 2016) and
by studies in which the pharmacological depletion of microglia
resulted in an excess of neurons (Marin-Teva et al. 2004).

Nevertheless, evidence emerged showing that mice lacking
CR3 showed deficits in the developmental refinement of retino-
thalamic projections (Schafer et al. 2012), which suggested a role
for complement in the phagocytic elimination of synapses or
axonal branches, rather than whole neurons. Axonal pruning is
well documented to occur in interhemispheric cortical projections
with over 70% of connections being lost in the first 6 months
after birth in primates (LaMantia and Rakic 1990) and similar
levels of axonal pruning occur in the postnatal rodent cortex
(O'Leary et al. 1981; De Ledn Reyes et al. 2019). Moreover, evidence
points to a second wave of synaptic pruning during adolescence
(Huttenlocher 1979; Petanjek et al. 2011; Pattwell et al. 2016) that
has been implicated in the etiology of schizophrenia (Feinberg
1982; Uhlhaas 2011; Selemon and Zecevic 2015).

However, so far a role for complement signaling in synaptic
or axonal pruning outside of the retino-thalamic system lacks
strong evidence (Chu et al. 2010; Welsh et al. 2020; Yilmaz et al.
2021). Here we show that cortical structures in mice lacking
CR3 undergo normal adolescent synaptic pruning and perina-
tal axonal pruning. However, axonal pruning of retino-thalamic
projections was significantly reduced. Because axonal pruning in
the retino-thalamic pathway is associated with retinal ganglion
cell (RGC) death, we hypothesized that complement signaling
might exert an effect on neuronal connectivity via its role in
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promoting microglia-mediated cell elimination. Consistent with
this hypothesis, CR3 mutant mice showed decreased neuronal
elimination in the perinatal cortex and an associated increase in
cortical cell number and synaptic connectivity in adulthood.

Materials and methods
Animals

All mice tested were obtained by internal colonies from the
European Molecular biology laboratory. Mice were maintained
in a temperature and humidity-controlled condition with food
and water provided ad libitum and on a 12-h light-dark cycle
(light on at 7:00). C57BL/6] mice were obtained from local EMBL
Rome colonies. The following transgenic mice lines were used:
Thy1::EGFP-M (Feng et al. 2000; Jackson Laboratory stock 007788)
and Rosa26-CAG::loxP-STOP-loxP-tdTomatoWPRE (Madisen et al.
2010; Jackson Laboratory stock 007905), CD11b-deficient mice
(Coxon et al. 1996; CR3, C3r, Itgam; Jackson Laboratory stock
003991), Emx1::Cre (Iwasato et al. 2000). Thy1::EGFP animals were
bred with CR3 mice to generate double transgenic mice. Animals
homozygous for Thyl::EGFP and heterozygous for CR3 were bred
to get animals of the desired genotype. Heterozygote CR3 animals
were bred to obtain WT controls and knockout (KO) animals. For
all the experiments, littermate WT and KO were used wherever
possible and all the treatments were carried out in random order
irrespective of the genotype. Both males and females were used
indiscriminately and no exclusion criteria were set a priori. All
experiments were performed in accordance 91 with EU Directive
2010/63/EU and under the approval of the EMBL Animal Use
Committee 392 and Italian Ministry of Health License 541/2015-
PR to CTG. The fMRI experiments were conducted in accordance
with EU 86/609/EEC, DL 116, January 1992 and the Guide for the
Care and use of Laboratory Animals of the National Institutes
of Health. All surgical procedures were performed under
anesthesia.

Statistical analysis

Statistical analysis was performed using either GraphPad 5.0 or
SigmaPlot. Plots were obtained with GraphPad Prism 5.0. Each
data point refers to an individual animal. The data are presented
as mean + SEM. Spine density analysis, retrograde labeling, quan-
tification of apoptotic cells, cortical thickness, and cell counts
were compared using 2-way ANOVA with Tukey’s multiple com-
parison. Axon density, total axon in optic nerve, quantification
of caspase-3 labeled cells were compared with 2-tailed Student’s
t-test; quantification of microglial engulfment of PSVue labeled
cells and Emx1::Cre; RC:LSL-tomato was compared with Mann-
Whitney test and Wilcoxon signed-rank test. Spontaneous excita-
tory synaptic current (sEPSC) and miniature excitatory synaptic
current (mEPSC) data were analyzed with Student’s t-test and
evoked EPSCs were analyzed with 2-way ANOVA with Bonferroni's
correction. Resting-state fMRI (rsfMRI) data were analyzed by
unpaired t-test. We used a 95% confidence interval. A P-value of
<0.05 was set for rejecting the null hypothesis.

Data availability

Data were not deposited to any database repositories. All data
needed to evaluate the conclusions in the paper are presentin the
paper and/or the Supplementary Materials. The data supporting
the findings are available within the manuscript. Codes used for
analysis of neuronal quantitation have been deposited publicly in
GitHub.

Results

Normal synaptic and axonal pruning in CR3
knockout mice

Our initial experiments focused on determining whether mice
with deficient complement signaling failed in synaptic pruning
as had been shown in the retino-thalamic system (Stevens et al.
2007; Schafer et al. 2012). We chose to study mice lacking the CR3
(knockout) because this mutant was previously shown to exhibit
retino-thalamic pruning deficits and because it is the major com-
plement receptor expressed by microglia (Tremblay et al. 2010;
Paolicelli et al. 2011; Filipello et al. 2018). First, we monitored ado-
lescent synaptic pruning by quantifying excitatory spine density
in layer 5 neurons of the prelimbic cortex either before (postnatal
day 30) or after (postnatal day 60) sexual maturity in the mouse
(Fig. 1A). As previously described (Pattwell et al. 2016; Boivin et al.
2018), a significant reduction in spine density was observed in all
animals between P30 and P60, but no significant effect of genotype
orinteraction between time and genotype emerged (Fig. 1A and B).
These data suggest that adolescent synaptic pruning of principal
cortical neurons proceeds normally in CR3 knockout mice.

Next, we quantified axonal elimination in interhemispheric
cortical connections, a process that involves the pruning of more
than 80% of callosal fibers in layer 4 of the primary somatosensory
cortex (S1) in the first 3 postnatal weeks of mice (De Ledn Reyes
et al. 2019). Local injection of the fluorescent retrograde tracer
cholera toxin B (CTB) into fibers of the corpus callosum led to
the labeling of contralaterally projecting cell bodies throughout
the mouse cortex (Fig. 1C). During the first postnatal week, the
vast majority of cell bodies in the layer 4 of S1 were labeled (De
Ledn Reyes et al. 2019), whereas at postnatal day 30, <20% of
soma showed labeling. This demonstrates the efficient pruning of
the majority of interhemispheric axons in this region (Fig. 1D and
E). In contrast, the neighboring region (secondary somatosensory
cortex; S2) showed less extensive pruning with over 40% of soma
being labeled (De Ledn Reyes et al. 2019; Fig. 1D). Quantification
of the fraction of labeled cell bodies at postnatal day 30 revealed
statistically indistinguishable pruning in CR3 knockout mice and
wild-type littermates in layer 4 of both S1 and S2 cortices (Fig. 1E).
These findings indicate that microglia-dependent complement
signaling does not have a major role in mediating synaptic or
axonal pruning in the developing mouse cortex.

Deficient RGC axonal pruning in CR3 knockout
mice

Our initial findings suggested that synaptic or axonal pruning
deficits in CR3 knockout mice might be restricted to the retino-
thalamic system. To test this possibility, we revisited the pruning
phenotype in the visual system of these animals by directly quan-
tifying the perinatal loss of RGC axons. Anatomical studies have
shown that during the first postnatal week in rodents approx-
imately half of retinal axons in the optic nerve are eliminated
(Lam et al. 1982). Quantification of total axon numbers in electron
micrographs of the prechiasmatic optic nerve at postnatal day
6 of CR3 knockout and wild-type littermates (Figs. 1F and S1b)
revealed a significant deficit in axonal pruning in the mutant
mice seen as an increased total number of axons without a
change in axon density (Figs. 1G-I and S1c). Assuming a 50% loss
of axons in the mouse (Lam et al. 1982), these data suggested
that microglia-dependent complement signaling is responsible
for about one-quarter of axonal pruning in the retino-thalamic
system. This deficit in axonal pruning could be a consequence of
either incomplete retinal axon or cell elimination.
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Fig. 1. Normal synaptic and axonal pruning but deficient RGC axonal pruning in CR3 knockout mice. A, B) Pruning of dendritic spines during adolescence
was examined in CR3 knockout mice at P30 and P60. B) Quantification revealed no synaptic pruning deficits in CR3 knockout mice during adolescence
(2-way ANOVA with Tukey’s post hoc test. Main effect of time: F[1,29] =12.71, P =0.001, main effect of genotype: F[1, 29] =0.11, P =0.737, time x genotype
interaction: F[1, 29]=0.25, P =0.620). C) Retrograde labelng was used to examine callosal axon pruning by direct injection of CTB into corpus callosum.
D) CTB labeling of S1 and S2 somatosensory cortex regions showing callosally projecting neurons at postnatal day 30. E) Quantification of callosally
projecting neurons revealed no differences between wild-type and CR3 knockout in the S1 and S2 regions of the somatosensory cortex (2-way ANOVA with
Tukey’s post hoc test. Main effect of region: F[1, 29] =106.00, P < 0.001, main effect of genotype: F[1, 29]=1.15, P =0.292, region x genotype interaction:
F[1, 29]=0.18, P =0.672). F, G) Lack of CR3 does not alter axon density in postnatal day 6 optic nerve (t-test, P =0.554). H) CR3 knockout mice have a
marginal increase in optic nerve diameter and I) increase in total axon number (unpaired t-test, P =0.045). Each data point refers to an individual
animal (mean =+ SEM, *P < 0.05, **P <0.01).
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Microglia phagocytose apoptotic neurons in early
postnatal cortex

However, RGC axonal loss in perinatal development is well doc-
umented to be accompanied by RGC death (Potts et al. 1982;
Dreher et al. 1983; Perry et al. 1983; Horsburgh and Sefton 1987),
opening the possibility that complement signaling in this system
may mediate apoptosis. It is well documented that microglia
seek out and engulf apoptotic neurons during brain development
(Marin-Teva et al. 2004; Wakselman et al. 2008; Cunningham et al.
2013). Two major phases of cortical apoptosis have been described.
The first occurs in the subventricular proliferative zone in close
connection with cortical neurogenesis and is responsible for the
death of a significant fraction of newly born cortical neurons
(Blaschke et al. 1996; Thomaidou et al. 1997). Mutations in Caspase
9 that block cell death during this phase of cortical development
are associated with macrocephaly, severe cortical malformations,
and perinatal lethality (Kuida et al. 1998). Given the viability and
grossly unaffected brain morphology and lack of differences in
the number of apoptotic cells of between the embryonic CR3
knockout and wild-type littermate brains (Fig. S2a), we thought
it was unlikely that complement proteins would be involved in
the death of neuronal precursors. However, a second phase of
cortical apoptosis has been described that occurs in the early
postnatal period and involves the death of a subset of neurons
that have successfully migrated into the cortical plate (Ferrer
et al. 1990; Verney et al. 2000; Stankovski et al. 2007; Wong et al.
2018). For reasons that at present remain unclear, this apoptotic
phenomenon has been reported to be most frequent in medial
cortical regions (Finlay and Slattery 1983; Verney et al. 2000).

To determine whether microglia are involved in the phagocy-
tosis of apoptotic neurons during this second phase of cell death,
we carried out staining for apoptotic markers and microglia in the
anterior cingulate cortex (ACC) of mice at postnatal day 5. A small,
but significant number of cells dispersed across cortical layers
showed immunostaining for the activated form of the apoptosis-
associated factor Caspase 3 (aCasp3+) and in the majority of cases
(26/33 cells, 78%) aCasp3+ cells showed condensed, cell corpse
(Figs. 2B and S3a). Nevertheless, only a minority of cell corpses
expressed aCasp3+ (26/192 cells, 13.5%), suggesting that either
caspase activation is not a prerequisite for pyknotic cell death,
or that it represents a transient stage in the apoptotic process
(Figs. 2B and S3b and e). A significant fraction of pyknotic cells was
found to be engulfed by microglia as detected by immunostaining
with the marker Iba-1 (Fig. S3c) consistent with the hypothesis
that microglia play a major role in the phagocytosis of this type
of apoptotic postnatal cortical cell. Compared with aCasp3+ cells,
cell corpses labeled with the live fluorescent sensor for extracel-
lular phosphatidyl-serine (PS) modified lipids, PSVue (Eyo et al.
2016; Li et al. 2020; Scott-Hewitt et al. 2020), were preferentially
found engulfed by microglia (Figs. 2A and C and S3d-g). These
findings indicate that Caspase 3 is activated transiently in cells
during the early stages of apoptosis following which these cells
progress to nuclear condensation, PS exposure, and identification
by microglia for engulfment. To confirm microglia engulfment of
cell corpses at this developmental stage in vivo, we used 2-photon
live imaging of anesthetized, head-fixed mice at postnatal day
5 with GFP-labeled microglia (Cx3crl::GFP) and pretreated with
PSVue. Rare PSVue-positive phagocytic pouches could be observed
in cortical layer 2/3 that took 20-60 min to form, and 100-180 min
to merge with the microglia soma (Fig. S4a—c). These data provide
direct evidence for the phagocytic engulfment of cell corpses by
microglia in the early postnatal mouse cortex.

Finally, we examined the identity of the engulfed cell corpse
by repeating the co-labeling experiments in mice expressing
tomato fluorescent protein in either cortical excitatory neurons
(Emx1::Cre; RC::LSL-tomato; Fig. 2D) or cortical inhibitory neurons
(Gad2::Cre; RC:LSL-tomato). About 60% of the cell corpses were
confirmed as deriving from the Emx1 lineage and 40% of the cell
corpses were of the Gad2 lineage (Fig. 2E). On average, 50% of the
condensed cell corpses inside microglia were tomato positive (Fig.
S3h). Next, we tested whether cell corpses found inside microglia
localized to lysosomes by co-staining with CD68, a lysosomal
marker. In the Emx1 and Gad2 lines, 77 and 82% of tomato-positive
cell corpses, respectively, colocalized with CD68 (Fig. S3i). Lastly,
we examined whether the deposition of complement components
was associated with pyknotic nuclei. The majority of pyknotic
nuclei showed prominent C1q staining when compared with non-
pyknotic nuclei (Fig. S4a).

Deficient neuronal elimination in CR3 knockout
mice

To determine whether complement signaling plays a role in rec-
ognizing and engulfing apoptotic cells by microglia, we quantified
cell corpses and their engulfment by microglia in the ACC and
somatosensory cortex of CR3 knockout and littermate control
mice at postnatal day 5. When compared with controls, the den-
sity of cell corpses was significantly increased in CR3 knockout
animals in the ACC, but not in the somatosensory cortex where
apoptotic cell density was overall significantly lower (Fig. 2F),
consistent with the reported gradient of early postnatal cell death
from medial to lateral cortical areas (Verney et al. 2000). A smaller
fraction of cell corpses was engulfed by microglia in the ACC of
CR3 mutant mice compared with controls, although this differ-
ence was not significant (Fig. 2G). Overall, a significantly larger
fraction of pyknotic cells was engulfed by microglia in ACC com-
pared with the somatosensory cortex, further strengthening the
idea of a medial-to-lateral gradient (Fig. 2G). We also observed a
significant decrease in the number of phagocytic pouches in the
ACC of CR3 mutant mice compared with control littermates, sug-
gesting a reduced phagocytic capacity in the mutants and an over-
all lower phagocytic capacity in somatosensory cortex compared
with ACC (Figs. 2H and S5b). Quantification of a phagocytosis-
apoptosis index revealed a highly significant reduction in CR3
mutant mice compared with controls (Fig. 2I). Together these data
suggest that microglia lacking CR3 are less efficient at identifying
or engulfing cell corpses and that this process is favored in medial
versus lateral cortical structures.

The increased density of cell corpses in CR3 knockout mice
(Fig. 2F) suggests that less efficient microglia phagocytosis might
not necessarily be associated with a change in upstream pro-
cesses that trigger cell death. However, some studies have shown
that in the absence of phagocytic engulfment, cellular corpses
can be rescued from cell death (Hoeppner et al. 2001; Reddien
et al. 2001). Finally, to determine the outcome of an absence of
microglia complement signaling on cell survival, we measured
cortical thickness and absolute cell numbers in the ACC and
somatosensory cortex later in adulthood. Both cortical thickness
and the absolute number of neurons were significantly increased
in the ACC, but not in the somatosensory cortex in CR3 knock-
out mice compared with control littermates (Figs. 2J and K and
S6a-h). These findings argue for a role of microglia comple-
ment signaling as a limiting factor in postnatal cortical neuron
elimination.
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Fig. 2. Deficient neuronal elimination in CR3 knockout mice. A) Apoptotic cells expose PS as labeled with PSVue (magenta arrowhead) and are
phagocytosed by microglia (yellow arrowhead). B) Quantification of cell corpse from ACC revealed that the majority of the nuclei are positive for PSVue
but not acasp-3. All acasp-3 cells including those devoid of condensed nuclei were considered for quantification. C) PS exposing cells are preferentially
phagocytosed by microglia (Mann-Whitney test, P =0.004). D, E) The cell corpse of Emx1 and Gad2 lineage in the ACC as seen by the expression of
tdTomato (white arrowhead) is phagocytosed by microglia (yellow arrowhead). F) CR3knockout mice have increased density of cell corpse in the ACC
but not in the somatosensory cortex (2-way ANOVA with Tukey’s post hoc test. Main effect of region: F[1, 50] = 23.19, P < 0.001, main effect of genotype:
F[1, 50]=10.66, P =0.002, region x genotype interaction: F[1, 50]=0.72, P =0.399). G) A smaller nonsignificant fraction of cell corpse was found engulfed
by microglia in the ACC of KO mice when compared with wild type. However, a clear regional difference was observed (2-way ANOVA with Tukey’s post
hoc test—main effect of region: F[1, 50] =25.87, P < 0.001; main effect of genotype: F[1, 50] = 1.06, P =0.307; region x genotype interaction: F[1, 50] =0.19,
P =0.665). H, I) CR3knockout mice have a reduced number of phagocytic pouches and phagocytosis-apoptosis index in the ACC compared with control
littermates (2-way ANOVA with Tukey’s post hoc test—main effect of region: F[1, 50] =49.74, P < 0.001; main effect of genotype: F[1, 50] =4.24, P =0.045;
region x genotype interaction: F[1, 50] =4.45, P =0.040 and 2-way ANOVA with Tukey’s post hoc test—main effect of region: F[1, 50] =11.22, P =0.001; main
effect of genotype: F[1, 50]=9.27, P =0.003; region x genotype interaction: F[1, 50] =1.26, P =0.266). ]) Increased ACC cortical thickness is seen in adult
KO mice (2-way ANOVA with Tukey’s post hoc test—main effect of region: F[1, 56] =35.44, P < 0.001; main effect of genotype: F[1, 56]=10.60, P =0.002;
region x genotype interaction: F[1, 56] = 1.96, P =0.300). K) Increased number of neurons in the ACC of CR3 mutant mice (2-way ANOVA with Tukey’s post
hoc test—main effect of region: F[1, 54] = 35.44, P < 0.001; main effect of genotype: F[1, 54] = 1.93, P =0.170; region x genotype interaction: F[1, 54] = 227.09,
P <0.001). Each data point refers to an individual animal (mean + SEM, *P <0.05, **P < 0.01).
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Altered synaptic function and functional
connectivity in CR3 knockout mice

Next, we studied whether the lack of microglia complement sig-
naling during development has any long-term consequence on
neural connectivity and synaptic function. First, we quantified
spontaneous excitatory synaptic responses of principal neurons
in ex vivo hippocampal slices. A significant increase in SEPSC
amplitude, but not frequency was observed in CR3 knockout
neurons compared with those from littermate controls (Figs. 3A
and S7a-d). However, no significant difference in the amplitude
or frequency of mEPSC was detected between genotypes (Figs. 3B
and S7a and e-g), although an increase in the relative differ-
ence in amplitude between spontaneous and miniature events
(A amplitude = sEPSC — mEPSC) was found in CR3 knockouts when
compared with controls (Fig. S6h), suggesting increased synaptic
multiplicity. In contrast, excitatory synaptic responses to local
extracellular electrical stimulation were significantly reduced in
CR3 knockout neurons compared with those from control animals
(Figs. 3C and S7i). This apparent discrepancy suggests that while
synaptic multiplicity is enhanced in a small subset of active
neural connections, on average synaptic strength is reduced in the
absence of complement signaling in microglia. In line with our
findings from the prefrontal cortex, CR3 knockout mice did not
exhibit any difference in spine density, bouton density, or bouton
size in hippocampal pyramidal neurons across development (Fig.
S8a-e).

Finally, we used rsfMRI to map interareal functional connec-
tivity (FC) in CR3 mutants and control littermates. This allowed
us to quantify synchronized fluctuations in spontaneous fMRI
signals (Power et al. 2014; Gozzi and Schwarz 2016), hence pro-
viding an indirect index of communication across brain regions.
Importantly, rsfMRI FC is tightly constrained by the underly-
ing anatomical organization and is thereby commonly used to
probe the integrity and strength of underlying axonal connections
(Coletta et al. 2020). Quantification of rsfMRI FC in interhemi-
spheric region pairs did not reveal any significant difference in
CR3 knockout mice compared with control littermates (Fig. 3E).
The absence of interhemispheric connectivity changes confirmed
our anatomical findings showing a lack of impact of microglia
complement signaling on interhemispheric cortical axon pruning
(Fig. 1C-E).

We next investigated whether FC could be altered on a finer
anatomical scale. For this purpose, we constrained rsfMRI FC
mapping to a small 6-voxel radius, corresponding to ~600 um in a
plane—a measure we refer to as local functional connectivity
(LFC; Liska et al. 2018; Pagani et al. 2019). Interestingly, KO
mice showed foci of increased LFC in midline cortical struc-
tures centered around the ACC, as well as in dorsal thalamic
regions (mediodorsal thalamus—MD), 2 brain areas known
to be highly anatomically interconnected (Fig.3F and G). To
rule out the possibility that these focal LFC differences would
indirectly reflect alterations in the long-range connectivity of
the corresponding network systems (Gutierrez-Barragan et al.
2022) we measured their long-range connectivity using a seed-
based probing of the ACC (Whitesell et al. 2020). Consistent
with our previous findings, the observed between-group con-
nectivity differences were focal and short-ranged (Fig. 3H). This
finding is consistent with a long-term impact of microglia
complement signaling that is specifically targeted to dorsal
midline brain regions and that primarily affects microscale
anatomy.

Discussion

The role of complement signaling in synaptic pruning beyond
the retino-thalamic system remains unclear. This question gained
increased importance with the discovery that common copy num-
ber variants in complement factor C4 showed a dose-dependent
association with risk for schizophrenia in human populations
(Sekar et al. 2016; Kamitaki et al. 2020; Yilmaz et al. 2021). Recent
studies have found that overexpression of C4 in the developing
mouse cortex impacts spine density and function (Comer et al.
2020; Yilmaz et al. 2021). However, loss of function mutations in
the mouse C4 gene did not show a phenotype in these studies
(Yilmaz et al. 2021), leaving open the question of whether com-
plement mediates cortical pruning in the undisturbed animal.
Here we confirmed that mice lacking the microglia complement
receptor CR3 do not show alterations in synaptic or axonal prun-
ing, but instead show deficits in the elimination of apoptotic
neurons and that this has a long-term impact on brain FC in a
manner that selectively affects Schizophrenia-associated brain
regions.

Both the magnitude and direction of our finding of a signifi-
cant increase in RGC axons in CR3 knockout mice at postnatal
day 6 (Fig. 1F-H) are consistent with earlier data showing an
increase in binocular retino-thalamic innervation at the same
time point (Schafer et al. 2012). We interpret our data as evidence
that the thalamic phenotype of these mice may in part be a
secondary consequence of a deficit in the elimination of exuber-
ant retino-thalamic axons, although our study did not carry out
measurements of individual axon arbors to test the extent of this
relationship. Moreover, as axon elimination in the retino-thalamic
system is driven by extensive RGC death (Dreher et al. 1983; Perry
et al. 1983), we hypothesize that a critical function of comple-
ment signaling in the developing eye is to promote microglia-
mediated neuronal cell elimination. This hypothesis is supported
by a recent study in which CR3 (Anderson et al. 2019) knockout
mice were shown to have an excess of retina ganglion cells of
a magnitude matching our results (Fig. 1F-H). Our findings open
the possibility that the synaptic pruning deficits reported earlier
in the retino-thalamic system of complement cascade mutants
could be at least in part the result of deficits in the elimination of
apoptotic RGC.

The removal of cells destined for death and those exposing PS
is typically mediated by macrophage phagocytosis and molecules
like progranulin have been shown to inhibit the clearance of
cells expressing PS. Alternatively, phagocytosis can execute the
death of viable cells that reversibly expose PS through phagoptosis
(Brown and Neher 2012; Fricker et al. 2012; Neher et al. 2014).
In the developing cerebellum, about 60% of dying neuronal cells
were contacted by microglial processes. Elimination of microglial
cells resulted in increased survival of Purkinje cells suggesting
that microglia actively promote cell death in the cerebellum,
at least in slice cultures (Marin-Teva et al. 2004). Similarly, in
the developing hippocampus, microglia contact and engulf dying
cells. Eliminating DAP12 or CR3 genetically or through antibody
depletion resulted in reduced apoptosis of hippocampal neurons
as estimated by aCasp3 staining (Wakselman et al. 2008). These
studies suggest that microglial phagoptosis can promote cell
death in the developing brain. We have not examined if phagop-
tosis occurs in the neonatal cortex. However, we do not see any
change in the levels of aCasp3 cells between wild-type and CR3
knockout mice, suggesting that the absence of CR3 signaling does
not promote cell death in the cortex (Fig. SSe).
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The relatively modest excess of neurons we see in CR3 knockout
mice appears to be restricted to medial regions of the cortex
(Fig. 2J and K) suggesting that they may be the result of a selective
deficit in early postnatal cortical programmed cell death that has
been shown to occur with a medial to the lateral gradient. This
hypothesis is supported by the reduced number of cell corpses
found engulfed by microglia in layers 2/3 and 5 of the ACC,
but not the somatosensory cortex at postnatal day 5 (Fig. 2G)
and a concomitant overall increase in pyknotic cells at this time
point (Fig. 2F). It should be pointed out, however, that the engulf-
ment of pyknotic cells by microglia appears to be only partially
impaired in CR3 knockout mice, a finding that suggests that
complement signaling is only one of multiple pathways promot-
ing microglial phagocytosis. Complement deposition preceding
microglial phagocytosis has been observed in both apoptotic and
newborn cells (Fraser et al. 2010b; VanRyzin et al. 2019). Our data
are potentially consistent with those of at least one other study
that reported a deficit in aCasp3+ cells in the early postnatal
hippocampus of CR3 knockout mice at this stage (Wakselman
et al. 2008). Unlike in this study, however, we observed only a mild,
nonsignificant decrease in aCasp3+ cell number in CR3 knockout
mice (Fig. S5d) and anincrease in cell corpses and decrease in their
engulfment by microglia (Fig. 2F). This phenotypic discrepancy
could be the result of the different regions examined or could it be
a compensatory response to decreased phagocytosis of apoptotic
cells in the mutants.

Our observation of anatomical and functional imaging pheno-
types in CR3 knockout mice that were restricted to the anterior
dorsal medial cortex (Figs. 2F,] and K and 3G and H) are consistent
with the reported gradient of early postnatal neuronal apoptosis
along the medial-to-lateral axis (Fig. 2F; Finlay and Slattery 1983;
Verney et al. 2000). We noted that despite similar densities of
microglia in ACC and somatosensory cortex (Fig. S5¢), a signif-
icantly smaller fraction of cell corpses was found engulfed by
microglia in the more lateral region (Fig. 2G) suggesting that the
gradient may be the consequence of a difference in the phagocytic
capacity of microglia. It is striking that the regions of the cortex
most affected in the complement mutant are those shown by
unbiased clustering analysis of rodent anatomical tract-tracing
studies to be hubs that support executive function, planning,
and self-awareness (Swanson et al. 2017). It remains to be deter-
mined whether this gradient is relevant for the link between
copy number variation in complement factor C4 and risk for
Schizophrenia (Sekar et al. 2016). Although we cannot at present
be certain that the changes in cortical thickness (Fig.2J and
K), synaptic function (Fig. 3A-C), and functional imaging (Fig. 3G
and H) observed in adult CR3 knockout mice depend entirely on
deficits in early postnatal cell elimination, the matching medial-
to-lateral gradients of postnatal microglia phagocytosis (Fig. 2G),
cortical thickness, and functional imaging phenotypes suggest
that they may be causally related. rsfMRI FC mapping showed
the presence of preserved long-range connectivity alterations
but locally increased rsfMRI synchronization in brain regions
characterized by deficient perinatal neuronal elimination. Owing
to the linear relationship that exists between rsfMRI connectiv-
ity strength and underlying axonal density (Coletta et al. 2020),
it is tempting to speculate that the observed increased local
connectivity may indirectly reflect increased neuronal numbers
observed at the microscale in these regions. This interpretation
would be consistent with previous observations of reduced local
fMRI connectivity in animal models characterized by reduced
cortical thickness (Liska et al. 2018; Pagani et al. 2019). In light
of the current controversy of the correlates of fMRI connectivity
(Rocchi et al. 2022) this interpretation, however, remains tentative

and requires further physiological corroboration. It is important to
note that the increase in local connectivity did not translate into
changes in local field potential in any of the frequency bands (Fig.
S9b) and neither did we observe any signs of spontaneous seizures
as reported in C1q mutants (Fig. S9a; Chu et al. 2010). Critically, our
data argue that the increase in cortical thickness and neuronal
number in the adult ACC is a direct consequence of a failure
of microglia lacking CR3 to efficiently engulf apoptotic cells in
this structure during the early postnatal period. We acknowledge
that we have not used stereology-based quantification to estimate
neuronal numbers and thus cannot rule out that subtle genotype-
dependent changes in the size of neurons could have biased
our comparisons. However, we consider it unlikely that deficits
in complement signaling would consistently affect nuclear size.
A causal link between increased neuronal number and failure
of microglial engulfment in CR3 knockouts requires that in the
absence of microglia engulfment apoptotic neurons can reverse
their nuclear condensation phenotype and survive to adulthood.
Such a reversal of commitment to apoptosis has been described
in cultured cells and can include the transient expression of
activated caspases, for example (Geske et al. 2001; Tang et al.
2012; Sun et al. 2017). Alternatively, the increase in cortical neu-
rons in CR3 knockout mice could be driven by a signal emitted
by mutant microglia that reduces the number of neurons that
commit to apoptosis. Resolving these mechanisms will require
precise measurement of the dynamics of apoptosis and microglial
phagocytosis in the developing cortex.

In summary, we have presented evidence for the role of com-
plement signaling in promoting the developmental elimination of
neurons by microglia selectively in the ACC and shown that this
process is required to achieve normal FC in adulthood. We failed
to find evidence for a role of microglia complement signaling in
synaptic or axonal pruning in the developing cortex. These find-
ings call for further work to understand how neuronal apoptosis
and phagocytosis can be regulated in a region-specific manner to
shape adult brain connectivity and function.
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