
SankhyāA : The Indian Journal of Statistics
https://doi.org/10.1007/s13171-023-00327-5
© 2023, The Author(s)

Bayesian Ideas in Survey Sampling: The Legacy of Basu

Marco Di Zio
Istituto Nazionale di Statistica, Roma, Italy

Brunero Liseo
MEMOTEF, Sapienza Università di Roma, Roma, Italy
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Abstract
Survey sampling and, more generally, Official Statistics are experiencing an
important renovation time. On one hand, there is the need to exploit the
huge information potentiality that the digital revolution made available in
terms of data. On the other hand, this process occurred simultaneously with
a progressive deterioration of the quality of classical sample surveys, due
to a decreasing willingness to participate and an increasing rate of missing
responses. The switch from survey-based inference to a hybrid system involv-
ing register-based information has made more stringent the debate and the
possible resolution of the design-based versus model-based approaches con-
troversy. In this new framework, the use of statistical models seems unavoid-
able and it is today a relevant part of the official statistician toolkit. Models
are important in several different contexts, from Small area estimation to
non sampling error adjustment, but they are also crucial for correcting bias
due to over and undercoverage of administrative data, in order to prevent
potential selection bias, and to deal with different definitions and/or errors in
the measurement process of the administrative sources. The progressive shift
from a design-based to a model-based approach in terms of super-population
is a matter of fact in the practice of the National Statistical Institutes. How-
ever, the introduction of Bayesian ideas in official statistics still encounters
difficulties and resistance. In this work, we attempt a non-systematic review
of the Bayesian development in this area and try to highlight the extra ben-
efit that a Bayesian approach might provide. Our general conclusion is that,
while the general picture is today clear and most of the basic topics of survey
sampling can be easily rephrased and tackled from a Bayesian perspective,
much work is still necessary for the availability of a ready-to-use platform
of Bayesian survey sampling in the presence of complex sampling design,
non-ignorable missing data patterns, and large datasets.
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1 Introduction

The role of Debabrata Basu in the critical development of survey sampling
could be hardly overstated. His paper on the foundations of the subject
(Basu, 1971) is a landmark which, for the first time - at least with such
clarity - unveiled the irreconcilability between design-based inference and the
likelihood principle. His criticism against the use of the Horvitz-Thompson
estimator in order to guarantee unbiasedness of the estimates, extremely and
colorfully expressed with the elephant example (see e.g. Welsh, 2010), has
caused an incredibly vivid and interesting debate among statisticians; as a
consequence, survey sampling has experienced, in the last decades, several
attempts of radical restructuring of the foundations.

The aim of this paper is to explore and discuss the potential role of
Bayesian ideas and techniques in modern survey sampling. The paper is
structured as follows: § 2 discusses the theoretical conflict between design-
based methods and the likelihood principle and highlights the role that a
Bayesian approach could have. § 3 goes beyond the basic framework dis-
cussed in § 2 and discusses the ineluctability of a shift towards model-based
techniques in modern survey statistics. § 4 reviews the most prominent and
promising ideas for a Bayesian theory of inference for finite populations,
namely

• the Polya posterior approach, proposed in a series of papers by Glen
Meeden and collaborators (see for example Ghosh and Meeden, 1997;
Strief and Meeden, 2013).

• the Calibrated Bayesian approach, popularized in several papers by
Roderick Little (see for example Little 2006; Little 2011; Little 2022).

Then, § 5 considers a real case study, which we consider paradigmatic of the
issues and the open problems discussed above. Finally, § 6 provides some
concluding remarks.

2 The conflict

2.1 Basu’s criticism of design-based methods To fix notation and
ideas, we consider the simplest situation where a random sampling with-
out replacement is drawn from a population P with N identified units. Here
N is assumed to be known and units are identified through their labels, say
{1, 2, . . . , N}. We draw a sample s of size n and assume that the randomiza-
tion scheme assigns a probability p(s) to this specific sample. The quantity
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of interest is the vector of values of a variable Y observed on the entire pop-
ulation, say YP = (y1, y2, . . . , yN ), or a specific function of it, say τ = f(YP ).
However, YP is observed only on the units belonging to the sample s. Let Ys

be the set of observed values: then the goal is to make inferential statements
on the values YP\s.

A design-based technique for producing an unbiased estimator of τ is
based on the Horvitz-Thompson strategy which suggests using an empirical
version of τ , where the n observations are weighted with the inverse of their
corresponding probabilities to be included in the sample. Unbiasedness is
calculated with respect to the randomization scheme (the sampling design);
this is usually inspired by, but not necessarily related to, YP , which is con-
sidered fixed but unknown. Then Basu formally proved that the likelihood
function for YP is flat, i.e. it is equal to a positive constant, for all values
compatible with the observed Ys, and it is zero otherwise.

Many scientists have interpreted this result as a proof of a general inad-
equacy of the likelihood function - and the likelihood principle - as the main
tool of the inferential process in this framework. On the other hand, Basu
and other Bayesian statisticians believe that this specific context offers an
example where the likelihood function provides obvious but correct results,
and this clarifies the insufficient level of modeling of the design-based meth-
ods.

From a historical perspective, the first attempt to overcome the diffi-
culties of using a likelihood function in a finite population sampling frame-
work can be considered the scale load approach described in Hartley and
Rao (1968), where the support of the quantity of interest Y is discretized
into T different values, having frequencies N1, N2, . . . , NT at the population
level and n1, n2, . . . nT at a sample level. Here the choice of T is not crucial
and the Authors consider, as a likelihood function for the unknown vector
(N1, . . . , NT ), the hypergeometric distribution associated with the observed
sample:

L(N1, . . . , NT ) =
T∏

t=1

(
Nt

nt

)/(
N

n

)
. (1)

The Authors described how to make consistent inferences on functions of
(N1, . . . , NT ), through maximization of the likelihood or combining it with a
suitable prior distribution. The scale-load approach can be considered pro-
dromic to the more general notion of empirical likelihood, developed after
Owen (1988) and reconsidered, in the context of finite population sampling
in several papers: see for example Zhong and Rao (2000) and Berger (2018).
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2.2 Design-based, likelihood and Bayes In the last decades, the scien-
tific debate around survey sampling has been quite vivid and it has dealt
mainly with the contrast between design-based and model-based approaches.
This is not the place to recall the details of the conflict, and we will only
highlight the main points. A vivid and deep comparative analysis of dif-
ferent inferential approaches in finite population sampling can be found in
Beaumont and Haziza (2022).

In survey sampling, many different issues must be considered in the opti-
mization of the sampling plan. In spite of that, in a design-based philosophy,
the construction of point estimators and confidence intervals is based on the
randomization process and it is not always directly related to the quantity
of interest YP . In other terms, the design-based analysis leads to conclusions
about the finite population quantity totally free of assumptions about the
structure of the variation in the population (Cox 2006).

A pure likelihood analysis of such a problem is bound to provide trivial
conclusions (Basu 1971, Godambe 1966): all the configurations of the param-
eter YP compatible with Ys receive the same support from the likelihood;
the likelihood function itself is not able to introduce any sort of similari-
ties/dissimilarities among the units in the sample and those not observed.
This is done surreptitiously in a design-based approach by silently assuming
a sort of exchangeability among the units. The Bayesian road seems at least
clearer. In order to provide inference on the vector YP , which is now treated
as a random vector, one needs to introduce a prior distribution in the game,
and the prior is precisely the instrument that formalizes potential external
information about the mutual similarities among units.

More in detail, and following (Little 2022), let us denote by SP =
(S1, . . . , SN ) the vector of selection indexes for the N units of the popu-
lation, that is

Si =

{
1 i-th individual is in the sample
0 otherwise.

If ZP denotes a vector including all other design-related variables, the goal
is to make inference on some quantity Q(YP ), using possible covariate infor-
mation ZP . A model-based inference approach will be based on the joint
distribution

ps,y;z(s, y; z, θ, ψ) = py;z(y; z, θ)ps|y;z(s|y; z, ψ), (2)
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where θ is a vector of parameters directly related to the variable of interest
y and ψ only refers to the mechanism of inclusion.

Bayesian inference in this context requires the introduction of a prior
distribution py;z(y; z) for the population values. Inferences are then based
on the posterior predictive distribution of the non-sampled values YP\s of
YP , given the sampled values. The prior distribution is often specified in a
hierarchical way, where a parametric model py;z(y; z, θ) indexed by param-
eters θ, in practice the one appearing in Eq. 2, is combined with a prior
distribution p(θ; z). Then,1 if we assume that - for the sake of simplicity -
the sampling mechanism is ignorable,

p(y; z) =
∫

p(y|θ, z)p(θ; z)dθ. (3)

The posterior predictive distribution of the non-sampled values YP\s is then

P (YP\s|Ys, z) =
∫

p(YP\s|Ys; z, θ)p(θ|Ys; z)dθ (4)

where p(θ|Ys, z), is the posterior distribution of the hyper-parameters θ.
The issues of deep irreconcilability among different inferential paradigms,

in general, do not cause huge differences in practice. In simple situations, if
the units are approximately exchangeable, the use of the Horvitz-Thompson
estimator would provide the same numerical answer that one could obtain
with a weakly informative prior, or even using a Bayesian method without a
prior, as in Ghosh and Meeden (1997) and Strief and Meeden (2013).

The debate between design-based and model-based approaches is basi-
cally internal to the non-Bayesian world and it appeared - and has increas-
ingly become - relevant because of the more and more complex problems
faced by modern survey sampling.

Much of the theory of model-based methodology has been developed
in a non-Bayesian fashion, starting from the seminal and thought-provoking
papers of Royall (1970, 1976) where the role of the likelihood function, when
properly defined and interpreted, is deemed central also in a finite population
framework and particularly for predictive purposes, provided that a super-
population perspective is considered. The prediction approach is extensively
discussed and supported in Valliant et al. (2000), and some Bayesian ver-

1 A word on notation: we use different notation p(u|v) and p(u; v) according to whether at least
some component of v must be considered a random quantity or not, respectively.



M. Di Zio et al.

sions of super-population modeling can also be found in Zacks (2002) and
Bolfarine and Zacks (1992).

The most prominent cases where a design-based approach has provided
unsatisfactory results can be listed as follows:

• Small Area Estimation, where the sample size in a sub-population/domain
of interest may be so small (small area) to jeopardize the reliability of
the estimates;

• the presence of non-sampling errors in the selection of the sample, that
can hardly be introduced in the randomization process;

• the presence of non-random patterns of non-response and/or missing-
ness among units; in these cases, some units might have a negligible
or zero probability of being included in the sample and this occurrence
practically destroys any possible assumption of exchangeability among
the units, so requiring extra modeling;

• inference based on the integration among survey data and other data
sources, for instance, register-based data (Lohr and Raghunathan 2017).

These issues will be discussed in the next § 3.

3 Modern survey sampling

Basu’s classical Elephant example highlighted a few settings in which
Horvitz-Thompson estimation could be inefficient, particularly when the
sampling plan cannot be designed to proxy the distribution of the values
of the variable(s) of interest. The use of auxiliary information has been the
first device to improve the efficiency of design-based estimates. Indeed, the
statistician in the Elephants’ example could have well saved his job at the
circus by exploiting the knowledge of the population size and simply using
the Hajek estimator! The model-assisted framework has kept researchers
busy for more than 50 years and allowed them to employ auxiliary informa-
tion at the estimation stage using countless assisting models to describe the
relationship with the response variable(s). See Breidt and Opsomer (2017)
for a recent review including modern regression techniques.

The model-assisted approach has brought models out of the shadow in
design-based inference. Nonetheless, there are instances in which the design-
based – even if model-assisted – framework is not enough to allow for con-
sistent and/or efficient estimation strategies. The first and more notable is
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small area estimation (SAE), in which the sample size available in a sub-
population of interest is so small that Horvitz-Thompson direct estimates,
albeit unbiased, have unduly large variances.

SAE methods are indirect as they make use of observations coming from
other domains/areas to obtain estimates for a particular area and are essen-
tially model-based. SAE methods have seen tremendous development in the
past 25 years: a complete review updated to the year of publication can
be found in Rao and Molina (2015). In a presentation of the first edition
of this book from 2003, Jon Rao admitted his genuine surprise when he
finished writing it and realized that the longest chapters were those ded-
icated to methods using a hierarchical Bayesian approach. Then, if SAE
can undoubtedly be considered the Trojan horse that brought model-based
estimates into National Statistical Offices to address the need for timeliness
and granularity of estimates, we may hint at a similar role for the Bayesian
approach. See as a noticeable example the SAIPE program in the US United
States Census Bureau (2021).

Another challenge that has reduced the suitability of design-based meth-
ods in survey sampling in the past years is the increased impact of non-
sampling errors. When the outcome of under and/or over-coverage, of
(item or unit) non-response, measurement error (including mode effects)
depends on unknown processes, then it is impossible to draw a purely design-
based inference, and the recourse to modeling is unavoidable. Modeling is
required to reduce (a possibly non-negligible) bias in this context, rather
than variance. The assumptions under which such bias reduction is achieved
can seldom be verified and the inference is therefore model-based. This is
true also when calibration or other reweighting methods such as raking are
used to address under-coverage and/or non-response because, in this frame-
work, modeling choices are implicit in the (possibly generalized) calibra-
tion/reweighting procedure (Haziza and Lesage 2016, Lesage et al. 2019).

In a Bayesian framework, non-response and under-coverage are often
adjusted using inverse propensity weighting; see e.g. Little (1986). Indeed,
propensity score adjustment was originally developed by Rosenbaum and
Rubin (1984) to address selection bias in experimental designs but has been
used extensively to control for selection bias in non-probability samples.
Elliott and Valliant (2017) and the recent discussion paper by Wu (2022) pro-
vide a review of methods to draw inferences from such data. These can be
seen as situations in which non-response and/or under-coverage get extreme
consequences. Voluntary (typically online) surveys provide a large amount of
(usually cheap) information that can provide misleading conclusions if bias
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is not properly mitigated. The large amount of information available with
non-probability samples, and big data more in general, can lead to less trust-
worthy conclusions because of the apparent large sample size available (Meng
2018). In this context, (Lee 2006) provides evidence that a reference probabil-
ity sample must be available to obtain reliable inference. Data integration
is a very active field of research to develop techniques for combining a prob-
ability sample with a non-probability data source (see, for a review, Yang
and Kim 2020). These are essentially model-based and can be grouped into
two main approaches. The first approach is weighting and can be based on
propensity score adjustments: propensity scores are pseudo-inclusion proba-
bilities estimated based on covariates available for sampled and non-sampled
units. Calibration is another weighting approach that estimates the weights
directly by calibrating auxiliary information in the non-probability sample
with that in the probability sample. In the second approach, superpopula-
tion modeling for the variable(s) of interest collected on sample units is used
to predict values for non-sampled units. This approach is closely related to
mass imputation and multiple imputation (Rubin 2004) can be used in this
framework. Doubly robust estimation methods combine the weighting and
imputation approaches to improve the robustness against model misspecifi-
cation (Kim and Haziza 2014).

Data integration can occur at the micro-level when the information com-
ing from a small survey may be enriched by the extra information coming
from administrative non-probabilistic lists. The link step is not generally
flawless, due to measurement errors and changing status of the statistical
units involved in the process. This kind of problem calls for record linkage
techniques. Record linkage is a class of statistical and algorithmic methods
that aim at identifying whether two or more observed records refer to the
same statistical entity or not. Duplications of the same entity within one sin-
gle source or across different files may be interpreted as “clusters of records”,
showing strong similarities across their fields. Then the record linkage process
may be also viewed as a formal Bayesian or non-Bayesian micro-clustering
model; see Johndrow et al. (2018) and Tancredi et al. (2020)

All the above-mentioned issues become particularly relevant in the pro-
duction of official statistics, where the problem of harmonizing and merging
information coming from different sources becomes central as the general
framework is moving towards an integrated system of statistical produc-
tion and dissemination (D’Orazio et al. 2006). In fact, the National Statis-
tical Institutes of well-developed countries, are progressively shifting from a
survey-based system, where the sampling design played a decisive role, to
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an integrated system where administrative lists may help to build a more
complex data structure that represents different populations of interest. This
data structure may be then combined with specific surveys and/or the use
of other types of non-probability/big data to produce statistical information
at (a possibly very) granular level of domains.

4 New ideas from a Bayesian perspective

The logical conflict between design-based methods and Bayesian philosophy
has generated a sort of practical separation between Official Statistics and
Bayesian methodology with the unpleasant result that survey sampling is
not a typical theme of research among Bayesian-oriented Ph.D. students,
despite its relevance from an applied perspective. Currently, much of the
academic research is devoted to creating or developing the Bayesian versions
of the model-based procedures, already become a relevant part of the applied
survey statistician toolkit. Nevertheless, there have been more systematic
attempts to reformulate the entire survey sampling methodology from a
Bayesian perspective.

From a historical perspective, the first instance of the practical relevance
of Bayesian methodology in survey sampling other than the above-mentioned
small area estimation problem can be dated back to the introduction of
multiple imputation techniques (Rubin 2004) for dealing with non-response
and, more generally, missing data issues.

A nonparametric Bayesian approach has been initially proposed by
Ericson (1969) in the context of a simple random sampling. To overcome
the problem of the already mentioned flatness of the likelihood function
(Godambe 1966), an exchangeable prior on the N -dimensional parameter
YP is assumed. Using a weakly informative prior, one re-obtains design-
based results from a completely different perspective. Similar results were
obtained by Lo (1986), where a Dirichlet-Multinomial process is introduced,
which converges, as N → ∞, to a standard Dirichlet process. In the case
of stratified sampling, priors are assumed exchangeable only within strata,
in the spirit of hierarchical modeling (Rao 2011). Lo (1988) introduced the
finite population Bayesian bootstrap (FPBB), which is defined in terms of
a Polya’s urn scheme and it is implemented by simulating a posterior distri-
bution starting from a flat Dirichlet-Multinomial prior, as described in Lo
(1986).

4.1 The Polya Posterior Building on the seminal work of Lo (1988),
an alternative approach to inference for finite populations is described in
a series of papers by Glen Meeden and his collaborators: see for example
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(Ghosh and Meeden 1997, Lazar et al. 2008, Strief and Meeden 2013); it is
known as the Polya Posterior approach and it can be considered the finite
population adaptation of the Bayesian Bootstrap proposed by Rubin (1981).
Consider the following simple scenario. Suppose we have a population of N
units and we draw a simple random sample of size n, say Ys: assume that
the goal is to estimate the mean θ of some function h(YP ). We put the n
observed units in another urn U2 and let the other N −n units in the original
urn U1. Then we proceed as follows:

1. we draw a unit from U2 and observe its value y;

2. we draw a unit from U1, attach to it the y value and replace both units
in U2;

3. repeat steps 1-2 until U1 is empty.

This way we have simulated a realization of the entire population. We repeat
this simulation a huge number M of times, in order to get a posterior dis-
tribution for the quantity of interest YP , which can be summarized using
descriptive statistics. Of course, this should be only interpreted as a pseudo-
Bayesian posterior, since no prior has been introduced. Nonetheless, (Lo
1988) provides important theoretical results for this procedure. Assume that
in Ys there are k distinct values and, for j = 1; . . . , k, let nj be the corre-
sponding frequencies in the sample. In performing an FPBB, let m∗

j be the
random frequencies of the k distinct values.
Theorem 1 (Lo, 1988) The following statements hold:

• The random vector (m∗
1, . . . , m

∗
k)|Ys has a Dirichlet-Multinomial distri-

bution (Mosimann 1962) with parameters (N − n; n1, n2, . . . , nk)

• As N → ∞,

(
m∗

1

N − n
, . . . ,

m∗
k

N − n

)
|Ys

d→ Dirichlet(n1, n2, . . . , nk),

where d→ denotes convergence in distribution.

The Dirichlet-Multinomial distribution, cited in Theorem 1 can be inter-
preted as the multivariate extension of the Beta-Binomial distribution, that
is a mixture of Binomial(n, p) distribution, with fixed n and p following a
Beta distribution. Mosimann (1962) provides a general account of the prop-
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erties of the Dirichlet-Multinomial distribution. Theorem 1, part b) can be
used to say that, when the sampling fraction f = n/N is negligible, one can
avoid actually performing simulations and approximate the posterior distri-
bution with the Dirichlet distribution. This idea is crucial in the development
of Polya’s Posterior methodology, especially when extra information on the
population is available, and it can be translated into linear constraints on
the Dirichlet random vector.

Although the Polya’s posterior does not stem from any specific prior
distribution, (Lo 1988) also proved that it can be derived as the posterior
distribution on θ when the prior on the values of Ys is a “flat” Dirichlet-
Multinomial.

Polya’s Posterior approach then simulates the entire population and
allows simple inferences on specific parameters of the population; it is par-
ticularly useful when many parameters need to be estimated at the same
time. There have been several attempts to extend this approach to more
general contexts. Strief and Meeden (2013) proposed an alternative step-wise
Bayesian justification of the use of the sampling weights which is not directly
related to the sampling design, and that makes use of the standard kind of
information present in auxiliary variables: however, it does not assume a
model relating the auxiliary variables to the characteristic of interest. Dong
et al. (2014) made an attempt to extend the finite population Bayesian boot-
strap of Lo (1988) to account for complex sample designs. The paper takes
the same goal of the inverse sampling technique and it can be treated as the
Bayesian finite population version of inverse sampling. Lazar et al. (2008)
considers the problem of implementing a Polya’s Posterior approach in the
presence of genuine partial information about auxiliary variables.

A limitation of the Polya posterior approach is that it requires an
exchangeability assumption, not always tenable. In addition, (Rao 2011)
noticed that “Also, it is not clear how this method can handle complex
designs, such as stratified multistage sampling designs, or even single-stage
unequal probability sampling without replacement with non-negligible sam-
pling fractions, and provide design-calibrated Bayesian inferences.”

The use of the Bayesian Bootstrap in a finite population setting is also
discussed in Aitkin (2008), Carota (2009), and Cocchi et al. (2022) where a
procedure for estimating the variance in a multiple frame context is proposed.

4.2 Calibrated Bayes In a series of papers, during the last 15 years,
Roderick Little has strongly advocated the use of Bayesian methods in survey
sampling and, more generally, in official statistics. To summarize in a few
words, Little advocates a compromise between various approaches. While
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inference procedures should follow a Bayesian road, design features like clus-
tering and stratification should be explicitly incorporated into the model to
avoid the sensitivity of inference to model misspecification. In other terms,
a purely design-based approach to finite population inference is no longer
able to “adequately address many of the problems of modern sample survey”
(Little 2022) and a model-based approach is deemed necessary: however, the
model-based approach should be dressed in a Bayesian suit in order to easily
incorporate survey sample design features. This compromise would guaran-
tee good frequentist properties and would also benefit from the richness of
information that the predictive posterior distribution allows obtaining.

Consider again the model-based framework expressed by the Eq. 2. If
we ignore, for the sake of simplicity here, the issue of non-response, the
distribution of S|Z, Y does not actually depend on Y and the likelihood
function contribution to inference is restricted to the term py|z(y; z, θ), which
is combined with a suitable prior on θ in order to produce the posterior
predictive distribution Eq. 4 for the non-observable quantity YP\s.

This obvious consideration simply rules out any chance that the Bayesian
answers could be efficient from a frequentist perspective if the word “frequen-
tist” is meant in terms of the sampling mechanism. It is then clear that the
frequentist properties should be considered either with respect to the con-
ditional model induced by the family of distributions py;z(y; z, θ), or to the
joint distribution py,s;z(y, s; z, ψ, θ).

It is well known (see Berger et al. 2009; Consonni et al. 2018) that a cor-
rect frequentist coverage of Bayesian procedure can be obtained only through
the use of formal “noninformative” priors, whose exact expression depends
on the specific statistical model. The derivation of a sensible noninforma-
tive prior is then not always easy. For example, usual improper priors which
are routinely used in standard statistical models are not adequate for small
area estimation and more generally for hierarchical models. See, as a general
reference, (Berger et al. 2020) where the Authors derive a proper prior on
the boundary of admissibility, which results as diffuse as possible without
resulting in inadmissible procedures. A more specific analysis for small area
models is described in Burris and Hoff (2019), where an alternative confi-
dence interval procedure for the area means and totals is proposed under
normally distributed sampling errors.

In general, the calibration of Bayesian procedures under complex sam-
pling design is problematic and some approximations are often unavoidable.
Things are even more complicated in the presence of non-ignorable non-
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response patterns, which must be taken into account in the sampling model.
The next section is devoted to the description of such a real case study.

An alternative route that tries to combine design and Bayesian proper-
ties is proposed in Wang et al. (2017). Here the likelihood is replaced by
the sampling distribution of some summary statistics with “design-based”
properties: this “pseudo-likelihood” is then combined with a prior reflecting
genuine or vague prior information. This approach, although approximated
in principle, provided “calibrated Bayes” procedures when combined with
noninformative priors.

5 A real case study

In this section, we discuss a real case study where we consider the poten-
tial benefits and the inherent difficulties of a fully Bayesian treatment of
the problem. During the last years, the Italian National Statistical Institute
(Istat, hereafter) has begun a long and complex process of reorganization of
data production and dissemination, called modernization, which can basi-
cally be described in three steps.

1. A main global infrastructure consisting of an integrated system of sta-
tistical registers.

2. The introduction of repeated sample surveys with the goal of construct-
ing, updating, and enriching the statistical registers by observing new
variables.

3. An integrated use of non-probability data coming from different kinds
of sources (e.g., big data) for producing new information such as
Trusted Smart Statistics.

An important case study, illustrative of the new data production system,
is the Italian Permanent Census (IPC), which replaces the general Popula-
tion census, previously carried out every 10 years (the last one dates back
to 2011): the new IPC system is a prototypical example of the new data
production process and we now briefly describe it.

The starting point is the construction of the BRI (Base Register of Indi-
viduals). BRI is a “list” of NR people who are residents in Italy, collected
from all Italian municipalities; the BRI contains some core information such
as gender, citizenship, and age, based on administrative data, which are
considered highly reliable. BRI is then enriched with the reconstruction,
through the implementation of suitable statistical models, of additional vari-
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ables, namely educational level and employment status. The former is recon-
structed via a log-linear model based on administrative data, while the latter
is predicted through a suitably tailored hidden Markov model (Boeschoten
et al. 2021).

Istat conducts two surveys to obtain an area sample sA and a list sample
sL in order to evaluate the probabilities of under -coverage and of over -
coverage, respectively, of BRI at the municipality level; these estimates are
then used to correct administrative counts and to obtain estimates of the
resident population. Population counts corrected for coverage errors are
obtained through weighted counts of the BRI, where the weights are cal-
culated as the ratio between the above probabilities.

The area and the list surveys are carried out using a sampling design that
is quite common in National Statistical Institutes. In fact, they both follow a
two-stage complex design where municipalities are Primary Sampling Units
(PSUs) and households (for the list sample) or administrative geographical
areas (for the area sample) are Secondary Sampling Units (SSUs). In partic-
ular, for the area sample sA, the SSUs are addresses and enumeration areas.
For each year of the census cycle, both the area and the list surveys share
the same sample PSUs. Nevertheless, the samples of households in the two
surveys are negatively coordinated from one to the other and for different
survey occasions. It is worthwhile noticing that an allocation step of the sam-
ple size of SSUs (frequently combined with balancing procedures) actually
determines their inclusion probabilities.

With the goal of discussing the potential use of Bayesian models in a real
NSI case, it is important here to report some details of the sampling design
adopted for the permanent census. For the sake of brevity, we discuss in
detail the sampling design of sL for estimating over-coverage probabilities.
Then, we discuss the modeling of under-coverage probabilities.

As detailed in Righi et al. (2021), at the first stage all municipalities
with a population size larger than 18,000 inhabitants and all municipalities
selected in the Labor Force Survey (LFS, hereafter) are classified as self-
representative (SR), while the others are considered non-self-representative
(NSR). All SR municipalities are included in the sample, and for the NSR
municipalities, a sample is drawn according to a probabilistic sampling design
as follows. Within each province (LAU1), NSR municipalities are stratified in
order to obtain homogeneous strata in terms of population size. Each stratum
consists of four PSUs, and one single PSU is drawn from each stratum each
year according to simple random sampling without replacement; this way,
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in a four-year period, all the Italian municipalities can be observed. Then
households are selected from each municipality adopting a simple random
sampling without replacement design.

The allocation of the sample is then performed via a first sample size
allocation among provinces, which is based on a trade-off between an equal
sampling fraction and a sampling fraction inversely proportional to the pop-
ulation size of the provinces; indeed, a larger survey fraction is planned for
smaller than for larger provinces. Afterward, in each province, the household
sample was allocated within the municipalities as follows:

• for SR municipalities, a trade-off between an equal sampling rate and
a proportional allocation is considered, in order to limit the number of
households in the larger municipalities;

• for SR municipalities coming from the LFS, a proportional allocation
is planned;

• for SNR municipalities, the sampling fraction assigned to each stratum
is proportional to the population size of the stratum, so that each munic-
ipality is assigned a sample of households that is also representative, at
least in terms of size, of the other three municipalities included in the
stratum but not included in the sample for that specific year.

In addition, a minimum number of 100 households has to be included in
each municipality. As a consequence, municipalities with a smaller number
of households are completely enumerated. Finally, all members of selected
households are interviewed.

The complex, although quite standard, structure of this sampling plan
is difficult to render from a Bayesian perspective in order to make the CB
approach operative. Let ND be the population count of interest for sub-
population (domain) PD and let D∑

hailj
be an indicator variable that takes

the value 1 if unit j of household l in municipality i of enumeration area
a of stratum h of the population belongs to PD and 0 otherwise. Then
NDR =

∑
h

∑
a

∑
i

∑
l

∑
j D∑

hailj
is the number of people in BRI for domain

PD. The count estimates of the living population ND can be obtained as

N̂D =
∑

h

∑

a

∑

i

∑

l

∑

j

D∑
hailj

1 − p̂ohilj
1 − p̂uhailj

,
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where p̂ohilj and p̂uhilj are the estimated over and under -coverage probabili-
ties for unit hilj computed from sL and sA, respectively (see, for a similar
approach, Pfeffermann 2015). A Bayesian treatment of the quantities p̂ohilj
and p̂uhilj would easily allow to produce a posterior distribution for the overall
quantity ND and then produce a suitable measure of uncertainty. As noted
before, samples in the two surveys are in general negatively coordinated,
although in practice we consider them independent. Indeed, p̂ohilj and p̂uhilj
are estimated for socio-demographic profiles for which the probabilities of
over-coverage can be considered homogeneous and where the assumptions of
the capture/recapture model hold (see, for more details, Righi et al. 2021).

More in detail, let us first focus on the over-coverage probabilities esti-
mated using a Bayesian logistic model on data from sL. The latter is a
two-stage sampling design and, following following Little (2006, 2022), the
covariates that determine the sampling design must be included in the model
to render the inclusion mechanism ignorable. In addition, a Bayesian hier-
archical model should be used to deal with the within-cluster correlation.

Let yhilj be the dichotomous random variable that is 1 when unit j of
household l in municipality i of stratum h selected in sL from BRI is not
found for the interview and 0 otherwise. When yhilj = 1, the unit in the
register should not be counted in the population (over-coverage). Then, a
possible hierarchical model for over-coverage can be written as follows

yhilj |pohilj ind∼ Bernoulli(pohilj)

logit(pohilj) = xT
hiljβ + uhil + vhi + γh (5)

uhil
iid∼ N(0; σ2

u) (6)

vhi
iid∼ N(0; σ2

v) (7)
p(β, γh, σ

2
u, σ

2
v) ∝ 1

where

• xhilj collects individual-level covariates such as gender, age-class, citi-
zenship, household-level covariates such as type of household or number
of components, municipality-level covariates such as population size, type
(urban/non-urban), and stratum level covariates such as macro-region;

• uhil is a household-level random effect;

• vhi is a municipality-level random effect;
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• γh is a stratum fixed effect.

Only variables included in the BRI can be in x since the model will be used
to make a prediction of the variable y on the units in BRI not observed in the
sample. In addition, the vector of first-order inclusion probabilities could also
be included in x to account for extra-variability introduced by the complex
survey design not explained by the design variables already introduced in
the model.

For the regression parameters β and γh, diffuse normal priors can also be
considered that are sufficiently non-informative and computationally more
convenient than flat priors over the real line. The normality of the random
effects is a standard assumption in hierarchical models, while the choice of
the prior for the variance components has been vastly debated, as in Bayesian
mixed models the posterior distributions of these parameters are known to
be sensitive to prior specification (Gelman 2006). Alternative choices can
be the inverse Gamma for the variance or the half-Cauchy for the standard
deviation.

The choice of the distribution for the household level random effect in
Eq. 6 can be made more flexible by considering a different variance compo-
nent for each possible household type, i.e.

uhil
iid∼ N(0; σ2

uk(l)), for k = 1, . . . , K. (8)

Here, k(l) denotes the group to which household l belongs to. In fact, there
might be different household types determined by their size, the relationship
among members, and other characteristics, for instance, households with one
single person, of couples, of couples and children, and so on. The variance
σ2
uk represents the similarity of the outcome variable on people in the same

household typology. The use of different variance parameters σ2
uk on the uhil

would also allow removing some of the random effects when their posterior
distributions pile up in a neighborhood of zero.

The municipality-level random effect in Eq. 7 can be further generalized
by allowing for an interaction with a subset of the covariates in x, say z
of dimension q. Then, the equation for the linear predictor in Eq. 5 can be
enhanced to be

logit(pohilj) = xT
hiljβ + uhil + zThiljvhi + γh
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where vhi
iid∼ Nq(0; Σv) and p(Σv) ∝ 1. An alternative choice for the prior

could be a Wishart distribution for Σ−1
v . Variables in z could reflect the

information used in the allocation of the sample of SSUs and/or directly
the sample size. Similarly, the stratum-level fixed effect γh could be further
generalized by including the interaction with a subset of the vector x.

A similar modeling exercise can be developed for under-coverage that
makes use of the data from the area survey sA. In this case, the administra-
tive geographical area characterizing the sampling design may introduce an
intra-cluster correlation that should be taken into account. Let yhialj be the
dichotomous random variable that is 1 when unit j of household l in admin-
istrative area a of municipality i of stratum h selected in sA is found for the
interview and is not in BRI and 0 when the unit is found for the interview
and is in BRI. When yhialj = 1, the unit should be counted in the population
(under-coverage). Then, a possible hierarchical model for under-coverage can
be written as follows:

yhialj |puhialj ind∼ Bernoulli(puhialj)

logit(puhialj) = xT
hialjβ + whial + uhia + vhi + γh

whial
iid∼ N(0; σ2

w)

uhia
iid∼ N(0; σ2

u) (9)

vhi
iid∼ N(0; σ2

v)
p(β, γh, σ

2
w, σ2

u, σ
2
v) ∝ 1

where whial is a household-level random effect, uhia is a random effect related
to the administrative geographical area, and vhi and γh have an interpreta-
tion similar to that of Eq. 5. Also in this case, it can be useful to consider
different characteristics of the administrative geographical areas, such as
rural/urban, type of dwelling, and use an approach similar to that used for
households in Eq. 8 to model uhia. Alternatively, these random effects can
be assumed to be spatially correlated according to the distance daa′ between
areas a and a′. For example, Eq. 9 can be replaced by

u ∼ NA(0; Σu), Σaa′ = σ2
u exp (−φdaa′) , p(φ) ∝ 1

where A is the number of areas, σ2
u is the variance at any given point, and φ

is a smoothing parameter that controls the scale of the correlation between
areas. A Conditional Autoregressive specification can also be considered in
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which the conditional distribution of uhia given values in all the remaining
areas only involves the neighboring areas.

6 Conclusions

Finite population sampling is an important chapter of statistical theory that
deserves particular attention and a specific methodology. Bayesian inference
is based on a solid prescriptive and coherent mathematical theory, sometimes
difficult to combine with the practical difficulties of survey sampling. Basu
himself noticed, as reported in Zacks (2002):

The Bayesian as a surveyor must make all kinds of compromises...
He may even agree to introduce an element of randomization into his
plan... I can not put this enormous speculative process into a jacket
of a theory. I happen to believe that data analysis is more than a
scientific method...

The same concept is reiterated in Basu (1978)
I do not think that it is realistic to ask for a well-defined theory of
survey sampling. The problem is too complex and too varied from
case to case. I have no clear-cut prescription for the planning of a
survey. Apart from saying that we ought to hold the data as fixed
and speculate about the parameters I have indeed very little else to
offer.

However, we believe that the Bayesian contribution to the development of a
more efficient quantification of uncertainty in survey sampling can be valu-
able. In particular, the role of the prior distribution is crucial.

In the absence of genuine prior information, or when some sort of “objec-
tivity” of the estimation process in the field of official statistics is required,
the use of formal noninformative priors must be recommended in order to
provide “calibrated answers” with good frequentist properties (Berger et al.
2022). In complex design, the derivation of the formal noninformative prior
is really too difficult to obtain and approximations are necessary, as for
example in Berger et al. (2020). However, approximations should not be
confused with weakly informative priors, which could provide silly - and,
even worse, prior-dependent - answers (Berger 2006), and this should be
absolutely avoided.

In a completely different scenario, the use of available genuine prior infor-
mation can be crucial and sometimes necessary. There are many cases where
population parameters smoothly vary in time and space, like in Demogra-
phy, and it is relatively easy to guess a priori the reasonable range of such
quantities. The introduction of such information in the model would ease the
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calibration of the simulation algorithm on one hand. Of course, a sensitivity
analysis to the prior inputs would be unavoidable in these cases; a signifi-
cant dependence on the final answer to the prior inputs, however, should not
be interpreted as a failure of the Bayesian approach but, rather, an indica-
tion that there might be too many parameters in the model and the data
information is simply not enough to update all of them.

Finally, the last decades have experienced a real explosion, both in theo-
retical and applied terms, of Bayesian nonparametric methods of inference.
Survey sampling has not yet been hit by this wave although the seminal
papers by Lo (1986, 1988) seem to have paved the way. Some recent excep-
tions are Mendoza et al. (2021) and Savitsky and Toth (2016), and in the
context of multiple imputation, (Paddock 2002).

To better reiterate our consideration of Basu’s work, we would like to
conclude with another quotation, taken from Casella and Gopal (2011)

(Re-)Reading Basu’s papers, which combine an inimitable style of
writing with impactful examples, is an educating, enlightening and
entertaining experience. At best, we question our assumptions and
beliefs, which leads us to gain new insights into classical statistical
concepts. At “worst”, we embark on a journey to becoming Bayesian.
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