
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-023-02042-4

1 3

ORIGINAL PAPER

A clustering heuristic to improve a derivative‑free
algorithm for nonsmooth optimization

Manlio Gaudioso1 · Giampaolo Liuzzi2  · Stefano Lucidi2

Received: 25 November 2022 / Accepted: 30 June 2023
© The Author(s) 2023

Abstract
In this paper we propose an heuristic to improve the performances of the recently
proposed derivative-free method for nonsmooth optimization CS-DFN. The heuris-
tic is based on a clustering-type technique to compute an estimate of Clarke’s gen-
eralized gradient of the objective function, obtained via calculation of the (approxi-
mate) directional derivative along a certain set of directions. A search direction
is then calculated by applying a nonsmooth Newton-type approach. As such, this
direction (as it is shown by the numerical experiments) is a good descent direction
for the objective function. We report some numerical results and comparison with
the original CS-DFN method to show the utility of the proposed improvement on a
set of well-known test problems.

Keywords  Nonsmooth optimization · Derivative-free methods · CS-DFN

1  Introduction

We consider the following unconstrained minimization problem

(1)min
x∈ℜn

f (x).

 *	 Giampaolo Liuzzi
	 liuzzi@diag.uniroma1.it

	 Manlio Gaudioso
	 manlio.gaudioso@unical.it

	 Stefano Lucidi
	 lucidi@diag.uniroma1.it

1	 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Universitá
della Calabria, 87030 Rende, CS, Italy

2	 Dipartimento di Ingegneria Informatica Automatica e Gestionale, “Sapienza” Università di
Roma, Via Ariosto 25, 00185 Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02042-4&domain=pdf
http://orcid.org/0000-0002-4063-8370

	 M. Gaudioso et al.

1 3

We assume that the objective function f, (though nonsmooth) is Lipschitz con-
tinuous and that first-order information is unavailable or impractical to obtain. We
require the following assumption.

Assumption 1  The function f(x) is coercive, i.e. every level set is compact.

Useless to say that there is plenty of problems with the above features, especially
coming from the engineering context. In the literature, many approaches have been
proposed to tackle the nonsmooth problem (1) in the derivative-free framework.
They can be roughly subdivided into two main classes: direct-type algorithms and
model-based algorithms.

•	 Direct-type methods. The algorithms belonging to this class make use of suit-
able sampling of the objective function. They occasionally can heuristically use
modeling techniques, but the convergence theory hinges on the sampling tech-
nique. In this class of methods, we cite the mesh adaptive direct search algorithm
implemented in the software package NOMAD [2, 10], the linesearch derivative-
free algorithm CS-DFN proposed in [6] and the discrete gradient method [3].

•	 Model-based methods. This class comprises all those algorithms whose conver-
gence is based on the strategy used to build the approximating models. Within
this class we can surely cite the recent trust-region derivative-free method pro-
posed in [11].

In the relatively recent paper [6], a method for optimization of nonsmooth black-box
problems has been proposed, namely CS-DFN. CS-DFN is able to solve problems
more general than problem (1) above since it can handle also nonlinear and bound
constraints. It is based on a penalization approach, namely the nonlinear constraints
are penalized by an exact penalization mechanism whereas (possible) bound con-
straints on the variables are handled explicitly.

In this paper, we propose an improvement of CS-DFN by incorporating into its
main algorithmic scheme a clustering heuristic to compute efficient search direc-
tions. Starting from an approximation of the directional derivatives along a certain
set of directions, we construct a polyhedral approximation of the subdifferential
which in turn is used to calculate a search direction in the steepest descent fashion.
Along such direction we implement a linesearch procedure with extrapolation just
like the one adopted by CS-DFN to explore its directions.

To asses the potentialities of the proposed improvement, we carry out an experi-
mentation and comparison of CS-DFN with and without the proposed heuristic. The
results, in our opinion, clearly show the advantages of the improved method over the
original one.

The paper is organized as follows. In Sect. 2 we extend to a nonsmooth setting the
steepest descent direction and a kind of Newton-type directions. In Sect. 3 we propose
an heuristic to compute possibly efficient directions in a derivative-free context. In sec-
tion 4 we describe an improved version of the CS-DFN algorithm which is obtained
by suitably employing the improved directions just described. In Sect. 5 we report the

1 3

A clustering heuristic to improve a derivative‑free algorithm…

results of a numerical comparison between CS-DFN and the proposed improved ver-
sion on a set of well-known test problems. Finally, Sect. 6 is devoted to some discus-
sion and conclusions.

1.1 � Definitions and notations

Definition 1  Given a point x ∈ ℜn and a direction d ∈ ℜn , the Clarke directional
derivative of f at x along d is defined as [4]

Moreover the Clarke generalized gradient (or subdifferential) �Cf (x) is defined as

�f being the set (of zero measure) where f is not differentiable.

The following property holds:

Definition 2  A point x∗ ∈ ℜn is Clarke stationary for Problem (1) when
f ◦(x∗, d) ≥ 0 , for all d ∈ ℜn.

In the following, we denote by ei , i = 1,… , n , the i-th column of the canonical basis
in ℜn and by e a vector of all ones of appropriate dimensions.

2 � Descent type directions

In the context of nonsmooth optimization, efficient search directions can be computed
by using the information provided by the subdifferential of the objective function. In
the following subsections, we describe how such directions can be obtained.

2.1 � Steepest descent direction gS
k

In this subsection we recall a classic approach [14] to compute a generalization to
nonsmooth functions of the steepest descent direction for continuously differentiable
functions.

Let us consider the vector which minimizes the following “first order-type” model of
the objective function.

f ◦(x;d) = lim sup
y→x,t↓0

f (y + td) − f (y)

t
.

�Cf (x) = conv{s ∶ s ∈ ℜ
n,∇f (xk) → s, xk → x, xk ∉ �f },

(2)f ◦(x;d) = max
s∈𝜕Cf (x)

s⊤d

(3)min f (xk) + f ◦(xk; d) +
1

2
‖d‖2

	 M. Gaudioso et al.

1 3

Note that, in the case of continuously differentiable functions, we have that
f ◦(xk; d) = ∇f (xk)

Tdk and that the solution of Problem (3) is given by d∗ = −∇f (xk).
For nonsmooth functions, standard results [14] lead to the following proposition.

Proposition 1  Let dS be the solution of Problem (3). Then

	 (i)	 The vector d∗ is given by

 where

	 (ii)	 The vector dS satisfies f ◦(xk; − gS
k
) = −‖gS

k
‖2.

	 (iii)	 For any � ∈ (0, 1) there exists a 𝛼̄ > 0 such that

 with 𝛼 ∈ (0, 𝛼̄]

The above dS
k
 direction is a first-order direction which (closely) resembles the

steepest-descent direction for continuously differentiable case.

2.2 � Newton‑type direction dN
k

In the nonsmooth case, obtaining a Newton-type direction is much more involved
than in the differentiable case. In the latter case it suffices to pre-multiply the anti-
gradient by the Hessian of the objective function. In the nonsmooth case instead
of simply pre-multiplying direction gS

k
 by any positive definite matrix, we resort to

minimizing the following “second order-type” model.

where Bk is a positive definite matrix. Let us call the solution of problem (5) dN
k

.
For problem (5) the following proposition can be proved.

Proposition 2  Let Bk be positive definite and assume dN
k

 be the solution of Problem
(5). Then

	 (i)	 The vector dN
k

 is given by

dS = −gS
k

(4)
gS
k
= argmin ‖�‖2

s.t. � ∈ �f (xk)

f (xk − �gS
k
) ≤ f (xk) − ��‖gS

k
‖2

(5)min f (xk) + f ◦(xk;d) +
1

2
dTBkd

1 3

A clustering heuristic to improve a derivative‑free algorithm…

 where

	 (ii)	 The vector dN
k

 satisfies f ◦(xk;dNk) = −(gN
k
)TB−1

k
gN
k
= (gN

k
)TdN

k
.

	 (iii)	 For any � ∈ (0, 1) there exists a 𝛼̄ > 0 such that

 with 𝛼 ∈ (0, 𝛼̄]

Proof  By repeating the similar arguments of proof of Theorem 5.2.8 in [14] we have
that function �(d) = f ◦(xk;d) +

1

2
dTBkd is strictly convex. Therefore Problem (5) has

a unique minimizer d∗ such that:

Recalling Lemma 5.2.7 of [14] we have:

The relations (7) and (8) imply that a vector gN
k

 exists such that:

and, hence,

which proves point (ii) by setting dN
k
= d∗.

Now the definition of f ◦(xk; − B−1
k
gN
k
) and (9) give:

which implies

dN
k
= −B−1

k
gN
k

(6)
gN
k
= argmin �TB−1

k
�

s.t. � ∈ �f (xk)

f (xk − �B−1
k
gN
k
) ≤ f (xk) − ��(gN

k
)TB−1

k
gN
k

(7)0 ∈ �f ◦(xk;d
∗) + Bkd

∗.

(8)𝜕f ◦(xk;d
∗) ⊆

{

𝜉 ∈ 𝜕f (xk) ∶ 𝜉Td∗ = f ◦(xk;d
∗)

}

gN
k
= −Bkd

∗,

(gN
k
)Td∗ = f ◦(xk;d

∗).

(9)−(gN
k
)TB−1

k
gN
k
= f ◦(xk; − B−1

k
gN
k
)

(10)

f ◦(xk; − B−1
k
gN
k
) = max

�∈�f (xk)
�T (−B−1

k
gN
k
) = −(gN

k
)TB−1

k
gN
k
,

and

(gN
k
)TB−1

k
gN
k
≤ (gN

k
)TB−1

k
�, for all � ∈ �f (xk),

	 M. Gaudioso et al.

1 3

Therefore, (11) shows that the vector gN
k

 is the unique solution of Problem 6.
Finally point (iii) again follows from definition of f ◦(xk; − B−1

k
gN
k
) and (9).⊲ 	� ◻

3 � An heuristic approach to define efficient directions

At the base of the proposed heuristics is the hypothesis that non-smoothness of the
objective function is due to its finite max structure. Such hypothesis appear realistic
as a wide range of nonsmooth optimization problems, coming from practical appli-
cations, are of the minmax type. The essence of our method is the attempt to con-
struct an approximation of the subdifferential by estimating a certain set of subgra-
dients (the generators in the following) starting from an estimate of the directional
derivatives along a sufficiently large sets of directions.

The only assumptions about function f are Lipschitz continuity and Assumption
1, nevertheless, drawing inspiration from the paper [13] (see also [1]), given points
yj ∈ ℜn , j = {1, 2,… , p} , sufficiently close to x, we approximate f(x) by using the
following piece-wise quadratic model function,

with

where gj ∈ �f (yj) and Hj = H(yj) , j = 1,… , p . We remark that, while we assume
that the model structure of f is a max of a finite number of functions, the number p
of such functions is unknown and has to be estimated via a trial–and–error calcula-
tion process.

We can write,

Furthermore, by assuming that f (x) ≈ f□(x) , we have

In the actual case, C(x) is the convex hull of a given number of generator vectors vj ,
j = 1,… , p . We can try and estimate those generators by using the quantities com-
puted by the algorithm.

(11)(gN
k
)TB−1

k
(� − gN

k
) ≥ 0, for all � ∈ �f (xk),

f□(x) = max
j=1,…,p

{qj(x)}

qj(x) = f (yj) + g⊤
j
(x − yj) +

1

2
(x − yj)

⊤Hj(x − yj)

𝜕f□(x) = 𝜕 max
j=1,…,p

{qj(x)} ⊆ conv{gj + Hj(x − yj), j = 1,… , p} = C(x).

(12)f ◦(x;d) = max
s∈𝜕f (x)

d⊤s ≈ max
s∈𝜕f□(x)

d⊤s ≤ max
s∈C(x)

d⊤s = d⊤(g𝚤 + H𝚤(x − y𝚤)).

1 3

A clustering heuristic to improve a derivative‑free algorithm…

More in particular, let xk be the current iterate of the algorithm. Assume that a
certain set of directions di ∈ ℜn and 𝛼i > 0 , i = 1,… , r , along with their respective
stepsizes, are available. They can be either directions where failure in the descent
has previously occurred or even predefined ones, e.g. the unit vectors ( di = ±ei ).
Define

By using (12), for i = 1,… , r,

It is then possible to compute estimates of the generators vj , j = 1,… , p , as those
which provide the best approximation of the si’s, hence we solve the problem

The above problem is a hard, nonsmooth nonconvex problem of the clustering type.
It can be put however in DC (Difference of Convex) form as in [9]. Since it has
to be solved many times during the proposed algorithm, we prefer to resort, in our
implementation, to a greedy heuristic of the k-means-type [7, 12, 16]. It works as
follows. An initial set of p tentative generators is defined. Then each couple (di, si) is
assigned to the generator which ensures the best approximation of si . Once the cou-
ples have been clustered, the generators are updated in a least-square fashion and the
procedure is repeated.

(13)si =
f (xk + �idi) − f (xk)

�i
≈ f ◦(xk;di).

f ◦(xk;di) ≈ d⊤
i
vji , for some ji ∈ {1, 2,… , p}.

(14)min
v̂1,…,v̂p

r∑

i=1

min
j=1,…,p

{(d⊤
i
v̂j − si)

2}.

	 M. Gaudioso et al.

1 3

Then, we can compute an estimate of direction dN
k

 by solving problem (6) where
�f (xk) is approximated by conv(v̂i,… , v̂p) . More precisely, we define the following
algorithm that computes a search direction.

In the following we give an example of how the heuristic works.

Example 1  Consider the (convex) nonsmooth function maxl [13], defined as

Take point x̄ , x̄i = 1 , i = 1,… , n , where f exhibits a kink and it is f (x̄) = 1 . Observe
that none among the 2n (signed) coordinate directions ±ei is a descent one at x̄ (it is
in fact f ◦(x̄; − ei) = 0 and f ◦(x̄;ei) = 1 , i = 1,… , n ). Calculation of the 2n ratios si
as in (13), along the directions ei and −ei leads to si = 1 and si = 0 , respectively, for
i = 1,… , n . It is easy to verify that, letting p = n in Algorithm 1, an optimal solu-
tion to problem (14) is v̂j = ej , j = 1,… , n . Finally, solving

we obtain d̄ = −
e

n
 , which is indeed a descent direction at x̄.

4 � The improved CS‑DFN algorithm

This section is devoted to the definition of the improved version of algorithm CS-
DFN which we call Fast-CS-DFN. The method is basically the CS-DFN Algo-
rithm introduced in reference [6], a derivative-free linesearch-type algorithm for the
minimization of black-box (possibly) nonsmooth functions. It works by performing
derivative-free line searches along the coordinate directions and resorting to the
use of a further search direction when the stepsizes used to explore the coordinate

f (x) = max
1≤i≤n

|xi|.

d̄ = − argmin
v∈conv{v̂j , j=1,…,n}

‖v‖

1 3

A clustering heuristic to improve a derivative‑free algorithm…

directions are sufficiently small. The rationale behind this choice is connected with
the observation that the coordinate directions might not be descent directions near a
non-stationary point of non-smoothness. In such situations, a richer set of directions
must be used to (at least asymptotically) be able to improve the non-stationary point.
The convergence analysis of CS-DFN carried out in [6] hinges on the use of asymp-
totically dense sequences of search directions so that, at non-stationary points, for
sufficiently large k a direction of descent is used.

The algorithm that we propose, namely Fast-CS-DFN, is a modification of CS-
DFN. The relevant differences between the two methods are:

1.	 for the sake of simplicity, problem (1) is unconstrained; hence in Fast-CS-DFN
no control to enforce feasibility with respect to the bound constraints is needed;

2.	 after the deployment of the direction dk , Fast-CS-DFN makes use of Algorithm 2
to compute a direction that tries to exploits the information gathered during the
optimization process to heuristically improve the last produced point.

The Fast-CS-DFN Algorithm is reported in Algorithm 3.

	 M. Gaudioso et al.

1 3

Some comments about Algorithm Fast-CS-DFN are in order.

1.	 Fast-CS-DFN except for steps 14–18 and for the mechanism used to produce Gk+1
starting from Gk , exactly is the CS-DFN method as described in [6];

2.	 The new direction d̂N
k

 is used when the stepsizes �i
k
 and 𝛼̃i

k
 , i = 1,… , n , are suf-

ficiently small and after the deployment of the direction dk;
3.	 The computation of the new direction d̂N

k
 performed at step 15 hinges (a) on the

matrix Bk and (b) on the set of couples Gn+2
k

 .

(a)	 To build Bk , we maintain a set of points Yk which is managed in just the
same way as described in [6];

(b)	 As for the set Gn+2
k

 , it stores information on the consecutive failures encoun-
tered up to the current point, i.e. in the deployment of the coordinate direc-
tions and the direction dk . The direction dk is the one (possibly) used at step
11 of Algorithm Fast-CS-DFN. Note also that set Gn+1

k
 is emptied every

time a non-null step is computed by the algorithm along any direction;

4.	 The asymptotic convergence properties of Fast-CS-DFN are analogous to that
of CS-DFN. The theoretical analysis follows quite easily from the results proved
for CS-DFN in [6]. As it can be noted, the new iterate xk+1 defined by Algo-
rithm Fast-CS-DFN is such that f (xk+1) ≤ f (yn+2

k
) . In fact, when step 17 is exe-

cuted xk+1 = yn+2
k

+ 𝛼̌ďk and f (xk+1) ≤ f (yn+2
k

) . When step 21 is executed, then

xk+1 = yn+2
k

 and f (xk+1) = f (yn+2
k

).

5 � Numerical results

The proposed Fast-CS-DFN algorithm has been implemented in Python 3.9 and
compared with CS-DFN [6] (available through the DFL library http://​www.​iasi.​
cnr.​it/​∼liuzzi/​dfl as package FASTDFN). In the implementation of Fast-CS-DFN

http://www.iasi.cnr.it/∼liuzzi/dfl
http://www.iasi.cnr.it/∼liuzzi/dfl

1 3

A clustering heuristic to improve a derivative‑free algorithm…

we adopted all the choices of CS-DFN and we set hmax = 10 in Algorithm 1 and
� = 1 in Algorithm 2. The comparison has been carried out on a set of 47 nons-
mooth problems. In the following subsections we briefly describe the test prob-
lems collection, the metrics adopted in the comparison and, finally, the obtained
results.

5.1 � Test problems collection

In Table 1 description of the test problems is reported. In particular, each table entry
gives the problem name, the number n of variables and the reference where the
problem definition can be found.

5.2 � Metrics

To compare our derivative-free algorithms we resort to the use of the well-known
performance and data profiles (proposed in [5] and [15], respectively). In particu-
lar, let P be a set of problems and S a set of solvers used to tackle problems in
P . Let 𝜏 > 0 be a required precision level and denote by tps the performance index,
that is the number of function evaluations required by solver s ∈ S to solve problem
p ∈ P . Problem p is claimed to be solved when a point x has been obtained such
that the following criterion is satisfied

where f (x0) is the initial function value and fL denotes the best function value found
by any solver on problem p itself. Then, the performance ratio rps is

Finally, the performance and data profiles of solver s are so defined

where np is the number of variables of problem p. Particularly, the performance pro-
file �s(�) tells us the fraction of problems that solver s solves with a number of func-
tion evaluation which is at most � times the number of function evaluations required
by the best performing solver on that problem. On the other hand, the data profile
ds(�) indicates the fraction of problems solved by s with a number of function evalu-
ations which is at most equal to �(np + 1) , that is the number of function evaluations
required to compute � simplex gradients.

When using performance and data profiles for bench-marking derivative-free
algorithms, it is quite usual to consider (at least) three different levels of precision
(low, medium and high) corresponding to � = 10−1, 10−3, 10−5 , respectively.

f (x) ≤ fL + �(f (x0) − fL)

rps =
tps

mini∈S{tpi}
.

�s(�) =
1

|P|
|{p ∈ P ∶ rps ≤ �}|, ds(�) =

1

|P|
|{p ∈ P ∶ tps∕(np + 1) ≤ �}|

	 M. Gaudioso et al.

1 3

Table 1   Description of the test problems

Problem name n Origin

cb2 2 [13]
crescent 2 [8]
demymalo 2 [13]
davidon2 4 [13]
kowalik 4 [13]
lukgamma 4 [13]
oet5 4 [13]
oet6 4 [13]
polak6 4 [13]
colville1 5 [13]
hs78 5 [13]
lukexp 5 [13]
pbc1 5 [13]
shor 5 [13]
elattar 6 [13]
evd61 6 [13]
transformer 6 [13]
wong1 7 [13]
lukfilter 9 [13]
gill 10 [13]
maxquad 10 [13]
polak2 10 [13]
wong2 10 [13]
osborne2 11 [13]
polak3 11 [13]
steiner2 12 [13]
shelldual 15 [13]
watson 20 [13]
wild1 20 [15]
wild2 20 [15]
wild3 20 [15]
wild11 20 [15]
wild15 20 [15]
wild16 20 [15]
wild19 20 [15]
wild20 20 [15]
wild21 20 [15]
wong3 20 [13]
cb3 20, 30, 40 [8]
l1hilb 20, 30, 40 [8]
maxq 20, 30, 40 [8]

1 3

A clustering heuristic to improve a derivative‑free algorithm…

5.3 � Results

Figure 1 reports the results of the comparison by means of performance and data
profiles between Fast-CS-DFN and CS-DFN.

As we can see, the new algorithm Fast-CS-DFN is always more robust, namely it
is able to solve the largest portion of problems within a given amount of computa-
tional effort. More in particular, from the performance profiles, we can also say that
the new method is invariably more efficient than the original one since the profile
curves always have higher values for � = 1.

6 � Conclusions

In the paper, we propose a strategy to compute (possibly) good descent directions
that can be further heuristically exploited within derivative-free algorithms for non-
smooth optimization. In fact, we show that the use of the proposed direction within
the CS-DFN algorithm [6] improves the performances of the method. Numerical

Fig. 1   Comparison of Fast-CS-DFN and CS-DFN

	 M. Gaudioso et al.

1 3

results on a set of nonsmooth optimization problems from the literature show the
efficiency of the proposed direction computation strategy.

As a final remark, we point out that the proposed strategy could be embedded in
virtually any optimization algorithm as an heuristic to try and produce improving
points.

Acknowledgements  We are really indebted with the anonymous Reviewer for their useful comments and
suggestions which greatly helped us improving the manuscript.

Funding  Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

Data availability  The data sets generated during and/or analyzed during the current study are available in
the DFL repository, http://​www.​iasi.​cnr.​it/​∼liuzzi/​dfl as package FASTDFN.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Astorino, A., Frangioni, A., Gaudioso, M., Gorgone, E.: Piecewise quadratic approximations in con-
vex numerical optimization. SIAM J. Optim. 21(4), 1418–1438 (2011)

	 2.	 Audet, C., Le Digabel, S., Rochon Montplaisir, V., Tribes, C.: Nomad version 4: Nonlinear optimi-
zation with the mads algorithm. arxiv:​2104.​1167 (2021)

	 3.	 Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for non-
smooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)

	 4.	 Clarke, F.H.: Optimization and nonsmooth analysis. SIAM (1990)
	 5.	 Dolan, E.D., Morè, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91(2), 201–213 (2002)
	 6.	 Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nons-

mooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)
	 7.	 Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifica-

tions. Biometrics 21(3), 768–769 (1965)
	 8.	 Karmitsa, N.: Test problems for large-scale nonsmooth minimization. Reports of the Department of

Mathematical Information Technology. Series B, Scientific computing, 4/2007 (2007)
	 9.	 Khalaf, W., Astorino, A., d’Alessandro, P., Gaudioso, M.: A dc optimization-based clustering tech-

nique for edge detection. Optim. Lett. 11, 627–640 (2017)
	10.	 Le Digabel, S.: Algorithm 909: Nomad: nonlinear optimization with the mads algorithm. ACM

Trans. Math. Softw. 37(4), 44:1-44:15 (2011)
	11.	 Liuzzi, G., Lucidi, S., Rinaldi, F., Vicente, L.N.: Trust-region methods for the derivative-free opti-

mization of nonsmooth black-box functions. SIAM J. Optim. 29(4), 3012–3035 (2019)
	12.	 Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
	13.	 Luks̆an, L., Vlec̆ek, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math.

Program. 83, 373–391 (1998)
	14.	 Mäkelā, M.M., Neittaanmāki, P.: Nonsmooth optimization: analysis and algorithms with applica-

tions to optimal control. World Scientific Press (1992)

http://www.iasi.cnr.it/∼liuzzi/dfl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.1167

1 3

A clustering heuristic to improve a derivative‑free algorithm…

	15.	 Morè, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim.
20(1), 172–191 (2009)

	16.	 Selim, S.Z., Ismail, M.A.: K-means-type algorithms: a generalized convergence theorem and char-
acterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1, 81–87 (1984)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	A clustering heuristic to improve a derivative-free algorithm for nonsmooth optimization
	Abstract
	1 Introduction
	1.1 Definitions and notations

	2 Descent type directions
	2.1 Steepest descent direction
	2.2 Newton-type direction

	3 An heuristic approach to define efficient directions
	4 The improved CS-DFN algorithm
	5 Numerical results
	5.1 Test problems collection
	5.2 Metrics
	5.3 Results

	6 Conclusions
	Acknowledgements
	References

