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H I G H L I G H T S  

• Time-consuming simulations are required for energy refurbishment of buildings. 
• Simplified methodologies may support the energy requalification of buildings. 
• The results of refined energy analyses of existing school buildings are considered. 
• A Multiple Linear Regression (MLR) model is trained to obtain a predictive tool. 
• A framework for a preliminary design of energy refurbishment interventions is proposed.  

A R T I C L E  I N F O   

Keywords: 
Building energy performance 
Building energy refurbishment 
School buildings 
Multiple linear regression 

A B S T R A C T   

In the current practice, the design of energy refurbishment interventions for existing buildings is typically 
addressed by performing time-consuming software-based numerical simulations. However, this approach may be 
not suitable for preliminary assessment studies, especially when large building portfolios are involved. Therefore, 
this research work aims at developing simplified data-driven predictive models to estimate the energy con-
sumption of existing school buildings in Italy and support the decision-making process in energy refurbishment 
intervention planning at a large scale. To accomplish this, an extensive database is assembled through 
comprehensive on-site surveys of school buildings in Southern Italy. For each school, a Building Information 
Modelling (BIM) model is developed and validated considering real energy consumption data. These BIM models 
serve in the design of suitable energy refurbishment interventions. Moreover, a comprehensive parametric 
investigation based on refined energy analyses is carried out to significantly improve and integrate the dataset. 
To derive the predictive models, firstly the most relevant parameters for energy consumption are identified by 
performing sensitivity analyses. Based on these findings, predictive models are generated through a multiple 
linear regression method. The suggested models provide an estimation of the energy consumption of the “as- 
built” configuration, as well as the costs and benefits of alternative energy refurbishment scenarios. The reli-
ability of the proposed simplified relationships is substantiated through a statistical analysis of the main error 
indices. Results highlight that the building's shape factor (i.e., the ratio between the building's envelope area and 
its volume) and the area-weighted average of the thermal properties of the building envelope significantly affect 
both the energy consumption of school buildings and the achievable savings through retrofitting interventions. 
Finally, a framework for the preliminary design of energy refurbishment of buildings, based on the imple-
mentation of the herein developed predictive model, is proposed and illustrated through a worked example 
application. 

Worth noting that, while the proposed approach is currently limited to school buildings, the methodology can 
conceptually be extended to any building typology, provided that suitable data on energy consumption are 
available.   
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1. Introduction and motivation 

The recent sustainability requirements at the international level (e. 
g., [1]) have led to growing focus on enhancing the energy performance 
of existing buildings. It is now widely acknowledged that the built 
environment is responsible for 36% of global final energy end-use and 
37% of energy-related carbon dioxide (CO2) emissions [2]. Therefore, 
curbing the significant environmental impact of the building sector 
during each stage of the building life cycle, thus moving towards a 
carbon-neutral and eco-friendly society, is being recognized as a critical 
socio-economic need and challenging objective. According to the Eu-
ropean Green Deal [3] plan, Europe aspire to be the world's first climate- 
neutral continent by 2050. To achieve this goal, all 27 EU Member States 
are obliged to reduce CO2 emissions and energy consumption by at least 
55% by 2030, compared to 1990 levels. 

Considering the Italian scenario, the recent financial incentives for 
energy refurbishment (i.e., “Eco-Bonus” and “Superbonus110%”) and 
seismic retrofitting (i.e., “Sisma-bonus”) interventions on existing 
buildings introduced by the Italian government represent a unique op-
portunity for an overall requalification of the Italian building stock [4]. 
Indeed, in earthquake-prone countries, environmental sustainability 
alone is deemed inadequate for developing a resource-efficient economy 
[5], as even low-intensities earthquake events can damage and 
compromise the performance of energy interventions such as External 
Thermal Insulation Composite Systems (ETICS) and rooftop solar power 
systems. Consequently, several past studies in the literature have 
stressed that energy refurbishment and seismic retrofitting should rather 

be designed and implemented through an integrated multi-performance 
approach (e.g., [6,5,7,8,9,10,11,12,13]). To achieve the objective of 
upgrading the national building stock, the first step is to establish a 
prioritization plan, based on both the life safety and economic-energy 
savings that can be achieved with integrated retrofit intervention. 
However, the inherent complexity in gathering existing building data at 
national level, including the relevant data to perform both energy and 
seismic assessment and retrofit analyses, is often viewed as a significant 
barrier for the implementation of such an ambitious national requalifi-
cation plan. Thus, simplified and standardized procedures, built on 
adaptive and updatable frameworks and tools, are needed to support 
both the seismic vulnerability assessment [14,15] and the large-scale 
evaluation of building energy performance. 

When shifting the focus to the building energy assessment, it is 
widely understood that numerous factors affect building energy per-
formance. These include material thermophysical properties (e.g., con-
ductivity, density and heat capacity), weather conditions, building 
shape (e.g., opaque surface, grazed component surface, and the shape 
factor) intended use, lighting density, building occupancy, and heating/ 
cooling set points. Additionally, data regarding the actual energy con-
sumption of the building under analysis (i.e., gas and electricity con-
sumption) are necessary for model calibration, validation of the building 
energy assessment results, and to design energy refurbishment in-
terventions and conduct cost-benefit evaluations. In current practice, 
the energy performance of buildings is typically assessed using ad-hoc 
energy software, performing time-consuming simulation analyses on 
refined three-dimensional (3-D) numerical models and validating the 

Nomenclature 

Acronyms 
3-D Three Dimensional 
AI Artificial Intelligence 
ANN Artificial Neural Network 
BEM Building Energy Model 
BIM Building Information Modelling 
CO2 Carbon dioxide 
D.L. Decreto Legge 
D.M. Decreto Ministeriale 
DL Deep Learning 
ETICS External Thermal Insulation Composite Systems 
GBRT Gradient Boosting Regression Trees 
LCT Life Cycle Thinking 
ML Machine Learning 
MLR Multiple Linear Regression 
NPV Net Present Value 
NZEB Nearly Zero Energy Building 
RC Reinforced Concrete 
SVM Support Vector Machine 
SVR Support Vector Regression 

MLR parameters 
yi i-th independent variable 
xi i-th predictor variable 
β0 intercept of the regression 
βi i-th regression coefficient 
ε error of the prediction 

Error and performance parameters 
MAPE Mean Absolute Percentage Error 
R2 Coefficient of determination 
σ Root-mean-square error 
R Linear correlation coefficient 

Parameters 
S External envelope area [m2] 
V Gross heated volume [m3] 
S/V Shape factor [m− 1] 
%Sg Percentage of the vertical glazed surface [%] 
Svo Vertical opaque surface [m2] 
Sg Surface of the glazed component [m2] 
Sho Horizontal opaque surface [m2] 
Svo/S Normalized vertical opaque surface [− ] 
Sg/S Normalized surface of the glazed component [− ] 
Sho/S Normalized horizontal opaque surface [− ] 
So/S Normalized opaque surface [− ] 
U Thermal transmittance [W/m2K] 
Uvo U-value of the vertical opaque envelope [W/m2K] 
Ug U-value of the glazed building envelope [W/m2K] 
Uho U-value of the horizontal opaque envelope [W/m2K] 
U* Area-weighted average U-values of the building envelope1 

[W/m2K] 
HDD Heating Degree Days [K day] 
BOR Building Occupancy Rate [ppl/m2] 
SP Heating setpoint temperature [◦C] 
HDD heating degree days [◦C] 

Output parameters 
EPgl,nren non-renewable global energy performance index [− ] 
Qh,nd Heating Energy Demand [KWh/y] 
CI Cost of Intervention [euro] 
ΔQ(h,nd) Heating Energy Demand Savings [KWh/y] 
Qph Primary heating energy demand [KWh/y] 

Cost-benefit analysis parameters 
r leading interest rate of energy [− ] 
g real interest rate of energy [− ] 
N period of investment [year]  
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results through an iterative approach. Given the complexity of the 
problem, predicting building energy consumption can present signifi-
cant challenges [16]. This issue is further highlighted when dealing with 
large building portfolios or applications at the territorial scale. Recent 
large-scale investigations based on statistical census data have 
confirmed that traditional energy refurbishment interventions, such as 
building envelope insulation, may represent a cost-effective measure to 
guarantee a high-energy-performance, CO2-eq emission reduction, 
comfortability and energy savings over the building life (e.g., [17] for 
the Albanian's buildings stock). Yet, suitable and practical methodolo-
gies to define prioritization schemes for the actual implementation of a 
national qualification plan are missing. Towards this end, the use of 
simplified, yet reliable, predictive models should be pursued as effective 
support tools. 

In recent decades, several simplified models have been proposed in 
the literature, typically built on extensive building data collections and 
regression-based analyses applying machine learning (ML) and artificial 
intelligence (AI) techniques. However, as detailed further in Section 2, 
these methods are greatly influenced by the characteristics of the 
building portfolio under analysis. In the case of existing school build-
ings, there is a lack of actual data related to both the energy consump-
tions and the energy savings achievable through refurbishment 
interventions. Ultimately, a standardized methodology designed to 
assist the decision-making process in planning energy refurbishment for 
(Italian) school buildings is still missing in the current literature. In this 
context, the UEFA/ELENA research project [4] aimed to provide a 
reference framework for the execution of integrated seismic and energy 
retrofitting interventions of an extensive number of school buildings 
located in the province of Foggia, in Southern Italy. The project, whose 
methodology is described in Section 3, incorporated a comprehensive 
data collection drawn from both desktop study and on-site in-
vestigations, and employed refined and validated 3D BIM models to 
generate and compare a variety of integrated retrofit strategies. A very 
insightful school buildings database, containing information about the 
buildings' geometry, the characteristics of the envelope, the climatic 
zone, the building usage, the energy performance, and, finally, the costs 
and benefits of possible alternative retrofit interventions, was developed 
during the project. This paper presents predictive models, based on the 
implementation of a Multiple Linear Regression (MLR) method, to es-
timate a) the energy performance of existing school buildings in Italy, as 
well as b) the benefits and costs associated with different energy retro-
fitting intervention scenarios. The primary goal is to provide various 
stakeholders with a rapid, updatable, and simplified methodology that 
can support decision-making in energy refurbishment planning at a 
large scale. This methodology leverages and builds on an extensive 
database, originally developed in the aforementioned UEFA/ELENA 
project, and further integrated to include real data as well as extensive 
energy simulation results of school buildings in the Province of Foggia, 
Southern Italy. To appropriately train the predictive models, the data-
base has undergone a suitable preprocessing through parametric simu-
lations and specific variable selection. Furthermore, the stages involved 
in the proposed design-planning methodology are demonstrated 
through an application on a case-study archetype school. 

The structure of the paper is outlined as follows. Section 2 provides 
an overview of available predictive models for energy consumption of 
buildings and refurbishment intervention. Section 3 reports a descrip-
tion of the utilized database, which includes the results of refined energy 
assessment analyses and refurbishment interventions. Section 4 presents 
the methodology employed for the development of the predictive model. 
This section also discusses in detail the parametric analysis of the cali-
brated energy models, the sensitivity analysis, the MLR approach 
adopted and the limitations of the adopted methodology. The results of 
the MLR model are reported and examined in Section 5, while Section 6 
presents a simplified framework for the preliminary design of energy 
refurbishment of school buildings. Finally, Section 7 draws conclusions. 
Furthermore, although beyond the primary scope of this paper, 

Appendix A offers a practical overview of potential integrated energy 
and seismic interventions, including specific recommendations for 
construction details. 

2. Overview of predictive models for energy consumption of 
buildings and energy retrofit savings 

As discussed in the previous section, there has been an increase in 
initiatives to raise the energy efficiency of buildings. This trend has 
catalysed the development of innovative data-driven tools able to 
effectively predict energy consumption. From a historical point of view, 
Parti and Parti [18] were arguably the first to propose a regression-based 
model to assess the electricity demand in households. The study was 
based on an extensive database including data from 5286 households in 
San Diego County. Many research studies resumed and compared 
various works providing machine learning (ML) and artificial intelli-
gence (AI) predictive models in this context (e.g., 
[19,20,21,22,23,24,25,26]). Among others, Amasyali and El-Gohary 
[20] observed that different ML techniques were under development 
and/or adopted in current research work: 47% incorporated Artificial 
Neural Networks (ANNs), 25% made use of Support Vector Machines 
(SVMs), 24% capitalized on other statistical methods and the remaining 
4% employed decision tree algorithms. These findings have stimulated 
critical comparison and discussions on the most appropriate methods, 
including merits and shortcomings. 

Focusing on supervised machine learning methods, multiple linear 
regression has been adopted by Bianco et al. [27] to forecast the Italian 
gross domestic electrical energy product based on historical consump-
tion data. Kialashaki and Reisel [28] proposed an energy-demand model 
to predict the energy requirements in the residential sector of the United 
States (US). The authors applied both the artificial neural network 
(ANN) technique and the multiple linear regression (MLR) method to 
develop the predictive energy-demand model, using available statistical 
data for the US scenario. Aydinalp-Koksal and Ugursal [29] investigated 
the use of traditional regression-based methods for modelling the energy 
consumption of the Canadian residential sector. The study was based on 
the extensive database of the 1993 Survey of Household Energy Use 
(SHEU) [30]. In Ciulla and D'Amico [16], the use of multiple linear 
regression to predict building heat demand was detailed and showcased. 
The regression model was trained with a dataset of 1560 energy simu-
lations, obtained from the parametric modelling of a singular non- 
residential “Base Case Study” and across varied boundary conditions 
and building geometric properties. Moreover, Ciulla et al. [31] explored 
alternative prediction methods, addressing the same problem through 
the Buckingham π theorem. In this research work, the database obtained 
from parametric simulations involved 2184 samples, representative of 
non-residential building stock designed according to modern energy 
requirements. The same researchers [32] also investigated the use of 
ANNs for the same task. They concluded that ANN can be used as a 
reliable alternative method for solving a traditional building energy 
balance, as well as for assessing the building energy demand. 

Other studies implied and compared the use of Support Vector 
Regression (SVR) for predicting building energy requirements. In Wang 
et al. [33], four AI models, including three ANNs and one SVR, were 
employed to predict the hourly residential space heating electricity use. 
According to the authors, the SVR model outperformed the others. 
Furthermore, the authors pointed out that the dynamic nature of human 
behaviour negatively impacted on the prediction performance, stressing 
the need for improved occupant behaviour data integration in future 
models. 

Some studies developed methodologies that use optimized ML ap-
proaches or combine several ML models. In Seyedzadeh et al. [34], 
Gradient Boosting Regression Trees (GBRTs) and SVMs were demon-
strated to be effective for predicting building energy loads. Wang et al. 
[35] introduced a novel model for predicting building energy con-
sumption by combining various models to enhance prediction accuracy, 
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generalization, and robustness. In Li et al. [36], an extreme Deep 
Learning (DL) approach was used and compared with other ML tech-
niques, among which NN and MLR, for predicting buildings' energy 
consumption; the potential of DL methods to extract better features was 
thus highlighted. 

In general, despite the significant advances, review and comparison 
studies agree that each model has its unique strengths and weaknesses, 
making the selection of a definitive predictive strategy/method a com-
plex exercise. Amasyali and El-Gohary [20] concluded that even though 
specific methods seem more accurate than others, each approach is 
deemed valuable; consequently, the selection of the most suitable 
method, primarily relies on the application context. Indeed, in Deng 
et al. [37], a comparative assessment among various predictive models 
for US commercial building energy usage revealed that ML methods can 
nudge linear regression methods in some cases. Yet, the need for more 
variables, particularly those tied to thermal performance and occupant 
behaviour, was also emphasized. In this context, D'Amico et al. [38] 
investigated the optimal predictive model for building energy demand 
through a Multiple Criteria Assessment. The authors compared various 
predictive models based on multiple unique criteria across four stages of 
model training and use pre-processing, implementation, post- 
processing, and use. The findings highlighted that the selection of a 
predictive tool inevitably and significantly relies on the aims of the 
application. 

Regarding the energy retrofit intervention on buildings, the potential 
of ML and AI to support the understanding of the associated benefits and 
costs has been only partially addressed. In a comprehensive review 
study, Grillone et al. [39] highlighted a critical obstacle limiting the 
growth of energy renovation programs: the lack of information about 
retrofitting impacts. This emphasises the paramount importance of data 
collection for enhancing building portfolio management through data- 
driven approaches. A compelling study [40] has shown the potential 
of regional approaches to retrofitting school buildings. They utilize 
Building Information Modelling (BIM) to gather and transfer informa-
tion to their Building Energy Model (BEM). Several other studies have 
explored the application of ML and AI in this field. Among these, Platten 
et al. [41] concluded that ML methods can enrich building databases 
with relevant building characteristics for energy retrofitting, improving 
estimates of national energy-saving potentials. A data-driven approach 
to predict future saving potential, aimed at assisting retrofit planning, 
was proposed by Xu et al. [42] utilizing a portfolio of 550 federal 
buildings in the US. The authors pointed out that significant savings can 
be achieved and suggested a series of future improvements to enhance 
the usability of the proposed method. Other studies have proposed data- 
driven frameworks based on a combination of ML, multi-objective 
optimization, and multi-criteria decision-making techniques. Such 
frameworks typically aimed to evaluate the energy performance of 
buildings and provide optimal retrofit plans (e.g., [43]). 

In general, the above-mentioned studies agree that, while ML and AI 
can provide valuable insights into the cost-benefit analysis of energy 
retrofit interventions on buildings, fewer studies on retrofitting can be 
attributed to a data collection problem. Indeed, while it is theoretically a 
relatively straightforward task to access (if permissions are granted) a 
specific building's consumption data through the relevant bills, it is a 
much more complex and unusual task to construct a dataset derived 
from designing detailed large-scale energy interventions. For this 
reason, the authors believe that predicting costs and benefits achievable 
with energy retrofit interventions is a critical aspect to be further 
investigated and developed from research to practice. Such an action 
will arguably contribute to facilitate the implementation of a wide-
spread energy refurbishment plan at a territorial scale. 

3. The UEFA/ELENA research project 

The UEFA/ELENA research project [4] aimed at supporting the 
implementation of integrated seismic and energy retrofitting 

interventions at a large scale, providing a reference framework for the 
decision-making process in the design phase, in line with the motiva-
tions discussed in the first section. This research project involved a large 
data collection on school buildings located in the province of Foggia 
(Southern Italy), consisting of 81 buildings, which can be grouped into 
59 school buildings, 19 gyms, 2 offices and 1 laboratory. Fig. 1 shows the 
buildings' location at the territorial level together with the climatic 
zones. Specifically, it is worth reminding that the Italian territory is 
subdivided into 6 different climatic zones (from “Zone A" to “Zone F", 
[44]), based on specific ranges of heating-degree-days (HDD). The 
province of Foggia is characterized by 3 different climatic zones, namely 
“Zone C" (900 < HDD ≤ 1400), “Zone D" (1400 < HDD ≤ 2100), and 
“Zone E" (2100 < HDD ≤ 3000). 

The adopted methodology of the project is summarized in the 
flowchart in Fig. 2. Each step of the methodology will be discussed in 
further detail in the next sections below, along with a brief description of 
the main results. 

3.1. Data collection and description of the case-study buildings 

The first key step of the research project was the data collection on 
the case-study buildings. This task was performed through both a 
desktop study (in the first phase of the project) and in-situ surveys. The 
former (i.e., the desktop study) is deemed critical in the data acquisition 
process as it allows to collect the first relevant information on the case- 
study buildings and support the in-situ investigations, possibly sug-
gesting localized screening tests and/or specific in-situ inspections. 
Therefore, during the first phase of the project, all available information 
about the case-study buildings was collected, e.g. satellite images, 
cadastral maps and plans, construction period, history of the buildings, 
and photos. Moreover, through a collaboration with the Technical Office 
of the Province of Foggia, it was possible to collect the energy and 
electricity consumption data related to the past three years, as well as 
digital architectural drawings and (only in a few cases) existing energy 
assessment reports. 

Concerning the in-situ surveys, an ad-hoc energy data acquisition 
form and an interview form for school principals were developed. A 
particular focus during the in-situ inspections was given to the building 
envelope for both transparent and opaque components; for the latter, 
endoscopic investigations were performed to define the external walls 
stratigraphy. The geometric measurements then allowed the technical 
drawings of the buildings to be either confirmed or developed/inte-
grated through simulated design and further in-situ inspections. Heating 
and cooling systems and the number and location of heating/cooling 
terminal units and lighting lamps were investigated. In addition, a 
photographic survey was conducted for each building investigated. This 
documentation has been used to collect information on the typology of 
the heating and cooling system, the heating/cooling terminal units, the 
facade’ glazed components and possible degradation phenomena. 
Finally, any difference observed during in-situ inspections compared to 
the data collected through the preliminary desktop study has been 
properly documented. 

The main results of the data collection process are herein presented 
to give an idea of the building database. Fig. 3a shows the construction 
period of the analysed buildings; this information is deemed critical 
when compared to the historical evolution of the building energy codes 
in Italy (Fig. 3c), in order to preliminary assess the expected energy 
performance of case-study buildings. From a historical point of view, the 
first Italian building code addressing the energy efficiency of buildings is 
represented by the Law 373 [45]. This document introduced some 
provisions related to the heating systems and the insulation of the 
building envelope. Later on, in the early 1990s, the enforcement of Law 
10 [46] and DPR 412 [44] defined the national regulations for the en-
ergy design/assessment of buildings. These documents introduced a 
technical report, still mandatory nowadays, describing the energy per-
formance of the building system, i.e. the so-called “Relazione energetica 
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(ex legge 10)” in Italian. Further improvements have been introduced by 
DL 192 [47], DL 311 [48], and DPR 59 [49], building on the European 
Directive 2002/91/EC [50]. Through these documents, the minimum 
requirements for energy efficiency for newly designed and retrofitted 
buildings were defined, as well as the methodology for the building 
energy performance assessment. The concept of Nearly Zero Energy 
Building (NZEB) was introduced by DL 63 [51]. Finally, the DM 26/06/ 
2015 [52] defined the new methodologies to assess the energy perfor-
mance of buildings and the minimum energy efficiency requirements for 
new and retrofitted buildings. Moreover, this document provided the 
guidelines for the development of the Energy Performance Certificate 
(“Attestato di Prestazione Energetica", in Italian), introduced by the DL 
63 [51]. 

Therefore, looking at Fig. 3a, it can be noted that almost 48% of the 
case-study buildings were built before Law 373 (i.e., pre-1976) and 32% 
in the subsequent period range 1976–1991; on the other hand, only a 
few buildings were built in the period range 1992–2005 (13%) or after 
2005 (4%). The most recent school in the database was built in 2008. 

The subdivision in terms of construction material is illustrated in 
Fig. 3b. The largest part of the database is characterized by Reinforced 
Concrete (RC) frames (83%); masonry buildings are 7% of the total, as 
well as mixed masonry-RC buildings; on the other hand, steel structures 
are only 2%. 

Concerning the opaque building envelope, the external walls stra-
tigraphy was defined through in-situ endoscopic investigations. The 

main observed typologies are single-layer and cavity wall, while only 
one multi-layer wall typology and one cavity wall filled with cementi-
tious materials (“muratura a sacco” in Italian, typical of pre-1900s 
buildings) are observed (Fig. 4a). The presence of insulation material 
is also accounted for, as it strongly affects the thermophysical properties 
of the building envelope. Fig. 4 shows the distribution of the building 
envelope typologies and the percentage of observed insulation 
materials. 

Moving towards a more detailed description level, the most frequent 
typology of wall/infill elements consists of hollow bricks, observed in 
both single-layer and cavity walls, followed by the combination of hol-
lowed bricks and solid bricks in single-layer and multi-layer walls, while 
only few cases present single-layer wall with solid bricks. There are also 
cases, representing a lower percentage, of rubble stone, square stone, 
concrete panels, and concrete blocks. 

Regarding the roof, the most frequent typology consists of composite 
cast-in-place RC and masonry floor systems without insulation (42 cases, 
Fig. 5a); only 2 cases of precast concrete roofs without insulation are 
observed. Moreover, some cases of pitched roofs are present, involving 
reinforced concrete and masonry floor systems (9 cases, Fig. 5b) and 
precast concrete floor systems (9 cases), both without insulation; a single 
case of a timber pitched roof is also collected. The presence of insulation 
material is observed in 17 cases of RC and masonry floor systems and in 
1 case of precast concrete pitched roof. 

Finally, looking at the glazed building envelope, the differences 

Fig. 1. Building location at territorial level and heating degree days in the province of Foggia.  

Fig. 2. Flowchart of the UEFA-ELENA Research Project methodology for large-scale energy refurbishment investigations.  
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between the observed windows typologies involve different window 
frames and the number of layers of glass (Fig. 6). Specifically, the 
observed window typologies are: windows with aluminium frames (53 
double-pane windows and 14 single-pane windows), windows with 
wooden frame (4 double-pane windows and 2 single-pane windows), 
and 8 double-pane windows with PVC (polyvinyl chloride) frame. 

3.2. Building energy analyses and refurbishment interventions 

The data collection process (both through a desktop study and in-situ 

surveys) allowed the development of BIM numerical models, used to 
perform energy performance analyses. Specifically, the models were 
implemented through the software TerMus BIM – DIM (ACCA software 
S.p.a). It is worth noting that, for the considered database, in some cases, 
two or more independent buildings are served by the same thermal 
system (e.g., school building and adjacent gym). This leads to 66 energy 
models and analyses starting from the 81 independent buildings. The 
main steps of the performed energy analyses are discussed below. 

Fig. 3. (a) Construction period and (b) construction materials of the case-study buildings; (c) evolution of the building energy codes in Italy.  

Fig. 4. (a) Typologies of the opaque building envelope and (b) presence of insulation.  
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3.2.1. Modelling approach 
A detailed 3-D BIM model was implemented for each analysed case- 

study building. Heated and cooled areas were identified by data 
collected through in-situ surveys, together with the building occupancy, 
daily schedules regarding the utilization of equipment and heating/ 
cooling set points. Heating and cooling systems were modelled consid-
ering their performance, i.e., their efficiency and nominal power, ac-
cording to the documentation available for each case study. The building 
envelope was modelled considering the thermos-physical properties of 
each component (i.e., vertical and horizontal, opaque and transparent). 
Specifically, the stratigraphy of each envelope component was defined 
to evaluate the thermal properties of the building envelope. Since the 
buildings under investigation are mainly schools, a closure period from 
1st August to 31st August (summer holidays in Italy) and from 23rd 

December to 6th January (Christmas holidays in Italy) was considered; 
weekends were also not accounted for in the analyses. Finally, almost 
8–10 h per day were assumed based on the school occupancy rate as well 
as on the information collected during the in-situ surveys. An example of 
a case-study school building and the BIM model implemented in TerMus 
BIM–DIM is reported in Fig. 7. 

Energy analyses were performed through a semi-stationary 
approach, in line with the Italian standards [53]. This procedure is 
based on the use of monthly average values for environmental temper-
ature, solar radiation values and relative humidity. The energy balance 
of the building is thus defined by the following Eq. (1) and Eq. (2), for 
the building's annual heating and cooling energy demands, respectively: 

Qh,nd = Qh,ht − ηh,gnQgn =
(
Qh,tr +Qh,ve

)
− ηh,gn(Qint +Qsol) (1) 

Fig. 5. Example of composite cast-in-place RC and masonry floor systems for (a) flat and (b) pitched roof.  

Fig. 6. Typologies of the transparent building envelope (windows).  

Fig. 7. Example school building and its BIM model implemented in the software TerMus BIM – DIM.  
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QC,nd = Qgn − ηC,lsQgC,ht = (Qint +Qsol) − ηC,ls

(
QC,tr +QC,ve

)
(2)  

where Qh,tr and QC,tr represent the transmission heat exchange for 
heating and cooling seasons, respectively; Qh,ve and QC,ve are the venti-
lation heat exchange for heating and cooling seasons, respectively; Qint 
represents the internal gains, while Qsol represents the solar gains; ηh,gn is 
the heating utilization factor and ηC,ls is a reduction factor for trans-
mission heat loss. 

For each case-study building, a fundamental step in the modelling 
process was the calibration and validation of the predicted gas/energy 
and electricity consumptions through real data, derived from the actual 
energy bills. For each school the numerical model was thus calibrated 
and validated against the available (gas and electricity) consumption 
data targeting an error threshold lower than 5%. Furthermore, for each 
case-study building, the Energy Performance Certificate ([50], “Attes-
tato di Prestazione Energetica", APE, in Italian) was obtained as an 
output of the validated BIM models leading to a benchmarked and 
standard/codified assessment of the energy class. It is worth noting that 
the Energy Performance Certificate was performed after the model 
calibration and validation through actual consumption data, even if this 
is not mandatory for Italian regulations. Therefore, these results are 
deemed more accurate than traditional Energy Performance Certificate 
analyses. 

3.2.2. Building energy performance results 
A brief overview of the building energy performance results is given 

in this section. Firstly, the Energy Performance Certificate has been 
evaluated for each case-study building, according to the UNI/TS 11300. 
Although this asset rating methodology provides approximate results, it 
is deemed useful to preliminary assess and compare the entire building 
portfolio in terms of building energy class. The Italian energy certifi-
cation involves ten energy classes, from class “A4” (i.e., most energy- 
efficient class) to “G” (i.e., worst energy-efficient class); the energy 
classes are evaluated through a comparison of the non-renewable global 
energy performance index EPgl,nren value and the one of the so-called 
“reference building”. More specifically, according to DM 26/06/2015 
[52] procedure, the reference building is a benchmark building equal to 
the real one in terms of geometry (i.e., surface, volume, location, 
orientation, and building use), but with a code-compliant envelope (in 
terms of either energy and thermal properties). The EPgl,nren ranges for 
the Italian building energy classification are listed in Table 1. 

Results of the Energy Performance Certificate (APE in Italian), in 
terms of building energy classes for each analysed case-study building 
are shown in Fig. 8. 

Most of the analysed buildings are assessed as “D” class (26 build-
ings) and “C” class (20 buildings); only a few buildings show a relatively 
good energy performance (2 buildings in “A1” class; 8 buildings in “B” 
class). The remaining ones belong to the “E” class (5 buildings), the “F” 
class (4 buildings) and the “G” class (1 building). Results shown in Fig. 8 
highlight, on one hand, an expected low energy performance of the 
building portfolio and, on the other hand, the need to investigate 
possible energy refurbishment interventions. In that direction, a more 

advanced “tailored rating” approach was also adopted for each building 
by performing a Building Energy Diagnosis (“Diagnosi Energetica", in 
Italian). As mentioned before, a validation process was performed 
through a model calibration, in order to achieve an error lower than 5% 
with respect to the real consumption data for each analysed building. 
These calibrated and validated BIM models were used to investigate 
possible energy refurbishment interventions through a cost-benefit 
analysis. More details on this are given in the next sections. The re-
sults of the Building Energy Diagnosis analyses are shown in Fig. 9. 

From Fig. 9a it can be noted, as expected, a relatively high correla-
tion between the heating energy demands and the volume of the 
buildings, i.e., the higher the volume the higher the heating energy 
demands. Therefore, it seems reasonable to normalize the results to the 
volume of the buildings. However, a correlation between the Qh,nd/V 
values and other key energy metrics are not straightforward. As an 
example, Fig. 9b shows the Qh,nd/V values vs. heating degree days HDD 
cloud data. Although the physics of the problem would suggest that 
higher Qh,nd/V values should be related to higher HDD values, the results 
are characterized by a severe dispersion and a reliable trend cannot be 
defined. This is mainly due to the other (numerous) metrics affecting the 
energy performance assessment of buildings, such as the shape factor 
S/V, the thermal properties of the envelope, the internal setpoint etc. 
These (lack of) results prompted the need to investigate the adoption of a 
multiple linear regression approach as a basis for a simplified and 
practical methodology to predict the energy performance of school 
buildings, as reported in the following Section 4, 5. 

3.2.3. Energy refurbishment interventions 
Different energy refurbishment interventions were considered in the 

research project, mainly aiming to improve the energy performance of 
the building envelope (both opaque and transparent) in line with a 
“passive” approach. Specifically, the considered interventions were: (a) 
thermal insulation of opaque vertical walls, (b) floor and roof insulation, 
and (c) replacement of windows and external glass doors. The typology 
of intervention was defined in line with the building characteristics and 
other possible constraints. For instance, concerning the thermal insu-
lation of opaque vertical walls, when considering school buildings with 
architectonic constraints, internal thermal insulation composite systems 
were deemed as a more suitable intervention than external insulation 
techniques. Each intervention was implemented to achieve the perfor-
mance thresholds and requirements defined by the Italian code [52] for 
each Italian climate zone. The replacement of the heating systems with 
more performing solutions was also considered a possible energy 
refurbishment intervention (when suitable), in line with the “active” 
energy retrofitting technique. On the other hand, no active interventions 
such as those involving solar photovoltaic technologies were imple-
mented in this study, as they can be at any time, during the design 
process, and easily considered as additional/optional scenarios. 

Different energy retrofitting scenarios were thus investigated, based 
on a combination of the retrofit energy techniques discussed above. 
Although the UEFA/ELENA research project involved 12 different sce-
narios, in this research work only three scenarios, deemed as the most 
effective and suitable for practical purposes, were investigated, as 
shown in Fig. 10. 

It can be noted that the selected scenarios involve a combination of 
different energy refurbishment interventions. Specifically, Scenario 1 is 
the more complete retrofitting scenario, involving the thermal insu-
lation of opaque vertical walls, as well as of the ground floor and roof, 
and the replacement of windows and external glass doors. Scenario 2 is 
similar to Scenario 1, with no replacement of the transparent building 
envelope (i.e., windows and glass doors). Finally, Scenario 3 represents a 
single intervention scenario, involving only the replacement of the 
transparent building envelope. 

For each analysed case-study building, the proposed energy retro-
fitting scenarios were investigated through a cost-benefit analysis. 

Table 1 
Definition of the Italian building energy classes [52].  

Class A4  EPgl,nren ≤ 0.4 EPgl,nren,ref.building 

Class A3 0.4 EPgl,nren,ref.building < EPgl,nren ≤ 0.6 EPgl,nren,ref.building 

Class A2 0.6 EPgl,nren,ref.building < EPgl,nren ≤ 0.8 EPgl,nren,ref.building 

Class A1 0.8 EPgl,nren,ref.building < EPgl,nren ≤ 1.0 EPgl,nren,ref.building 

Class B 1.0 EPgl,nren,ref.building < EPgl,nren ≤ 1.2 EPgl,nren,ref.building 

Class C 1.2 EPgl,nren,ref.building < EPgl,nren ≤ 1.5 EPgl,nren,ref.building 

Class D 1.5 EPgl,nren,ref.building < EPgl,nren ≤ 2.0 EPgl,nren,ref.building 

Class E 2.0 EPgl,nren,ref.building < EPgl,nren ≤ 2.6 EPgl,nren,ref.building 

Class F 2.6 EPgl,nren,ref.building < EPgl,nren ≤ 3.5 EPgl,nren,ref.building 

Class G  EPgl,nren > 3.5 EPgl,nren,ref.building  
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Specifically, the cost of each energy refurbishment intervention was 
evaluated according to two main price list documents for Southern Italy 
[54,55]. The cost-benefit analysis considered, for each energy refur-
bishment scenario, the annual energy consumption savings and, thus, 
the related economic savings. The payback time of the investment over 
time was then evaluated under different assumptions on the following 
parameters: interest rates on loans, real interest rates on energy, and 
financial incentives (currently available in Italy). Following this 
approach, a prioritization plan for the energy renovation of the analysed 
building portfolio was developed, taking into account, for each building, 

its original consumption, the investment costs, and the payback time of 
the intervention. For the sake of brevity, the results regarding the pri-
ority plan are herein not reported, but a worked-example showing how 
to calculate the above results is given in Section 6. 

4. Building energy performance prediction model 

The methodology described in the previous section provided a 
dataset consisting of 66 energy models, based on real case-study school 
buildings, containing information about: geometric properties, climate 
exposure, thermal properties and usage of the school buildings. These 
data are further associated with the results of the energy performance 
simulations and energy retrofit analyses. The database is used to develop 
predictive models for the energy performance of school buildings as well 
as for assessing the costs and benefits of retrofit interventions, according 
to the energy refurbishment techniques described in the previous sec-
tion. A sensitivity analysis is conducted to highlight the most relevant 
parameters in both results and to reduce the number of variables of the 
predictive model. The dataset characteristics and manipulation, the re-
sults of the sensitivity analysis and the multiple linear regression (MLR) 
method used to obtain the predictive models are described in this 
section. 

4.1. The multiple linear regression model 

Data on energy consumption for both the as-built and retrofitted 
configuration are used to define MLR model, in order to preliminary 
assess both the building energy requirements and the energy con-
sumption savings through a simplified and easy-to-apply tool. This 

Fig. 8. Results of the Energy Performance Certificate (APE in Italian): (a) number and (b) the percentage of buildings belonging to the same energy class.  

Fig. 9. Results of the Building Energy Diagnosis analyses: (a) heating energy demands Qh,nd vs. volume V and (b) heating energy demands normalized to the volume 
of the building Qh,nd/V vs. heating degree days. 

Fig. 10. Conceptual definition of energy refurbishment scenarios.  
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regression model is selected among others because it is deemed one of 
the most used and intuitive approaches of prediction [16], allowing one 
to develop simplified relationships without excessive computational 
effort. 

The MLR model defines a relationship between the dependent vari-
able and several independent variables (or predictor variables) through 
a linear combination of the latter. The general equation of an MLR model 
is (Eq. (3)): 

y = β0 + β1x1 +…+ βpxp + ε (3) 

Where y represents the independent variable; xi is the i-th predictor 
variable (input); β0 is the intercept (constant) of the relationship, while 
βi is the i-th regression coefficient; finally, ε is the (random) error related 
to prediction (disturbance term or error variable). The latter follows a 
normal distribution with a mean of zero. The MLR model is fitted using 
the least square method, based on minimizing the sum of the squares of 
the residuals (i.e., the difference between the expected and predicted 
outputs). Moreover, different measures of accuracy of the predictive 
method are also evaluated in this study, namely: the Mean Absolute 
Percentage Error (MAPE), the coefficient of determination (R2), and the 
root-mean-square error (or standard deviation, σ). The mathematical 
formulations of each error measure are listed in Table 2 (Eqs. (4)–(6)). 

4.2. Dataset description and parametric simulation 

Among the 66 models, which represent a broad range of building 
typologies, including concrete and masonry structures, 31 were selected 
in order to homogenize the dataset and provide effective predictive 
models. This selection is intended to exclude buildings with exceptional 
peculiarities. Among these are: public buildings that are not used as 
schools (e.g., municipality buildings), historical masonry buildings, and 
buildings characterized by exceptions in either the thermal properties of 
the envelope (e.g. overall heat transfer coefficient, U-value), or the ge-
ometry (e.g. volume). The list of parameters, with the relative upper and 
lower bound, that make up the considered database is presented in 
Table 3. Moreover, when it is deemed relevant, Table 3 also contains 
statistical metrics (i.e., means and standard deviation) of the selected 
parameters. 

Concerning the energy retrofitting, in line with the methodology 
adopted in the UEFA/ELENA research project, the costs and benefits 
associated with each implemented scenario have been expressed in 
terms of CI/V and ΔQ(h,nd)/V. The related dataset has been derived from 
the original 31 by considering only the case studies for which all the 
analysed scenarios have been implemented. It is worth noting that, as 
previously mentioned in Section 3.2.3, in the UEFA/ELENA research 
project the refurbishment interventions have been selected according to 
the characteristic of the analysed buildings, thus some scenarios may 
have not been implemented since it has been deemed not suitable (e.g., 
for schools with glazed components with good performance, no 
replacement of windows has been considered). This decreases the 
dataset from 31 to 25 samples. 

To improve the results in the predictive model for the energy per-
formance assessment, the dataset has been increased by generating new 

energy models through a modification of some relevant parameters from 
the original ones. Specifically, the new energy models are generated by 
modifying the following building envelope and usage parameters: 
%Sg ∈ [20%, 25%]; Uvo ∈ [0.5, 0.6,0.7, 0.8]; SP ∈ [20◦]. A sample size of 
275 is thus obtained for the energy analysis dataset. Differently, no 
intervention scenarios have been implemented for the additional models 
obtained through the parametric simulations. 

The main output considered for the energy simulation is the heating 
energy demand normalized by the building volume 

(
Qh,nd/V

)
, while, 

concerning the retrofit analysis, both cost of the intervention normalized 
by the building volume (CI/V), and heating energy savings normalized 
by the building volume 

(
ΔQh,nd/V

)
are considered. For the sake of 

clarity, it is remarked that the output data for the refurbishment in-
terventions (i.e., CI/Vand ΔQh,nd/V) have been obtained following three 
main steps: i) design of the intervention (including costs); ii) imple-
mentation in the BIM model; and iii) comparison between the as-built 
and the retrofitted configurations. 

4.3. Sensitivity analysis and variable selection 

A sensitivity analysis is carried out comparing the linear correlation 
coefficient R (Eq. 7), between the dataset parameters (Table 3) and the 
results of both energy performance analyses (i.e., Qh,nd/V) and energy 
intervention analyses (i.e., ΔQh,nd

V and CI/V). 

R =

∑[
(xi − x)

(
yi − y

) ]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x)2
•
∑(

yi − y
)2

√ (7) 

The objective of the sensitivity analysis is to identify the most 
influent parameters for each result, thus making a selection of variables 
to be adopted in the training of the predictive models through the 
multiple linear regression method. Correlation coefficients among pa-
rameters of the energy analysis dataset are shown through a heatmap in 
Fig. 11; for the sake of simplicity, the following parameters have already 
been excluded from the analysis, as they are considered to be redundant 
with the others: V,S,Svo,Sg,Sho,So/S,%Sg. 

It is worth noting that variables are sorted in descending order from 
the absolute values of the correlation coefficient with respect to the 
normalized total energy exchange for space heating Qh,nd/V, thus 
highlighting those that mostly affect its evaluation (from left to right in 
the first raw of the heatmap in Fig. 11). Observing Fig. 11, it can be seen 
that the product of the average U-value and the shape factor (U* • S/V)
is the most correlated variable with the annual energy consumption 
(Qh/V); arguably, it can be considered the most representative param-
eter for the building energy performance, as it includes information 
about both the geometry and envelope thermal properties. Thereafter, 
the parameters identified as most influential are those related to the 
geometric characteristics of the building (i.e., Sho/S; Svo/S; Sg/S) and 
some envelope characteristics (i.e., Uho), followed by thermal demand 
parameters of the site (HDD) and building usage 
(Occupancy rate; Setpoint). It can also be noted that the infill walls' 
transmittance (U-value) is weakly correlated with energy consumption 
(R = 0.03), and in particular is less than the glazing (R = 0.21) and floor 
(R = 0.43) ones; this aspect could be ascribed to the school building 
typology, characterized by wide windows and horizontal surfaces. The 
variables' selection process for the MLR model should avoid collinearity 
between the multiple predictor variables (e.g., Svo/S vs. Sho/S leads to R 
= 0.98), as this can undermine the stability of the model. For this reason, 
correlation coefficients among the variable of the database are also 
shown in Fig. 11. 

Sensitivity analysis is therefore carried out also for the energy 
intervention dataset. For the sake of brevity, only the correlation coef-
ficient of parameters concerning the cost of the intervention (CI/V) and 
energy consumption savings (ΔQh,nd/V) are reported in Table 4. 

Table 2 
Mathematical formulations of the adopted measures of prediction accuracy of 
the predictive method.  

MAPE = 100 •

1
N
∑N

i=1

⃒
⃒xi − yi

⃒
⃒

xi 

R2 = 1 −

∑N
i=1

(
xi − yi

)2

∑N
i=1(xi − x̃i)

2 

σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
xi − yi

)2
√

(4) (5) (6) 

Note: xi = i-th observed output; yi = i-th predicted output; x̃ = mean of the 
observed data; N = number of samples.  
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Table 4 confirms that the parameter U* • S/V has a strong influence 
with respect to both the cost of intervention and the annual savings in 
energy consumption achieved. Other useful observations towards the 
variables selection as well as for energy retrofit intervention choice can 
be made: (i) geometrical parameters are particularly relevant in deter-
mining the cost of intervention, and (ii) the correlation of Uv with energy 
savings still shows how glazed facade components might represent a 
weakness in the envelope of school buildings. Is the opinion of the au-
thors that these findings may already be considered an important sug-
gestion for the choice of energy improvement interventions, as they 
highlight that the intervention on the glazed components only (i.e. 
Scenario 3) could be very effective in many cases. 

Predictive models' variables selection is based on correlation coeffi-
cient analysis. For each forecast model, the parameters with the highest 
correlation coefficients were selected; then mutual dependence between 

the variables is avoided by excluding quantities that were physically 
dependent on each other (e.g., clearly, when the product U* • S/V is 
chosen, both S/V and U* variables are excluded in the regression anal-
ysis), and by excluding variables affected by high collinearity (i.e., R >
0.5). The final choice of variables is summarized in Table 5. 

5. Result and discussion 

The results of predictive models for the normalized total energy ex-
change for space heating (Qh,nd/V), normalized costs for energy retrofit 
intervention (CI/V), and normalized savings for the total energy ex-
change for space heating (ΔQh,nd/V) achieved by the intervention, ob-
tained using the variables selected in the previous section and resumed 
in Table 5, are herein presented. Validation of the energy performance 
predictive model, whose dataset has a sample size of 275, is performed 

Table 3 
Database of the school building parameters (31 schools; μ = mean; σ = standard deviation).  

Category Parameter Notation Unit Lower bound Upper bound μ σ 

Geometry External envelope area S [m2] 1012 35,913 8175 6772 
Gross heated volume V [m3] 2250 97,062 20,133 18,402 
Shape factor S/V [m− 1] 0.29 0.65 0.44 0.09 
Percentage of the vertical glazed surface %Sg [%] 0.11 0.31 0.19 0.06 
Vertical opaque surface Svo [m2] 636 6648 2646 1570 
Surface of the glazed component Sg [m2] 92 2365 680 505 
Horizontal opaque surface Sho [m2] 275 27,503 4851 5163 
Normalized vertical opaque surface Svo/S [− ] 0.17 0.69 0.37 0.13 
Normalized surface of the glazed component Sg/S [− ] 0.03 0.16 0.09 0.03 
Normalized horizontal opaque surface Sho/S [− ] 0.15 0.80 0.54 0.14 
Normalized opaque surface So/S [− ] 0.84 0.97 0.91 0.03 

Thermal properties U-value of the vertical opaque envelope Uvo [W/m2K] 0.47 0.92 0.73 0.14 
U-value of the glazed building envelope Ug [W/m2K] 1.80 6.15 4.16 1.09 
U-value of the horizontal opaque envelope Uho [W/m2K] 0.63 1.85 1.27 0.33 
Area-weighted average U-values of the building envelope1 U* [W/m2K] 0.84 1.72 1.31 0.23 
Average U-value multiplied by the shape factor U*•S/V [W/m3K] 0.34 0.82 0.57 0.11 

Location and usage Heating Degree Days HDD [K day] 1353 2400 – – 
Building Occupancy Rate BOR [ppl/m2] 0.05 0.60 – – 
Heating setpoint temperature SP [◦C] 18 21 – –  

1 According to Kwag et al. [56]. 

Fig. 11. Heatmap for correlation coefficient R for the energy analysis dataset.  
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by splitting it into train and test with a 70/30 ratio. Furthermore, k-fold 
cross-validation is carried out on the train set by using k = 5 and a value 
of R2 = 0.6 is obtained. 

On the other hand, for the intervention analyses the dataset for each 
scenario has a sample size of 25. Thus, considering the limited number of 
samples, for intervention scenarios the validation of the predictive 
model is carried out by comparing actual and predicted values over the 
entire dataset, without splitting into train and test. Table 6 shows the 
linear equations (Eq. 8–14) determined through MLR methodology for 
each predictive model, along with the selected regression accuracy 
indices (previously described in Table 2). 

The results of the regression analyses over the “test” set, in terms of 
predicted vs. observed heating energy demand values comparison and 
the residual analyses for the as-built configuration, are shown in Fig. 12. 
In the latter, the probability density function of residuals' distribution, 
assumed as Gaussian, is superimposed. 

Moreover, the results of MRL analyses for each energy refurbishment 
scenario, in terms of energy consumption savings and costs of inter-
vention are shown in Fig. 13 and Fig. 14, respectively. 

Considering school buildings that fall within the application range 
defined in Table 3, the proposed MLR models (Table 6; Eqs. (8)–(14)) 
allow one to preliminary evaluate both the heating annual energy con-
sumptions of the analysed building and the costs and benefits that can be 
achieved by implementing the intervention scenarios presented in Sec-
tion 3. Although these predictive models are affected by uncertainties, it 
is worth noting that these are obtained from real case-study school 
buildings and using refined 3-D models calibrated and validated on the 
real energy consumption data, following a rigorous methodology of 
assessment. 

It is worth highlighting that these models are validated, and thus 
considered effective, when applied to buildings within the database 

ranges defined in Table 3. For buildings outside this range, the proposed 
equations listed in Table 6 could be misleading. Furthermore, any error 
between the actual energy consumption and the consumption predicted 
by the models (<5%) was, for simplicity, overlooked in the training of 
the predictive model. The power of the proposed predictive models lies 
in the simplicity of their application, as they are a function of a few 
variables that can be easily determined through a preliminary desk and 
on-site study. By fixing some discrete values for the parameters related 
to the location (e.g., heating degree day) and the building use (e.g., 
occupancy density and setpoint) it is possible to provide a three- 
dimensional (3-D) graphical illustration of the proposed predictive for-
mulations, as shown in Fig. 15; for the sake of brevity, only the MLR 
model of the heating energy demand for the as-built configuration is 
reported in Fig. 15. 

In the following section, the usefulness of the models for the pre-
liminary design of energy refurbishment of school buildings, as well as 
for supporting decision-making for large-scale building portfolios is 
discussed. 

6. Framework for preliminary design of energy refurbishment of 
school buildings 

The proposed simplified predictive model can be adopted for the 
preliminary energy assessment of school buildings at a large scale, as 
well as to support the decision-making in the energy refurbishment 
process (i.e., the selection of suitable requalification strategies and the 
adequate amount of investment based on cost-benefit analysis). 
Conceptually, in a preliminary design process of energy refurbishment 
interventions, the methodology illustrated previously in Fig. 2, based on 

Table 4 
Correlation coefficient R for energy intervention analysis (higher correlations 
are in bold).  

Parameters Correlation coefficient R 

Scenario 1 Scenario 2 Scenario 3 

CI/V ΔQh,nd/V CI/V ΔQh,nd/V CI/V ΔQh,nd/V 

Uvo − 0.04 − 0.09 − 0.06 − 0.19 0.07 0.06 
S/V 0.66 0.43 0.63 0.47 0.45 0.26 
Ug − 0.04 0.59 − 0.07 0.51 0.21 0.53 
HDD 0.24 0.23 0.30 0.11 − 0.03 0.31 
Occupancy 

rate 
0.10 0.06 0.06 0.07 0.20 0.03 

Setpoint 0.10 0.24 0.02 0.32 0.26 0.08 
Uho − 0.09 − 0.16 − 0.03 − 0.11 − 0.31 − 0.20 
U* • S/V 0.63 0.55 0.57 0.57 0.52 0.39 
U* − 0.02 0.16 − 0.05 0.11 0.09 0.19 
Svo/S 0.56 0.16 0.56 0.07 0.32 0.24 
Sg/S 0.33 0.24 0.16 0.03 0.76 0.42 
Sho/S ¡0.58 − 0.20 ¡0.55 − 0.07 − 0.45 − 0.31  

Table 5 
Selected variables for the predictive models.  

Case-study configuration Dependent variable Independent variables 

As-built configuration Qh,nd/V [kWh/m3] U*•S/V, HDD, BOR, SP, 
Sg/S 

Energy Retrofit intervention 
SC1 

CISC1/V [€/m3] S/V, Soo/S, Sg/S 
ΔQh,nd,SC1/V [kWh/ 
m3] 

Uvt, S/V, Sg/S, HDD, SP 

Energy Retrofit intervention 
SC2 

CISC2/V [€/m3] S/V, Svo/S 
ΔQh,nd,SC2/V [kWh/ 
m3] 

U*•S/V, SP, HDD 

Energy Retrofit intervention 
SC3 

CISC3/V [€/m3] Sg/S, S/V, Ug 

ΔQh,nd,SC3/V [kWh/ 
m3] 

Ug, Sg/S, S/V, HDD  

Table 6 
MLR analysis results for Energy demand, savings and intervention costs.  

Configuration Regression Model  MAPE R2 σres 

As-built Qh,nd

V
= − 54.7728+

23.7512 U* •
S
V
+

0.0117 HDD+

10.9238 BOR+

1.7572 SP+ 44.0452
Sg

S 

(8) 12.51% 0.65 2.86 

Energy 
refurbishment 
SC1 

ΔQh,SC1

V
= − 58.5+

3.0158 Ug + 23.7656
S
V
+

41.3787
Sg

S
+

0.0047 HDD+ 1.8546 SP 

(9) 20.24% 0.71 2.59 

CISC1

V
= 14.2565+

171.7411
S
V
−

80.4705
Sho

S
+ 155.4090

Sg

S 

(10) 15.16% 0.73 11.36 

Energy 
refurbishment 
SC2 

ΔQh,SC2

V
= − 26.9103+

14.2723 U* •
S
V
+

1.1635SP+ 0.0024 HDD 

(11) 28.44% 0.42 2.27 

CISC2

V
= − 47.3886+

136.5590
S
V
+ 90.6233

Svo

S 

(12) 19% 0.64 11.86 

Energy 
refurbishment 
SC3 

Qh,SC3

V
= − 13.3574+

1.3072 Ug + 40.9671
Sg

S
+

8.4371
S
V
+ 0.0027HDD 

(13) 29.07% 0.63 1.5 

CISC3

V
= − 23.5081+

197.5633
Sg

S
+

41.0909
S
V
+ 1.1450 Ug  

(14) 16.52% 0.88 2.15  
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refined (but time-consuming) software-based energy analyses of both 
the as-built and energy-retrofitted building, can be supported by the 
proposed MLR model, as shown in the framework in Fig. 16. 

Each step of the proposed simplified framework is discussed in detail 
below through an illustrative application. For the sake of simplicity, the 
application is limited to an archetype school building in order to show 
the step-by-step procedure to preliminary assess the heating energy 
demand as well as the cost-benefit analysis of potential energy- 
refurbishment interventions. Nevertheless, it is worth underling once 
again that the simplicity of the model allows one to perform preliminary 
large-scale analyses, as conceptually shown in Fig. 16. 

6.1. Step 1a: preliminary data collection 

The simplified framework can (and should) be implemented starting 
from a preliminary data collection process, i.e., using the building in-
formation obtained from a desktop study only and before the in-situ 
surveys. In the preliminary energy assessment phase, geometrical in-
formation and global dimensions of the building can be easily estimated 
from satellite images, photographic reports or available documentation. 
Moreover, information about the building occupancy, setpoint and time 
of service can be collected by interviewing the school principals through 
either phone calls or ad-hoc forms that can be sent by email. On the 
other hand, the identification of the building envelope stratigraphy 
(both vertical and horizontal) as well as of the thermal properties of the 
glazed surface may require specific in-situ surveys/testing, unless 
advanced technical documentation is available for the case-study 
structure. However, in the case of limited data collection scenarios, 
the missing building information can be preliminarily assumed based on 
the construction period (often available on the web page in the case of 
school buildings), in line with the building characteristics and the con-
struction practice of that period (e.g., following the TABULA - Typology 
Approach for Building stock Energy Assessment - research project 
methodology, [57]). To better understand this concept, an illustrative 
application is herein presented. 

The selected archetype case-study building is a pre-1970s school 
located in San Marco in Lamis (province of Foggia, south Italy; Zone “D”, 
HDD = 1981), with global dimension as shown in Fig. 17a. 

Based on this information (i.e., the global dimension and the con-
struction period), potentially available from a desktop study, the rele-
vant building data for energy performance evaluation can be obtained/ 
assumed, i.e., volume V = 9000m3, shape factor S/V = 0.34. The glazed 
surface is assumed equal to Svt = 312m2 (78 windows with dimensions 
equal to 2x2m). Concerning the thermal properties of the building en-
velope, the selected typologies for the vertical and horizontal opaque 
envelope, as well as of the glazed surfaces are shown in Fig. 17b, 
together with their thermal transmittance values. These envelopes are 
assumed according to the building typology classification provided by 

the TABULA research project [57]. Moreover, the most observed win-
dow typology is chosen for this illustrative application, i.e., double-pane 
windows with aluminium frames. Finally, assumptions are needed for 
the building occupancy index and the setpoint; in a preliminary 
assessment, the occupancy can be assumed equal to 0.45 people/m2 

(standard values for school buildings in Italy), while the latter (i.e., the 
setpoint) can be assumed equal to 20 ◦C (typically adopted value). 

6.2. Step 1b: refined data collection 

In addition to the data obtained through the initial desktop study, 
more refined information can be collected through in-situ surveys. 
Nevertheless, this task could be informed by the preliminary investiga-
tion performed using the proposed MLR model (Step 2, discussed in 
detail in the next paragraph), suggesting further localized screening tests 
and/or specific in situ inspections. The results of the predictive model 
can be easily updated if more refined data are collected (double-ended 
arrow in Fig. 16), thus providing an adaptive and updatable tool for the 
energy assessment of buildings. 

6.3. Step 2: simplified energy analyses 

The proposed MLR model can be used to perform a preliminary 
assessment of the energy performance of the investigated building 
portfolio. This analysis can be performed using either the analytical 
formulations provided by the regression model or the same results in the 
form of design/assessment charts. Examples of possible energy perfor-
mance assessment charts are shown in Fig. 18 and applied to the 
archetype case-study building for illustrative purposes. 

The simplified MLR model allows one to preliminary assess the 
heating energy demand of the building in its as-built configuration 
(Fig. 18a), as well as the heating energy demand savings by imple-
menting the investigated energy refurbishment interventions (Fig. 18b- 
d). The results in their absolute values (i.e., multiplied by the volume) 
are listed in Table 7 for the as-built configuration and each considered 
energy refurbishment scenario. Moreover, the proposed MLR regression 
model can provide also a preliminary evaluation of the expected cost of 
each intervention scenario; these values are also listed in Table 7. 

6.4. Step 3: cost-benefit analyses 

The results obtained through the simplified MLR model (listed in 
Table 7) can be used to perform a cost-benefit evaluation of the 
considered energy refurbishment scenarios. It is worth underlying that 
this task does not require any numerical (software-based) simulation 
since it can be carried out through analytical formulation. In that di-
rection, the Net Present Value (NPV) of the investment over the years 
can be evaluated through Eq. (15). 

Fig. 12. Results of the MLR predictive model in terms of annual energy consumption: (a) predicted vs. observed values and (b) residual analysis (note: only the 
results on the test dataset are shown). 
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NPV = CI + S
1

r − g

[

1 −
(

1 + g
1 + r

)N
]

(15) 

In Eq. (15) CI is the investment cost, which may include possible 
financial incentives, and S is the energy annual saving; r and g are the 
leading interest rate and the real interest rate of energy respectively; 
finally, N is the period of the investment. 

In order to evaluate the NPV of the investment over time, the heating 
energy demand needs to be converted into natural gas consumption. 
Thus, the primary heating energy demand Qph can be evaluated 
assuming an efficiency value of the heating system and assessing the 
equivalent natural gas consumption. Information about the heating 
systems may be collected through either a desktop study, interviewing 
the school principals and/or in-situ inspections. In this application, for 
illustrative purposes, an efficiency value equal to 0.95 is assumed. The 
cost-benefit analysis is carried out considering a leading interest rate of 

r = 2% and a real interest rate of energy g = 1.47%. Moreover, the 
actual (i.e., 2022) cost of natural gas in Italy is considered, i.e., 0.976 
€/Sm3. Clearly, different choices can be made based on the investigation 
and the requirements of the stakeholders. Payback times are thus 
defined as the period corresponding to NPV = 0; for the case-study 
archetype building, the cost-benefit analysis is performed considering 
either the absence or presence of financial incentives, fixed equal to 65% 
of the cost of the intervention according to the Italian regulation (i.e., 
the so-called “Conto Termico 2.0”, in Italian). The results of the cost- 
benefit analysis are shown in Fig. 19 and listed in Table 8. 

As expected, the financial incentives strongly affect the results of the 
cost-benefit analysis, leading to break-even points significantly lower for 
each scenario if compared to the ones without financial incentives. 
However, it is worth remembering that this is only a preliminary eval-
uation, aiming to support the best choice of refurbishment intervention 
and giving an idea of the related investment. In that direction, for the 

Fig. 13. Results of the predictive MLR predictive model in terms of annual energy consumption savings: predicted vs. observed values and residual analysis for (a, b) 
Scenario 1, (c, d) Scenario 2, and (e, f) Scenario 3. 
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case-study building, no significative differences are observed in terms of 
break-even points for each scenario. On the other hand, among the 
others, Scenario 1 can provide a significative return on the investment in 
the 50 years of serviceability life of the building. Nevertheless, the 
choice of the best energy refurbishment scenario should be made ac-
counting for different variables, such as the budget and the needs of the 
owners/stakeholders. 

6.5. Step 4: prioritization plan 

In the case of large-scale analyses, typically involving a large 
building portfolio, the results of the cost-benefit analyses can be used to 
select the most suitable energy refurbishment interventions and define a 
prioritization plan. Towards this goal, the proposed MLR model can 
provide fast and updatable cost-benefit evaluations for each involved 
building, even in the case of a limited data collection scenario. In fact, 
although these results are affected by uncertainties related to the 
simplicity of the analyses, they can support the decision-making process 
regarding the feasibility of the refurbishment intervention plan even 
from the early stages of the investigation. In other words, through the 
proposed simplified model, the prioritization plan can be considered a 
result of the preliminary design phase and not only the final output of 

the refined (but time-consuming) energy assessment and refurbishment 
of the building portfolio. It should also be emphasized that the results 
obtained from this fast and simplified procedure (i.e. as-built con-
sumption, cost of the intervention, payback times) are extremely flexible 
with respect to the policy that the stakeholders intend to implement (e.g. 
refurbishing the maximum number of school buildings given a budget- 
cap or maximize long-term savings over a defined period). However, 
although the economic constraints are typically the most relevant 
parameter (and often obstacle) to the implementation of this task, it is 
worth mentioning that other variables can strongly affect the decision- 
making process, e.g., the invasiveness of the interventions and the 
business interruption. Thus, it is also suggested that this task should be 
addressed in a more holistic vision by implementing multi-criteria de-
cision-making analyses. 

6.6. Step 5: detailed design of energy refurbishment intervention 

The results of the simplified MLR model can finally support and 
inform the detailed energy performance assessment and design of the 
refurbishment interventions for the analysed building portfolio. On one 
hand, the preliminary prioritization plan can indicate the most relevant 
school buildings for the aims of the investigation, suggesting the order to 

Fig. 14. Results of the predictive MLR predictive model in terms of cost of intervention: predicted vs. observed values and residual analysis for (a, b) Scenario 1, (c, 
d) Scenario 2, and (e, f) Scenario 3. 
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implement the refined investigations. On the other hand, the results of 
the simplified model in terms of heating energy demand and heating 
energy savings for the as-built and the retrofitted configuration, 
respectively, can be used as expected values to avoid possible errors in 
the more refined energy analyses, supporting the definition and imple-
mentation of the 3D advanced numerical models. It is worth high-
lighting once again that the proposed simplified model should not be 
used to replace the refined energy assessment evaluation process, but 
only as a supporting tool in the whole framework, as shown Fig. 16. 
Finally, even if this is the last step of the framework, the output of the 
refined analyses can be once again used to perform a cost-benefit 
analysis (Step 3) and define a final prioritization plan of implementa-
tion of the intervention scenarios (Step 4), as well as further train the 

predictive model. 

7. Conclusion 

In this research work, a framework is proposed for the preliminary 
design of energy refurbishment of school buildings, using simplified, 
regression-based predictive models. These models are applied for the 
initial assessment of the heating energy demand of school buildings and 
to identify suitable energy refurbishment intervention scenarios. The 
Multiple Linear Regression (MLR) method was used to develop the 
predictive model, drawing upon an extensive database comprised of 
results of detailed three-dimensional software-based energy simulations. 
The simulations pertain to school buildings in southern Italy, in both 

Fig. 15. 3D illustration of the predictive model considering fixed values of occupancy density and discrete values of either (a) the setpoint and (b)the heating 
degree day. 

Fig. 16. Framework for preliminary design of energy refurbishment of school buildings based on the proposed simplified predictive model.  
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their as-built and retrofitted configurations, carried out under the 
UEFA/ELENA research project. 

The principal findings and significant conclusions are resumed and 
discussed below:  

• Data collection was performed through both a preliminary desktop 
study and refined ad-hoc in-situ investigations. This allowed for the 
collection of essential information about the characteristics of school 
buildings in the province of Foggia, Southern Italy. Specifically, of 
the 81 analysed buildings, approximately 80% of these were con-
structed before 1991 (i.e., before the introduction of [46] and [44]). 
The majority of these feature RC infilled frame structures, accounting 
for nearly 83%. Concerning the building envelope, the most common 
typology includes cavity walls without insulation and cast-in-place 

Fig. 17. (a) Global dimension of the analysed school building and (b) selected thermal properties of the building envelope.  

Fig. 18. Examples of possible charts for the energy performance assessment of school buildings and their illustrative application: (a) normalized heating energy 
demand of the as-built case-study school and expected heating energy saving through (b) Scenario 1, (c) Scenario 2, and (d) Scenario 3 interventions. Red lines 
represent the values obtained for the case-study building as an illustrative application. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Table 7 
Results of the MLR model in terms of heating energy demand for the as-built 
structure and the energy-retrofitted configurations and cost of the intervention 
scenarios.  

Energy 
refurbishment 
scenarios 

Heating Energy Demand Qh [kWh/y] Cost of 
interventions 

Ante 
operam 

Post 
operam 

Saving % 
Diff. 

Scenario 1 230,815 106,397 124,419 − 54% 380,953 € 
Scenario 2 230,815 151,842 78,974 − 34% 256,778 € 
Scenario 3 230,815 186,689 44,127 − 19% 141,135 €  
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RC floor systems for the vertical and horizontal building envelopes, 
respectively. Double-pane windows with aluminium frames repre-
sent the most frequent typology of glazed components.  

• Energy analyses conducted using detailed BIM models enabled the 
evaluation of the energy classes of the analysed school buildings. 
Results revealed that the majority of the case studies (almost 70%) 
are fall within energy class between “C” and “D”, while 15% rank at 
energy class “E” or below. Although these results were obtained 
through an “asset rating” approach, they are deemed representative 
of the poor energy performance of the analysed building portfolio.  

• A sensitivity analysis was conducted, centred around the evaluation 
of the linear correlation coefficient R, to select the most significant 
parameters for training the predictive models for both energy con-
sumption and the costs/benefits of alternative refurbishment in-
terventions. Regarding the consumption of the as-built 
configuration, the most relevant variable among those analysed is 
the product of the average U-value and the shape factor (i.e., 
U* • S/V), with R = 0.56. This is followed by the building's geo-
metric characteristics (e.g., vertical and horizontal opaque surface, 
glazed surface), the heating day degrees of the site, and the building 
usage (i.e., occupancy rate and setpoint). It was also observed that 
the walls' transmittance has a weak correlation with energy con-
sumption (R = 0.03), and this correlation is lower than those related 
to glazed components (R = 0.21) and floors (R = 0.43). Similar 
conclusions can be also extended to the energy refurbishment 
intervention scenarios.  

• A statistical analysis of the primary error indices, namely, the Mean 
Absolute Percentage Error (MAPE), the coefficient of determination, 
and the standard deviation (σ), was conducted to evaluate the reli-
ability of the proposed simplified relationships derived from the MLR 
method. Overall, a high level of accuracy was observed for the pro-
posed simplified predictive model, with a coefficient of 

determination typically ranking between 0.65 and 0.88 for both the 
energy consumption and the costs and benefits of the alternative 
refurbishment intervention scenarios. In addition, a k-fold cross- 
validation (using k = 5) was also performed on the train set used 
for the energy consumption, yielding R2 = 0.6.  

• The potential application of the proposed predictive model within a 
framework for the preliminary design of energy refurbishment in-
terventions for schools in Italy was discussed through an illustrative 
application. It was concluded that the proposed methodology serves 
as an effective, adaptive, and updatable tool. This aids studies 
involving large building portfolios towards defining a prioritization 
plan for intervention based on cost-benefit analyses. 

It is worth mentioning that, at this stage, the procedure is tailored to 
school buildings that share similar characteristics with those in the 
analysed database. The applicability of the calibrated models to 
different building types is yet to be explored; indeed, for residential 
buildings, significantly different energy consumptions are expected due 
to the different construction characteristics and use of the building. 
Consequently, the results of the predictive model cannot be easily 
generalized. It is also important to highlight that the models can be 
refined for the buildings under study if more data become available. 
Furthermore, as the refurbishment planning methodology remains 
applicable, new predictive models for different building typologies can 
be developed using the same approach if new databases become avail-
able. The authors anticipate that this study will lay the foundation for 
further research on energy efficiency and renovation planning for school 
buildings. Acknowledging the effectiveness of Multiple Linear Regres-
sion in approximating energy consumption, the authors are aware of the 
potential of advanced AI methodologies. In fact, future developments 
will involve the application of AI to the unique collected dataset, with 
the objective of formulating an optimal strategy in the intervention 
planning through algorithmic decision making. 
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Table 8 
Results of the cost-benefit analysis.  
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refurbishment 
scenarios 
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annual savings 
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Appendix A. Integrated seismic and energy refurbishment interventions 

The UEFA/ELENA research project has also placed significant emphasis on the technical solutions for integrated seismic and energy retrofitting of 
existing buildings. Although this paper specifically discusses the development of simplified methodologies for the energy consumption evaluation and 
the selection of suitable refurbishment interventions for schools in Italy, this appendix offers some insights on the seismic retrofit strategies/tech-
niques and the implementation of integrated (i.e., seismic and energy) interventions. 

Concerning the structural/seismic retrofitting of existing structures, two main retrofitting approaches are typically identified, based on either 
“local interventions” or “global interventions”. Considering RC frames structures (widely adopted in European building practice), local interventions 
aim to improve the seismic performance of the structure through local retrofit of structural members such as columns, beams, and joint panels, in order 
to establish a correct hierarchy of strength at the subassembly level (i.e., targeting the development of a plastic hinge in the beam; [14]) and avoid any 
possible brittle failures. Alternative local retrofit techniques may involve the use of fiber-reinforced polymer (FRP) (e.g., [58,59]), diagonal haunch (e. 
g., [60]) or the implementation of a “selective weakening” (e.g., [61]). In contrast, global interventions are typically adopted for drift-control strategy 
by increasing the stiffness/strength of the existing structure. Typical examples are the introduction of new lateral-load resisting systems, such as RC 
shear walls (e.g., [62]), steel braces (e.g., [63]), or exoskeleton systems (e.g., [64,65,66]). 

In view of an integrated refurbishment intervention, particular attention should be given to the facade's “non-structural” components. Considering 
RC infilled frame structures, although masonry infill panels are typically designed to provide only thermal and acoustic insulation, they may have a 
strong interaction with the surrounding frame during seismic shaking, potentially leading to failures even for low-intensity earthquakes (e.g., [67]). 
Clearly, earthquake-induced damage to masonry infills can directly lead to loss of performance of energy retrofit solutions such as external thermal 
insulation composite systems. Therefore, suitable and practical retrofit strategies and techniques must also be implemented to reduce the negative 
effects of infill-frame seismic interaction. These solutions are typically based on either decoupling (e.g., [68,69,70]) or strengthening (e.g., [7,71]) 
approaches. Hybrid structural-plus-energy retrofitting solutions for non-structural components have also been proposed (e.g., [7]). 

Conceptually, by coupling these seismic retrofitting techniques (for both structural and non-structural components) with the most widely 
implemented energy-efficiency refurbishment interventions (e.g., those listed in previous Fig. 10), alternative combined retrofit solutions can be 
defined (e.g., [10,12]), as shown conceptually in Fig. A1. Nevertheless, recent research have highlighted the attractiveness of exoskeleton solutions 
from an LCT perspective (e.g. standardization, demountability, reparability, and reusability; [11,66]). Notable advantages of this technique include 
the reduced invasiveness (i.e., the intervention can be entirely carried out from outside, thus minimizing the users' disruption) and the possibility to 
also implement a multi-performance “double-skin”, supported by the exoskeleton itself, for an integrated seismic-energetic-architectural upgrading. 
Moreover, advanced low-damage technologies, either in concrete (e.g., PREcast Seismic Structural System, PRESSS; [72]), steel (e.g., [73]) or eco- 
friendly materials like engineered timber (e.g., Prestressed Laminated Timber, Pres-Lam; [74]), as well as a combination of those (e.g., frames 
with concrete/steel columns and timber beams) can be employed for the exoskeletons, allowing for a multi-performance rehabilitation [65,13]. 
Additionally, low-damage technologies can also be applied to non-structural components (e.g., [75,76]) to implement an integrated high-performance 
retrofitting intervention (Fig. A2). 
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Fig. A1. Examples of possible combined seismic and energy retrofitting interventions (structural skeleton: adapted from [61,60]; non-structural components: 
adapted from [7,10,68,69,70]). 

Fig. A2. Concept of multi-performance exoskeleton for integrated seismic and energy retrofitting (exoskeleton: adapted from [13]; EQ-Rod: adapted from [77]).  

Finally, providing adequate seismic details is crucial to improve the overall performance of the building envelope. Therefore, best building 
practices recommend designing any energy-efficiency refurbishment intervention for facade elements to offer an appropriate displacement capacity. 
In this context, Pedone and Pampanin [78] proposed a methodology to assess the seismic displacement incompatibility between infill walls and the 
surrounding frames based on the concept of shape functions. The use of the proposed method to design construction details of both seismic and energy 
retrofit solutions has also been discussed and a possible operative flowchart for an integrated requalification of RC buildings has been introduced. 
Research effort has also been carried out to develop advanced high-performance post-installed fasteners to anchor non-structural components to 
concrete structures, e.g. the EQ-Rod [77]. Recent experimental investigations have shown that these solutions can reduce the acceleration to non- 
structural components, as well as the force to the anchor itself during seismic shaking [79]. Therefore, these technologies could also be employed 
for energy and architectural intervention, such as ventilated facades, to avoid earthquake-induced damage during seismic events (Fig. A2). 
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