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Abstract—The technology of Reconfigurable Intelligent Sur-
faces (RISs) has lately attracted considerable interest from both
academia and industry as a low-cost solution for coverage
extension and signal propagation control. In this paper, we
study the downlink of a multi-cell wideband communication
system comprising single-antenna Base Stations (BSs) and their
associated single-antenna users, as well as multiple passive
RISs. We assume that each BS controls a separate RIS and
performs Orthogonal Frequency Division Multiplexing (OFDM)
transmissions. Differently from various previous works where
the RIS unit elements are considered as frequency-flat phase
shifters, we model them as Lorentzian resonators and present
a joint design of the BSs’ power allocation, as well as the
phase profiles of the multiple RISs, targeting the sum-rate
maximization. We formulate a challenging distributed nonconvex
optimization problem, which is solved via successive convex
approximation. The distributed implementation of the proposed
design is discussed, and the presented simulation results showcase
the interplay of the various system parameters on the achievable
rate performance.

Index Terms—Reconfigurable intelligent surfaces, distributed
optimization, multi-cell communications, resource allocation.

I. INTRODUCTION

Reconfigurable Intelligent Surfaces (RISs) [1], [2] are lately
considered as a key enabling technology for future generation
wireless communication networks, constituting a promising
solution for realizing smart radio propagation environments
[3]. Many recent studies [4] showcase that RISs are able
to offer significant improvements in several performance re-
quirements, such as energy efficiency and extended network
coverage and connectivity for non-line-of-sight environments.

The concept of RIS-enabled smart wireless environments
necessitates the efficient orchestration of multiple RISs [5]–
[7]. By dynamically controlling the on-off states of each
RIS, instead of considering that all of them are active, [8]
considered multiple RISs controlled by a single base station
and focused on the resource allocation problem. In [9], the
authors presented a cooperative multi-RIS-assisted transmis-
sion scheme for millimeter-wave multi-antenna Orthogonal
Frequency Division Multiplexing (OFDM) systems. Recently,
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an alternative model of delay-adjustable metasurfaces was
proposed in [10] for OFDM communications, where the RISs
were controlled by a single base station, and the design
objective was the transmit power allocation yielding the max-
imum achievable sum-rate performance. However, the vast
majority of the up-to-date optimization frameworks considers
centralized approaches, requiring large overhead of control
information exchange with a central network controller.

In this paper, we examine the impact of multiple dis-
tributed passive RISs, each one of them being controlled by
a single-antenna base station that performs OFDM transmis-
sions to its assigned single-antenna receiver, in the presence
of interfering neighboring channels. Differently from other
studies, we consider that each metamaterial RIS element is
dictated by a frequency selective profile, according to the
Lorentzian frequency response, which is more accurate for
the considered OFDM based multi-carrier modulations, as
presented in [11]. Based on the described system model, we
formulate an optimization problem focusing on the overall sum
rate’s maximization as a function of the power allocation and
surfaces’ reflection profile. To solve the resulting problem,
we develop a distributed optimization framework and pro-
pose a Successive Concave Approximation (SCA) algorithm
which tackles the decoupling of the power allocation and the
Lorentzian response parameters. Through numerical results,
the considerable gains of employing RISs for each BS-UE
pair are demonstrated, leading to notably improved sum-rates
compared to the case without RISs.

Notations: Boldface lower-case and upper-case letters rep-
resent vectors and matrices, respectively. The transpose, Her-
mitian transpose, conjugate, and the real part of a complex
quantity are written as (·)T , (·)H , (·)∗, and ℜ{·}, respectively,
while C is the set of complex numbers, and ȷ ≜

√
−1 is the

imaginary unit. The symbols < ·, · >, ⋆ and ◦ denote the inner
product, the multivariate convolution and Hadamard product,
respectively, while diag{x} is defined as the matrix whose
diagonal elements are the entries of x, and [x]+ ≜ max(0, x).

II. SYSTEM MODEL

We consider the design of a multi-user OFDM-based wire-
less communication system composed of Q users. We focus on
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downlink communications, where each BS sends information
to its associated UE using a common set of physical resources,
e.g., time and bandwidth. For the purpose of exposition, the
BS and the UE are both equipped with a single antenna.
Also, we assume that each BS can control an RIS to enhance
the communication with its UE. The RISs are assumed to
comprise M passive reflecting units, and are connected to
a controller, which adjusts their pattern for desired signal
reflection. We will refer to each BS-RIS-UE triplet as a “user”.

A. Received Signal Model
Similar to conventional OFDM-based systems, the total

bandwidth is equally split into K orthogonal sub-carriers
(SCs). Let pq = [pq1, . . . , pqK ]T ∈ RK , where each pqk ≥ 0
denotes the power allocated to the k-th SC by the q-th BS.
Assume the total transmission power available at the BS q is
Pq . Thus, the power allocation must satisfy

∑K
k=1 pqk ≤ Pq .

We consider a quasi-static block fading channel model for
all channels involved and focus on one particular fading
block where the channels remain approximately constant. In
particular, let ydq [i] denote the signal received by the q-th UE
through the channel hd

qq[i] ∈ C which denotes the impulse
response for the q-th BS-user direct link, at the time instance i.
Then, the received signal is expressed as ydq [i] = hd

qq[i]⋆xq[i],
where xq[i] is the transmit signal from the q-th BS. Moreover,
there exists a multipath channel for the q-th BS-RIS-UE
link, through which the signals transmitted by the BS are
reflected by the RIS before arriving at the UE. Specifically,
let hqq[i] ∈ CM denote the q-th BS-RIS multivariate impulse
response. Similarly, let gqq[i] ∈ CM denote the channel of the
q-th RIS-UE link. At the q-th RIS, each element re-scatters the
received signals with an independent reflection coefficient and
we assume that the response of each m-th element is modeled
as a polarizable dipole whose frequency response takes the
following Lorentzian form []:

ϕm
q (ω) =

Fm
q ω

(ωm
q )2 − ω2 + ȷκm

q ω
, (1)

where Fm
q , ωm

q , and κm
q are the element-dependent oscillator

strength, angular frequency, and damping factor, respectively,
which are the design parameters of the q-th RIS. Specifically,
letting ϕq[i] = [ϕ1

q[i], . . . , ϕ
M
q [i]]T ∈ CM denote the q-th

RIS reflection coefficients vector, the composite q-th BS-RIS-
UE received signal is thus the concatenation of the BS-RIS
channel, RIS reflection, and RIS-UE channel, given by:

yq[i] = (hd
qq[i] + gH

qq[i] ⋆Φq[i] ⋆ hqq[i]) ⋆ xq[i] + nq[i], (2)

with Φq[i] ≜ diag{ϕq[i]} and nq[i] denoting the additive
Gaussian noise with variance σ2

q .
In the considered distributed scenario, no multiplexing

strategy is imposed a priori so that, in principle, each user
interferes with each other. Also in this case, the cross-channels
among users are composed by the sum of a direct component
between the q-th BS and the j-th UE, say hd

qj [i], and a reflected
component yrqj [i] due to the power reflected by the q-th RIS
towards the j-th UE. Using similar arguments as in (2), the
overall cross-channel signal between users q and j reads as:

yj [i] = (hd
qj [i] + gH

qj [i] ⋆Φq[i] ⋆ hqq[i]) ⋆ xq[i] + nj [i]. (3)

B. Achievable Sum-Rate Performance

We focus on transmission schemes where no interference
cancellation is performed and multi-user interference (MUI)
is treated as additive colored noise from each receiver. To
formulate the objective function, we assume that the UEs
utilize wideband modulations, and use cxq

(ω) ≜ pq to denote
the Power Spectral Density (PSD) of xq[i]. Moreover, letting
dqq(ω), djq(ω), be the multivariate discrete-time Fourier trans-
form of the received signals yq[i] and yj [i], respectively, the
achievable sum-rate for user q can be expressed as:

R̃q ≜
1

2π

∫ 2π

0

log2

1+
|dqq(ω)|2cxq

(ω)

σ2
q +

∑
j ̸=q

|djq(ω)|2cxj (ω)

 dω.

(4)
By dividing the spectrum into K finite carriers and letting p =
{pq}

Q
q=1, ϕ̃ = {ϕq}

Q
q=1, with ϕq = {ϕqk}Kk=1, the maximum

achievable rate of user q as a function of p, ϕ̃ in bits per
second per Hertz (bps/Hz), can be approximated as:

Rq(p, ϕ̃) =

K∑
k=1

log2

1+
|Hqq(ϕqk)|2pqk

σ2
qk +

∑
j ̸=q

|Hjq(ϕjk)|2pjk

 , (5)

where the the multiplicative term 1
K is neglected due to the

presence of the cyclic prefix (CP), with

Hqq(ϕqk) = hd
qq + (gH

qq ⊙ hT
qq)ϕqk, (6)

Hjq(ϕjk) = hd
jq + (gH

jq ⊙ hT
jj)ϕjk, (7)

for all q, j = 1, 2, . . . , Q, where in (6) and (7), we implicitly
consider that each channel is indexed by the frequency bin ωk,
(i.e., hd

qq = hd
qq(ωk)), but we omit the index ωk for brevity.

C. Problem Formulation

Our goal is to distributively maximize a network utility
function given by the sum rate of the users under power and
RIS reflectivity constraints, i.e.,

OP1 : max
p,ϕ̃

Q∑
q=1

Rq(p, ϕ̃)

s.t. ϕm
qk =

Fm
q ωk

(ωm
q )2 − ω2

k + jκm
q ωk

,

pqk ≥ 0,

K∑
k=1

pqk ≤ Pq, |ϕm
qk| ≤ 1 ∀k,m, q.

The latter objective function is not jointly concave in the power
allocation and RIS parameters and, as a consequence, the
problem has generally multiple local optima. The solution of
OP1 requires in general a centralized approach. Nevertheless,
we will show next that the solution can also be reached in
a distributed fashion, by allowing a very limited exchange of
control data among the users.
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III. PROPOSED DISTRIBUTED SOLUTION

Let xq = (pq,ϕq) be the set of variables associated with
user q. We also define x−q = ({pj}j ̸=q, {ϕj}j ̸=q) as the set
of all users’ variables except the q-th one, and the set below:

Xq =
{
xq = (pq,ϕq) | pqk ≥ 0, ∀ k, q,

K∑
k=1

pqk ≤ Pq, |ϕm
qk| ≤ 1, ∀k,m, q

}
(8)

which represents the feasible set for user q in OP1. Finally,
we define x = {xq}Qq=1. Then, problem OP1 can be recast
in the following compact form as:

OP2 : max
{xq}Q

q=1

Q∑
q=1

Rq(xq,x−q)

s.t. xq ∈ Xq, q = 1, 2, . . . , Q.

We now proceed hinging on the methods from [12], [13].
In particular, for each user q, we build a (strongly) concave
surrogate for the objective function in OP2 that can be
computed thanks to limited exchange of information among
users, and can be easily optimized in an iterative fashion.
To this aim, we rewrite the sum-rate objective of this design
problem in the following form:

R(xq,x−q) = Rq(xq,x−q) +
∑
j ̸=q

Rj(xq,x−q). (9)

Function (9) is non-concave in both terms, due to the presence
of MUI and the coupling between power allocation and
RIS parameters. However, its structure leads naturally to a
concavization having the following form: i) at every iteration
t, the nonconvex term Rq(xq,x−q) is replaced by a strongly
concave surrogate, say R̃q(xq;x

t), which depends on the
current iterate xt; and ii) the term

∑
j ̸=qRj(xq,x−q) is

linearized around xt
q . More formally, the proposed updating

scheme reads: at every iteration t, each user q solves the
following strongly concave optimization problem:

OP3 : x̂t
q = arg max

xq∈Xq

R̃q(xq;x
t)+ < πt

q,xq − xt
q >,

where we have defined the following functions:

πt
q =

∑
j ̸=q

∇x∗
q
Rj(xq,x−q)

∣∣∣
xq=xt

q

=
∑
j ̸=q

πt
qj (10)

R̃q(xq;x
t) =

K∑
k=1

log2

1 +
|Hk

qq(ϕ
t
qk)|2pqk

σ2
qk +

∑
j ̸=q

|Hk
jq(ϕ

t
jk)|2ptjk


+ < γt

q,ϕq − ϕt
q > −τ

2
∥pq − pt

q∥ −
τ

2
∥ϕq − ϕt

q∥2 (11)

with τ > 0, and

γt
q = ∇x∗

q
Rq(xq,x

t
−q)
∣∣∣
xq=xt

q

(12)

for all q = 1, . . . , Q. Thanks to the concavization in (10)
and (11), the objective of OP3 is continuously differentiable,
strongly concave, and preserves the first order properties of (9)
around the current iterate xt

q . Under such conditions, any fixed
point of the mapping {x̂t

q}
Q
q=1 in OP3 is a local maximum

Algorithm 1: D-SCA Algorithm

Input : τ ≥ 0, {αt} ≥ 0, x0
q ∈ Xq , for all q. Set t = 0.

(S.1) If xt satisfies a termination criterion: STOP;
(S.2) For all q = 1, . . . , Q, compute x̂t

q in OP3;
(S.3) For all q = 1, . . . , Q, set:

xt+1
q = xt

q + αt(x̂t
q − xt

q);

(S.3) t← t+ 1 and go to (S.1).

of the sum-rate problem in OP2. The terms {πt
qj}j ̸=q in

(10) are often called interference prices in the literature [12],
since their role is to quantify the amount of interference
produced by the resource allocation (in our case, powers and
RIS parameters) of user q towards other users j ̸= q. Taking
into account interference prices into the overall optimization
help maximizing the social sum-rate utility function thanks to
cooperation among users, which avoid to interfere too much
with each other. Once the best-response mapping in OP3 is
computed, the solution is combined through a (possibly time-
varying) step-size αt as:

xt+1
q = xt

q + αt(x̂t
q − xt

q), (13)

for q = 1, . . . , Q. The overall procedure, termed as Distributed
Successive Concave Approximation (D-SCA), is summarized
in Algorithm 1. Interestingly, OP3 (i.e., step S.2 in Algo-
rithm 1) can be solved distributively by each user q (e.g., by
each BS), once the MUI is locally estimated at the q-th UE
(i.e., the term σ2

qk +
∑N

j=1 |Hk
jq(ϕ

t
jk)|2ptjk in (11) for all k

and q), and the price vectors {πt
qj}j ̸=q in (10) are transmitted

to user q by all other users j ̸= q. In particular, OP3

decouples into two (strongly concave) sub-problems associated
with power allocation and RIS optimization, respectively. In
the sequel, we illustrate the solution of the two sub-problems.

A. Local Power Allocation

Solving OP3 with respect to the power allocation pq leads
to the following sub-problem:

OP4 : max
pq

K∑
k=1

log2

(
1 +

|Hk
qq(ϕ

t
qk)|2pqk

σ2
qk +

∑
j ̸=q |Hk

jq(ϕ
t
jk)|2ptjk

)
+ πt

q
Tpq −

τ

2
∥pq − pt

q∥2

s.t. pqk ≥ 0,

K∑
k=1

pqk ≤ Pq ∀k, q,

where πt
q = {πt

qk}Kk=1 is the part of the pricing vector πt
q in

(10) associated with pq , given by:

πt
qk = −

Q∑
j ̸=q

|Hk
qj(ϕ

t
qk)|2

snrtjk

(1 + snrtjk)MUItjk
, (14)
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where snrtjk and MUItjk are the SINR and the multi-user
interference-plus-noise power experienced by user j, generated
by the resource allocation profile xt:

snrtjk =
|Hk

jj(ϕ
t
jk)|2ptjk

MUItjk
, (15)

MUItjk = σ2
jk +

∑
q ̸=j

|Hk
qj(ϕ

t
qk)|2ptqk. (16)

The OP4 can be solved in closed form (up to the multiplier
associated with the power budget constraint) and admits the
following multi-level water filling solution [12]:

p̂t
q =

[
1

2
pt
q ◦ (1− (snrtq)

−1)+

− 1

2τ

(
µ̃q −

√
[µ̃q − τpt

q ◦ (1 + (snrtq)
−1)]2 + 4τ1

)]
+

(17)

where (snrtq)
−1 = (1/snrtqk)

K
k=1, and µ̃q = πt

q + µq1,
where the multiplier µq is chosen to satisfy the complementary
condition 0 ≤ µq ⊥ 1T p̂t

q − Pq ≤ 0. The optimal µq can
be efficiently computed (in a finite number of steps) using
a bisection method as described in [14]. Note that (17) can
be computed efficiently and locally by each user, once the
interference generated by the other users (i.e., the MUItjk
coefficients) and the current interference price πt

q are properly
estimated. Of course, the estimation of the prices requires
some signaling among users. In practical scenarios, each user
interferes only with a subset of ”neighbor” users, and thus
need to exchange interference prices only with them.

B. Local RIS Optimization

Solving OP3 with respect to the q-th RIS parameters ϕq

leads to the following sub-problem:

OP5 : max
ϕq

ℜ{(γt
q + πt

q)
Hϕq} −

τ

2
∥ϕq − ϕt

q∥2

s.t. ϕm
qk =

Fm
q ωk

(ωm
q )2 − ω2

k + jκm
q ωk

,

|ϕm
qk| ≤ 1, ∀k,m, q

where the superscript H denotes complex transpose (i.e.,
Hermitian), and πt

q = {πt
qk}Kk=1 is the part of the pricing

vector πt
q in (10) associated with ϕq . The expressions for

γt
q = {γt

qk}Kk=1 and the pricing vectors πt
q are given by:

γt
qk =

2ptqk

(1 + snrtqk)MUItqk
Aqqϕ

t
qk, (18)

πt
qk = −2

Q∑
j ̸=q

ptqksnr
t
jk

(1 + snrtjk)MUItjk
Ajqϕ

t
qk, (19)

where Ajq ≜ (gjq ⊙ h∗
qq)(h

d
qj + gH

jq ⊙ hT
qq). To solve OP5

with respect to the Lorentzian parameters {Fm
q , ωm

q , κm
q },

while enforcing the modulus constraints, we employ the PDD
method [15], which is suitable for this problem, whose solution
can be found in a parallel way. In particular, we may write

OP5’s Augmented Lagrangian (AL) problem by penalizing
the equality constraints with the parameter ρ as follows:

OP6 : min
ϕq

τ

2
∥ϕq − ϕt

q∥2 −ℜ{(γt
q + πt

q)
Hϕq}

+
1

2ρ
∥ϕq − d({Fm

q , ωm
q , κm

q }) + ρλ∥2

s.t. ϕm
qk =

Fm
q ωk

(ωm
q )2 − ω2

k + jκm
q ωk

,

|ϕm
qk| ≤ 1, ∀k,m, q,

where the vector d ∈ CKM , corresponds to the equality
constraint in OP5 related to the Lorentzian phase-response,
while λ denotes the associated dual variable vector. Then,
OP6 can be solved based on a two-layer procedure, with
the inner layer alternatively optimizing ϕq and the Lorentzian
parameters, while the outer layer updating ρ and λ.

In the inner layer, for a given d, the optimal ϕq can be
computed in closed form and is given by:

ϕ̂q = P

(
1

τ + 1
ρ

(
τϕt

q + (γt
q + πt

q) +
1

ρ
(d− ρλ)

))
,

(20)
where P(·) is a component-wise operator applied to complex
entries, such that:

P(y) =

{
y, if |y| ≤ 1,

y/|y|, if |y| > 1.
(21)

Then, for the obtained ϕ̂q , OP6 reduces to the following non-
linear least squares sub-problem:

{F̂m
q , ω̂m

q , κ̂m
q } = argmin

{Fm
q ,ωm

q ,κm
q }M

m=1

∥s− d({Fm
q , ωm

q , κm
q })∥2,

(22)
where s ≜ ϕ̂q + ρλ, which can be solved by employing the
Levenberg-Marquardt algorithm. Then, in the outer layer, λ
and ρ are updated by λ ← λ + ρ−1(ϕ̂q − ŝ) and ρ ← cρ,
where c < 1 is a constant scaling factor. The proposed overall
PDD-based algorithm is omitted here due to space limitations,
but the reader is referred to [11, Alg. 1] for details.

IV. NUMERICAL RESULTS

A. Experimental Setup

In this section, we evaluate the performance of the pro-
posed distributed joint design of power allocation and RIS
configuration for each user of the considered system, in terms
of sum-rate maximization. We consider Rayleigh fading chan-
nels for {hd

qj [i]}
L−1
i=0 , {gjq[i]}L−1

i=0 , and {hqq[i]}L−1
i=0 , where

L denotes the number of delayed taps in the time-domain
impulse response for each link. We assume that each channel
consists of i.i.d entries with zero mean and unit variance
multiplied by distance dependent pathloss which is modeled as
PLmn = PL0(dmn/d0)

−αmn , with PL0 = −30dB denoting
the pathloss at the reference distance d0 = 1m, and αmn being
the pathloss exponent for the channel between nodes m, n with
distance dmn. The pathloss exponents for the RIS involved
channels are set equal to 2 and equal to 4 for the rest of them.
In our simulations, we first assumed the number of users being
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Fig. 1. Achievable sum-rates in bps/Hz as a function of the transmit power
of each BS’s Pq in dBm for the proposed design of M = 50-element
frequency-selective RISs for the wideband downlink distributed system with
single-antenna BSs and UEs, K = 16 sub-carriers, and different number of
users, namely Q = 2 and Q = 3.

equal to Q = 2. In this scenario, BS1 is placed at the origin of
the xy-plane, and BS2 is located in the point with coordinates
(2d, 0), where d = 20m. For the remaining nodes, that is,
RIS1, UE1, RIS2, and UE2, we considered the fixed positions
with coordinates: (−d/4, d/8), (d/2, 3d/2), (9d/4, d/8), and
(3d/2, 3d/2), respectively. For the case of Q = 3 users,
we consider the previous locations and the placements of
BS3, RIS3 and UE3 are accordingly at the points (0, 4d),
(−d/4, 9d/4), and (d/2, 5d/2). In addition, we considered
M = 50 RIS unit elements, K = 16 sub-carriers, L = 4
taps, and σ2

qk = σ2 = −80dBm. The Lorentzian parameters
were bounded-constrained as: Fn ∈ (0, 1], ωn > 0 and
|κn| ≤ 100, while |ω| ≤ π, while the algorithmic threshold for
the termination criterion for the proposed algorithm was set as
ϵ = 10−3. The achievable sum-rate performance results were
averaged over 100 independent Monte Carlo realizations.

B. Sum-Rate Performance
We investigate in Fig. 1 the achievable sum-rate in bps/Hz

versus the total transmit power Pq available at the q-th BS
with Pq = P , for two different number of BS-RIS-UE triplets,
that is, for Q ∈ {2, 3} using M = 50 RIS unit elements in
both cases. For comparison purposes, we have implemented
the proposed D-SCA Algorithm for the case where no RISs are
present. It can be observed that, for all evaluated schemes, the
total achievable sum-rates increase with P , whereas in the high
SNR regime (i.e., above 20 dBm), a saturation trend is present.
This behavior is expected by noting that the interference with
the neighboring users is inevitable. In addition, as illustrated,
inserting one RIS for each user, even with a relatively small
number of unit elements, leads to higher sum rate, confirming
the benefits of the RIS technology.

V. CONCLUSIONS

In this paper, we studied RIS-empowered cellular OFDM
wireless systems comprised many BS-RIS-UE triplets, where

each RIS unit element acts as a resonant circuit modeled by a
Lorentzian-like frequency response. To characterize system’s
performance, we adopted the achievable sum-rate metric and
formulated an maximization problem for the BS power alloca-
tion and the multi-RIS configuration, which was solved based
on a distributed optimization approach. Through numerical
evaluations, it was shown that utilizing one RIS for each
BS-UE pair leads to significant gains in contrast to the case
without RISs, even when a small-sized RIS is deployed.
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