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Abstract: Human endo-lysosomes possess a class of pro-
teins called TPC channels on their membrane, which are
essential for proper cell functioning. This protein family
can be functionally studied by expressing them in plant
vacuoles. Inhibition of hTPC activity by naringenin, one
of the main flavonoids present in the human diet, has
the potential to be beneficial in severe human diseases
such as solid tumor development, melanoma, and viral
infections. We attempted to identify the molecular basis
of the interaction between hTPC2 and naringenin, using
ensemble docking on molecular dynamics (MD) trajec-
tories, but the specific binding site remains elusive, posing
a challenge that could potentially be addressed in the
future by increased computational power in MD and the
combined use of microscopy techniques such as cryo-EM.
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Abbreviations

Nar naringenin
PI(3,5)P2 phosphatidylinositol-(3,5)-bisphosphate
POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine
cryo-EM cryogenic electron microscopy

Introduction

The TPC channel family

TPC family channels are intracellular channels found in
animal [1] and plant cells [2]. In plant cells, the channels are
localized on the vacuolar membrane and generally encoded
by a single gene, which in the model plant Arabidopsis
thaliana is called AtTPC1 [3]. In human cells there are two
genes: hTPC1, which is localized on the membrane of endo-
somes, and hTPC2 located on the lysosomal membrane [1].

From a structural point of view, TPC channels are
dimers [4]. Each dimer consists of two shaker-type sub-
units. The shaker-type subunit, the structure underlying
all voltage-dependent channels, is composed of six trans-
membrane alpha-helices. The arginine-rich S4 segment,
ARG is a positively charged amino acid, imparts voltage
dependence to the channel. The terminal part of segments
S5 and S6 is the channel “gate” since it is involved in the
closing and opening mechanism of the channel. The seg-
ment between S5 and S6 is called the P-loop: the interaction
of four P-loops generates the channel selectivity filter. There-
fore, four shaker-type subunits are required to form a func-
tional voltage-dependent channel. In potassium channels, the
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interaction of these four subunits is non-covalent. In TPC
channels two subunits are covalently bound, in animal
sodium and calcium channels all four subunits are cova-
lently bound. In this context, it is useful to note that the
name TPC is misleading, the channel in fact has only one
permeation pore and should be called two pore loop
forming domain channel.

A marked difference in the structure between plant and
animal TPCs is the presence of two cytosolic EF-hands in the
segment that covalently binds the two shaker subunits in
the plant TPCs [5]. Consequently, plant TPC channels are
activated by an increase in cytosolic calcium (see below).

Methods and results

Plant vacuole as a heterologous system
suitable for studying the functional
properties of endo-lysosomal channels and
transporters

The initial recordings of TPC channels were performed
using patch-clamp experiments applied to vacuoles of
sugar beet plants [6]. The vacuole is an intracellular com-
partment in plant cells that can occupy up to 90% of the
volume in a mature cell. In whole-vacuole configuration,
an outward rectifying cation channel was recorded, which
was active for cytosolic positive voltages [6]. The single-
channel conductance was large, on the order of 100 pS,
and exhibited typical characteristics of a single-file, multi-
ion pore [7]. Due to its slow activation and deactivation
times on the order of seconds, the channel was named
Slow Vacuolar (SV) channel [6]. The channel is activated
by an increase in cytosolic calcium, in line with its structural
features. However, the voltage and calcium values that acti-
vate it are not compatible with physiological conditions
[8]. Consequently, researchers are still trying to identify a
“helper factor” that allows the channel to be open under
physiological conditions. There are several factors that mod-
ulate the channel [9], such as reducing molecules, which act
as activators [10–13]. In 2005, the TPC gene was associated
with SV currents [3], and in 2016, the high-resolution struc-
ture of the channel was resolved [14,15].

Plasmamembrane channels and transporters are usually
expressed and characterized in Xenopus oocytes [16–20] or
in plant/animal cell lines [21,22]; it is interesting to observe
how the vacuole can be used as a heterologous system to
study the functional properties of animal endo-lysosomal
TPC channels [23–25], in addition to other techniques
reviewed in the study by Festa et al. [26]. Endosomes and

lysosomes are submicrometric compartments that are dif-
ficult to access for the application of electrophysiological
techniques such as patch-clamp. Plant vacuoles are easy to
isolate, the patch-clamp can be successfully applied in all
possible configuration modes [27–30], background currents
can be controlled and minimized [31–33], the lumen of the
vacuole can be loaded with a specific fluorophore through
the patch-pipette [34–39] and the cytosolic solution is the
external solution of the vacuole [27], which can be easily
changed to investigate cytosolic modulators [40,41]. When
human TPCs are expressed in mesophyll vacuoles of Ara-
bidopsis mutant plants lacking endogenous TPCs, both
members, hTPC1 and 2, reach the membrane of the vacuole
and are activated by the phosphoinositide PI(3,5)P2, which,
however, has no effect on the endogenous plant AtTPC1
channel [23]. The PI(3,5)P2 binding site of the human TPC2
channel was validated by expression of mutated channels in
vacuoles from Arabidopsis tpc1-2 mutant (AtTPC1 null back-
ground [3]); site-specific mutations of TPC2 identified by a
bioinformatics approach induced a highly significant change
in channel affinity for PI(3,5)P2 [42]. The binding site was
subsequently confirmed by cryo-EM experiments [43].

Naringenin is a TPC2 inhibitor: searching for
the binding site

The flavonoid naringenin, found in citruses and tomatoes, is
able to inhibit hTPC2 activity, when the channel is expressed
in vacuoles knockout for the endogenous channel [44];
the application of 200 μM naringenin in cytosolic solution,
outside the vacuole, induces a reduction of the current
recorded by patch-clamp of more than 50%; the effect is
voltage-independent and reversible. Inhibition of TPC2 by
naringenin has been linked to severe human diseases such
as development of solid tumors through inhibition of the
neoangiogenesis mechanism [44,45], melanoma [46], and
Sars-CoV-2-mediated viral infection [47,48]. Therefore, it is
important to characterize the molecular basis of the inter-
action between TPC2 and naringenin. In our previous work,
to identify the amino acids that mediate the interaction
between TPC2 and naringenin, we used a structure of
TPC2 obtained by homology from the high-resolution struc-
ture of AtTPC1 [49]. In this study, we performed molecular
dynamics (MD) simulations on three structural configura-
tions obtained from cryo-EM experiments [43]: the structure
lacking PI(3,5)P2 in a closed non-conductive state (apo-
closed), the structure with PI(3,5)P2 bound also in a closed
state (holo-closed), and the structure with PI(3,5)P2 in an
open conductive state (holo-open). Molecular simulations
were successfully used to identify the mechanism of
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conduction of sodium ions [50,51]. Starting from the three
high-resolution structures, we embedded them in a POPC sym-
metric bilayer and solvated with water and NaCl 0.15mM. The
details of the preparation and equilibration are described in
details in previous studies [50,51]. We carried out ten indepen-
dent 300 ns MD simulations for each of the three structural
configurations of the channel [51], we clusterized the struc-
tures of each simulation and then performed ensemble
docking calculations with naringenin on each of the three
representative structures from the MD simulation clusters.
The details of docking procedures are described in ref. [52].
The results are presented in Figure 1, showing the four most
stable binding sites of naringenin based on their binding
energies. Naringenin, a hydrophobic small molecule, is cap-
able of inserting itself into various different regions of the
dimeric structure. Among the 12 identified binding sites
(Table S1), only one, indicated by an arrow in Figure 1a
and b, is common to the apo- and holo-closed structures.
Each site is characterized by the interaction of at least
nine amino acids, most of which are hydrophobic. This
approach demonstrates how naringenin can interact with
different structural parts of TPC2; however, no single pre-
ferred binding site emerges. We again performed docking
calculations by mutating in silico three amino acids, F452A,
T544G, and N548A, and found that naringenin does not bind
anymore to that specific site.

We performed the aforementioned site-specific muta-
tions (in vitro), in the common putative binding site of the
apo and holo-closed structures (Figure 2a). The mutant
channel, fused with an EGFP at its C-terminus, was expressed
in vacuoles isolated from mesophyll leaves of Arabidopsis
plants lacking the endogenous TPC1. The mutant channel
exhibited functional activity, as evidenced by the increase in
current induced by the application of 100 nM PI(3,5)P2 in the
cytosolic solution external to the vacuole (Figure 2b). However,
the addition of 200 μM Nar to the cytosolic solution inhibited
the current in a similar manner to what occurs in the wild-
type channel (Figure 2b–d). Therefore, the selected molecular
region on hTPC2 does not appear to be the binding site for Nar.

Conclusion

Flavonoids are secondary metabolites in plants that have
been extensively studied for their potential health effects.
However, the molecular mechanisms through which flavo-
noids exert their effects are mostly unknown. Our simula-
tions indicate that naringenin interacts with the hydrophobic
region of the channel. Since the protein undergoes a confor-
mational change in its opening mechanism, the insertion of

naringenin could potentially block the channel in its closed
conformation. However, our analysis suggests that finding the
binding site is challenging. Naringenin interacts with multiple
areas of the channel, involving hydrophobic amino acids, and
multiple mutations may be necessary to significantly alter its

Figure 1: Docking poses. The most stable pose is in red, then blue,
magenta, and yellow: (a) apo-closed, (b) holo-closed, and (c) holo-
opened. The arrows indicate two identical poses found in apo-closed
structure (panel a, naringenin in magenta) and holo-closed structure
(panel b, naringenin in yellow).
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Figure 2: Site-directed mutagenesis and patch-clamp experiments. (a) Selected putative binding site for naringenin (indicated by the arrows in
Figure 1). Naringenin is shown with van der Waals (vdW) spheres and the nearby amino acids with sticks and vdW dots: oxygen atoms in red, nitrogen
atoms in blue, carbon atoms in green, and hydrogen atoms in white. Circled in red, the amino acids that were changed in hTPC2 by site-directed
mutagenesis approach using Kit,QuikChange Site-Directed, Agilent Technologies. On the hTPC2 coding sequence (NM_139075.4) the TTC codon for
F452 was changed with GCC coding for Alanine, the ACC codon for T544 was replaced with GCC coding for Glycine and the codon ACC for N548 was
replaced with GCC coding for Alanine. (b) Currents mediated by the hTPC2 mutant channel expressed in Arabidopsis vacuoles lacking the endogenous
TPC in control condition (left, control), induced by the application of 100 nM PI(3,5)P2 in the cytosolic bath solution (middle, + PI(3,5)P2) and inhibited
by 200 μM cytosolic naringenin (left, + PI(3,5)P2 + Nar). Holding voltage: 0 mV. Voltage pulses of 1 s from −80 to +80 mV in +20mV steps. Tail voltage of
0.5 s at −50 mV. Cytosolic bath solution (in mM): 100 NaCl, 2 MgCl2, 10 Hepes, 280 Sorbitol, pH 7.2 (NaOH). Luminal pipette solution (in mM): 100 NaCl,
2 MgCl2, 10 MES, 260 Sorbitol, pH 5.6 (NaOH). PI(3,5)P2 was purchased as dioctanyl ester (diC8) from AG Scientific or Echelon Biosciences Inc. (USA)
and prepared as 1 mM stock solution, stored at −20°C. Naringenin, from Merck, Germany, was prepared fresh before use as 200 mM stock in DMSO.
DMSO alone had no effect on channel activity [44]. (c) Current–voltage relationships of data displayed in (b). (d) Current inhibition induced by 200 μM
Nar added in the cytosolic solution containing 100 nM PI(3,5)P2, at −40mV. Data, shown as mean ± s.e.m. (hTPC2, n = 3; mutant channel, F452A/T544G/
N548A, n = 3), were not statistically significant.
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affinity for Nar. The increase in computational power will
allow for the simulation of the conformational change of
the channel. This, combined with the application of other
structural approaches such as cryo-EM, will ultimately
enable the precise identification of the elusive molecular
mechanism underlying the interaction between TPC chan-
nels and naringenin.

Conflict of interest: Authors state no conflict of interest.
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