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A B S T R A C T

The stability region of non-persistent CSMA is analyzed in a general heterogeneous network, where stations
have different mean packet arrival rates, packet transmission times probability distributions and transmission
probabilities. The considered model of CSMA captures the behavior of the well known CSMA/CA, at least as
far as stability and throughput evaluation are concerned. The analysis is done both with and without collision
detection. Given the characterization of the stability region, throughput-optimal transmission probabilities are
identified under airtime fairness, establishing asymptotic upper and lower bounds of the maximum achievable
stable throughput. The bounds turn out to be insensitive to the probability distribution of packet transmission
times. Numerical results highlight that the obtained bounds are tight not only asymptotically, but also for
essentially all values of the number of stations. The insight gained leads to the definition of a distributed
adaptive algorithm to adjust the transmission probabilities of stations so as to attain the maximum stable
throughput.
1. Introduction

Carrier Sense Multiple Access (CSMA) has dominated the stage of
random multiple access techniques, boosted by the impressive suc-
cess of Wi-Fi networks, whose core MAC protocol algorithm, the so
called CSMA/CA, conforms to non-persistent CSMA. CSMA/CA is the
foundation of all amendments of IEEE 802.11, from high speed local
wireless networks (IEEE 802.11b/a/g/n/ac, partly also IEEE 802.11ax),
to vehicular networks (IEEE 802.11p/bd) to sensor networks (IEEE
802.11ah, IEEE 802.15.4). CSMA is found also in RFID networks [1].

This paper addresses the stability conditions for a heterogeneous
CSMA network, where stations have different mean packet arrival
rates, different and arbitrary packet transmission time probability dis-
tributions1 and different back-off probabilities (also referred to as
transmission probabilities). Different packet transmission times may
arise due to application traffic characteristics, e.g., voice, short mes-
sages, app notifications are carried by short packets, versus, e.g., web
browsing or file download traffic, that use systematically the maximum
packet length allowed by the network. Different transmission probabil-
ities can be used to achieve fairness among stations, as discussed in
Section 5. The CSMA model considered in this paper is able to capture
the behavior of the well known CSMA/CA, at least as far as stability
and throughput evaluation are concerned.

E-mail address: andrea.baiocchi@uniroma1.it.
1 By packet transmission time it is intended here the time that a station holds the channel, once it wins the contention. This time can encompass the transmission

of possibly multiple protocol data units, and includes also any additional overhead, e.g., preambles, inter-frame spaces, acknowledgments (if required).

The analysis of CSMA is done both without and with collision
detection capability. Collision detection can be implemented by tak-
ing advantage of full-duplex hardware also in a wireless channel,
e.g., see [2–4]. [2] proposes a CSMA protocol enhancement, where
feedback control messages are introduced to support Collision Detec-
tion (CD). [3] exploits special physical layer symbols to re-design the
RTS/CTS mode in a more efficient way. [4] exploits the Full Duplex
capability of physical layer to provide simultaneous carrier sensing and
transmission in WiFi.

The main contributions of this paper are as follows.

1. The stability region of the mean arrival rates at stations is
assessed for a general heterogeneous CSMA environment, where
packet transmission time Probability Density Functions (PDFs),
mean arrival rates and transmission probabilities may be differ-
ent for different stations.

2. Based on the result of the previous point, throughput-optimal
transmission probabilities are identified, under a fairness con-
straint, referred to as airtime fairness [5,6], and bounds on the
achievable stable throughput are established. The result takes an
intriguing simple form in the limit for the number of stations
tending to infinity. Numerical results show that the asymptotic
bounds turn out to be tight for essentially all values of the
number of stations, giving it practical relevance.
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3. Leveraging on maximum throughput analysis, a distributed algo-
rithm is defined to drive the heterogeneous stations towards the
maximum achievable throughput (throughput optimality), by
adjusting the transmission probabilities under airtime fairness.

The bounds on the maximum stable throughput under airtime fair-
ess and the adaptive transmission algorithm depend only on the
ean packet transmission times, i.e., they turn out to be insensitive to

he probability distributions of the random variables that define the
uration of packet transmission times. This insensitivity result makes
he obtained bounds and the adaptive transmission algorithm robust
nd useful for practical applications.

The rest of the paper is so organized. An account of related works
s given in Section 2. The CSMA algorithm and system model is in-
roduced in Section 3. The stability region is assessed in Section 4. In
ection 5 the maximum achievable stable throughput is investigated,
nder airtime fairness constraint. An adaptive transmission algorithm
o achieve the maximum throughput is defined and evaluated by mean
f simulations in Section 6. A discussion of potential usage and applica-
ions of the presented results is given in Section 7. Concluding remarks
re given in Section 8. The Appendices contains the proofs of the main
heorems and of other results mentioned in the paper.

. Related works

Stability of CSMA is a well known issue, since the landmark work
y Tobagi and Kleinrock [7]. A general analysis of the capacity region
f CSMA networks, including the hidden station case, is offered in [8],
ith reference to an idealized case where the sensing time (i.e., the size
f the back-off slot time) shrinks to zero. The sustainable offered rate
egion is studied in [9] for a model that can be cast into the RTS/CTS
ode of CSMA/CA. As a matter of fact, a key detail of the model in [9]

s that the collision time 𝑇c is a constant, no matter which station is
involved in the collision. Another restrictive assumption is that channel
usage times are multiples of 𝑇c, when a successful transmission takes
place. The purpose of [9] is to characterize the stable rate region
and its maximal convex subsets. The stability region of CSMA for a
single-hop network with no hidden stations is characterized also in
[10–12], assuming that transmission and collision times are the same
for all stations. A general framework to assess stability of a multi-node
system where nodes transmit to a central hub by using an ALOHA-type
multiple access scheme in slotted time, is presented in [13]. Stable
throughput for high priority traffic in WiFi is analyzed in [14]. This
work focuses on the connection between saturation throughput and
stable throughput limit. It also gives an adaptive algorithm to guarantee
that high-priority traffic can achieve the maximum stable throughput.
The analysis is developed for a homogeneous system, where all high
priority stations use the same transmission probability and packet
transmission times. Stable throughput optimization is pursued in a
game-theoretic context in [15]. The stability region is given in terms
of feasible schedules, i.e., schedules where interfering link operate in
mutual exclusion. This idealized model does not account for collisions,
even if the impact of back-off time is taken care of. The main contribu-
tion of [15] lies in the design of new penalty functions in the definition
of utility functions, so that a fully distributed game-driven dynamics is
obtained, without the need of message passing among stations.

Heterogeneous CSMA study is motivated by the mix of traffic flows
appearing in most wireless networks [16]. It stems also from device
evolution, i.e., multi-sensor platforms in wireless sensor networks pro-
duce a variety of packet sizes originating from a same node [17].
Heterogeneous CSMA performance evaluation and optimization has
been considered extensively, since the key contribution [18], that
introduced a capacity-achieving ‘‘adaptive CSMA’’ algorithm, e.g., see
[15,19–27]. Some of those works consider fixed transmission times
[20,21] or assume zero sensing time [15,18,22,24,27] and hence disre-
gard collision events (idealized CSMA, where it is also usually assumed
230
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that packet transmission times are exponentially distributed). All of
those works, even in case they account for collision events, assume
a fixed collision time, irrespective of which stations are involved,
i.e., they assume ‘‘probe’’ packets are used similarly to RTS/CTS mode
in IEEE 802.11 MAC protocol. On the contrary, in this paper we stick to
the original CSMA model of [28], where sensing requires a finite time,
hence collisions are taken into account and their duration depends on
the time on air of the involved stations.2

The model used in this paper is the classic CSMA model since the
seminal paper of Tobagi and Kleinrock [28]. This kind of CSMA model
is also useful in the analysis of CSMA/CA used in WiFi, as shown
since Bianchi’s work [29] and discussed later in [30]. The saturation
throughput is predicted accurately by means of a model depending
only on the transmission probabilities of stations. The same kind of
model has been used to study the optimization of throughput of IEEE
802.11, e.g., in [31,32]. More in depth, the CSMA model used in this
paper is consistent with the approach that has been shown to lead
to throughput optimization of CSMA/CA, e.g., see the work of Cali
et al. [31] as an early contribution in this sense. In that work, the
uniform probability distribution of back-off of 802.11, with binary
exponential back-off to adapt the contention window size in case of
re-transmissions, is replaced with a 𝑝-persistent backoff protocol. The
transmission probability 𝑝 is set so as to maximize the saturation
throughput, based on estimation of the current number of contending
stations. Cali et al. show that 802.11 yields suboptimal throughput, and
that their algorithm can approach optimal throughput under the same
conditions. This motivates considering a 𝑝-persistent CSMA protocol
also in the heterogeneous environment considered in this work.

Finally, it is worth mentioning the queue-based CSMA approach
[33], which aims at defining a distributed algorithm to achieve
throughput optimality in a random access network characterized by a
conflict graph and an access protocol inspired to the RTC/CTS mode
CSMA. The network model is time-slotted, i.e., packet transmission
fits a fixed time slot for all stations. Exchange of control messages in
dedicated mini-slots is also part of the proposed design. The purpose is
to define a link scheduling algorithm to achieve throughput optimality.
In a subsequent work [34], an efficient algorithm is defined to compute
optimal scheduling in the same modeling framework as in [33]. The
considered model is still time-slotted with fixed transmission and colli-
sion times. Optimization of throughput of a 𝑝-persistent CSMA model,
similar to the CSMA model considered in this paper, was considered in
early contributions of Bruno et al. [35,36].

Summing up, current literature addresses heterogeneous CSMA net-
works under some restrictive assumptions, e.g., (i) same packet trans-
mission times for all nodes; (ii) fixed collision time, irrespective of
which station is involved; (iii) negative exponential channel holding
times, as well as back-off times. In the sequel, we address a general het-
erogeneous CSMA model, where packet transmission times of stations
can have general probability distributions.

3. System model

The main notation used in the paper is listed in Table 1.
We consider a set of 𝑛 stations sharing a broadcast communication

channel. Each station is equipped with an infinite buffer, where packets
arrive from the upper layer.

Channel access is operated according to non-persistent CSMA. Al-
gorithm 1 lists the pseudo-code of the channel contention algorithm
run by a station, whenever it has a packet ready to be (re)transmitted.
In the CSMA algorithm, CCA stands for Clear Channel Assessment,
i.e., the function that polls the physical layer to assess whether the

2 This is particularly important in the heterogeneous case, where stations
ith long channel holding times mix up with stations requiring shorter channel
olding times.
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Table 1
Main notation of CSMA model.

Symbol Meaning

𝑛 Number of stations.
𝛿 Back-off slot time, same as the channel sensing time,
𝜆𝑖 Mean arrival rate of new packets at station 𝑖.
𝜏𝑖 Transmission probability of station 𝑖, when it is backlogged.
𝜃𝑖 Transmission probability of station 𝑖.
𝑌𝑖 Packet transmission time of station 𝑖.a
𝑇𝑖 Mean packet transmission time of station 𝑖, 𝑇𝑖 = E[𝑌𝑖].
𝑇min Minimum packet transmission time.
𝑇max Maximum packet transmission time.
𝑇c Collision resolution time in case of CSMA with collision detection.
𝑆𝑖 Success probability of transmission attempt of station 𝑖.
𝑉 Virtual slot time.
𝑉 Mean virtual slot time, 𝑉 = E[𝑉 ].
𝑄𝑖(𝑡) Number of packets queue at station 𝑖 at the beginning of virtual

slot time 𝑡.
𝐴𝑖(𝑡) Number of newly arriving packets during virtual slot time 𝑡.
𝑈𝑖(𝑡) Number of packets successfully delivered by station 𝑖 during the

virtual slot time 𝑡.
 State space of the joint process 𝐐(𝑡) = [𝑄1(𝑡),… , 𝑄𝑛(𝑡)], consisting of

all 𝑛-tuples of non-negative integers.
0,𝑖 Set of all states where queue at station 𝑖 is empty.
𝑇𝐴 Time variable used to optimize the stable throughput under airtime

fairness (see Section 5).
𝜇𝑛 Average of reciprocals of mean packet transmission times, equal to

1
𝑛

∑𝑛
𝑖=1

1
𝑇𝑖

.
𝜇 Limit of 𝜇𝑛 for 𝑛→ ∞.
𝛼 Non-dimensional parameter defined as 𝑇𝐴 𝜇.
𝛽 Non-dimensional parameter defined as 𝛿 𝜇.
𝜉 Non-dimensional parameter defined as 𝑇max 𝜇.
𝜓 Non-dimensional parameter defined as 𝑇c 𝜇.

aIn this work ‘‘packet transmission time’’ is meant to be synonym of ‘‘channel holding
time’’ of a station. It encompasses any overhead required to transmit a packet, along
with the packet transmission time itself.

channel is idle or busy. This operation is performed by calling the
function channel_state(𝛿), which takes a time 𝛿 to return the state
of the channel. The fixed time 𝛿 is the channel sensing time, which is
assumed to be also the back-off slot time, as customary in CSMA. If
the channel is busy, the station repeats the channel assessment. The
WHILE cycle of Algorithm 1 is equivalent to sampling the channel
status with a time period 𝛿, as long as it stays busy. Once the channel
is found idle, the station starts transmitting with probability 𝜏. This
is obtained by comparing the outcome of the function rand() with
𝜏. Here rand() returns a random number uniformly distributed in
[0,1]. With probability 1 − 𝜏, the station skips the current idle back-
off slot time and repeats the channel assessment in the next back-off
slot time. When station 𝑖 eventually starts transmitting, it keeps the
channel busy for a time 𝑌𝑖, which includes any overhead (preamble,
header, inter-frame spaces, acknowledgment, if required). The mean
packet transmission time of station 𝑖 is denoted with 𝑇𝑖 = E[𝑌𝑖]. Stations
re labeled in the decreasing order of their mean packet transmission
imes, i.e., 𝑖 < 𝑗 ⇒ 𝑇𝑖 ≥ 𝑇𝑗 .

If CD is available, once the transmission starts, the station monitors
he channel. If a collision is detected, involved stations abort their on-
oing transmissions. When enabled, CD takes a fixed time 𝑇c. For CD to
e functional, it is required that packet transmission times be shorter
han the time required to detect a collision, i.e., it must be 𝑇c < 𝑌𝑖, ∀𝑖.
s a matter of example, in Ethernet there is a minimum packet length
equirement, to guarantee that transmissions last enough time to detect
collision. In a wireless channel, like WiFi, CD can be supported by
eans of the RTS/CTS mode, where 𝑇c amounts to the sum of RTS
acket transmission time plus CTS timeout This time is necessarily
horter than a regular transmission, which encompasses RTS and CTS
ontrol frames, a MAC data frame and the relevant acknowledgment.
lternative implementations of the CD functionality in WiFi are given

n [2–4]. In all of these proposals, the time required to detect a collision
231

s less than the full packet transmission time. f
Algorithm 1 CSMA contention algorithm for one packet transmission
attempt.
1: CCA ← channel_state(𝛿)
2: while CCA == BUSY do
3: CCA ← channel_state(𝛿)
4: end while
5: if rand() > 𝜏 then
6: Go to 1
7: end if
8: // The station has won the contention
9: send(packet)
0: if CD_enabled then
1: collision ← check_tx(𝑇c)
2: if collision then
3: abort_tx
4: else
5: wait_for_tx_complete
6: end if
7: else
8: wait_for_tx_complete
9: end if

We do not consider Binary Exponential Backoff, which is a rough
way of adapting the transmission probability in the face of repeated
collisions. Hence, the value of transmission probability 𝜏𝑖 is not updated
by station 𝑖 because of packet retransmissions. In fact, a smarter way
of adapting the transmission probability of each station is defined
in Section 6, based on the insight gained from the stability analysis
and the maximization of the stable throughput under fairness con-
straints. Transmission probability adaptation defined in Section 6 leads
to throughput optimality.

It is assumed that stations can sense each other’s transmissions,
i.e., there are no hidden stations. Therefore stations are ‘‘synchronized’’,
i.e., the time axis can be thought as split into virtual slots. A virtual slot
onsists of one back-off slot, possibly followed by a transmission. The
ransmission probability of station 𝑖 in a virtual slot time is denoted
ith 𝜃𝑖. Given that station 𝑖 is backlogged, the transmission probability

s 𝜃𝑖 = 𝜏𝑖. If instead station 𝑖 is idle (not backlogged), it is 𝜃𝑖 = 0.
Either without or with CD, a successful transmission of station 𝑖 in

a virtual slot occurs if station 𝑖 attempts a transmission and no other
station does. The corresponding probability is

𝑆𝑖(𝜽) = 𝜃𝑖
𝑛
∏

𝑗=1,𝑗≠𝑖
(1 − 𝜃𝑗 ) (1)

As for the mean virtual slot time, let us consider first the case with no
CD and let us define the following random variables:

𝑍𝑖 =

{

0 w.p. 1 − 𝜃𝑖,
𝑌𝑖 w.p. 𝜃𝑖.,

𝑖 = 1,… , 𝑛. (2)

The virtual slot time reduces to a back-off slot time, if no station
transmits, otherwise it is the sum of the back-off time and of the longest
packet transmission time. Formally,

𝑉 = 𝛿 + max{𝑍1,… , 𝑍𝑛} = 𝛿 + 𝑉 ′ (3)

where we introduce the random variable 𝑉 ′ = max{𝑍1,… , 𝑍𝑛}, re-
ferred to as reduced virtual slot time.

Assuming the 𝑍𝑖’s are independent random variables, the Cumula-
tive Distribution Function (CDF) of 𝑉 ′ is given by

𝐹𝑉 ′ (𝑥) = (𝑉 ′ ≤ 𝑥) =
𝑛
∏

𝑖=1
𝐹𝑍𝑖 (𝑥) =

𝑛
∏

𝑖=1

(

1 − 𝜃𝑖 + 𝜃𝑖𝐹𝑌𝑖 (𝑥)
)

(4)

here we have used the identity 𝐹𝑍𝑖 (𝑥) = 1 − 𝜃𝑖 + 𝜃𝑖𝐹𝑌𝑖 (𝑥) that is a
onsequence of the definition of 𝑍𝑖 in Eq. (2), for 𝑖 = 1,… , 𝑛. In the
ollowing, the Complementary CDF (CCDF) will be used, which follows
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immediately from Eq. (4)

𝐺𝑉 ′ (𝑥) = (𝑉 ′ > 𝑥) = 1 − 𝐹𝑉 ′ (𝑥) = 1 −
𝑛
∏

𝑖=1

(

1 − 𝜃𝑖𝐺𝑌𝑖 (𝑥)
)

(5)

According to Eq. (5), the mean virtual slot time 𝑉 = E[𝑉 ] is given
by

𝑉 (𝜽) = 𝛿 + E[𝑉 ′] = 𝛿 + ∫

∞

0

[

1 −
𝑛
∏

𝑖=1

(

1 − 𝜃𝑖𝐺𝑌𝑖 (𝑥)
)

]

𝑑𝑥 (6)

where 𝜽 = [𝜃1,… , 𝜃𝑛].
This general expression can be simplified in special cases. A case

of fairly wide interest is when packet transmission times take discrete
values. Let all possible values of packet transmission time be integer
multiples of a common (arbitrary) quantum 𝛥𝑥. Packet transmission
times belong to the set {𝛥𝑥, 2𝛥𝑥,… ,𝓁𝛥𝑥}, for a positive integer 𝓁. Let
𝐺𝑌𝑖 (ℎ) = (𝑌𝑖 ≥ ℎ𝛥𝑥), ℎ = 1,… ,𝓁 denote the discrete CCDF of the
packet transmission time. Then, Eq. (6) becomes:

𝑉 (𝜽) = 𝛿 + 𝛥𝑥
𝓁
∑

ℎ=1

[

1 −
𝑛
∏

𝑖=1

(

1 − 𝜃𝑖𝐺𝑌𝑖 (ℎ)
)

]

(7)

If packet transmission times are constant, i.e., 𝑌𝑖 = 𝑇𝑖, ∀𝑖, then it can
be verified that:

𝑉 (𝜽) = 𝛿 + 𝑇1𝜃1 +
𝑛
∑

𝑖=2
𝑇𝑖𝜃𝑖

𝑖−1
∏

𝑗=1

[

1 − 𝜃𝑗
]

(8)

The above expression stems from the assumed decreasing ordering of
the 𝑇𝑖’s.

With CD, since 𝑇c ≤ 𝑌𝑖, ∀𝑖, the virtual slot time is:

𝑉CD =

⎧

⎪

⎨

⎪

⎩

𝛿 if no station transmits,
𝛿 + 𝑌𝑖 if station 𝑖 transmits, 𝑖 = 1,… , 𝑛,
𝛿 + 𝑇c if more than one station transmit.

(9)

The mean virtual slot time is derived from Eq. (9), yielding

𝑉 CD(𝜽) = 𝛿 +
𝑛
∑

𝑖=1
𝑇𝑖𝑆𝑖(𝜽) + 𝑇c

(

1 − 𝑃e(𝜽) −
𝑛
∑

𝑖=1
𝑆𝑖(𝜽)

)

(10)

where 𝑃e(𝜽) =
∏𝑛

𝑖=1 (1 − 𝜃𝑖) is the probability that no station transmits,
and 𝑆𝑖(𝜽) is given in Eq. (1).

4. Stability

Let 𝑄𝑖(𝑡) denote the length of the queue at station 𝑖, sampled at the
beginning of virtual slot 𝑡. It evolves according to:

𝑄𝑖(𝑡 + 1) = 𝑄𝑖(𝑡) − 𝑈𝑖(𝑡) + 𝐴𝑖(𝑡) (11)

where 𝑈𝑖(𝑡) = 1 if station 𝑖 makes a successful transmission, while
𝑈𝑖(𝑡) = 0 otherwise, and 𝐴𝑖(𝑡) is the number of new packets arriving
during the 𝑡th virtual slot time. The array 𝐐(𝑡) = [𝑄1(𝑡),… , 𝑄𝑛(𝑡)]
represents the state of the stations at the beginning of virtual slot 𝑡. The
state space of the process 𝐐(𝑡) is made of all 𝑛-tuples of non-negative
integers:  = {𝐪 = [𝑞1,… , 𝑞𝑛] ∶ 𝑞𝑖 ∈ Z+ ∀𝑖}. If steady-state exists,
𝐐 = 𝐐(∞) denotes the queue status random variable.

The notion of stability considered here is based on the boundedness
of mean queue lengths. Formally, if 𝑄(𝑡) denotes the length of a queue
at the beginning of slot 𝑡, the queue is said to be (strongly) stable if
(e.g., see [37, Ch.2]):

lim sup
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
E[𝑄(𝑡)] < ∞ (12)

Algorithm 1 depends on the transmission probability 𝜏. Let us
assume that a set of transmission probabilities 𝜏𝑖, 𝑖 = 1,… , 𝑛 are
assigned to stations. We can arrange these probabilities in a row vector
𝝉 = [𝜏 ,… , 𝜏 ] belonging to [0, 1]𝑛. The following result holds.
232

1 𝑛
Fig. 1. Example of stability region for two stations, one with 𝑌1 = 𝑇1 = 100 ⋅ 𝛿, the
other one with 𝑌2 = 𝑇2 = 20 ⋅ 𝛿. It can be noted that the stability region is not convex.

Theorem 1. Let 𝑛 stations share a channel according to the CSMA
procedure in Algorithm 1 (without CD), with transmission probability 𝜏𝑖 and
packet transmission times 𝑌𝑖, with mean 𝑇𝑖 = E[𝑌𝑖], for station 𝑖 = 1,… , 𝑛.
Station queues are stable if

𝜆𝑖 < 𝜆𝑖,sup =
𝑆𝑖(𝝉)

𝑉 (𝝉)
, 𝑖 = 1,… , 𝑛, (13)

here 𝝉 = [𝜏1,… , 𝜏𝑛], 𝑆𝑖(⋅) is defined in Eq. (1) and 𝑉 (⋅) is defined
n Eq. (6).

roof. See Appendix A. □

If the transmission probability in Algorithm 1 can be adjusted, it
s possible to stabilize the network for a whole set of arrival rates. In
ther words, given a row vector of mean arrival rates 𝝀 = [𝜆1,… , 𝜆𝑛],
pplying these input vector to the CSMA network leads to stable
ueues, if there exists a vector of transmission probabilities such that
he inequalities in Eq. (13) are met. We can therefore define a stability
egion as follows

=
{

𝝀 ∈ R𝑛 |∃𝝉 ∈ [0, 1]𝑛 ∶ 0 ≤ 𝜆𝑖 < 𝜆𝑖,sup = 𝑆𝑖(𝝉)∕𝑉 (𝝉) , 𝑖 = 1,… , 𝑛
}

(14)

here 𝑉 (⋅) and 𝑆𝑖(⋅) are the functions defined in Eqs. (1) and (6). As
ong as 𝝀 ∈ , the considered CSMA algorithm can be stabilized by a
uitable choice of the transmission probabilities.

For a given 𝝉, the set of points 𝝀 = [𝜆1,… , 𝜆𝑛] such that 0 ≤ 𝜆𝑖 <
𝑖,sup = 𝑆𝑖(𝝉)∕𝑉 (𝝉) , 𝑖 = 1,… , 𝑛, is an interval in R𝑛. The set  is the
nion of all such intervals as 𝝉 spans [0, 1]𝑛. An example of stability
egion for two stations is given in Fig. 1. Transmission times for the
wo stations are deterministic and equal to 𝑌1 = 100 ⋅ 𝛿 and 𝑌2 = 20 ⋅ 𝛿.

The set  defines the stability region of the heterogeneous CSMA
etwork, as stated in the following theorem.

heorem 2. Let 𝑛 stations share a channel according to the CSMA
rocedure in Algorithm 1 (without CD), with packet transmission times 𝑌𝑖,
ith mean 𝑇𝑖 = E[𝑌𝑖], 𝑖 = 1,… , 𝑛. If 𝝀 = [𝜆1,… , 𝜆𝑛] ∈ , then there exist
ransmission probabilities 𝜏𝑖, 𝑖 = 1,… , 𝑛, such that station queues can be
tabilized by setting the parameter 𝜏 appearing in Algorithm 1 equal to 𝜏𝑖
or station 𝑖 (𝑖 = 1,… , 𝑛). Conversely, if station queues can be stabilized
y setting the transmission probability of station 𝑖 to some value 𝜏𝑖 for
= 1,… , 𝑛, then the arrival rate vector 𝝀 = [𝜆1,… , 𝜆𝑛] must belong to
he region .

roof. The first part follows from the definition of . Namely, if 𝝀 ∈ ,
here must exists probabilities 𝜏𝑖 such that 𝜆𝑖 < 𝜆𝑖,sup = 𝑆𝑖(𝝉)∕𝑉 (𝝉) for
𝑖 = 1,… , 𝑛. Then, according to Theorem 1, station queues are stable.

The second part is proved in Appendix B. □

The definition of the stability region in Eq. (14) implies that it is
possible to set the transmission probabilities of stations according to
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the specific input rates, with no constraints. Given the vector 𝝀 ∈ , a
et of transmission probabilities satisfying the inequalities in Eq. (13)
ust be found and assigned to stations. There must exist at least one

uch vector, since 𝝀 belongs to the stability region . A practical
mplementation of queue stabilization consists of a distributed adaptive
lgorithm to properly set the transmission probabilities. An example of
uch an algorithm is defined in Section 6.1

The stability region definition is easily modified to account for
estrictions in the choice of transmission probabilities. Assume trans-
ission probabilities can only takes values in the set  ⊆ [0, 1]𝑛. Then,

he stability region becomes:

=
{

𝝀 ∈ R𝑛 |∃𝝉 ∈  ∶ 0 ≤ 𝜆𝑖 < 𝜆𝑖,sup = 𝑆𝑖(𝝉)∕𝑉 (𝝉) , 𝑖 = 1,… , 𝑛
}

(15)

As a special case, the set  can reduce to just one point. This is what
happens with CSMA/CA, as modeled according to the classic approach
in [29]. In that case, the behavior of each station can be accurately
represented by Algorithm 1, where the transmission probability of all
stations is the same, equal to 𝜏0, and 𝜏0 is computed by solving the
following non linear equation system:

𝜏0 =
∑∞
𝑘=0 𝑝

𝑘

∑∞
𝑘=0 𝑝𝑘

2𝑘𝑊min+1
2

= 2
1 +𝑊min

1−𝑝
1−2𝑝

(16)

𝑝 = 1 − (1 − 𝜏0)𝑛−1 (17)

where 𝑝 is the collision probability and 𝑊min is the minimum con-
ention window size of the CSMA/CA protocol. The algorithm defined
or CSMA/CA in WiFi, under the model defined in [29], leads to

constrained region  reduced to the point [𝜏0,… , 𝜏0]. Hence the
tability region corresponding to a rectangle, defined by 0 ≤ 𝜆𝑖 ≤
𝑆0∕𝑉 0, 𝑖 = 1,… , 𝑛, where 𝑆0 = 𝜏0(1 − 𝜏0)𝑛−1 and

𝑉 0 = 𝛿 + ∫

∞

0

[

1 −
𝑛
∏

𝑖=1

(

1 − 𝜏0𝐺𝑌𝑖 (𝑥)
)

]

𝑑𝑥 (18)

In case 𝑌𝑖 = 𝑇0, ∀𝑖, we find 𝑉 0 = 𝛿 + 𝑇0 − 𝑇0(1 − 𝜏0)𝑛. Then, the stability
limit on the arrival rate becomes 𝑆𝑜∕𝑉 0 = 𝜏0(1−𝜏0)𝑛−1

𝛿+𝑇0−𝑇0(1−𝜏0)𝑛
, which is but

he well known expression of the saturation throughput of one station
n a homogeneous (symmetric) model (e.g., see [29]).

In case of CD, collisions last a fixed time 𝑇c and it must be 𝑇c ≤
𝑖, ∀𝑖. We can repeat the steps in the proof of Theorem 1, to prove the
ollowing.

heorem 3. Let 𝑛 stations share a channel according to the CSMA
rocedure in Algorithm 1 (with CD), with transmission probabilities 𝜏𝑖 and
acket transmission times 𝑌𝑖, with mean 𝑇𝑖 = E[𝑌𝑖], for station 𝑖 = 1,… , 𝑛.
Let 𝑇c be the time required to detect a collision and assume 𝑇c ≤ 𝑌𝑗 with
probability 1, 𝑗 = 1,… , 𝑛. Station queues are stable if

𝜆𝑖 < 𝜆
CD
𝑖,sup =

𝑆𝑖(𝝉)

𝑉 CD(𝝉)
, 𝑖 = 1,… , 𝑛, (19)

where 𝝉 = [𝜏1,… , 𝜏𝑛], 𝑆𝑖(⋅) and 𝑉 CD(⋅) are given by Eqs. (1) and (10).

Proof. The proof follows the same steps as in Theorem 1. □

Analogous to the case where CD is not allowed, if the transmission
robability in Algorithm 1 can be adjusted, we can define a stability
egion as follows:

CD =
{

𝝀 ∈ R𝑛
|∃𝝉 ∈ [0, 1]𝑛 ∶ 0 ≤ 𝜆𝑖 < 𝜆

CD
𝑖,sup = 𝑆𝑖(𝝉)∕𝑉 CD(𝝉) , 𝑖 = 1,… , 𝑛

}

(20)

A property analogous to the one stated in Theorem 2 can be shown
in case of CD, with reference to the stability region defined above.
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5. Stable throughput maximization under fairness constraint

The theorems in Section 4 identify the stability region of the consid-
ered heterogeneous CSMA, as given in Eqs. (14) and (20). Those regions
are referred to packet rates 𝜆𝑖, 𝑖 = 1,… , 𝑛. It is also possible to introduce
a notion of throughput.

Let 𝐿𝑖 denote the average length of packets transmitted by the 𝑖th
station. This is related to the packet transmission time 𝑇𝑖 through the
average bit rate of station 𝑖, 𝑅𝑖, namely 𝐿𝑖 = 𝑇𝑖𝑅𝑖. Since 𝜆𝑖 represents
the mean arrival rate of packets at station 𝑖 (measured in packets per
unit time), the bit rate sustained by station 𝑖 is given by 𝜆𝑖𝐿𝑖 = 𝜆𝑖𝑇𝑖𝑅𝑖.
Then, the overall network throughput (delivered bit per unit time) is
𝛬 =

∑𝑛
𝑖=1 𝜆𝑖𝑇𝑖𝑅𝑖. Requiring stability, we get the following upper bound

of the throughput, conditional on given transmission probabilities 𝜏𝑖, 𝑖 =
1,… , 𝑛:

𝛬sup(𝝉) =
𝑛
∑

𝑖=1
𝜆𝑖,sup𝑇𝑖𝑅𝑖 =

𝑛
∑

𝑖=1

𝑆𝑖(𝝉)

𝑉 (𝝉)
𝑇𝑖𝑅𝑖 (21)

If 𝛬sup(𝝉) is maximized with unconstrained transmission probabil-
ities, i.e., for 𝝉 ∈ [0, 1]𝑛, it turns out that the best we can do is
setting 𝜏𝑖∗ = 1 and 𝜏𝑖 = 0, 𝑖 ≠ 𝑖∗, with 𝑖∗ = argmax1≤𝑖≤𝑛

𝑇𝑖𝑅𝑖
𝛿+𝑇𝑖

. Only
single station transmits, an utmost unfair outcome. Hence 𝛬sup(𝝉)

is to be maximized under a fairness criterion. Given the mean packet
transmission times 𝑇𝑖, 𝑖 = 1,… , 𝑛, the transmission probabilities 𝜏𝑖, 𝑖 =
1,… , 𝑛, can be set so as to achieve airtime fairness, i.e., equalizing
the average fraction of time that the channel is used successfully by
each station.3 That fraction is proportional to 𝑇𝑖𝑆𝑖(𝝉), which in turn is
proportional to 𝑇𝑖𝜏𝑖∕(1−𝜏𝑖). Airtime fairness leads therefore to requiring
that 𝑇𝑖𝜏𝑖∕(1 − 𝜏𝑖) be a constant independent of 𝑖, hence 𝑇𝑖𝜏𝑖∕(1 − 𝜏𝑖) =
𝐴∕𝑛, for 𝑖 = 1,… , 𝑛, with 𝑇𝐴 a time, to be determined. The factor 1∕𝑛

is introduced to prepare for the asymptotic analysis that will be carried
out in this Section. Hence, airtime fairness implies that the transmission
probabilities take the following form:

𝜏𝑖 =
1

1 + 𝑛𝑇𝑖∕𝑇𝐴
, 𝑖 = 1,… , 𝑛. (22)

The stable throughput bound 𝛬sup(𝝉) obtained by setting the trans-
mission probabilities according to Eq. (22) is denoted with 𝛬𝐴𝐹sup.

5.1. CSMA with no collision detection

Setting the transmission probabilities as prescribed in Eq. (22) and
using Eqs. (1), (6), (13) and (21) for the stability bound 𝜆𝑖,sup, we find

𝛬𝐴𝐹sup =
𝑛
∑

𝑖=1
𝑅𝑖⋅

𝜏𝑖𝑇𝑖
1−𝜏𝑖

∏𝑛
𝑗=1 (1 − 𝜏𝑗 )

𝛿 + 𝑉
′ =

𝑛
∑

𝑖=1
𝑅𝑖⋅

𝑇𝐴
𝑛
∏𝑛

𝑗=1

(

1 − 1
1+𝑛𝑇𝑗∕𝑇𝐴

)

𝛿 + 𝑉
′ = 𝑅⋅𝜌

(23)

with 𝑅 = 1
𝑛
∑𝑛
𝑖=1 𝑅𝑖,

𝜌(𝑛, 𝑇𝐴) =
𝑇𝐴

∏𝑛
𝑗=1

(

1 − 1
1+𝑛𝑇𝑗∕𝑇𝐴

)

𝛿 + 𝑉
′ (24)

and

𝑉
′
= ∫

∞

0

[

1 −
𝑛
∏

𝑗=1

(

1 − 1
1 + 𝑛𝑇𝑗∕𝑇𝐴

𝐺𝑌𝑗 (𝑥)
)

]

𝑑𝑥 (25)

Given the mean air bit rate 𝑅, maximizing the throughput upper
bound 𝛬𝐴𝐹sup is the same as maximizing the normalized throughput
𝜌(𝑛, 𝑇𝐴) in Eq. (24) as a function of 𝑇𝐴, with 𝑇𝐴 > 0.

3 An entirely similar analysis would be obtained, if the definition of airtime
airness were changed slightly to requiring the same average fraction of time
sed by each station, irrespective of whether it was successful or not.
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Fig. 2. (a) Empirical PDF of packet transmission times. (b) Empirical CCDFs of packet transmission times of the three considered traffic classes. Packet lengths are obtained from
an IP traffic trace measured on an Internet link. Bit rate and overhead are set according to values drawn from the IEEE 802.11ac standard.
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The optimal 𝑇𝐴, i.e., the value 𝑇 ∗
𝐴 that maximizes the normalized

throughput 𝜌, depends on the number 𝑛 of stations, that is, 𝑇 ∗
𝐴 = 𝑇 ∗

𝐴(𝑛).
There is no conceptual difficulty in finding 𝑇 ∗

𝐴(𝑛) for an assigned value
of 𝑛, given the packet transmission times PDFs of the stations. Then, the
corresponding throughput-optimal fair transmission probabilities 𝜏∗𝑖 are
found as 𝜏∗𝑖 = 1

1+𝑛𝑇𝑖∕𝑇 ∗
𝐴(𝑛)

, 𝑖 = 1,… , 𝑛.
It turns out that 𝑇 ∗

𝐴(𝑛) is weakly dependent on 𝑛 and we can
effectively approximate 𝑇 ∗

𝐴(𝑛) with 𝑇 ∗
𝐴(∞). This motivates considering

the asymptotic regime for 𝑛 → ∞, which is especially helpful to gain
nsight into the choice of the optimal value of 𝑇𝐴.4

We let 𝜇𝑛 = 1
𝑛
∑𝑛
𝑖=1

1
𝑇𝑖

and assume that there exist a proper limit
𝜇 = lim𝑛→∞ 𝜇𝑛. Moreover, we assume that 𝑌𝑗 have a finite support
for all 𝑗 and let 𝑇max be such that 𝑌𝑗 ≤ 𝑇max w.p. 1, ∀𝑗. Then, it is
shown in Appendix C that the following bounds hold for the asymptotic
normalized throughput:

𝛼𝑒−𝛼

𝛽 + 𝜉(1 − 𝑒−𝛼∕𝜉 )
≤ 𝜌∞(𝑇𝐴) = lim

𝑛→∞
𝜌(𝑛, 𝑇𝐴) ≤

𝛼𝑒−𝛼

𝛽 + 1 − 𝑒−𝛼
(26)

here 𝛼 = 𝑇𝐴 𝜇, 𝛽 = 𝛿 𝜇 and 𝜉 = 𝑇max 𝜇.
It is to be emphasized that the bounds on the normalized throughput

n Eq. (26) depend only on mean packet transmission times 𝑇𝑖 = E[𝑌𝑖],
.e., they are insensitive to the probability distributions of the random
ariables 𝑌𝑖. Strictly speaking, this holds asymptotically for 𝑛→ ∞, but
umerical evidence points out that the obtained bounds are tight for
ssentially all values of 𝑛.

Once given 𝛿 and 𝑇max (hence 𝛽 and 𝜉), the bounds of 𝜌∞ depend
nly on 𝑇𝐴 through 𝛼. The upper bound in the rightmost side of Eq. (26)
s maximized by setting 𝛼 = 𝛼∗, where 𝛼∗ is the unique solution of the
quation 𝑒−𝛼 = (𝛽+1)(1−𝛼) for 𝛼 ∈ (0, 1). Casting this equation into the
orm (1−𝛼)𝑒−(1−𝛼) = 1

𝑒(1+𝛽) , we can give an expression of the solution 𝛼∗
s a function of 𝛽, by exploiting the solution of the equation 𝑦𝑒−𝑦 = 𝑢,
𝑢 ∈ [0, 1∕𝑒] and 𝑦 ∈ [0, 1], which is known to be [38] 𝑦 =

∑∞
𝑛=1

𝑛𝑛−1

𝑛! 𝑢
𝑛.

Then, we have

𝜌∗∞ = max
𝛼>0

𝛼𝑒−𝛼

𝛽 + 1 − 𝑒−𝛼
= 1 − 𝛼∗ =

∞
∑

𝑛=1

𝑛𝑛−1𝑒−𝑛

𝑛!
1

(1 + 𝛽)𝑛
(27)

Given 𝛼∗, the optimal value of 𝑇𝐴 is 𝑇 ∗
𝐴 = 𝑇 ∗

𝐴(∞) = 𝛼∗∕𝜇. The value 𝜌∗∞ =
𝛼∗𝑒−𝛼∗

𝛽+1−𝑒−𝛼∗
= 1 − 𝛼∗ is the maximum achievable stable throughput under

airtime fairness, obtained by setting the transmission probabilities as
in Eq. (22) with 𝑇𝐴 = 𝑇 ∗

𝐴.

4 In practice, it is not expected that an extremely large number of stations
e contending in a CSMA network. The asymptotic analysis is instrumental in
inding a simple analytical bound on the achievable stable throughput, that
urns out to give an accurate estimate for essentially all values of the number
f stations.
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To give a numerical example, we consider a CSMA network with
heterogeneous variable packet transmission times. Packet flows offered
by stations belong to three different classes:

• long packet flows, e.g., bulk data traffic, web browsing.
• short packet flows, e.g., control traffic, real time audio, chatting,

notifications, short messages.
• mixed packet flows, i.e., a mix of the two above classes.

To be consistent with the notation of the paper, the long packet flow
type is labeled with index 1 (also referred to as traffic class 1), mixed
packet lengths flows correspond to type 2 (traffic class 2), and short
packet flows belong to type 3 (traffic class 3).

Packet length have been set based on Internet traffic measurements,
i.e., IP packet traffic traces captured on a backbone link in San Jose,
CA, USA, made available by CAIDA5 Packet transmission times in the
CSMA network are computed by using numerical values of parameters
drawn from the IEEE 802.11ac standard. The backoff slot time is 𝛿 =
9 μs. Considering unicast transmissions, the overall overhead, including
Inter-Frame Spaces, physical layer preamble, MAC overhead and the
acknowledgment, amounts to 𝑇oh = 117.85 μs. The air bit rate is fixed
to 𝑅 = 65 Mbit∕s. Let 𝐿 denote the IP packet length. Then, packet
transmission time is 𝑌 = 𝑇oh + 𝐿∕𝑅. The empirical PDF of 𝑌 is shown
in Fig. 2(a).

To identify the three traffic flow types listed above, we consider
packet length samples not larger than 300 bytes for type 3 (short
packets), packet lengths no smaller than 1200 bytes for type 1 (long
packets) and all packet lengths for type 2 (mixed traffic). The resulting
mean packet transmission times are 𝑇1 = 299 μs, 𝑇2 = 180.33 μs, and
𝑇3 = 126.34 μs. The empirical CCDFs of packet transmission times of
the three types of packet flows are illustrated in Fig. 2(b).

Let 𝑛𝑖 denote the number of stations belonging to traffic class 𝑖, for
𝑖 = 1, 2, 3. The expectation 𝜇 is evaluated as 𝜇 = 𝑛1∕𝑛

𝑇1
+ 𝑛2∕𝑛

𝑇2
+ 𝑛3∕𝑛

𝑇3
, where

𝑛 = 𝑛1 + 𝑛2 + 𝑛3. Assuming 𝑛1 = 𝑛2 = 𝑛3, it is 𝜇 = 0.0056 μs−1.
Given the values of 𝛿 and 𝑇max = 303 μs, we have in this example

= 1.7 and 𝛽 = 0.05. The normalized throughput 𝜌(𝑛, 𝑇𝐴) is evaluated
or 𝑛1 = 𝑛2 = 𝑛3 = 5 as a function of 𝛼 = 𝑇𝐴𝜇 in Fig. 3(a) (solid
ine), along with the bounds established in Eq. (26) (dashed lines). The
ormalized throughput achieved by CSMA/CA of WiFi, as evaluated
ccording to Bianchi’s model (see Section 4), is also depicted (dotted
ine). In that case, the transmission probability equals 𝜏0 for all nodes
nd no airtime fairness can be maintained. Repeating the derivation
n Eq. (23) in case of WiFi CSMA/CA model, considering a fixed air bit

5 https://www.caida.org/catalog/datasets/monitors/passive-equinix-
anjose/

https://www.caida.org/catalog/datasets/monitors/passive-equinix-sanjose/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-sanjose/
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Fig. 3. Heterogeneous CSMA network with three types of sources, whose packet transmission times are built out of a measured IP traffic trace. (a) Normalized throughput 𝜌(𝑛, 𝑇𝐴)
s a function of 𝛼 = 𝑇𝐴𝜇; exact values are plotted as a solid line, lower and upper bounds as dashed lines. (b) Optimized throughput 𝜌(𝑛, 𝑇 ∗

𝐴 (𝑛)) as a function of the number of
tations, along with lower and upper bounds evaluated for 𝛼 = 𝛼∗ = 𝑇 ∗

𝐴 (∞)∕𝜇. The normalized throughput achieved by CSMA/CA of WiFi, as evaluated according to Bianchi’s
odel, are shown (dotted line).
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ate for all stations, we find 𝛬(CSMA/CA)
max = 𝑅 ⋅ 𝜌(CSMA/CA), where

𝜌(CSMA/CA) =

(

1
𝑛

𝑛
∑

𝑖=1
𝑇𝑖

)

𝑛𝜏0(1 − 𝜏0)𝑛−1

𝑉 0
(28)

where 𝑉 0 is given in Eq. (18).

The asymptotic bounds turn out to be very accurate, especially
round the maximum achievable normalized throughput. They are
herefore definitely useful to identify accurately the optimal value
f 𝑇𝐴. The normalized throughput achievable under airtime fairness
onstraint outperforms the ordinary CSMA/CA, if 𝑇𝐴 is suitably set.

It is to be noted that CSMA/CA does not achieve airtime fairness. In
the present case, the mean fraction of airtime used by class 2 stations
(those with short packets) and class 3 stations (those with mixed length
packets) are respectively 42% and 60% relative to class 1 stations
(those with long packets), thus operating the channel quite far from
a fair airtime sharing.

The remarkable accuracy of the asymptotic bounds for essentially
all values of 𝑛 is evident also from Fig. 3(b), where the maximum
achieved normalized throughput 𝜌(𝑛, 𝑇 ∗

𝐴(𝑛)) is plotted as a function of
the number of stations 𝑛1 = 𝑛2 = 𝑛3 (hence, it is 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 = 3𝑛1),
along with the values obtained by maximizing the upper and lower
bounds in Eq. (26) (dashed lines). Except of the case 𝑛1 = 1, the bounds
predicts a correct and quite narrow interval where the exact value of
the maximum stable normalized throughput falls within. More in depth,
the maximized upper bound 𝜌∗∞ = 1− 𝛼∗ provides an accurate estimate
of the maximum achievable stable throughput, holding for virtually
all number of stations, even if it has been established based on an
asymptotic analysis for 𝑛 → ∞. The normalized throughput achieved
by CSMA/CA of WiFi is shown as well (dotted line). In spite of not
having to meet the airtime fairness constraint (thus providing only
42% and 60% airtime of class 3 stations to stations of class 1 and 2,
respectively), CSMA/CA attains a lower throughput level as compared
to the (fair) optimized setting, except of the case 𝑛1 = 1. Moreover,
while the optimized throughput level is insensitive to the number of
contending stations, CSMA/CA throughput decays as 𝑛 grows.

Two main results stem from these plots.

First, the bounds in Eq. (26) are very accurate for all values of the
umber of stations 𝑛, their accuracy improving as 𝑛 grows.

A second point is that the maximum achievable normalized through-
ut 𝜌(𝑛, 𝑇 ∗

𝐴(𝑛)) is only weakly dependent on 𝑛. This is the key result
hat backs up the use of the asymptotic analysis to build an adaptive
lgorithm that drives the system towards throughput optimality, under
irtime fairness, for any value of 𝑛. This issue is dealt with of Section 6.
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5.2. CSMA with collision detection

In case of CSMA with CD, the throughput upper bound under
stability and airtime fairness constraints is 𝛬CD

sup = 𝑅 ⋅ 𝜌CD, where

𝜌CD(𝑛, 𝑇𝐴) =
𝑇𝐴𝑃e(𝑛, 𝑇𝐴)

𝛿 + 𝑇𝐴𝑃e(𝑛, 𝑇𝐴) + 𝑇c(1 − 𝑃e(𝑛, 𝑇𝐴) − 𝜇𝑛𝑇𝐴𝑃e(𝑛, 𝑇𝐴))
(29)

with 𝜇𝑛 =
1
𝑛
∑𝑛
𝑖=1

1
𝑇𝑖

and

e(𝑛, 𝑇𝐴) =
𝑛
∏

𝑖=1

(

1 − 1
1 + 𝑛𝑇𝑖∕𝑇𝐴

)

(30)

Assume 𝜇𝑛 has a proper limit as 𝑛→ ∞, namely 𝜇𝑛 → 𝜇. It is also easy
o check that 𝑃e(𝑛, 𝑇𝐴) → 𝑒−𝑇𝐴𝜇 as 𝑛 → ∞. Then we have

∞,CD(𝑇𝐴) = lim
𝑛→∞

𝜌CD(𝑛, 𝑇𝐴) =
𝛼𝑒−𝛼

𝛽 + 𝛼𝑒−𝛼 + 𝜓 (1 − 𝑒−𝛼 − 𝛼𝑒−𝛼)
(31)

here 𝛼 = 𝑇𝐴𝜇, 𝛽 = 𝛿𝜇, and 𝜓 = 𝑇c𝜇.
The asymptotic throughput 𝜌∞,CD depends on 𝑇𝐴 only through the

non-dimensional parameter 𝛼. The maximum of 𝜌∞,CD is attained for
𝛼 = 𝛼∗CD, where 𝛼∗CD is the unique solution in (0, 1) of the equation
𝑒−𝛼 = (𝛽∕𝜓 + 1)(1 − 𝛼). Note that 𝛽∕𝜓 = 𝛿∕𝑇c does not depend on
packet transmission times, only on (fixed) standard parameters. Hence
the optimal choice of 𝑇𝐴 in case of CD does not depend on packet
transmission times. The maximum achievable asymptotic normalized
throughput can be expressed as

𝜌∗∞,CD = max
𝑇𝐴>0

𝜌∞,CD(𝑇𝐴) =
1 − 𝛼∗CD

1 − 𝛼∗CD + 𝜓𝛼∗CD
(32)

For 𝜓 = 1, the maximum throughput is the same as in case of no CD.
For 𝜓 < 1, the optimized throughput bound of CSMA with CD becomes
larger than in case of no CD and can get closer and closer to 1 as 𝜓
becomes smaller and smaller. This matches with intuition, given that
𝜓 = 𝑇c𝜇 ∼ 1

𝑛
∑𝑛
𝑖=1 𝑇c∕𝑇𝑖 can be viewed as the average ratio between the

time required to detect a collision and the packet transmission time.
Fig. 4 shows numerical examples of the maximum achievable nor-

malized throughput 𝜌CD(𝑛, 𝑇 ∗
𝐴(𝑛)) as a function of the number of stations

𝑛, where 𝑇 ∗
𝐴(𝑛) is the value of 𝑇𝐴 that maximizes 𝜌CD(𝑛, 𝑇𝐴) for each

iven 𝑛. The dashed line is the asymptotic value of the maximum
chievable normalized throughput 𝜌∗∞,CD given in Eq. (32). The back-
ff slot time is set to 𝛿 = 1 and the collision resolution time is 𝑇c = 5.
ig. 4(a) is obtained by considering mean packet transmission times
niformly distributed between 𝑇min = 20 and 𝑇max = 100. Bimodal mean
acket transmission times are used in Fig. 4(b), with half of stations
aving mean packet transmission time 𝑇min = 20, the other half having
ean packet transmission time 𝑇max = 100.

Similar comments apply here as those made in case of no CD. We

otice also that the asymptotic bound of the normalized throughput,
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Fig. 4. Maximum achievable normalized throughput with CD as a function of the number of contending stations, 𝑛. Solid line represents 𝜌CD(𝑛, 𝑇𝐴(𝑛)). Dashed line corresponds to
the asymptotic value in Eq. (32). Back-off slot time is set to 𝛿 = 1 and collision detection time is 𝑇c = 5. (a) Mean packet transmission time uniformly distributed between 𝑇min = 20
and 𝑇max = 100. (b) Bimodal mean packet transmission times: odd-numbered stations have 𝑇 = 𝑇min = 20, even-numbered ones have 𝑇 = 𝑇max = 100.
t

i.e., 𝜌∗∞,CD in Eq. (32), offers an excellent approximation of 𝜌CD(𝑛, 𝑇 ∗
𝐴(𝑛))

for virtually all values of 𝑛 in case of uniformly distributed mean packet
transmission times. In case of bimodal mean packet transmission times,
the maximum error is 7.6% and it is attained for 𝑛 = 2.

5.3. Variants on the throughput optimization problem statement

The airtime fairness concept used in this Section is not weighted. It
is possible to consider a more general setting, where we require that the
average fraction of time used successfully by station 𝑖 be proportional
to a weight 𝜙𝑖 > 0, with ∑𝑛

𝑖=1 𝜙𝑖 = 1. Formally, we can require that
𝑇𝑖𝑆𝑖(𝝉) = 𝜙𝑖 𝑇𝐴∕𝑛. The whole analysis developed in this Section can be
repeated, modifying only the definition of 𝜇𝑛 and 𝐺𝑛(𝑥). More in depth,
we replace the definitions in Eq. (C.1) with the following ones:

𝜇(𝜙)𝑛 = 1
𝑛

𝑛
∑

𝑖=1

𝜙𝑖
𝑇𝑖

𝐺(𝜙)
𝑛 (𝑥) =

1
𝑛
∑𝑛
𝑗=1

𝜙𝑖𝐺𝑌𝑗 (𝑥)

𝑇𝑗
1
𝑛
∑𝑛
𝑗=1

𝜙𝑖
𝑇𝑗

(33)

verything else stays the same, including the main result in Eq. (26).
Another variant stems from requiring that the achieved carried data

ates be proportional to a given weight 𝜙𝑖, rather than the throughput.
he fairness requirement is then stated as follows: 𝜆𝑖𝐿𝑖 ∝ 𝜙𝑖𝐿∕𝑛, ∀𝑖,
here 𝐿 is a positive parameter that plays the same role as 𝑇𝐴 in

he baseline approach. Since stability entails that 𝜆𝑖 < 𝜆𝑖,sup, this new
airness statement leads to 𝜏𝑖𝐿𝑖

1−𝜏𝑖
= 𝜙𝑖

𝐿
𝑛 , hence 𝜏𝑖 = 1

1+𝑛𝐿𝑖∕(𝜙𝑖𝐿)
. The

derivations in Section 5.1 can be tracked down step by step, only
replacing 𝛬𝐴𝐹sup = 𝜌(𝑛, 𝑇𝐴) ⋅

1
𝑛
∑𝑛
𝑖=1 𝑅𝑖 in Eq. (23) with

𝐴𝐹
sup = 1

1
𝑛
∑𝑛
𝑖=1

𝜙𝑖
𝑅𝑖

⋅ 𝜌(𝑛, 𝑇𝐿) (34)

where 𝑇𝐿 = 𝐿 1
𝑛
∑𝑛
𝑖=1

𝜙𝑖
𝑅𝑖

. The throughput expression is still the product
f the normalized throughput 𝜌 (this time as a function of the parameter
𝐿, rather than 𝑇𝐴) and the average bit rate (this time the weighted
armonic average, rather that the weighted arithmetic average). The
ounds in Eq. (26) still hold, provided that we replace 𝜇 with 𝜇𝐿 =

∑𝑛
𝑖=1 𝜙𝑖∕(𝑅𝑖𝑇𝑖)
∑𝑛
𝑖=1 𝜙𝑖∕𝑅𝑖

.

6. Adaptive transmission algorithm

Under airtime fairness constraints, it is shown that the stable
throughput limit is maximized by setting the transmission probability of
station 𝑖 to 𝜏𝑖 = 1∕(1+𝑛𝑇𝑖∕𝑇 ∗

𝐴), where 𝑇𝑖 is the mean packet transmission
time of station 𝑖 and 𝑇 ∗

𝐴 = 𝑇 ∗
𝐴(𝑛) ≈ 𝑇 ∗

𝐴(∞) = 𝛼∗∕𝜇 (in case of CD, 𝛼∗ is
replaced with 𝛼∗CD).

The quantity 𝛼∗ can be computed by solving a non-linear equation,
while 𝜇 can be estimated by each station, observing channel busy times.
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The number 𝑛 of contending stations can be estimated by the classic o
pseudo-Bayes algorithm proposed in [39] for general non-persistent
CSMA algorithms, or by the Kalman filter approach studied in [40] for
the basic IEEE 802.11 MAC protocol and in [41] for the IEEE 802.11e
MAC protocol with priority handling.

Alternatively, an adaptive algorithm to estimate 𝑛 is derived by
exploiting IdleSense algorithm [32], adapted to the present context.
The adaptive algorithm to adjust transmission probabilities of hetero-
geneous stations is defined in Section 6.1. Numerical examples of the
time dynamics generated by the algorithm are presented in Section 6.2.

6.1. Algorithm for the adaptation of transmission probabilities

IdleSense adjusts the contention window of IEEE 802.11 CSMA/CA
based on the observation of the estimated mean number of idle back-off
slots occurring between consecutive transmissions. The optimal value
of the contention window targeted by IdleSense is 𝑊 ∗ = 2𝑛∕𝛼∗ − 1.
IdleSense algorithm adapts the contention window size of each station
so as to converge to 𝑊 ∗. So long as the contention window 𝑊𝑖 of station
𝑖 is close to 𝑊 ∗ = 2𝑛∕𝛼∗ − 1 we can get an estimate of 𝑛 from the
contention window value as 𝑛 ≈ 𝛼∗(𝑊𝑖 + 1)∕2.

An interesting feature of IdleSense is to focus on idle back-off
slots, whose number depends only on the contention mechanism. Since
transmission attempts are frozen during packet transmission time, the
number of idle back-off slots between successive transmissions does not
depend on packet transmission times. This ensures that we can use
IdleSense effectively also in the considered CSMA environment with
heterogeneous packet transmission times.

In this paper, the contention window is not actually used by stations
to rule access to the channel, rather the transmission probability 𝜏𝑖
is used by station 𝑖. Nonetheless, it is always possible to reproduce
the IdleSense algorithm adapting the quantity 𝑊𝑖, just for the purpose
of getting an estimate of 𝑛. Then the estimate of 𝑛 is used in the
expression of the optimized transmission probability, under airtime
fairness, i.e. 𝜏𝑖 = 1∕(1+ 𝑛𝑇𝑖∕𝑇 ∗

𝐴) = 1∕(1+ 𝑛𝑇𝑖𝜇∕𝛼∗), where 𝑛 is estimated
by means of IdleSense algorithm, namely 𝑛 ≈ 𝛼∗(𝑊𝑖 + 1)∕2.

More in depth, the probability of an idle back-off slot with 𝑛 active
stations is 𝑃e =

∏𝑛
𝑖=1 (1 − 𝜏𝑖). Using the expression of 𝜏𝑖 in Eq. (22), we

have 𝑃e = 𝑃e(𝑛, 𝑇𝐴) =
∏𝑛

𝑖=1

(

1 − 1
1+𝑛𝑇𝑖∕𝑇𝐴

)

. At the optimized working
point, i.e., for 𝑇𝐴 = 𝑇 ∗

𝐴(𝑛), we have

𝑃 ∗
e = 𝑃e(𝑛, 𝑇 ∗

𝐴(𝑛)) ≈ 𝑃e(∞, 𝑇 ∗
𝐴(∞)) = 𝑒−𝑇

∗
𝐴(∞)𝜇 = 𝑒−𝛼

∗ (35)

The mean number of idle back-off slots between two consecutive
transmissions 𝑁𝐼 is geometrically distributed with ratio 𝑃e, hence its
mean is 𝑁𝐼 = E[𝑁𝐼 ] = 1∕(1 − 𝑃e). At the optimal working point it is
𝑁

∗
𝐼 = 1∕(1 − 𝑃 ∗

e ) ≈ 1∕(1 − 𝑒−𝛼∗ ). The contention window size 𝑊𝑖, hence
he transmission probability 𝜏𝑖, is adapted so that the estimated mean
f 𝑁 converges to 𝑁

∗
.
𝐼 𝐼
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Summing up, station 𝑖 optimizes its own transmission probability 𝜏𝑖,
under fairness airtime constraint, by running the following steps:

1. Estimate 𝜇 by observing the channel. Let 𝜇̂ denote the current
estimate.

2. Estimate the mean number of idle back-off slots between two
successive transmissions. Let 𝑁̂𝐼 be the current estimate and
𝑁

∗
𝐼 = 1∕(1 − 𝑒−𝛼∗ ) be its target value.

3. Let 𝑊𝑖 denote the contention window provided by IdleSense
algorithm fed with 𝑁̂𝐼 and 𝑁

∗
𝐼 .

4. Set 𝜏𝑖 = 1∕
(

1 + 𝑊𝑖+1
2 𝑇𝑖𝜇̂

)

.

The detailed pseudo-code of this procedure is given in Algorithm
2. Part of it is patterned after IdleSense. The innovation consists of
lines 19–24. The parameter values suggested in [32] are used: 𝜆 = 6,
𝜇 = 1∕1.0666, 𝛥 = 0.75, 𝛾 = 4, maxtx = 5. Moreover, it is 𝑔 = 0.05. The
quantity 𝜇̂ bears the estimate of 𝜇 It is obtained as 1∕𝐴, where 𝐴 is the
average packet transmission time measured on the channel by means
of an Exponentially Weighted Moving Average algorithm. Estimating 𝜇̂
as 1∕𝐴 is motivated by the bias induced by airtime fairness, i.e., the
fact that stations with large packet transmission times transmit less
frequently (see Appendix D for a detailed derivation).

Algorithm 2 Dynamic adaptation of transmission probability of station
.

Initialization
1: sum ← 0
2: ntx ← 0
3: 𝐶𝑊 ← 16
4: 𝐴← 𝑇𝑖

After each transmission on the channel do
1: 𝑁𝐼 ← number of idle slot preceding tx
2: sumtx ← sumtx+𝑁𝐼
3: ntx ← ntx+1
4: if ntx >= maxtx then
5: 𝑁̂𝐼 ← sum/ntx
6: sum ← 0
7: ntx ← 0
8: if 𝑁̂𝐼 < 𝑁

∗
𝐼 then

9: 𝐶𝑊 ← ⌈𝐶𝑊 + 𝜆⌉
0: else
1: 𝐶𝑊 ← ⌈𝜇 ⋅ 𝐶𝑊 ⌉

2: end if
3: if |𝑁̂𝐼 −𝑁

∗
𝐼 | < 𝛥 then

14: maxtx ← 𝐶𝑊 ∕𝛾;
5: else
6: maxtx ← 5;

17: end if
8: end if
9: if transmission is successfully decoded then
0: 𝑇tx ← duration of transmission
1: 𝐴 ← (1 − 𝑔)𝐴 + 𝑔𝑇tx
2: end if
3: 𝜇̂ = 1∕𝐴

24: 𝜏𝑖 ← 1∕
(

1 + 𝐶𝑊 +1
2

𝑇𝑖𝜇̂
)

6.2. Numerical examples

Examples of the time behavior of Algorithm 2 under transients are
illustrated in Figs. 5 and 6. These figures show the time behavior of
transmission probabilities and cumulative airtime of stations.

A MATLAB based simulation software has been realized. It tracks
the time evolution of a set of stations that share a common channel
according to Algorithm 1. Stations may be either active or idle An
idle station has no packet to send. An active station is backlogged
continuously, as long as it remains active. Switching times between idle
and active states are configured in each simulation experiment. Each
237
Fig. 5. Transmission probabilities versus time under Algorithm 2; the back-off slot
time is set to 𝛿 = 9 μs, packet transmission times are 𝑇1 = 0.9 ms, 𝑇2 = 0.225 ms. Four
stations start transmitting at different times. The transmission probability of each station
is depicted with a different color. Vertical dashed lines mark the start of transmission
of each subsequent station after the first one.

station runs also the transmission probability adaptation algorithm
described in Algorithm 2.

In simulations shown in Figs. 5 and 6, stations are assumed to
belong to two classes, defined according to the value of the packet
transmission time, either 𝑌1 = 𝑇1 or 𝑌2 = 𝑇2. Simulations implement the
adaptive transmission algorithm, with 𝛿 = 9 μs, 𝑇1 = 100 ⋅ 𝛿 = 0.9 ms,
2 = 25 ⋅ 𝛿 = 0.225 ms.

Fig. 5 represents transient evolution of transmission probabilities
ersus time for four stations, joining the network at different times.
he start time of the second and subsequent stations are marked by
ertical dashed lines. A station with packet transmission time 𝑇1 starts
ransmitting at time 0 (red line). Then a second station with packet
ransmission time 𝑇2 joins (black line). A third station adds up (blue
ine) with packet transmission time 𝑇1, same as the first one. Finally a
ourth station joins (green line), with packet transmission time 𝑇2, same
s the second station.

Another example of convergence and adaptation is given in Fig. 6.
ere we consider one station with packet transmission time 𝑇1 that

tarts transmitting at time 0. After about 0.5 s, another station with
acket transmission time 𝑇2 joins. After sharing the channel for about
s, station 2 leaves the channel. The plot on the left shows the behavior
f the transmission probabilities of station 1 (red line) and station 2
black line) respectively. The plot on the right illustrates the cumulative
irtime obtained by the two stations versus time (only for the time
nterval when both stations are active on the channel).

From plots in Figs. 5 and 6, it appears that airtime fairness is
chieved quite accurately and transmission probabilities are adapted
uite fast to changes in the sharing pattern of the channel.

Numerical examples of the achieved normalized throughput are
hown in Table 2. We consider two groups of stations: 𝑛1 stations
aving packet transmission time 𝑇1 = 100 ⋅ 𝛿 and 𝑛2 stations having
acket transmission time 𝑇2 = 25 ⋅ 𝛿, with the back-off slot size 𝛿 taken
s the time unit. Simulations are run to estimate the average achieved
ormalized throughput with the adaptive transmission algorithm. Con-
idence intervals at 95% level are checked for estimated throughput
alues to be below 0.01 of the estimated mean values.

It is apparent that airtime fairness is correctly maintained by the
daptive algorithm, namely it is 𝜌1 ≈ 𝜌2. The normalized throughput
ets close to the theoretical maximum value 𝜌∗∞ (rightmost column
f the Table), irrespective of 𝑛 = 𝑛1 + 𝑛2. Note that 𝜌∗∞ does not
hange with 𝑛 (it is obtained by means of an asymptotic analysis for
→ ∞). Besides the theoretical asymptotic level, the actually achieved
ptimized throughput level appears to be almost independent of the
umber of contending stations.

Further simulation experiments have been run to obtain the results
hown in Table 3. Here we consider three groups of stations, having
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Fig. 6. Algorithm 2 with two stations. Station 1 (red line) has 𝑇1 = 100 ⋅ 𝛿, station 2 (black line) has 𝑇2 = 25 ⋅ 𝛿. The back-off slot time is set to 𝛿 = 9 μs. (a) Transmission
probabilities versus time. (b) Cumulative air time versus time.
Table 2
Achieved normalized throughput with Algorithm 2 in case of 𝛿 = 1, 𝑛1 stations with
1 = 100, and 𝑛2 stations with 𝑇2 = 25. The last two columns are defined as follows:
i) 𝜌 = 𝑛1𝜌1 + 𝑛2𝜌2; (ii) 𝜌∗∞ is the maximum of the upper bound of the normalized
hroughput under airtime fairness, given in Eq. (27).
𝑛1 = 𝑛2 𝜌1 𝜌2 𝜌 𝜌∗∞
1 0.3773 0.4019 0.77921 0.79392
5 0.07644 0.07823 0.77335 0.79392
10 0.03847 0.03899 0.77454 0.79392

Table 3
Achieved normalized throughput with Algorithm 2 in case of 𝑛𝑖 stations belonging
to traffic class 𝑖, 𝑖 = 1, 2, 3, according to the traffic model introduced in Section 5.1.
The last two columns are defined as follows: (i) 𝜌 = 𝑛1𝜌1 + 𝑛2𝜌2 + 𝑛3𝜌3; (ii) 𝜌∗∞ is the
maximum of the upper bound of the normalized throughput under airtime fairness
given in Eq. (27).
𝑛1 = 𝑛2 = 𝑛3 𝜌1 𝜌2 𝜌3 𝜌 𝜌∗∞
1 0.2338 0.2441 0.2388 0.7166 0.7183
5 0.0467 0.0472 0.0471 0 .7051 0.7183
10 0.0233 0.0234 0.0234 0.7004 0.7183

variable packet transmission times with different PDFs. To this end,
we consider the packet transmission time distributions estimated from
IP traffic measurements introduced in Section 5.1. The adaptive trans-
mission algorithm has been simulated with three groups of stations,
having the same cardinality (hence 𝑛1 = 𝑛2 = 𝑛3). Stations belonging
to group 𝑖 have packet transmission times distributed according to
flow type 𝑖, 𝑖 = 1, 2, 3, as defined in Section 5.1. The normalized
throughput obtained on average by stations belonging to each class
are shown in Table 3, along with the overall normalized throughput
𝜌 = 𝑛1𝜌1 + 𝑛2𝜌2 + 𝑛3𝜌3 and with the maximum 𝜌∗∞ of the upper bound
of the normalized throughput in Eq. (26).

It is apparent that also in this case with three heterogeneous traffic
classes airtime fairness is achieved, since 𝜌1 ≈ 𝜌2 ≈ 𝜌3. Also, the
attained average normalized throughput is very close to the theoretical
upper bound 𝜌∗∞, shown in the rightmost column of the Table, thus
confirming the throughput optimality of the adaptive transmission
algorithm.

7. Applications

Applications of the technical contribution of this paper in practical
system are discussed in this section.
238
Main current use cases where variants of non persistent CSMA play
a major role are sensor networks, massive IoT, vehicular networking.
Variants of CSMA/CA are used in IEEE 802.11ah, for sensor networks,
IEEE 802.15.4, for low-rate wireless personal area networks, in IEEE
802.11p and IEEE 802.11bd, for vehicular networks. The insight gained
in this paper and the adaptive algorithm presented in Section 6 can be
adopted in any of the application scenarios and systems based on the
standards recalled above.

As a matter of example, cooperative awareness in vehicular net-
works requires continuous messaging among vehicles (broadcast one-
hop messages). Dedicated Short Range Communications (DSRC) [42]
and ETSI ITS-G5 [43] provide standardized frameworks to support
cooperative awareness and collective perception. Both are based on a
shared communication channel ruled according to a variant of
CSMA/CA as defined in IEEE 802.11p and IEEE 802.11bd [44]. As
shown by experimental measurements on real On-Board Unit traffic,
message lengths are not constant and they might differ significantly,
depending also on optional fields and other features that can be vehicle
specific or application specific, e.g., Cooperative Awareness Message
(CAM) [45] and Decentralized Environmental Notification Message
(DENM) [46]. The models defined in this paper can be applied to
such a context. The presented stability analysis can help identify the
load limits of reliable messaging on such vehicular networks, ad-
dressing heterogeneous environments where message generation rates
are different from node to node (e.g., because they might depend
on characteristics and kinematics specific to each vehicle node) and
transmission times are as well different, because of different message
lengths. The adaptive algorithm presented in Section 6 offers an easily
implementable approach to size the transmission probability (directly
tied to the contention window) of contending nodes, so as to achieve
high throughput and fairness, in such heterogeneous environments.

Massive IoT is another context where the results of this paper can
be applied. The use case of random access protocols in massive IoT
arises when a large population of nodes is concentrated in a relatively
restricted area. Data messages are sent by those nodes at random times,
e.g., according to environmental events. Scheduling multiple access
via signaling leads typically to excessive overhead in such contexts,
given the large number of nodes to coordinate and their sporadic and
hardly predictable message generation pattern. The overall amount of
produced traffic might be enough to congest the shared channel, if
access parameters are not properly tuned. In this context, CSMA and its
variants are a popular and evergreen solution to manage the concurrent
access to the shared communication channel. Applications are found

in IoT scenarios [47–49], in WiFi based sensor networks as provided
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by IEEE 802.11ah [50], even in a 6G perspective [51] or to improve
performance of LoRaWAN [52].

The analysis and results of this paper might help understanding
the limits of such networks, in case they adopt non persistent CSMA
(e.g., with IEEE 802.11ah or IEEE 802.15.4). They also point out the
way to achieve maximum throughput under fairness constraints, which
is typically desired, possibly in a weighted fairness setting, as de-
scribed in Section 5.3. Thanks to the algorithm presented in Section 6,
throughput maximization under fairness constraints can be achieved
in a distributed way, even in heterogeneous environments, where traf-
fic flows generated by applications residing on different nodes give
rise to service times having different probability distributions in the
contending nodes.

The throughput maximization results proved in Section 5 (see
Eq. (26)) gives another valuable result. It states the bounds (at least
asymptotically as 𝑛 → ∞) on the maximum achievable normalized
hroughput under fairness constraints. Those bounds prove to be in-
ensitive to transmission times probability distributions, being only
ependent on the mean transmission times. This is an interesting
esult in applications, where it could be difficult to assess, estimate or
easure the actual probability distribution of transmission time. The

esult shown in this paper proves that it is enough to estimate the mean
ransmission time to drive the system towards its maximum throughput
nder fairness constraints.

From a more theoretical point of view, the results on stability in
his paper close a gap in available knowledge on the stability of non
ersistent CSMA, encompassing the most general heterogeneous setting
different arrival rates of messages and different transmission times at
odes)

. Conclusions

A non persistent model of CSMA is considered that can be applied to
general heterogeneous CSMA network, where stations are allowed to
ave different mean packet arrival rates, different packet transmission
imes with general probability distributions, and different transmission
robabilities.

The stability region of the considered CSMA algorithm is identified,
oth with and without the collision detection function. The maximum
chievable throughput under airtime fairness is investigated and tight
pper and lower bounds are established. The bounds depend only
n mean packet transmission times. They are therefore insensitive to
acket transmission time probability distributions.

An adaptive transmission algorithm is presented that allows each
tation to adjust its transmission probability, so as to maximize the
chievable throughput, under airtime fairness constraint, provided of-
ered packet arrival rates are within the stability region. In other words,
he proposed adaptive algorithm is throughput optimal.

The presented model can be extended by introducing a general
etwork utility maximization framework instead of airtime fairness.
rate assignment that maximizes the social utility of the contending

tations is said to be fair. Maximization is constrained by the stability
equirement, that confines the arrival rate vector within the stability
egion identified in Theorems 1 and 2 in Section 4.
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Appendix A. Proof of Theorem 1

Let  denote the set of all states, i.e., the set of all 𝑛-tuples of non-
negative integers. Let also 0,𝑖 = {𝐪 ∈  | 𝑞𝑖 = 0}, i.e., the set of all
states such that queue 𝑖 is empty.

By assumption, transmission probabilities are set so that the inequal-
ities in Eq. (13) are met. We have to prove that, as a consequence,
queues are stable.

Let us consider the following Lyapunov function

𝐿(𝐪) = 1
2

𝑛
∑

𝑖=1
𝑞2𝑖 (A.1)

where 𝐪 = [𝑞1,… , 𝑞𝑛]. The drift of the system for 𝑡 ≥ 0 is defined as

𝐷(𝑡,𝐪) = E[𝐿(𝐐(𝑡 + 1)) − 𝐿(𝐐(𝑡))|𝐐(𝑡) = 𝐪] (A.2)

Using the inequality (max{0, 𝑄 − 𝑈} + 𝐴)2 ≤ 𝑄2+𝑈2+𝐴2+2𝑄(𝐴−𝑈 ),
e derive:

(𝑡,𝐪) ≤ 𝑐 +
𝑛
∑

𝑖=1
𝑞𝑖E[𝐴𝑖(𝑡) − 𝑈𝑖(𝑡)|𝐐(𝑡) = 𝐪] (A.3)

here 𝑐 is a positive constant such that

1
2

𝑛
∑

𝑖=1
E[𝑈𝑖(𝑡)2 + 𝐴𝑖(𝑡)2 |𝐐(𝑡) = 𝐪] ≤ 𝑐 (A.4)

ince 𝑈𝑖(𝑡) ∈ {0, 1}, it suffices to assume that arrival processes have
inite second moments6 for any state 𝐪.

Let 𝜃𝑖 = 𝜃𝑖(𝑞𝑖) be the transmission probability of station 𝑖 in a virtual
lot, when the backlog of station 𝑖 is 𝑞𝑖 packets. It is 𝜃𝑖 = 𝜏𝑖 if 𝑞𝑖 > 0, 𝜃𝑖 =
otherwise. We define also the row vector 𝜽(𝐪) = [𝜃1(𝑞1),… , 𝜃𝑛(𝑞𝑛)].

Given 𝐐(𝑡) = 𝐪, it is 𝑈𝑖(𝑡) = 1 with probability 𝑆𝑖(𝜽(𝐪)) in Eq. (1).
hen, it is

[𝑈𝑖(𝑡)|𝐐(𝑡) = 𝐪] = 𝑆𝑖(𝜽(𝐪)) (A.5)

urther, it is

[𝐴𝑖(𝑡)|𝐐(𝑡) = 𝐪] = 𝜆𝑖E[𝑉 (𝑡)|𝐐(𝑡) = 𝐪] = 𝜆𝑖𝑉 (𝜽(𝐪)) (A.6)

here 𝑉 (𝑡) is the duration of the 𝑡th virtual slot time and 𝑉 (⋅) is given
n Eq. (6). Then, Eq. (A.3) can be re-written as

(𝑡,𝐪) ≤ 𝑐 +
𝑛
∑

𝑖=1
𝑞𝑖
[

𝜆𝑖𝑉 (𝜽(𝐪)) − 𝑆𝑖(𝜽(𝐪))
]

(A.7)

It is easy to verify that

𝑖(𝜽(𝐪)) ≥ 𝑆𝑖(𝝉) ∀𝐪 ∈  ⧵ 0,𝑖 (A.8)

𝑉 (𝜽(𝐪)) ≤ 𝑉 (𝝉) ∀𝐪 ∈  (A.9)

Thanks to inequalities in Eqs. (A.8) and (A.9) and to the condition
n Eq. (13), there exists 𝜖 > 0 such that

𝑖

[

𝜆𝑖𝑉 (𝜽(𝐪)) − 𝑆𝑖(𝜽(𝐪))
]

≤ 𝑞𝑖
[

𝜆𝑖𝑉 (𝝉) − 𝑆𝑖(𝝉)
]

≤ −𝑞𝑖𝜖 (A.10)

for all 𝐪 ∈ . In fact, if 𝑞𝑖 = 0, the inequality in Eq. (A.10) reduces to
0 ≤ 0. If instead, 𝑞𝑖 > 0, since 𝐪 ∈  ⧵ 0,𝑖, we can use Eqs. (13), (A.8)
nd (A.9).

6 This is certainly true if there is a finite bound to the arrival rate of new
ackets and a finite bound to the packet transmission time, as reasonable in
practical implementation of CSMA.
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From Eqs. (A.7) and (A.10) we deduce

𝐷(𝑡,𝐪) = E[𝐿(𝐐(𝑡 + 1)) |𝐐(𝑡) = 𝐪] − 𝐿(𝐪) ≤ 𝑐 − 𝜖
𝑛
∑

𝑖=1
𝑞𝑖

for all 𝐪 ∈  and 𝑡 ≥ 0. Removing the condition 𝐐(𝑡) = 𝐪, we have

E[𝐿(𝐐(𝑡 + 1))] − E[𝐿(𝐐(𝑡))] ≤ 𝑐 − 𝜖
𝑛
∑

𝑖=1
E[𝑄𝑖(𝑡)] (A.11)

for 𝑡 ≥ 0. Summing over 𝑡 between 0 and 𝑇 − 1 (telescoping sum) and
rearranging, we find

𝜖
𝑇−1
∑

𝑡=0

𝑛
∑

𝑖=1
E[𝑄𝑖(𝑡)] ≤ 𝑐𝑇 + E[𝐿(𝐐(0))] − E[𝐿(𝐐(𝑇 ))]

≤ 𝑐𝑇 + E[𝐿(𝐐(0))]

where the last inequality is a consequence of the non-negativity of the
Lyapunov function. Dividing by 𝜖𝑇 , taking the limit for 𝑇 → ∞ and
observing that E[𝐿(𝐐(0))] is finite and independent of 𝑇 , it is proved
that Eq. (12) holds, which completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2 , converse statement

Let us assume queues are stable with the transmission probabilities
𝜏𝑖 set at station 𝑖, respectively for 𝑖 = 1,… , 𝑛. To show that 𝝀 ∈ , it
suffices to prove that there exists a vector of probabilities 𝐮 such that
𝜆𝑖 < 𝜆𝑖,sup = 𝑆𝑖(𝐮)∕𝑉 (𝐮) for 𝑖 = 1,… , 𝑛. Note that we do not claim that
it must be 𝜏𝑖 = 𝑢𝑖, 𝑖 = 1,… , 𝑛. Instead, it is proved that the possibility
o realize a stable network with the given arrival rates and suitably set
ransmission probabilities implies that the arrival rates must belong to
he stability region defined in Eq. (14), for which it suffices to show
hat there exists a probability vector that meets the inequalities in the
efinition of the stability region.

Since station queues are stable, a steady-state probability distribu-
ion of 𝐐 = [𝑄1,… , 𝑄𝑛] must exist. Let it be denoted with 𝑓 (𝐪) = (𝐐 =
𝐪),𝐪 ∈ , where the state space  consists of all 𝑛-tuples of non-negative
ntegers.

From Eq. (11), taking expectation on both sides and letting 𝑡 →
∞, since E[𝑄𝑖(𝑡)] converges to a finite value, at equilibrium we have
E[𝐴𝑖] = E[𝑈𝑖], i.e.,

𝜆𝑖
∑

𝐪∈
𝑉 (𝜽(𝐪))𝑓 (𝐪) =

∑

𝐪∈
𝑆𝑖(𝜽(𝐪))𝑓 (𝐪) (B.1)

for 𝑖 = 1,… , 𝑛, where 𝜃𝑖(𝑞𝑖) = 0, if 𝑞𝑖 = 0, 𝜃𝑖(𝑞𝑖) = 𝜏𝑖, if 𝑞𝑖 > 0, and
(𝐪) = [𝜃1(𝑞1),… , 𝜃𝑛(𝑞𝑛)].

Let us split the summation over the disjoint state sets 0,𝑖 and ⧵0,𝑖,
i.e., the set of states where queue 𝑖 is empty and those where queue 𝑖 is
backlogged, respectively. For each 𝐪 ∈ 0,𝑖 we have 𝑆𝑖(𝜽(𝐪)) = 0, while
𝑉 (𝜽(𝐪)) > 0. Also, the probability that 𝐪 ∈ 0,𝑖 is positive, since queue 𝑖
eing stable means that it shall attain state 0 with positive probability.
hen, from Eq. (B.1) it is deduced that

𝑖
∑

𝐪∈⧵0,𝑖

𝑉 (𝜽(𝐪))𝑓 (𝐪) −
∑

𝐪∈⧵0,𝑖

𝑆𝑖(𝜽(𝐪))𝑓 (𝐪) < 0 (B.2)

for 𝑖 = 1,… , 𝑛. Let us define the vector function 𝐠(𝜽) ∶ [0, 1]𝑛 ↦ R𝑛 as
𝐠(𝜽) = [𝑔1(𝜽),… , 𝑔𝑛(𝜽)], where

𝑖(𝜽) = 𝜆𝑖𝑉 (𝜽) − 𝑆𝑖(𝜽) (B.3)

This is a continuous function of 𝜽 ∈ [0, 1]𝑛. Applying the theorem of
the mean, it follows that there must exist a vector 𝐮 ∈ [0, 1]𝑛 such that

𝑔𝑖(𝐮) =

∑

𝐪∈⧵0,𝑖 𝑔𝑖(𝜽(𝐪))𝑓 (𝐪)
∑

𝐪∈⧵0,𝑖 𝑓 (𝐪)
, 𝑖 = 1,… , 𝑛. (B.4)

Then, substituting the expression of 𝑔𝑖(𝜽) into the right-hand side
of Eq. (B.4), we get

𝑔𝑖(𝐮) =

∑

𝐪∈⧵0,𝑖

[

𝜆𝑖𝑉 (𝜽(𝐪)) − 𝑆𝑖(𝜽(𝐪))
]

𝑓 (𝐪)
∑ < 0 (B.5)
240

𝐪∈⧵0,𝑖 𝑓 (𝐪) l
where the last inequality stems from Eq. (B.2). From Eq. (B.5) we have
𝑔𝑖(𝐮) < 0, hence

𝜆𝑖𝑉 (𝐮) − 𝑆𝑖(𝐮) < 0 ⇒ 𝜆𝑖 <
𝑆𝑖(𝐮)
𝑉 (𝐮)

(B.6)

for 𝑖 = 1,… , 𝑛, which proves that the mean arrival rate vector
[𝜆1,… , 𝜆𝑛] belongs to the region defined in Eq. (14). This, completes
the proof.

Appendix C. Asymptotic analysis of normalized throughput

Let us consider the asymptotic regime as 𝑛 → ∞. Assume 𝑇𝑖 ∈
[𝑇min, 𝑇max], ∀𝑖, with 0 < 𝑇min < 𝑇max. We let

𝜇𝑛 =
1
𝑛

𝑛
∑

𝑖=1

1
𝑇𝑖

𝐺𝑛(𝑥) =

1
𝑛
∑𝑛
𝑗=1

𝐺𝑌𝑗 (𝑥)

𝑇𝑗
1
𝑛
∑𝑛
𝑗=1

1
𝑇𝑗

(C.1)

or any positive 𝑛. We assume that 𝜇 = lim𝑛→∞ 𝜇𝑛 and 𝐺(𝑥) =
im𝑛→∞ 𝐺𝑛(𝑥) are well defined. A practically important case is when
tations belong to 𝑀 possible classes, each one characterized by its
wn PDF of channel holding time 𝑌𝑗 , 𝑗 = 1,… ,𝑀 . If 𝑓𝑗 denotes the
raction of stations belonging to class 𝑗, we have 𝜇 =

∑𝑀
𝑗=1 𝑓𝑗

1
𝑇𝑗

and

𝐺(𝑥) = 𝜇−1
∑𝑀
𝑗=1 𝑓𝑗

1
𝑇𝑗
𝐺𝑌𝑗 (𝑥), with 𝑓1 + ⋯ + 𝑓𝑀 = 1. . We aim at

establishing the bounds in Eq. (26) on the limiting value of 𝜌(𝑛, 𝑇𝐴)
as 𝑛→ ∞, for a fixed value of 𝑇𝐴. For large 𝑛, we have

𝑉
′
∼ ∫

∞

0

[

1 −
𝑛
∏

𝑗=1

(

1 −
𝑇𝐴
𝑛𝑇𝑗

𝐺𝑌𝑗 (𝑥)
)

]

𝑑𝑥

∼ ∫

∞

0

[

1 −
𝑛
∏

𝑗=1
𝑒−𝑇𝐴𝐺𝑌𝑗 (𝑥)∕(𝑛𝑇𝑗 )

]

𝑑𝑥

∼ ∫

∞

0

[

1 − 𝑒−𝑇𝐴𝜇𝑛𝐺𝑛(𝑥)
]

𝑑𝑥 (C.2)

hen

𝑉
′
∞ = lim

𝑛→𝑛
𝑉

′
= ∫

∞

0

[

1 − 𝑒−𝛼𝐺(𝑥)
]

𝑑𝑥 (C.3)

where 𝛼 = 𝑇𝐴𝜇 and 𝐺(𝑥) = lim𝑛→∞ 𝐺𝑛(𝑥). Note that 𝐺𝑛(𝑥) is a Comple-
entary Cumulative Distribution Function (CCDF) ∀ 𝑛, as well as 𝐺(𝑥).

n fact, it is 𝐺(0) = 1, lim𝑥→∞ 𝐺(𝑥) = 0, and 𝐺(𝑥) is monotonously
ecreasing. Moreover, since it is ∫ ∞

0 𝐺𝑌𝑗 (𝑥) 𝑑𝑥 = 𝑇𝑗 , we have, taking
he limit for 𝑛→ ∞:

∫

∞

0
𝐺𝑛(𝑥) 𝑑𝑥 = 1

1
𝑛
∑𝑛
𝑗=1

1
𝑇𝑗

⇒ ∫

∞

0
𝐺(𝑥) 𝑑𝑥 = 1

𝜇
(C.4)

It can be verified that 1−𝑒−𝛼𝑢
1−𝑒−𝛼 ≥ 𝑢 for 𝑢 ∈ [0, 1] and for any positive

𝛼. Since 𝐺(𝑥) ∈ [0, 1], applying this inequality to Eq. (C.3), it follows
that

𝑉
′
∞ = ∫

∞

0

[

1 − 𝑒−𝛼𝐺(𝑥)
]

𝑑𝑥 ≥ (1 − 𝑒−𝛼)∫

∞

0
𝐺(𝑥) 𝑑𝑥 = 1 − 𝑒−𝛼

𝜇
(C.5)

Assume now that 𝑌𝑗 ≤ 𝑇max w.p. 1 and let 𝜉 = 𝑇max𝜇. Under this
assumption, it is 𝐺(𝑥) = 0 for 𝑥 > 𝑇max. We exploit the following
nequality, holding for any positive 𝜉 and 𝛼: 1−𝑒−𝛼𝐺(𝑥) = 1−𝑒−(𝛼∕𝜉)𝜉𝐺(𝑥) =
1 − 𝑒−𝛼∕𝜉𝑒−(𝛼∕𝜉)[𝜉𝐺(𝑥)−1] ≤ 1 − 𝑒−𝛼∕𝜉 + 𝑒−𝛼∕𝜉 𝛼𝜉 [𝜉𝐺(𝑥) − 1], where the last
passage is a consequence of the inequality 𝑒−𝑦 ≥ 1− 𝑦. Integrating both
sides of 1− 𝑒−𝛼𝐺(𝑥) ≤ 1− 𝑒−𝛼∕𝜉 + (𝛼∕𝜉)𝑒−𝛼∕𝜉 [𝜉𝐺(𝑥) − 1] over [0, 𝑇max], we
et

𝑉
′
∞ = ∫

𝑇max

0

[

1 − 𝑒−𝛼𝐺(𝑥)
]

𝑑𝑥

≤ 𝑇max(1 − 𝑒−𝛼∕𝜉 ) + (𝛼∕𝜉)𝑒−𝛼∕𝜉 ∫

𝑇max

0
[𝜉𝐺(𝑥) − 1] 𝑑𝑥 (C.6)

he integral in the rightmost side is equal to 0, since
𝑇max
0 [𝜉𝐺(𝑥) − 1] 𝑑𝑥 = 𝜉 ∫ 𝑇max

0 𝐺(𝑥) 𝑑𝑥 − 𝑇max = 𝜉∕𝜇 − 𝑇max = 0. The

ast equality is a consequence of the definition of the parameter 𝜉.
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Putting together the inequalities established in Eqs. (C.5) and (C.6),
we have
1 − 𝑒−𝛼
𝜇

≤ 𝑉
′
∞ ≤ 𝑇max(1 − 𝑒−𝛼∕𝜉 ) (C.7)

Exploiting the relationship ∏𝑛
𝑗=1

(

1 − 1
1+𝑛𝑇𝑗∕𝑇𝐴

)

∼ 𝑒−𝛼 and the
nequalities in Eq. (C.7), taking the limit for 𝑛→ ∞ in Eq. (24) leads to

𝑇𝐴𝑒−𝛼

𝛿 + 𝑇max(1 − 𝑒−𝛼∕𝜉 )
≤ 𝜌∞(𝑇𝐴) ≤

𝑇𝐴𝑒−𝛼

𝛿 + 1−𝑒−𝛼
𝜇

(C.8)

here 𝜌∞(𝑇𝐴) = lim𝑛→∞ 𝜌(𝑛, 𝑇𝐴).
Multiplying numerator and denominator of the left and right hand

ides of inequalities in Eq. (C.8) by 𝜇, reminding the definitions of 𝛼, 𝜉
nd 𝛽 = 𝛿𝜇, we get the bounds in Eq. (26).

ppendix D. Estimate of 𝝁 in Algorithm 2

The estimator of 𝜇 used by each station active on the channel in the
daptive transmission algorithm of Section 6 is defined as 𝜇̂𝑘 = 1∕𝐴𝑘,
ith

𝑘+1 = (1 − 𝑔)𝐴𝑘 + 𝑔𝑇tx,𝑘 (D.1)

here 𝑇tx,𝑘 is the packet transmission time observed on the channel and
he index 𝑘 refers to the 𝑘th observation. It is assumed that {𝑇tx,𝑘}𝑘≥0
orm a stationary sequence.

Given that the transmission is successful, the probability that station
did the successful transmission is

𝑖 =
𝑆𝑖(𝝉)

𝑆1(𝝉) +⋯ + 𝑆𝑛(𝝉)
=

𝜏𝑖∕(1 − 𝜏𝑖)
∑𝑛
𝑗=1 𝜏𝑗∕(1 − 𝜏𝑗 )

(D.2)

Under airtime fairness, it is 𝜏𝑖∕(1 − 𝜏𝑖) = 𝑇𝐴∕(𝑛𝑇𝑖). Hence

𝑝𝑖 =
1∕𝑇𝑖

1∕𝑇1 +⋯ + 1∕𝑇𝑛
(D.3)

Hence, we have

E[𝑇tx] =
𝑛
∑

𝑖=1
𝑝𝑖E[𝑇tx| station 𝑖 transmits ]

=
𝑛
∑

𝑖=1
𝑝𝑖𝑇𝑖 =

𝑛
1∕𝑇1 +⋯ + 1∕𝑇𝑛

= 1
𝜇𝑛

(D.4)

Taking expectation on both sides of Eq. (D.1) and solving the
difference equation with initial condition 𝐴0, we find

E[𝐴𝑘] = (1 − 𝑞)𝑘𝐴0 + [1 − (1 − 𝑔)𝑘]E[𝑇tx] , 𝑘 ≥ 0. (D.5)

As 𝑘 → ∞, we have E[𝐴𝑘] → E[𝑇tx] = 1∕𝜇𝑛, where the last
approximation stems from Eq. (D.4).
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