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Abstract

The growing use of asynchronous online education (MOOCs and e-courses) in recent
years has resulted in increased economic and scientific productivity, which has
worsened during the coronavirus epidemic. The widespread usage of OLEs has
increased enrolment, including previously excluded students, resulting in a far higher
dropout rate than in conventional classrooms. Dropouts are a significant problem,
especially considering the rising proliferation of online courses, from individual
MOOCs to whole academic programmes due to the pandemic. Increased efficiency in
dropout prevention techniques is vital for institutions, students, and faculty members
and must be prioritised. In response to the resurgence of interest in the student
dropout prediction (SDP) issue, there has been a significant rise in contributions
to the literature on this topic. An in-depth review of the current state of the
art literature on SDP is provided, with a special emphasis on Machine Learning
prediction approaches; however, this is not the only focus of the thesis. We propose
a complete hierarchical categorisation of the current literature that correlates to
the process of design decisions in the SDP, and we demonstrate how it may be
implemented. In order to enable comparative analysis, we develop a formal notation
for universally defining the multiple dropout models examined by scholars in the area,
including online degrees and their attributes. We look at several other important
factors that have received less attention in the literature, such as evaluation metrics,
acquired data, and privacy concerns. We emphasise deep sequential machine learning
approaches and are considered to be one of the most successful solutions available in
this field of study.

Most importantly, we present a novel technique - namely GRU-AE - for tackling
the SDP problem using hidden spatial information and time-related data from
student trajectories. Our method is capable of dealing with data imbalances and
time-series sparsity challenges. The proposed technique outperforms current methods
in various situations, including the complex scenario of full-length courses (such as
online degrees). This situation was thought to be less common before the outbreak,
but it is now deemed important.

Finally, we extend our findings to different contexts with a similar characterisation
(temporal sequences of behavioural labels). Specifically, we show that our technique
can be used in real-world circumstances where the unbalanced nature of the data
can be mitigated by using class balancement technique (i.e. ADASYN), e.g., survival
prediction in critical care telehealth systems where balancement technique alleviates
the problem of inter-activity reliance and sparsity, resulting in an overall improvement
in performance.
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Chapter 1

Introduction

The novel coronavirus (COVID-19) outbreak forced many nations to massively
push their education system towards online learning environments (OLEs) that
comprise fast- and slow-paced online courses and online degrees. Institutions are also
evaluating this new trend of digital adoption of OLEs as an opportunity for them to
exploit e-learning technologies to teach more broadly and target students worldwide.
Nevertheless, effectively teaching and assessing student performances is a task of
paramount importance yet to be stabilised. Current means of delivering courses at
any educational level are still in their initial version, and crucial social-economic
factors are not covered. The literature of the Learning Analytics (LA) field [67]
has given a considerable contribution to the study of online courses and online
degrees (hereafter e-degrees) in various contexts ranging from psychological and
social-economic indicators of student behaviour to machine learning predictions of
future student interactions with the e-learning platforms. Online learning can be
synchronous [37] or asynchronous [122]. When the OLEs are synchronous, students
participate in real-time classes with other peers and instructors, and get immediate
feedback and clarifications. Contrarily, when the OLEs are asynchronous, students
can attend classes according to their own schedule, work at their own pace, and
review lectures to clarify concepts. Here, we explore the asynchronous aspect of the
OLEs and develop our insights based on their peculiarities.

One of the most critical aspects of OLEs is the high dropout rate of students w.r.t.
their counterparts in traditional education institutions. Although online institutions
have adopted initial countermeasures to lower dropout rates, a mitigation strategy
is still missing. Academic researchers have also contributed to designing novel
approaches to cope with the student dropout phenomenon, but a sophisticated
tracking system for student activities is necessary. Online institutions (e.g. Coursera,
edX, and Udemy) have proprietary software only applicable to their online courses
scenario. Moreover, the complexity that e-degrees entail is higher than that of simple
online courses and predicting whether students drop out is a challenging task.

In the literature, Student Dropout Prediction (SDP) is a research topic in the
multidisciplinary field of Learning Analytics. In detail, it belongs to the area of
Educational Data Mining (EDM) (see [8, 40, 104] for an overview of this field).
SDP’s specific objective is to analyse student dropout in OLEs by modelling student
behaviour when interacting with e-learning platforms. Students interact with the
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e-learning platform of the course they are enrolled in by generating different activities
traced in several log files. These activities - hereafter e-tivities - comprise data
about how a student consumes course material such as videos, quizzes, homework
assignments and forum questions. E-tivities help profile students according to their
interactions, and by having automatic procedures analyse them, one can tackle the
dropout phenomenon via machine/deep learning strategies.

As anticipated, OLEs suffer from a significant amount of dropout rate with
regards to traditional institutions. Therefore, SDP represents a new research line in
e-learning in general, and researchers should give particular attention to it. Online
courses have been around for more than twenty years1, but they achieved a boom in
usage with the diffusion of Massive Open Online Courses (MOOCs). Notwithstanding
their lasting presence, academia has posed little attention to the difficulties that
"online students" experience during their studies in these institutions. The high
number of enrolled students in MOOCs has given the literature the possibility to
tackle the dropout problem thoroughly.

Consequently, a growing number of online institutions have considered adopt-
ing automated systems to predict their students’ dropout decisions. Automated
strategies, in turn, have boosted the attention of researchers, particularly those
in the machine learning area. Nevertheless, real-time and intelligent prediction
methodologies remain unexplored; whereas, simple statistical strategies based on
ad-hoc surveys remain the most common approach to solve the SDP problem.

1.1 Motivation

Online education has been established as one of the wealthiest industries in the world.
At the brisk of the pandemic, e-learning solutions have received an immense amount of
incentives from governmental institutions, and private entities [11]. Notwithstanding
the plethora of benefits that OLEs bring (e.g. ubiquity of learning), public and private
institutions have a growing concern for low retention rates. The swift shift towards
full-online education methods needs to be backed up by new teaching regulations
to conform to students’ needs during this period. Moreover, studies have shown
that students enrolled in OLEs have a higher probability of abandoning their studies
prematurely than their counterparts attending traditional classroom environments
[19, 32, 38, 56]. To promote self-paced and ubiquitous learning, students in OLEs,
especially MOOCs, can follow lectures according to their timetables and occupations
(i.e. working students or professionals seeking an upgrade in their careers). With
the lack of prerequisite courses and bureaucratic regulations, as in in-presence
institutions, students can drop out at any time without severe financial repercussions
besides not obtaining a degree/certification. Thus, the lack of penalties for dropout
students induces online institutions to have a retention rate of 10-20% lower than
that of traditional universities [55, 121].

Although e-learning institutions have managed the dropout students by employing
ad-hoc manual strategies, more efficient and less time-consuming methodologies are
required to mitigate the dropout phenomenon. SDP strategies can help institutions

1One of the pioneers in online education was Universitat Oberta de Catalunya - https://www.
uoc.edu/portal/en/index.html.

https://www.uoc.edu/portal/en/index.html
https://www.uoc.edu/portal/en/index.html


1.1 Motivation 3

to increase their retention rates substantially. Identifying beforehand which students
are likely to abandon their studies is beneficial for distance learning institutions to
provide bespoke intervention strategies to at-risk students. Table 1.1 shows online
institutions with the highest graduation rates in Italy2,3,4. These institutions require
to maximise their retention rates and minimise their economic losses - the dropout
phenomenon is one of the most significant factors in economic wastes [81] - when a
particular student decides to abandon their studies preemptively.

Table 1.1. Comparison of online institutions with the highest graduation rate in Italy.
The number of online institutions in the Italy in 2020/2021 is 9. The overall number of
students enrolled in online universities in Italy as of 2020/21 is 130, 457. The average
number of enrolled students in 2020/21 per university is the ratio between the overall
number of enrolled students and the number of colleges (i.e. ∼ 1495).

Institution Graduation rate Number of enrolled
students (2020/2021)

Ratio w.r.t. the average
enrolled students (2020)

Unimarconi 16.1% 10, 249 ∼ 6.85
Unifortunato 16.1% 1, 800 ∼ 1.20
Pegaso 14.8% 65, 611 ∼ 43.88
Online University "San Raffaele" 14.7% 8, 008 ∼ 5.36

University of Rome Unitelma Sapienza 12.4% 2, 727 ∼ 1.82

According to recent studies of the market investments and future projections, the
adoption of online education technologies has received a large amount of financial
support from private entities. Due to the pandemic diffusion, governments have
supported the transition from traditional to online education with outstanding non-
repayable loans. Although the bulk of the capital goes to furnishing teaching staff
and students with necessary digital devices to continue their education at a distance,
noticeable finances pour into novel EDM strategies and thus SDP. In 2019, the
size of the global online e-learning market was approximately $101 billion. During
that same period, the learning management system market generated roughly $18
billion. By 2026, the total market for e-learning worldwide is forecasted to grow
exponentially (see Figure 1.1), reaching $370 billion by 2026. Statista5 performed
the projection study before the novel COVID-19 pandemic. Hence, it might get a
higher investment budget during the period of study. Besides having an immense
social and economic impact, SDP is a novel and interdisciplinary research problem
comprising social and computer sciences. Therefore, SDP has increased academia’s
contribution presenting an increment of a 2.5 factor in the time interval from 2010
to 2020 (see Figure 1.2).

2According to the Italian Ministry of Education, Research, and University, the Online University
"Leonardo Da Vinci" has the highest graduation rate (i.e. ∼ 41%) among all the online institutions
in Italy in the 2020/2021 academic year. We do not include this university as the first entry in
Table 1.1 since it had only 23 matriculated and 16 graduated students as of 2020/2021.

3We derived the statistics from the telematic institutions found at http://ustat.miur.it/
dati/didattica/italia/atenei#tabistituti.

4The number of online universities in Italy is 11, but we do not take into consideration two of
them (i.e. Online University of Rome "Niccolò Cusano" and Universitas Mercatorum) because they
do not have complete statistics for 2020/2021.

5https://www.statista.com/statistics/1130331/e-learning-market-size-segment-
worldwide/

http://ustat.miur.it/dati/didattica/italia/atenei##tabistituti
http://ustat.miur.it/dati/didattica/italia/atenei##tabistituti
https://www.statista.com/statistics/1130331/e-learning-market-size-segment-worldwide/
https://www.statista.com/statistics/1130331/e-learning-market-size-segment-worldwide/
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Figure 1.1. Size of the global e-learning (in billion USD) market in 2019 and 2026 by
segment.

Student e-tivities are multiple and belong to many possible interactions, thus
rendering the SDP problem challenging. These e-tivities are sequential when students
interact with the resources of a single course. Simultaneously, they can be parallel
since students attend more than one course in the scenario of e-degrees. E-tivities
can also be interactive among peers through course forums and social networks
integrated within the e-platforms. Therefore, building a model that considers these
e-tivities and understanding their influence on students’ performance is still an open
issue. As mentioned before, academia has tackled the SDP problem by handling
ad-hoc surveys and building complex rule systems based on them. Although the
current availability of deep learning strategies offers the possibility to integrate
sequential and parallel data, coping with student modelling complexity in OLEs is
yet to be explored.

1.2 Objectives

The principal objectives of this work are two: i.e. theoretical and experimental. We
group the main theoretical contributions of the work as follows:

• To provide a cornerstone in Learning Analytics, we formally define the stu-
dent dropout phenomenon in asynchronous OLEs and present the first input
modelling strategy following the adopted definition.
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Figure 1.2. Yearly trend of publications in SDP. For each year 2010-2020, we calculate the
number of publications that treat SDP. According to a search on scholar.google.com,
we set the number of publications equal to the size of the result set for the keyword
student dropout in distance learning.

• We provide a detailed classification of state-of-the-art approaches, both simple
machine learning and deep learning, according to the chosen input modelling
technique.

• We give a comprehensive evaluation framework of the proposed models on
benchmarking datasets that contain student trajectories formed of e-tivities.

Furthermore, in the experimental contribution, we devise a novel strategy based
on latent information and time-related data generated from students’ interaction
with e-tivities. Moreover, we demonstrate that the proposed method surpasses the
state-of-the-art in the case of slow-paced degrees and fast-paced MOOCs. Finally,
we test our model’s performances in a real-case risk-prediction scenario on patient
health trajectories.

1.3 Thesis Structure
To ease the reader into the thesis, Figure 1.3 depicts the structure of this work.
Chapter 1 illustrates the phenomenon of student dropout in traditional and OLEs
and its financial impact in learning institutions. Additionally, following a growing
trend to be amplified in the near future, we describe different reasons to care about
the student dropout prediction problem. Chapter 2 describes the methodologies
presented in the literature exploited to solve the SDP problem. According to the
works surveyed, we also identify open issues that we tackle throughout this thesis.

The main contribution of the thesis is divided into two main branches. The
first comprises the theoretical background and input modelling definitions alongside

scholar.google.com
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Figure 1.3. The structure of the thesis.

the datasets used (Chapters 3 and 4), and the second encompasses the dropout
prediction model and the experimentation phase (Chapters 5 and 6).

Chapter 7 introduces a real-world risk-prediction application of the proposed
model. Here, ill older people are monitored during their hospitalisation in intense
care units. While we empirically show that our proposed method is superior to
the state-of-the-art methods in SDP, we conclude that it has better performances
than the others in a risk-prediction scenario where missing alarms have severe
repercussions to the health of the patients.

Lastly, Chapter 8 closes the thesis with final observations about the challenging
SDP task and how we provide a time-dependent deep learning methodology to
solve it. Additionally, we give an important deduction for future researchers to



1.3 Thesis Structure 7

focus on selecting significant evaluation metrics to demonstrate the effectiveness of
a particular system w.r.t. the state-of-the-art. The contribution with a new dataset
containing long-term e-degree time-series provides a new branch of student dropout
prediction to stabilise new milestones in this promising research area.
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Chapter 2

Related Work

Chapter 2

Open issues on SDP
- Inter-activity temporal gaps

- Long-term e-tivity dependency 

Types of SDP approaches
- Analytic dropout examination

- Off-the-shelf ML

- Deep sequential learning

Figure 2.1. Academia has approached the SDP since the diffusion of MOOCs by adopting
various strategies. This chapter describes three types of SDP approaches (i.e. statistical
analysis, simple ML, and deep learning strategies). Additionally, we provide future
researchers with open issues in the dropout phenomenon that comprise temporal gaps
between e-tivities and long-term dependencies.

Besides dividing the research area into two different simple categories, which
encompass statistical analysis and off-the-shelf machine learning algorithms, we
also study deep learning methods that consider the intrinsic temporal relationship
between student e-tivities. Moreover, taking into consideration the lack of studies
based on e-degrees, we tackle two important aspects neglected in research:

• Inter-activity temporal gaps - The contribution of inactive periods from students
enrolled in MOOCs and those in e-degrees is different. Being MOOCs fast-
paced and short-term courses, idle periods might indicate a potential dropout
status. Whereas, because e-degrees are prolonged in time (e.g. from three to
five years), inactive periods might not be as important.
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Figure 2.2. A taxonomy of prediction strategy approaches. The greyscale illustrates the
strategy branch’s complexity (i.e. the darker it is, the more sophisticated the models
are).

• Long-term e-tivity dependency - E-tivities generated in a prerequisite course
form an important context for students’ progress in successive and more
complex courses in an online degree. By employing sequential methodologies
that share information in time, the e-tivity dependency might alter the dropout
status. Meanwhile, this aspect of dependencies can be absent in MOOCs.

2.1 Types of SDP Strategies

During the three decades in which OLEs have been present, different artificial
intelligence branches ranging from statistical analyses and naive rule-based systems
to complex deep sequential methodologies resolved the SDP problem [108].

This section illustrates a taxonomy of the prediction strategies to address the
SDP problem, as depicted in Figure 2.2. Analytic dropout examination (ref. Section
2.1.1) analyses the data and attempts to provide insight based on pure statistical
metrics. Off-the-shelf machine learning (ref. Section 2.1.2) exploits machine learning
algorithms. Deep sequential learning (ref. Section 2.1.3) handles strategies based
on recurrent and convolutional neural networks. Because of the high performances
of deep learning strategies when the data quantity increases1, we discuss their
peculiarities.

2.1.1 Analytic Dropout Examination

In this branch of dropout prediction, pure statistical methodologies are used to
forecast a student’s status. Analytical studies often collect data from various sources
and then conduct correlation analyses between the extracted features and the dropout

1In SDP, we log every student interaction with the course platform. Therefore, we produce an
excessive amount of information.
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status. Additionally, because statistical approaches are highly interpretable, they
provide additional insight into the selected features’ distribution: the distribution
of dropouts by assignment submission rate. Because the analytic examination
is descriptive rather than predictive of future student status or e-tivity creation
behaviour, academics and online institutions have used it as a tool for interpreting
data in order to develop appropriate intervention methods. Additionally, analytic
inspection approaches are insensitive to time constraints. As a result, they cannot
guarantee sound conclusions, as dropout patterns alter over time.

Studies based on analytic dropout examination. The authors in [134] ex-
amine the Hellenic Open University’s Informatics bachelor’s degree (HOU). They
gather computer science-related data in order to identify students who are at risk
of dropping out. The information comprises computer literacy and previous com-
puter usage training. Furthermore, they compile a dump of student responses to
questionnaires and phone interviews on the reasons for their dropout decision. As
a result, they examine dropout motivations for each student to develop rule-based
intervention mechanisms to assist freshly enrolled students along their academic
path. In particular, HOU permits students to repeat a failed course module - that is,
if a course spans more than one semester, HOU breaks it into separate consecutive
modules. As a result, the authors investigate four distinct student groups, only
two of which are genuine dropouts. The authors perform association studies on
the student profiles according to the two established dropout groups. They provide
statistically significant information regarding the relationship between submitting
assignments and past schooling and the decision to drop out. They conclude that
dropout students overestimate the burden of learning while working by further
analysing the reasons behind the dropout decision using data acquired from phone
interviews. Furthermore, a small percentage of dropouts believe that their tutor did
not ease them into the course by assisting them in understanding the material or
completing their projects.

Unlike the previous study, the authors in [133] exploit an automatic method of
hypotheses based on empirically gathered data. They use General Unary Hypotheses
Automaton (GUHA) to generate data based on three initial parameters:

• Confidence depicts the probability that a generated hypothesis correctly classi-
fies students as dropouts or not.

• Support is the minimum percentage of the hypothesis to fit the generated rule.

• The maximum number of antecedents corresponds to the number of literals
occurring on the left part of the rule implication.

The authors demonstrate that failing to submit the penultimate assessment leads
to a complete dropout decision for the course module at hand. Nevertheless, the
insight does not hold when applied across different course modules or related courses.
Hence, the varying nature of modules within the same online course2 makes it hard
for GUHA rules to hold in an inter-module (inter-course) scenario.

2The observation can be generalised for e-degrees in an online course where a module can be
considered a prerequisite course.
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2.1.2 Off-the-shelf Machine Learning

The bulk of the state-of-the-art methods address the SDP problem by relying on
simple machine learning algorithms. The literature uses classic ML models because of
the extensive support from modern programming languages and related frameworks
(e.g. Python and its libraries fully support data engineering and machine learning
predictions).

This section follows the same format as Section 2.1.1. In particular, for each
type of model in Figure 2.2 under the Off-the-shelf Machine Learning category, we
provide its formal description and subsequently enlist the literature studies that
exploit it. Although research confronts several prediction models, we report only the
best performing strategy (and combinations). Notice that we group methods based
on Decision Trees and Probabilistic Soft Logic under the Rule-based class. All the
models above identify rules which help to classify new instances. Instead, we situate
methods based on Random Forests and AdaBoost under the Ensemble category.

Logistic Regression

It models the relationship between two variables by fitting a linear equation to the
data x1, ..., xn to predict an outcome y [14, 129]. The literature denotes the variable
to predict y as the dependent variable and the input data features as independent
variables. Unlike the analogous linear regression model, the dependent variable y
can be categorical or continuous. The model does not require strictly continuous
data, and, for the sake of simplicity, we assume that y is binary. Moreover, the
logistic regression uses a log odds ratio rather than probabilities and an iterative
maximum likelihood method rather than the least squares to fit the final model. The
log odds ratio helps researchers use logistic regression since it is more appropriate
for non-normally distributed data or when the samples have unequal covariance
matrices.

The logistic function is a sigmoid function, which takes any real input y, and
outputs a value in [0,1]. For the logit, this is interpreted as taking input log-odds and
having an output probability. The literature defines the standard logistic function
σ : R→ (0, 1) as follows:

σ(y) = ey

ey + 1 = 1
1 + e−y

(2.1)

Assuming that y is a linear function of a single independent variable x, we can
express y as follows:

y = β0 + β1x (2.2)

According to Equation 2.2, we can write the general logistic function p : R→ (0, 1)
as follows:

p(x) = σ(y) = 1
1 + e−β0−β1x

(2.3)

Here, p(x) can be interpreted as the probability of the dependent variable y being a
positive case (i.e. dropout student) or a negative one (i.e. persisting student).

Works based on Logistic Regression - The authors in [42] use decision trees
to select features corresponding to maximum information gain. The authors split
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courses into weekly phasic views. Subsequently, they use a logistic regression model to
distinguish between dropouts and persisters. LR-SEQ and LR-SIM, sequentially and
simultaneously smoothed logistic regression, respectively, exploit transfer learning
to use the previous week’s knowledge to help learn smoother probabilities for the
current week of the student learning behaviour [53]. Together with data derived from
user e-tivities based on clicks, this work utilises homework submissions and grades.
In detail, they compute statistics at the end of a particular phase (e.g. average
attempts on each assignment done by week i) to train their weekly-based model.

Furthermore, LR-SIM improves LR-SEQ because, in the latter, early inaccurate
predictions cannot benefit from the knowledge learned in subsequent weeks, hence
sabotaging later models. Therefore, LR-SIM learns models for all weeks simulta-
neously. The work proposed in [113], jointly with the student responses to ad-hoc
questionnaires for several HarvardX courses, uses general student demographic
statistics. Here, the authors exploit a lasso-regularised variant of the logistic regres-
sion, which operates as a penalty for complexity whose size the authors determine
empirically. Logistic regression relies on two temporal concepts to structure their
prediction strategy (i.e. lead and lag) to predict the dropout status of students
[127]. Lead represents how many weeks in advance we predict dropout; whereas, lag
represents how many weeks of historical data the classifier has available to make
the prediction. For instance, when considering a lead of five and a lag of three, the
first three weeks of data are used to predict the upcoming five weeks. Therefore, the
data corresponding to the first three weeks of a course becomes the training set and
the dropout value for the eighth week becomes the label to predict.

Support Vector Machines (SVM)

When performing a binary data classification task, the goal is to assign one of the
two classes to a new data point, given that we begin with a set of instances in a
particular vector space Rn. The authors in [26] represent each data point x as a p-
dimensional vector. Hence, the classification goal is to know whether we can separate
the instances with a (p-1)-dimensional hyperplane. Although there are many ways
to divide the data points into two classes, SVM aims to learn the hyperplane that
maximises the separation. In other words, the hyperplane is considered an optimal
solution if the distance from it to the nearest data point of both classes is maximal.

Suppose that we have a dataset of n points (x1, y1), ..., (xn, yn) where yi ∈
{−1,+1} and xi = {f1, ..., fm} s.t. fj ∈ R ∀i ∈ [1, n] ∧ j ∈ [1,m]. Any class-
separating hyperplane can be written as the set of points that satisfy the equation
wTx − b = 0 where w is the normal vector to the hyperplane. Let us distinguish
between two scenarios of the data. Figure 2.3 depicts an example of SVM where
the dimensionality of each data point xi ∈ R2 ∀i ∈ [1, n] and, more importantly, the
data is linearly separable. However, there are cases where the data is nonlinearly
separable.

In the first case, as shown in the Figure, we can select two parallel hyperplanes
that separate the data. We call margin the region within these two hyperplanes.
Moreover, the maximum-margin hyperplane is the hyperplane that divides the
margin into two halves. Generally, assuming that the dataset is normalised and
standardised, the hyperplanes can be described by wTx− b = 1 and wTx− b = −1,
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Figure 2.3. An example of the maximum-margin hyperplane on a binary classification
problem. The data points (circles) on the dotted lines are denoted as support vectors;
meanwhile, the line separating the instances is SVM’s solution. Besides, notice that the
distance between the support vectors is 2

||w|| and that the distance of the linear function
from the origin of the data vector space - in this scenario R2 - is b

||w|| .

respectively. Because the distance between the hyperplanes is 2
||w|| , we need to

minimise ||w|| for the distance to be maximal. Finally, we need to prevent data
points from being inside the margin. Hence, for each i ∈ [1, n] we add the following
constraints:

• wTxi − b ≥ 1 if yi = 1;

• wTxi − b ≤ −1 if yi = −1;

The optimisation problem minimises ||w|| subject to yi(wTxi − b) ≥ 1 ∀i ∈ [1, n],
which is the merged version of the previous two constraints. The solution to the
optimisation problem depends from the data points xi (also called support vectors)
that lie nearest to the max-margin hyperplane.

In the second case, as happens with real-life applications, data is not linearly
separable. Therefore, the authors in [13] applied the kernel trick and transformed
the input data points from a source to a target vector space in which the points
are linearly separable. The proposed algorithm is similar to the original SVM, but
nonlinear kernel functions replace the dot products. It allows the algorithm to fit the
maximum-margin hyperplane in a transformed feature space. The transformation
may be nonlinear in the transformed space high-dimensional. In other words,
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although the classifier is a hyperplane in the transformed feature space, it may be
nonlinear in the original input space. Some of the most famous kernel functions are
the polynomial function, the Gaussian radial basis function (RBF) [119], and the
hyperbolic tangent.

Works based on SVM - The authors in [72] trained SVM with a polynomial
kernel function based on page-view and video-view logs aggregated (e.g. summing
or averaging) week by week. They extract numerical features by capturing the user
activity levels, such as the number of requests and technical features coming from
the browser information. Moreover, the authors state that historical features from
the previous week are useful only until a certain point in time, after which the
contribution of the e-tivities fades away. Similarly, a specific and a general case
dropout SVM model has been trained relying on the RBF kernel [3]. Here, the
authors distinguish between dropout and inactive student cases. In detail, dropouts
comprise students’ set without any generated e-tivities during the entire time-span
of the online course. Whereas inactive students are those students that attend the
course, but their sequence of e-tivities is parsimonious. The authors use quiz- and
activity-related information where, for each week, they transform the e-tivities of a
student in a string identified with letters corresponding to the type of e-tivities.

Naive Bayes classifier

Naive Bayes classifiers [48] are a family of simple probabilistic classifiers based on
Bayes’ theorem. In detail, they assign probabilities of class labels p(Ck|f1, ..., fm),
drawn from a finite set {C1, ..., Ck, ..., CK}, to the input instances xi = {f1, ..., fm} ∀i ∈
[1, n] assuming that all features fj ∀j ∈ [1,m] are independent and identically dis-
tributed (iid) variables given the class variable. The problem with p(Ck|xi =
{f1, ..., fm}) is that if m is large or if a feature fj can take on a large number of
values, then its calculation becomes infeasible. Using Bayes’ theorem, the conditional
probability can be decomposed as

p(Ck|xi) = p(Ck)× p(xi|Ck)
p(xi)

.

Because the denominator of the fraction does not depend on Ck, then we can
eliminate it and calculate only the joint probability p(Ck)× p(xi|Ck) = p(Ck ∩ xi) =
p(Ck ∩

⋂m
j=1 fj)3. Using the chain rule, we can exploit the rule of conditional

probability to write the previous equation as follows:

p(Ck)× p(xi|Ck) = p(f1, ..., fm, Ck)
= p(f1|f2, . . . , fm, Ck)× p(f2, . . . , fm, Ck)

= p(f1|f2, . . . , fm, Ck)× p(f2|f2, . . . , fm, Ck)× p(f3, . . . , fm, Ck)
= p(f1|f2, . . . , fm, Ck)× ...× p(fm−1|fm, Ck)× p(fm|Ck)× p(Ck)

3For readability purposes, we replace the joint probability symbol ∩ with a comma.
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We can exploit the iid assumption to write p(fj |fj+1, . . . , fm, Ck) = p(fj |Ck) ∀j ∈
[1,m− 1]. Hence, the joint model written above can be expressed as follows:

p(f1, . . . , fm, Ck) ∝ p(Ck, f1, . . . , fm)
∝ p(Ck)× p(f1|Ck)× p(f2|Ck)× ...× p(fm|Ck)

∝ p(Ck)×
m∏
j=1

p(fj |Ck)

where ∝ denotes proportionality.
Now, the Naive Bayes classifier combines the previous probability calculation in

a rule-based system. A common approach is choosing the most probable hypothesis,
the maximum a posteriori (MAP) decision rule. More formally, the MAP decision is
a function as follows:

ŷ = argmax
k∈{1,...,K}

p(Ck)×
m∏
j=1

p(fj |Ck)

Works based on Naive Bayes - By combining demographic data with information
derived from the aggregation of student e-tivities (e.g. number of visits, number
of sessions, percentage usage of each of the learning resources), the authors in
[41] employ several rule-based decision trees algorithms. However, they conclude
that the most accurate model is the Naive Bayes classifier. Similarly, the Naive
Bayes classifier is the best performing and statistically most significant classification
model in [76]. This classifier works best in all the dataset variants the authors have
considered (i.e. demographics data only and demographics together with the first
homework results). The authors in [91] propose WAVE, a monitoring architecture
for student academic progress. Alongside other student-performance metrics, WAVE
exploits exam information (e.g. GPA) to determine whether a student attending
the first semester persists in the second one. The authors rely on the Naive Bayes
classifier because of its superior performances according to their testbeds and its time
efficiency in training and predicting the dropout status of new students. Similarly,
the authors in [77] perform predictions via a Naive Bayes classifier on input data from
student demographic information and their academic performance in the Computer
Science course offered at HOU. Lastly, the authors in [84] consider behavioural
patterns such as accessing, viewing and closing course resources according to their
time of occurrence in a certain course phase. To resolve the SDP problem, they
exploit n Naive Bayes classifier to train a multi-view semi-supervised learning (SSL)
architecture [20]. They follow two steps in multi-training. First, they train the
components on a subset of the dataset. Afterwards, they transfer the unlabelled
examples, which have high confidence upon prediction from the n classifiers, into
the labelled set of instances. This two-phase process continues until there are no
more unlabelled data.

Decision Trees

In data mining, a decision tree is a predictive model representing both regression
and classifier models. When considering classification problems, a decision tree is
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called a classification tree; we use the former nomenclature throughout this work
(often, we use the shorthand DTree). According to Rokach et al. [114], a decision
tree is a classifier delineated as a recursive partition of the feature space. It consists
of nodes that, but the root node, have exactly one incoming edge. Nodes are divided
into two categories: internal nodes, which split the feature space into two or more
sub-spaces, and leaves are also called deciders. Moreover, each leaf corresponds to a
single class which represents the most appropriate outcome label. An instance is
classified by tracking its features throughout the tree’s nodes down to the leaf nodes.
Specifically, the search starts from the root, and, according to the features observed,
a branch is chosen. Subsequently, the node corresponding to the previously selected
branch is chosen, and the same procedure of electing a branch occurs. This goes on
until a terminal node (leaf) is reached.

The literature has proposed various algorithms for generating decision trees.
Generally, algorithms that build decision trees work in a top-down fashion where
they choose a feature value that best splits the feature space at each step. Different
algorithms use different metrics to select the best split of the feature space into two
sub-spaces. Here, we provide a brief description of each tree-generation algorithm
with its corresponding splitting metric:

• CART [16] exploits the Gini impurity score, which measures the probability
of misclassifying an instance. More formally, let K be the number of different
class labels {C1, ..., CK} and p(k) be the probability of getting any data
point x = (f1, ...fm) with class Ck. The Gini impurity is calculated as G =∑K
k=1 p(k)× (1− p(k)). A Gini impurity of 0 is the lowest and best possible

impurity. It can only be achieved when every input example has the same
class.

• ID3, C4.5, and C5.0 [111] use the Information Gain4 (IG) measurement based
on the concepts of entropy and information content. First, the entropy of a
particular target feature T is expressed as H(T )5 = −

∑K
k=1 p(k) × logbp(k)

where, as previously mentioned, p(k) is the probability of getting any data
point x = (f1, ..., fm) with class Ck from the set of class labels {C1, ...., CK}.
Now, the information gain of T according to the splitting feature fi is expressed
as follows

IG(T, fi) = H(T )−
∑
v∈fi

|T fi=v|
|T |

×H(T fi=v)

where v are the values that feature fi can assume, and T fi=v are the instances
in the input dataset that have v assigned as value of fi.

• CHAID [65] is a decision tree generation algorithm that, depending on the
continuity of the target variable, uses either the Chi-Square (categorical case)
or the F (continuous case) test to determine the next optimal split. Because
the dropout phenomenon has been modelled as a binary classification problem
(i.e. 0s are persisting student and 1s are dropouts), the Chi-Square is used.
We refer the reader to [102] for more details on the Pearson Chi-Square test.

4We refer the reader to [80] for more information on the conditional expected value of the
Kullback-Leibler divergence as a synonym of IG in decision trees.

5The base b of the logarithm is usually set to 2 since the information gain is measured in bits.
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Table 2.1. Representation of the cost matrix for cost-sensitive learning.

classified as negative classified as positive
actual negative C(−;−) = 0 C(−; +) = 1

actual positive C(+;−) = 4 C(+; +) = 0

Works based on Decision Trees - The authors in [1] use previous education
information and demographic data to shape their two decision tree models. In detail,
they test ID3 and C4.5, where the first performs better when executing a hold-one-out
experiment, whereas the second outperforms the other in a 10-fold cross-validation
method. By completing an exhaustive study of the dropout phenomenon on exploring
socio-demographic and study-environment variables, Kovavcic [78] exploits CHAID
and CART. To distinguish between different misclassification types on dropout labels
according to data related to previous studies, Dekker et al. [30] boost the accuracy
of CART via cost-sensitive learning. They use a cost matrix, shown in Table 2.1,
as input to the CART meta-classifier whose goal is to increase the weight of false
negatives over false positives. The authors in [73] adopt an SSL approach over
the C4.5 algorithm. They use the Tri-Training [138] strategy to produce the best
performing variant for their dataset. Lastly, the work presented in [95] confronts
interpretable methods such as decision trees against non-interpretable strategies
(e.g. random forests and gradient boosted trees). The chosen model has the best
performance and the greatest interpretability. Therefore, decision trees emerge as
the model satisfying both criteria. Ortigosa et al. [99] exploit the C5.0 decision
tree variant algorithm using data from more than 11,000 students collected over five
years in a Spanish OLE. The authors stretch themselves to produce more meaningful
results to provide some interpretability criterion for the end-user (the OLE staff).
They divide first-year students from successive-year students because the former
have a higher dropout rate. Thus, they consider these two types of students as
coming from two distinct populations with different problems. Besides outputting a
binary outcome of the student dropout status, the authors also provide risk scores
to prioritise support for those students standing at the high-end of the risk area.
Although they split the academic year into ten separate periods from September to
June, they train different C5.0 models for each period. The information passed from
one period to the other is limited, and models trained with data further in time are
agnostic of the models’ outcomes with data in earlier periods.

Similarly, Isidro et al. [63] use a decision tree classification to distinguish between
persisters and dropouts. They study the dropout phenomenon according to two
time windows: i.e. global and weekly student trajectory view. Both the decision tree
with the entropy and the Gini splitting function outperforms the other compared
methods.

Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is a framework for collective and probabilistic reasoning
in relational domains. PSL uses first-order logic rules over random variables with
soft truth values from the interval [0,1]. A PSL program has a set of first-order
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logic (FOL) rules with conjunctive bodies and single literals. Rules are labelled with
non-negative weights. While PSL shares the syntax of its rules with FOL, it uses
soft truth values from the interval [0, 1] instead of the true/false binary labels. Given
a set of atoms l = {l1, ..., ln}, the mapping I : l → [0, 1]n from atoms to soft truth
values is called an interpretation. Hence, PSL defines a probability distribution over
interpretations that satisfy more ground-rule instances more probable. For more
details on how the rule satisfaction and the inference and learning method in PSL
work, we point the reader to [68].

Works based on Probabilistic Soft Logic - By exploiting forum intervention data
incorporated with clickstream information, the authors in [112] use the modelisation
schema described above to construct relevant PSL rules using logical connectives.
The produced model associates these rules with student survival. The authors build
two PSL models to resolve the SDP problem. The first - denoted as direct - infers
the student survival solely from observable features; whereas, the second - denoted
as latent - infers the survival as a hidden variable. The rules produced vary from one
model to the other. In more detail, the direct model exploits one or more observable
behaviour features to predict student survival. Hence, observable features directly
imply survival. Contrarily, the latent model includes hidden variables based on
patterns of student engagement. Because these variables cannot be directly measured,
the authors treat student engagement as a latent variable by associating observable
variables (features) to a certain engagement form. The authors demonstrate that
the latent model outperforms the direct one.

Neural Networks

Although the architectures of neural networks have been expanded in recent years,
we provide the reader with the theory of simple and deep networks (i.e. multilayered
architectures) as inspired by [51]. An artificial neural network (ANN), often shortened
to a neural network (NN), comprises simple processing units called neurons. A
neuron is the fundamental processing unit in a neural network, and it consists of
four elements, as depicted in Figure 2.4.

• A set of weighted connecting links (synapses). The input signal xk = (f1, ..., fm)
k ∈ [1, n] when transmitting is multiplied by its corresponding weight (real
number) in the connection link wj,k ∀j ∈ [1,m].

• A linear combiner
∑m
j=1wj,k × fj which sums the weighted input.

• A bias term bk can be applied to the final summing junction. This element is
optional, thus can be set to 0.

• A differentiable activation function Φ (i.e. squashing function) which is applied
to the output of the neuron. It limits the output of the neural network. The
most used activation functions in literature are sigmoid [47], hyperbolic tangent,
and rectified linear unit [96].

The simplest form of a neural network is a single feedforward network (perceptron).
This type of network has three layers: input, hidden and output. Generally, the
input and output layers are not counted; thus, this network is a single layer network.
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Figure 2.4. The basic elements of a neuron.

A generalisation of the single feedforward is a multilayer feedforward network
(multilayer perceptron). In this case, there is more than one hidden layer. The
neurons belonging to the hidden layers - denoted as hidden neurons - can acquire
more global information and solve complex tasks. The input signals of a layer consist
of the output signals of the preceding layer only. Additionally, all layers are fully
connected.

A neural network is learned by adjusting the selected activation function’s weights,
edges, and parameters. The algorithm used for training is backpropagation [54]. The
weights are randomly initialised between a specific range of values. In a supervised
learning environment, when predicting the outcome label of a certain training
instance, the neural network engenders an error: the difference between the actual
label yk and the predicted one ŷk. The loss function (continuously differentiable) is
the sum of squares of the generated errors L =

∑
i(ŷk − yk)2. The backpropagation

algorithm optimises the weights of the network. Hence, the network learns how
to assign inputs to outputs by minimising the loss function at each training step.
Specifically, backpropagation uses the error values to calculate the loss function’s
gradient to find the minimum. This is the reason why the activation function must be
differentiable to update the weights. The weights of a neural network are analogous
to the coefficients in a linear regression model. However, because the number of
weights compared to the number of coefficients in a regression model is high, it is
difficult to interpret the weights in a neural network.

Works based on Neural Networks - Chen et al. [21] base their work on a novel
combination of decision trees with an extreme learning machine (ELM). They
transform results obtained from the decision tree employed into a neural network.
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They perform feature selection using decision trees based on maximal information
gain and weigh them based on their impact on the leaf nodes. Because the root
node has the best classification ability to be connected to all nodes, it has the most
significant impact. They call this procedure the enhancement layer. The subsequent
layer (i.e. the mapping layer) transforms the decision tree into an ELM, a single
hidden layer neural network. The input neurons are the root and internal nodes of
the tree, and the hidden neurons correspond to the leaf nodes. They connect an
input neuron to the hidden neurons if it impacts its corresponding leaf in the tree.
Therefore, they link the input neuron to the root node to each hidden neuron, while
other input neurons might be connected only to some hidden neurons. Finally, the
authors set to zero the weights of a connectionless neuron pair.

Ensembles

Instead of relying on the predictive power of a single model, an ensemble strategy
combines more models to obtain better results [98]. The models that build the
ensemble method are denoted as components. Notice that the components can be
heterogeneous: for instance, assuming that we have an ensemble of two components,
one might be a neural network and the other a decision tree. Each component
is trained separately. When predicting the outcome label of an instance xi, each
component j gives its prediction ŷj,i and a consensus method is employed to select
the overall prediction label ŷi. The simplest way of merging the different ŷj,i is
by selecting the label that the components have produced the most. This is also
known as the majority voting consensus. The most popular ensembles consist
of bagging (see Figure 2.5) and boosting methods (see Figure 2.6). The former
engages in training each classifier on a random redistribution of the training set.
The classifiers’ training set is generated by randomly selecting as many examples as
with replacement in the original training set. Contrarily, in the boosting strategy,
each classifier’s training set is based on the performance of the previous classifiers.
Examples incorrectly predicted by previous classifiers occur more often in the training
set of the current component. Hence, boosting produces new classifiers specialising
in predicting the outcome label of those difficult to classify instances. We have
identified Random Forests6 and AdaBoost as the primary ensemble methods in the
literature. Nevertheless, some works also concentrate on alternative and custom
made ensemble methods.

Random Forests

According to Breiman et al. [15], random forests are a combination of decision trees
such that each one depends on the values of a random vector sampled independently
and with the same distribution for all trees in the forest. In other words, random
forests are a technique of bagging with bootstrap samples. Specifically, a random
forest is a classifier consisting of a collection of tree-structured classifiers where
each tree casts a unit vote for the most popular class at a particular input x.
In a random forest, each tree is fully grown, meaning that pruning methods are
not employed. Although different studies [94, 101] sustain that pruning affects

6Random Forests can be considered as a bagging method with a slight tweak.
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Figure 2.5. An example of bagging (with bootstrap) ensemble learning. Beginning from
the initial dataset, we create L bootstrap samples so that each of them acts as another
dataset whose instances are drawn independently with the same probability. Then, we
can fit a weak learner for each of the sample datasets and finally aggregate them to
obtain an ensemble model with less variance that its components.

Figure 2.6. An example of boosting ensemble learning. Boosting consists in, iteratively,
fitting a weak learner, aggregate it to the ensemble model and update the training
dataset to better take into account the strengths and weakness of the current ensemble
model when fitting the next base model. In other words, each model in the sequence is
fitted giving more importance to observations in the dataset that were badly handled by
the previous models in the sequence. The colour of each strip in the dataset indicates
which instance the week learners need to focus on in each iteration (i.e. the darker the
shade the more important that instance is in the current iteration).
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performances, Breiman [15] suggests that the generalisation error always converges
even without pruning the tree. The user selects the number of features to consider
at each node and the number of trees to grow. Therefore, at each node, only the
selected features are searched for the best split. In testing, each new instance is
passed down to each of the L trees. The forest chooses a class having the most out
of L votes for that particular instance [100]. Although random forests generally
perform better than a simple decision tree, their classification decision cannot be
interpreted. Because interpretability is important in the dropout scenario since
tutors and course administrators want to devise intervention strategies, the literature
proposes compression techniques. Among these solutions, we can transform a random
forest into a born-again decision tree that reproduces the same decision function
[89, 130].

Works based on Random Forests - Gray et al. [45] model a student as a set of η
boolean observations indicating the attendance of a student at each point in time:
i.e. z = {z1, ..., zη}. They utilise an ad-hoc function that combines attendances
and non-attendances of a student from the η observations to calculate engagement
behaviour of a student: i.e. BEMη =

η∑
i=1

(−1)1−zi . They choose the BEM scores for
the first three weeks and demographic features to aid the information gain of their
model. Next, the authors use random forests, which rely on the degree program
as the discriminatory cohort and the BEM scores to determine the dropout cases.
Haiyang et al. [46] generate three time-series based on forum, video-lecture and
textual resource clicks. Afterwards, they sum up the number of clicks from each
module every day and align students’ total clicks. They exploit Time-series Forests
(TSF) [59], which employs a combination of entropy gain and distance measure to
evaluate the different splits. Besides capturing important temporal characteristics,
it reveals which course module (or period) most affects the learning progress of a
particular student s, thus enabling them to determine the exact time interval in
which s drops out.

AdaBoost

Adaboost is the first practical boosting algorithm [39] as illustrated in Figure 2.6.
Boosting is a machine learning approach that creates a highly accurate model
by combining many weak and naive models. For AdaBoost to be effective, its
component classifiers must be simple with low training error. Given l training
examples (x1, y1), ..., (xl, yl) where xi ∈ Rn and yi ∈ {−1,+1}. For each component
j = 1, ..., N , a distribution Dj is computed over the l training examples. Thus, a
weak learner is applied to find a weak hypothesis hj : Rn → {−1,+1} with a low error
εj over Dj . The final hypothesis computes the sign of the weighted combination of
the weak hypotheses

∑N
j=1 αjhj(x). This signifies that the final hypothesis performs

a majority vote from the weak hypothesis according to the weights αj . Following
the presentation of [117], we provide the pseudocode of the AdaBoost algorithm.

Works based on AdaBoost - Berens et al. [12] combine the prediction powers of
linear regression, neural networks and random forests to distinguish at-risk students
and persisters. The authors use a simple multivariate model for the linear regression
ys,j = β0 + β1~ds + β2zs,j + εs,j where s and j denote the students and the semester,
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Data: (x1, y1), ..., (xl, yl)
Initialise: D1(i) = 1

l ∀i ∈ [1, l];
for j = 1, ..., N do

Train weak learner using distribution Dj ;
Get weak hypothesis hj : Rn → {−1,+1};
Select hj with low weighted error εj = Pi∼Dj [hj(xi) 6= yi];
Let αj = 1

2 ln(1−εj
εj

);
for i = 1, ..., l do

Update Dj+1(i) = Dj(i)×e−αjyihj(xi)

Zj
;

where Zj is a normalisation factor
end

end
Result: H(x) = sgn(

∑N
j=1 αjhj(x))

Algorithm 1: The pseudocode of AdaBoost algorithm

respectively, and ~ds is the vector comprising demographic data. In this equation
zs,j denotes the time-varying performance data of student s in semester j. The
neural network component comprises three layers (including the input) with a final
sigmoid output layer. The input layer has thirty-one neurons. The first hidden
fully connected layer has sixteen, whereas the second fully connected has eight. The
hidden layer weights are randomly initialised in the range [−1,+1]. The activation
of each layer is the sigmoid function. The last component is a random forest because
decision trees tend to overfit data being a non-parametric ML technique. Hu et al.
[61] use two variants of boosting with decision trees. In other words, the authors
rely on the CART and C4.5 algorithms to build the components of the boosting
algorithm. According to the experimentation phase, the authors use the CART base
algorithm because it has a lower false-positive rate.

Other ensemble methods

Kotsiantis et al. [75] use an ensemble of WINNOW [85], 1-Nearest Neighbour and
Naive Bayes. WINNOW is a linear online algorithm similar to a perceptron. The
only difference stands on the weight updating rule. In WINNOW, the weights
of relevant features increase exponentially; meanwhile, those of irrelevant features
decrease exponentially. On the other hand, 1-Nearest Neighbour assigns an instance
to the class of its closest neighbour in the feature space.

Lykourentzou et al. [88] use a neural network, SVM, and a probabilistic ensemble
simplified fuzzy ARTMAP (PESFAM) [86] as the components of the ensemble model.
Having covered enough content about the first two strategies, we provide the reader
with information on how a PESFAM works. PESFAM combines simplified fuzzy
ARTMAP (SFAM) modules whose merging policy is the probabilistic plurality voting
strategy. Inspired by the PESFAM illustration in [88], we delineate in Figure 2.7
the same architecture comprised of n SFAM components in the student dropout
scenario. The left part of the Figure depicts the PESFAM ensemble. As with other
ensembles, the dataset instances are randomly selected with replacement to generate
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Figure 2.7. The PESFAM architecture composed of n components.

a new dataset represented the New input rectangles. They represent different "views"
of the original input dataset. Each component then produces prediction labels for
each input instance. A majority voting strategy stabilises the final labels for the
instances. The right part of the Figure represents the detailed view of an SFAM
module of the ensemble. An SFAM is a three-layered neural network: input, output,
category. There is a connection between the input nodes and those in the output
layer. Every output layer node points to a single category node, depicting one of
the two classes (dropout or not). For further details about the training and testing
phases of an SFAM network, we refer the reader to [66, 88].

Survival Models

As described in [64], survival analysis consists of tracing and examining time-to-event
data. For instance, in the SDP scenario, a student might be monitored until the
event of their preemptive dropout. More formally, let T ≥ 0 be a random variable
representing the survival time. The survival function is the probability that an
individual survives beyond time t:7

S(t) = p(T > t), 0 < t <∞

Additionally, in survival models, not all trajectories need to share the exact starting
point (e.g. t = 0). Because students can enrol in a certain course, especially MOOCs,
having a model that generalises the start time of the time-series is of utter importance.
Besides being robust to starting times’ heterogeneity, survival analysis permits input
trajectories to have different durations. This characteristic reflects the time series
in the dropout scenario because two distinct students have different behaviours,
thus elongating/shrinking their studies’ duration (e.g. time to graduation from an

7In SDP, the time t might vary according to the needs of the system. In other words, t might
have several meanings such as next semester, next week, or next course module.
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e-degree, or time to complete an online course). Having misaligned input trajectories,
some students in the dataset do not experience the dropout event within the chosen
time frame (i.e. their survival time is longer than t). Hence, survival models allow
us to censor these temporal series. In other words, censorship enables us to measure
"lifetimes" for a population that has not experienced the chosen event by time t.
We refer the reader to [58] for the different censorship strategies employed in the
literature. Notwithstanding the utility of the survival function, the literature often
relies on the Hazard Function to build a prediction model. This function is defined as
the probability that the student experiences an event within a short time interval if
they survived until the beginning of that interval [128]. In other words, it represents
the risk of experiencing the event of interest at time t.

To include the most used survival technique in the literature, we provide a brief
description of the Cox Proportional Hazards Regression model [27]. It considers the
effect of several variables and examines the relationship of the survival distribution
on these variables. It is similar to Multiple Regression Analysis, but the difference
is that the dependent variable is the Hazard Function at a given time t. It is based
on very small intervals of time, called time-clicks, which contains at most one event
of interest. For more detail8 on how this model works, we refer the reader to [49].

Works based on Survival Models - Gitinabard et al. [42] consider features based
on student interactions in course fora. However, they do not employ the intrinsic
structural and temporal aspects of forum-based characteristics. They perform an
initial survival analysis that finds that both behavioural and social features have
a high hazard ratio, meaning that the lack of interaction in fora induces students
to feel discouraged and drop out of MOOCs. Because survival models provide less
biased estimates than least-squares linear regression, Yang et al. [136] analyse the
determinant dropout factors with the highest hazard rate at the end of every course
module. They exploit the hazard rate to describe the impact of the input features
on student attrition9. Lastly, it is worth mentioning several studies that, although
concerned with physical rather than online degrees, employ a modelisation strategy
similar to those adopted for online courses/degrees [2, 23]. Ameri et al. [2] use
demographics and pre-enrolment information. Additionally, they collect semester-
wise attributes (e.g. GPA, credits passed/failed/dropped) from study-related data
such as exams and other curricular activities. Chen et al. [23] exploit the same
information as the previous work, but they use a lower quantity of features as
input to their forecasting method (i.e. thirteen [23] against thirty-one [2]). Both [2]
and [23] use Cox proportional hazard regression as their survival model to predict
dropout labels in their degrees.

2.1.3 Deep Sequential Learning

With the advent of deep learning, the dropout research area has benefited with
multiple proposals of sophisticated strategies to solve the SDP problem. We can adopt
deep learning approaches because of the size of available datasets, and because some

8This model has been supported via a programmatic framework available at https://lifelines.
readthedocs.io/en/latest/

9Here, the authors use the concept of attrition that represents a significant drop in student
interactions. Notice that attrition is a general case of dropout.

https://lifelines.readthedocs.io/en/latest/
https://lifelines.readthedocs.io/en/latest/
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algorithms have been shown to perform particularly well on sequential information.
Models proposed in the literature exploit the raw logs that the interaction of students
with the e-platform generates. Moreover, deep strategies are convenient because,
unlike classic learning techniques, they avoid most manual feature engineering
problems, thus facilitating the task of inexperts in the e-learning domain.

As depicted in Figure 2.2 and, specifically, in Deep Learning sub-classes, we
have identified two families of deep learning approaches used in the literature: i.e.
recurrent and convolutional neural networks. SDP studies have not adopted deep
strategies until recently. So, the works we enlist in the following sections are far less
numerous than those belonging to the classic learning methods discussed above. To
analyse these works, we follow the same structure as the previous section.

Recurrent Neural Networks (RNNs)

Unlike traditional neural networks, an RNN remembers history. An RNN can be
thought of as n copies of the same network put in the sequence 1, ..., n s.t. the i-th
copy passes information to the (i+ 1)-th copy. They allow previous outputs to be
used as inputs while having hidden states. Hence, RNNs are highly correlated to
sequences and, in our case, adaptable to the SDP problem.

Figure 2.8. Unrolled representation of an RNN.

Figure 2.8 illustrates the unrolled representation of an RNN running for n time
steps. At each time step i, the output yi and the hidden state hi are calculated as
follows10:

hi = a1(Whhhi−1 +Whxxi + bh) ∀i ∈ [1, n]

yi = a2(Wyhhi + by) ∀i ∈ [1, n]

where x and y represent the input and output vectors, respectively. h is the hidden
state, represented as a vector that the network passes to the next time step. Whh,
Whx and Wyh are weight matrices whose dimensionality is equal to the dimensions

10We take inspiration from the equations in https://stanford.edu/~shervine/teaching/cs-
230/cheatsheet-recurrent-neural-networks.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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of its subscripts. bh and by are the bias terms added, respectively, to h and y. The
dimensions of these vectors hold the same reasoning as those for the weight matrices.
Finally, a1 and a2 are activation functions. The activation functions are set according
to the problem at hand, but, generally, sigmoid and ReLU are used.

Because it is difficult to capture long term dependencies, an RNN suffers from
the vanishing/exploding gradient phenomena. In particular, when updating the
weights through backpropagation, gradients can exponentially decrease/increase
w.r.t. the number of layers. There are two methods to resolve these two anomalies.
One consists of capping the gradient’s maximum value during backpropagation
- known as gradient clipping. The other exploit specific gates Γ to mitigate the
vanishing/exploding gradient problem. There are four types of gates: update Γu,
relevance Γr, forget Γf , and output Γo gates. RNN flavours that deal with the
vanishing/exploding gradients use these gates to cope with the problems provided by
these phenomena. In other words, gates control the way information is propagated
in a network. There are two well-known RNN cells: the Long-Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU). Because the literature works rely only on
vanilla RNNs and LSTMs, we provide details for the LSTM cell and the characteristic
equations of its gates.

Figure 2.9. Detailed representation of an LSTM unit.

LSTMs are capable of learning long-term dependencies [57]. The key to an
LSTM is the cell state ci. The LSTM can add/remove (operations regulated by
gates) information to the cell state. Notice that only the update of the hidden
state hi differs from a plain RNN. Meanwhile, the output yi remains untouched.
Therefore, we describe only the steps necessary for the update of the hidden state.
Figure 2.9 illustrates the different components to update the context and hidden
states of the LSTM relying on the aforementioned gates. Firstly, an LSTM needs
to decide what information to throw away from the cell state. This decision is
made by the forget gate which looks at hi−1 and xi in order to output 0 (forget)
or 1 (keep). Formally, Γf = σ(Wf × (hi−1 ⊕ xi) + bf ) where ⊕ represents the
concatenation operator. Second, it decides what new information to store in the
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cell state which is regulated by the relevance gate. The LSTM needs a vector
of new candidate values ci to update the previous cell state. In other words,
ci = tanh(Wc × ((Γr × hi−1) ⊕ xi) + bc) where Γr = σ(Wr × (hi−1 ⊕ xi) + br).
Subsequently, the current cell state is updated ci = Γu × ci + Γf × ci−1 where
Γu = σ(Wu × (hi−1 ⊕ xi) + bu). Finally, the output gate decides what to produce by
exploiting a sigmoid function, Γo = σ(Wo × (hi−1 ⊕ xi) + bo). The current hidden
state is updated according to the current cell state, hi = Γo × tanh(ci).

Works based on RNNs Although the majority of the works in the literature base
their prediction models on LSTM cells, Wang et al. [132] exploit a recurrent network
as the last predictive layer of their architecture. They use the predictive power
of an RNN for the dropout decision because past e-tivities affect current student
interactions. In other words, e-tivities that are closer in time have a more dominant
influence than those that are distant. The authors exploit this characteristic by
using an RNN among different time slices. The activation function for the hidden
state is the ReLU function except for the last one, a sigmoid function.

Works based on LSTMs The authors in [35] propose two different Input-Output
Hidden Markov Models (IOHMMs) approaches. Finally, they demonstrate that a
variant of an RNN with twenty LSTM cells is the best performing model. Ding et
al. [33] use a combination of LSTMs and auto-encoders (AEs) to learn compact
and effective representations from raw data. They choose an unsupervised approach
to extract underlying representations of the input sequences they use. Then, an
LSTM intertwined with AEs combines the sequence-to-sequence learning framework
adopted in the SDP scenario [123]. As an AE requires, the authors use two LSTMs:
an encoder and a decoder LSTM. The input sequence (x1, x2, ..., xi−1) is fed into
the encoder which learns a hidden representation z forwarded to the decoder. The
decoder LSTM reads the original sequence - with the exception of x1 - in reverse
order and it outputs (x̂i−1, x̂i−2, ..., x̂1) as a reconstruction of the original input. The
authors try to predict student performance with only behavioural patterns from the
first i course phases. For this, the predictive power of the initial model is not optimal.
Therefore, they exploit transfer learning from finished courses to cope with ongoing
courses and real-time dropout identification. In this way, they can use the features
after phase i to the decoder part. The prediction happens at the encoder level
only using the first i course phases. The authors, hence, add a predicting decoder
parallel to the reconstruction decoder. The newly added component to the overall
architecture aims to predict features’ sequences in the later phases. Finally, the
authors use the learnt representations as new feature inputs to a fully connected one
hidden layer neural network to distinguish between dropout students and persisting
students. Differently from the previous works that predict the dropout status of a
particular student s, the authors in [125] use LSTMs to predict the next probable
learning resource11 that s will visit according to their personalised learning path.
The proposed method outputs also the estimated time s spends in the predicted
learning resource, thus giving sprout to a time-augmented LSTM.

11The authors represent each student as a sequence of URLs corresponding to the learning
resources visited in a specific timestamp.
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Convolution Neural Networks (CNNs)

CNNs are deep learning models that, taken in a two-dimensional12 input, assign
importance to objects identified in them13. Additionally, they can differentiate
between two images by the same concept of giving priority to the various things in
the input. A CNN is capable of capturing spatial and temporal dependencies in an
image by applying specific filters. Without loss of generality, a CNN’s objective is
to reduce images into a better-processing format without losing important features.
Three principal components constitute a CNN: i.e. convolution kernel, pooling layer
and fully connected layer. The last one is a neural network used as a final layer for
prediction purposes.

As described, CNNs are best suited for volume data h× w × d where h, w, and
d represent, respectively, height, width and depth. Matrices are also volume data
with d = 1. An RGB image is a three-dimensional matrix, each corresponding to
one of the colour channels. However, we assume that there is only one channel to
describe the kernel and pooling layers, hence d = 1. When d > 1, the kernel and
pooling layers are applied to each dimension independently. In each of the following,
we assume that the input image is illustrated in Figure 2.10. We give a detailed
explanation of only the first two components of a CNN architecture.
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Figure 2.10. A 5× 5× 1 matrix as image example.

Convolution kernel/layer A kernel - oftentimes denoted as a filter - is a three
dimensional matrix hk×wk×dk. In the scenario of CNNs, the depth of the kernel, dk
matches the channel number of the image; thus, dk = d. Notice that the number of
kernels nk may vary from application to application. Therefore, each of the 1, ..., nk
kernels is applied to the same input volume.

Suppose that we have a 3× 3× 1 kernel as the matrix in the upper-left corner
of Figure 2.11. In this case, we are applying a stride ns = 1, which denotes the
number of cells to slide right/down. The kernel matrix performs a summation of
the element-wise multiplication with the portion of the image it collides with. This
operation is called a convolution operation14. Subsequently, it shifts one cell to the

12Here, we use two dimensions for clarity purposes. CNNs can also take multi-dimensional inputs.
13Notice that CNNs can also be used in other contexts in which data has a spatial relationship

such as document classification and sentiment analysis.
14If the kernel and input image have depths different from 1, then the element-wise multiplication

is executed singularly for each dimension, and the summation operation is done throughout all of
them.
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Figure 2.11. Application of a 3 × 3 kernel (top-left corner) on the input matrix. The
output matrix is depicted at the top of the image. The colours represent the different
slices where the kernel is applied. Each cell of the output matrix is calculated as the sum
of the Hadamard product of the kernel and the highlighted section of the input matrix.

right. After performing the convolution operation on the first row, it moves down one
cell and proceeds as before15. The multiplication is depicted with different colours,
and the resulting matrix is the one situated at the top-centre part of the illustration.
In this way, the original matrix is reduced into a condensed representation version.
Notice that the elements of the kernel in this example form an X. In computer vision,
filters are used to detect geometric features such as edges, blobs, vertical stripes.
Hence, in this particular illustration, we are searching for X shaped elements.

Often, the input image and the kernel size are not proportionate. In this case, a
padding operation - usually the input is zero padded - is performed in the original
input in both the height and width dimensions. Hence if we have a h×w× d tensor
and we pad with size np, then the new tensor’s dimensions are (h+2np)×(w+2np)×d.
Therefore, in order to calculate the dimensions of the convoluted volume we need to

15Notice that if the stride ns were different from 1, then the shifting would happen every ns cells
to the right and then ns cells down.
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consider also the striding factor. A striding of ns shrinks the image ns times. Hence,
if we apply nk kernels of dimensions hk × wk × d with stride ns to a np-padded
volume h × w × d, it transforms this volume into another one with dimensions
(h+2np−hk

ns
+ 1)× (w+2np−wk

ns
+ 1)× nk. Notice that the new volume’s depth is equal

to the number of different filters we apply to the input image in order to detect
distinct high-level features.

max-pooling

avg-pooling
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Figure 2.12. Max and average pooling for the previous convolutional layer.

Pooling layer This layer is similar to the convolutional layer. It helps reduce the
spatial size of the volume to make it less computationally intensive. Additionally,
it is effective to extract dominant features. There are two fundamental types of
pooling layers: i.e. max and average pooling. The former returns the maximum
value from the portion of the image covered by the pooling matrix. The latter
returns the average. However, max-pooling also performs as a noise suppressant.
It eliminates the noisy activations and performs de-noising with dimensionality
reduction. Generally, the pooling layer comes after a convolutional layer. The
pooling layer can also have a stride n′s and a padding n′p option, which works in
the same way as described in the previous paragraph. For the sake of argument,
suppose that n′s = 1, n′p = 1 and the dimension of the pooling kernel is 2 × 2 × 1
as in Figure 2.12. The matrix taken into consideration in this example is the one
that the previous convolution layer has produced. The pooling kernel returns the
maximum value for each of the 2× 2 portions of the matrix. The same reasoning
holds with the average pooling operation. In general, the pooling kernel is a volume
hp×wp×nk where its depth matches the number of filters applied in the convolution
layer. Unlike the convolution layer, the input depth is maintained in this layer,
whereas the height and width can change. The new volume produced after the
pooling operation is of shape (hk+2n′p−hp

n′s
+ 1)× (wk+2n′p−wp

n′s
+ 1)× nk.

Works based on CNNs. The core of the CFIN system presented in [36] relies on
a one dimensional CNN. Moreover, the authors boost their model’s performances
by depending on XGBoost [22]. They incorporate context information, including
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user and course data, into a single prediction schema. Thus, because contextual
data correlates with learning activities, the authors rely on CNN to learn a context-
aware representation for each activity feature - process called context-smoothing.
Three crucial steps compose CFIN: i.e. context-smoothing, attention mechanism,
and prediction component. Feature augmentation, embedding and fusion form
the first step. These procedures come before the convolution part, which learns a
context-aware representation for each selected e-tivity feature. The authors exploit
an attention mechanism16 to model attention-based interactions for e-tivity features
using contextual information. Then, a dense neural network receives the produced
weighted-sum vector from the attention mechanism, and it predicts the outcome
label. Qiu et al. [110] propose DP-CNN to tackle the SDP problem. The convolution
stage follows an end-to-end approach. It comprises several convolutional layers and
a last fully connected layers with a sigmoid function. Precisely, DP-CNN consists of
a four-layer network with two convolutional layers and two fully connected ones. To
preserve all the feature information, the authors do not use pooling layers. Because
the input that the authors consider is two-dimensional, the convolution kernel is
also two-dimensional. The kernel activation function is a ReLU. The third layer of
the architecture also uses a ReLU activation function, whereas the last one - the
predictive layer - relies on a sigmoid function.

As mentioned above, Wang et al. [132] utilise a simple RNN as the last layer
of their prediction strategy, ConRec. The authors use a CNN to extract features
for the e-tivity matrices in each time slice. Therefore, the first four layers of the
architecture are convolution and pooling layers. The fifth layer is a fully connected
neural network that fuses features that the convolutional and pooling layers extract.
This layer generates one vector for each time slice. The RNN takes these vectors
and engages in determining the instances’ dropout class labels.

Graph Convolutional Neural Networks (GCNs)

Many important real-world datasets come in the form of graphs or networks: social
networks, knowledge graphs, protein-interaction networks, the World Wide Web.
Yet, until recently, very little attention has been devoted to the generalisation of
neural network models to such structured datasets. As of recent, a number of
papers re-visited this problem of generalising neural networks to work on arbitrarily
structured graphs ([29, 34, 69]) in domains that have previously been dominated by
kernel-based methods and graph-based regularisation techniques.

A GCN learns a function of features on a graph G = (V, E) taken in input having
the following characteristics:

• Every node vi ∈ V has a feature description xi. Therefore, V can be represented
as a feature matrix X ∈ R|V|×D where D is the number of input features.

• The graph structure contains a representative description as an adjacency
matrix A17.

16We invite the reader to check the work of Bahdanau et al. [7] for more detail on the attentive
networks in the context of neural machine translation.

17Notice that the graph structure can also be represented as a function derived upon the adjacency
matrix A.
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and produces a node-level output Z ∈ R|V|×F where F is the number of output
features per node. Graph-level outputs can be obtained via pooling operations as
shown in [34]. Thus, each layer in a GCN can be expressed as a non-linear function
hi+1 = f(hi, A) with h0 = X and hL = Z where L is the number of layers.

For the sake of argument, let us consider the following form of layer-wise propa-
gation rule:

f(hi, A) = σ(AhiWi)

where Wi is the weight matrix of the i-th layer and σ is an arbitrary non-linear
activation function. According to the literature [69], the previous equation has two
limitations:

1. Multiplying by A means that, for each node, we have to sum up all the feature
vectors of all neighbouring nodes, but not the node itself in case there are no
self-loops in G. To avoid this first pitfall, we can force G’s structure to have
self-loops by adding an identity matrix to A (i.e. Â = A+ I).

2. A is not normalised in general leading to a change of scales in feature vectors
when multiplying by the matrix18. Hence, we need to normalise A such that all
rows sum to one (i.e. D−1A where D is the diagonal matrix containing node
degrees). Now, the multiplication D−1A corresponds to taking the average of
neighbouring node features.

Nevertheless, the average of neighbouring node features has led to a more practical
normalisation (i.e the symmetric normalisation D−

1
2AD−

1
2 ) which was exploited in

[69] to express the following propagation rule in GCNs:

f(hi, A) = σ(D̂−
1
2 ÂD̂−

1
2hiWi)

where D̂ is the diagonal node degree matrix of Â.
Now that we have introduced a solid propagation rule in GCNs, we provide the

reader with the under-the-hood details of learning node embeddings with GCNs
[105]. We interpret the GCN model as a generalised and differential version of the
Weisfeiler-Lehman algorithm on graphs. For completeness purposes, we provide
the reader with the 1-dimensional Weisfeiler-Lehman algorithm in 2. It essentially
assigns a feature that uniquely describes each node vi in the graph G. We can adapt
this algorithm in the scenario of a GCN such that hvii+1 = σ(

∑
j

1
ci,j
h
vj
i Wi) where vj

are the neighbouring nodes of vi, ci,j is a normalisation constant for the edge (vi, vj)
originating from the symmetrically normalised adjacency matrix D−

1
2AD−

1
2 . Notice

that this propagation rule is a differentiable and parametrised variant of the hash
function in algorithm 2. By choosing an appropriate non-linear activation function
and an orthogonal initialisation of the weight matrices of the layers [43], the update
rule becomes stable in practice reaching a convergence. The smoothed embeddings
produced entail a relationship between node distance as similarity measures of local
graph structures.

Works based on GCNs Hu and Rangwala [60] propose an attention-based GCN
to determine the academic success of students by exploiting their performances

18The change on the scales of the feature vectors can be verified by looking at the eigenvalues of
A.
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Data: G = (V, E), k is the number of steps to repeat
V = {v1, v2, . . . , vi, . . . , v|V|};
while t < k or until convergence do

for vi ∈ V do
Let {hvj} be the feature set of neighbouring nodes {vj} of vi;
Update node features:;
hvj = hash(

∑
j h

vj ), where hash(∗) is an injective hash function;
end
t = t+ 1;

end
Algorithm 2: The pseudocode of the 1-dimensional Weisfeiler-Lehman algorithm

in prerequisite courses. They take into consideration the grades of a particular
student s in each of the courses taken as prior knowledge as well as the sequence
in which s has finished these courses and the intrinsic relationships thereof. The
authors use two GCN layers to aggregate information from a node’s second-hop
neighbours. In other words, the authors exploit information from courses taken up
to two past semesters. The output of the GCN is a graph embedding comprising
of the information about the knowledge and skills acquired in prior courses that s
has taken. Nevertheless, some prerequisite courses have different importance for
a particular target course. Thus, the authors capture the importance differences
of the prior courses by integrating an attention layer in the original two-layered
GCN model. As a consequence, the graph embedding matrix is weighted by the
attention scores and given in input to a pooling layer. The produced vector goes
into a multilayered neural network whose output is the estimated grade of s for that
specific course. Notice that the prediction of this specific work is a real number
(regression) instead of a binary label (classification). However, the system is capable
of identifying failing students whose grade results lower than the passing threshold.

2.2 Open Issues in SDP

Considering that SDP is a new research field with much attention in the coronavirus
era, the literature contains issues yet addressed. Here, we identify three of the major
criticalities in SDP. The first two issues are related to datasets and the student
trajectories structure, whereas the third one encompasses the evaluation criteria and
benchmark standardisation. For more detail on the challenges and solutions in this
research field, we refer the reader to [107, 108].

2.2.1 Inter-activity Temporal Gaps

Student trajectories are usually modelled as a sequence of events ordered in time.
Generally, this sequence is discrete, meaning that each event’s time is drawn from a
finite set of times. Hence, at any time, students can interact with the e-platform
and engender a variety of e-tivities. The interaction behaviour varies from student
to student. Therefore, some students might have a steady interaction pattern while
others check the e-platform parsimoniously. Moreover, two consecutive e-tivities
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have a temporal gap between them: i.e. the beginning of the successive e-tivity
comes later than the end of the previous one.

To the best of our knowledge, the literature does not emphasise temporal gaps
between e-tivities. Nevertheless, this phenomenon is important since it entails how
the students’ behaviours mutate over time. The trend shift in generating e-tivities
provides insight into the direction of the student education path. An increase in
temporal gaps signifies that a particular student has learning difficulties transitioning
into a dropout decision. Meanwhile, a decrease in gaps means that a student is
completing the online course/degree successfully.

Additionally, the importance of inter-activity gaps depends on the scenario.
While fast-paced MOOCs might experience fewer delays between e-tivities, the
phenomenon is critical in e-degrees. MOOCs’ characteristics permit students to be
more interactive, thus having shorter delays in completing course modules. Contrarily,
online degrees, being long-term and slow-paced, induce students to take more breaks
between one e-tivity and the other. Furthermore, interpreting these inter-activity
gaps is difficult because they depend on the way students interact with the e-platform
and course material. In other words, long breaks do not produce a grave alarm
if a particular student is consistently interacting in a more coarse-grained fashion.
Differently, if a student is active and does not take long to finish individual courses
in an e-degree, a single long break should raise a dropout alarm.

2.2.2 Long-term E-tivity Dependency and E-degrees

As mentioned before, MOOCs usually span from four to twelve weeks. Students
enrolled in e-degrees can take up to five years, depending on the period of the
programme, to graduate. Therefore, generated e-tivities by students enrolled in
fast-paced courses do not have an immense impact on shaping future interaction
behaviours with the e-platform. Meanwhile, e-degrees, being extended more vastly
w.r.t. MOOCs, consider the importance of past e-tivities that impact future decisions.
Moreover, online degrees consist of multiple courses interlaced with one another,
having different intertwined dependencies. Hence, students not participating actively
in one course might drop out when they tackle the second module of the same course
(e.g. one cannot successfully finish the course of Machine Learning if they have not
completed Linear Algebra or Basic Statistics).

The literature has not sufficiently explored strategies that cope with the student
trajectories’ long-term sequentiality and feature dependency. Deep sequential learn-
ing strategies have been proved to improve performances when analysing time-related
information. Additionally, as mentioned above, it is necessary to address the more
complex case of e-degrees to tackle the problem of long-term e-tivity dependency.
As emphasised from Table 2.3, the literature does not focus on online degrees, but it
copes with short-term MOOCs. Modelling e-degrees and handling the dependency
of different e-tivities is a challenging task in the long run. The decision to abandon
the studies for a particular student might arise from complex interactions between
the sequentiality of the generated e-tivities according to a non-deterministic student
interaction behaviour. In general, modelling e-degrees is not a simple extension
of the characteristics of MOOCs. Moreover, according to the Table, studies based
on e-degrees do not release their datasets online because their institutions’ student
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Table 2.2. The list of evaluation measurements used in the literature. Notice that only a
small percentage of the works in the literature rely on AUCPR, the stablest evaluation
metric in a class imbalance scenario.

Measurements Works

R
at
es

False Negative [61, 91]
False Positive [45, 61, 91]
True Negative [12, 91]
True Positive (Recall) [3, 12, 30, 45, 84, 88, 91, 110, 132, 133]

Precision [3, 12, 30, 45, 84, 88, 110, 132, 133]
Accuracy [1, 2, 3, 12, 30, 46, 61, 72, 73, 75, 77, 76, 78, 88, 91]

F β

β = 1 [2, 3, 23, 21, 36, 42, 45, 84, 110, 132, 133]
β = 1.5 [30]

AUCROC [2, 23, 21, 35, 36, 42, 45, 95, 110, 112, 113, 127, 132]
AUCPR [23, 112]
Cohen’s Kappa [3]
MSE [33]
MAE [2]
OPER/UPER [2]

information is proprietary. Therefore, another issue in SDP is having common
datasets used for benchmarking and easier confrontation of state-of-the-art model
performances.

2.2.3 Absence of Standardised Evaluation Benchmark

The literature uses variegated evaluation metrics to assess the performances of the
predictive models on future unseen cases. Generally, several well-known evaluation
metrics are used in statistics, machine learning and deep learning. However, given
the unbalanced nature19 of the data in the SDP scenario, only a fraction of the
proposed evaluation strategies are useful. Here, we tackle the lack of a standardised
evaluation benchmark due to the spurious usage of metrics and, most importantly,
of the tendency not to consider common benchmarking datasets (see Table 2.3).

The works in the literature consider SDP as a binary classification problem.
Note that even a probabilistic output must be eventually converted into a binary
decision, i.e., whether a student is at the risk of dropout. We have identified
several measurements that the literature exploits based on classification problems.20.
Hereafter, we report a description of these metrics, and we summarise their usage in
Table 2.2:

1. Accuracy. Pioneer works [73, 75, 77, 76, 78] relying on simple off-the-shelf
machine learning algorithms employ only accuracy as a means to assess the

19The number of persisting and dropout students is different, and some courses might have more
students that obtain certificates of completion rather than cutting their studies short. Others might
have the opposite scenario.

20Some works exploit also regression-related metrics adopting them into a classification scenario.
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performances. Accuracy solely can be misleading. In SDP, considering the
class imbalance problem, a model can predict the value of the majority class
for all predictions and achieve a high classification accuracy. Nevertheless,
this model is not useful in the problem domain. Therefore, it is mandatory
to apply additional measurements to evaluate the classifier properly. Other
papers [2, 3, 12, 30, 46, 61, 72, 78, 88, 91] also use different metrics to obtain
a more realistic view of the achieved performances.

2. Confusion Matrix and F-measure. To tackle the inefficiency of accuracy of
capturing good classifiers, the literature relies on rates calculated from the
confusion matrix [3, 12, 30, 45, 61, 84, 88, 91, 110, 132, 133] (e.g. Precision,
Recall and their derivatives such as the F scores). Notice that the majority of
the studies that rely on precision and rate-based metrics exploit the F-score
measurement. However, the F-score does not provide any intuitive explanation
of the performances. On the other hand, many samples - as in SDP’s case
- do not affect precision. Precision measures the number of true positives
from the samples predicted as positives (i.e. true positives and false positives
together), and it does not depend on the number of samples. A mixture of
recall, precision and F-score gives an intuition of the overall performances of a
classifier. Because the general formula of the F-score is Fβ = (1+β2)× P×R

β2×P+R
where P and R denote, respectively, the precision and recall, one can exploit
several choices of β to measure the relationship between P and R. The most
common choice of β is 1.

3. AUCROC and AUCPR. Recall and false positive rate (FPR) constitute the
building blocks of the ROC curve. They measure the ability to separate
dropouts from persisting students. The ROC is a probability curve, and
AUCROC tells how much a model can distinguish between classes. The higher
the AUCROC, the better a model predicts dropouts as 1s and persisters as
0s. Therefore, the works that rely on AUCROC combine the true positive and
false positive rates to assess the model’s predicting power [2, 23, 21, 35, 36,
42, 45, 95, 110, 112, 113, 127, 132]. However, AUCPR, used by [23, 112], is a
more suitable measure since it is more resistant to the class imbalance problem
w.r.t. AUCROC [28]. Unlike the ROC curve, the Precision-Recall (PR) curve
does not account for true negatives because they are not components of either
the recall or the precision formula21.

4. Cohen’s Kappa. Only a minority of research exploits the Cohen’s Kappa score
[3]. This measure manages both multi-class and imbalanced class problems.
Cohen’s Kappa represents the inter-rater reliability score (taking into account
an agreement by chance) of two models (classifiers). Therefore, researchers
could exploit this metric to verify the alliance between their classifier and that
corresponding to the ground truth. In this way, one determines how close
the selected model’s predictions are with the original labels. Although −1
indicates no agreement and +1 perfect agreement, the reader can consult the
work in [92] when choosing an acceptable range of the kappa score.

21http://www.chioka.in/differences-between-roc-auc-and-pr-auc/

http://www.chioka.in/differences-between-roc-auc-and-pr-auc/
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5. Mean Squared Error (MSE). It measures the average of the squares of the errors
represented as the difference between the predicted values and the ground
truth: i.e. MSE = 1

n

∑n
i=1(ŷi−yi)2 where ŷi represents the i-th predicted value

and yi is the i-th true label. In this context, it determines how well the model
fits the data. A perfect MSE score is zero, but since algorithms contain some
randomness, MSE scores are strictly positive. We consider as optimal those
models whose MSE is close to zero. Ding et al. [33] employs this metric for
their performances.

6. Mean Absolute Error (MAE). It is the average of absolute errors: i.e. MAE =
1
n

∑n
i=1 |ŷi − yi| where ŷi and yi have the same meaning as those mentioned in

MSE. It treats both underestimating and overestimating of the true value in
the same manner. As with MSE, MAE is also a negatively oriented metric,
meaning that lower scores are better than those tending to infinity. Ameri et
al. [2] use MAE.

7. Underestimated/Overestimated Prediction Error Rate (UPER/OPER). To
mitigate the underestimating and overestimating effect that MAE lacks on the
predicted values, Ameri et al. [2] introduce UPER and OPER. The authors
define UPER as the fraction of the underestimated prediction output over the
entire prediction error. In other words,

UPER =
∑n
i=1 I(ŷi < yi)∑n

i=1 I(ŷi < yi) +
∑n
i=1 I(ŷi > yi)

where I(ŷi < yi) = 1 if ŷi < yi and I(ŷi > yi) = 1 if ŷi > yi. The indicator
functions I(ŷi < yi) and I(ŷi > yi) are equal to zero if their conditions are not
satisfied. Therefore,

∑n
i=1 I(ŷi < yi) is the number of underestimated instances

and
∑n
i=1 I(ŷi > yi) is the number of overestimated instances. OPER is the

opposite of UPER: i.e. OPER = 1− UPER. The authors exploit these two
metrics to estimate the semester in which a student drops out. Nevertheless,
researchers might consider UPER and OPER if they treat SDP as a regression
problem. i.e. the label of each student now represents the probability that
they drops out.

Considering the increase in popularity of the SDP research field, most of the
OLEs made available parts of their course data and information of enrolled students.
Table 2.3 summarises the adopted datasets in the literature. We group the resources
according to their type (i.e. MOOCs, online courses, and e-degrees). The publication
of these datasets could aid researchers to compare their prediction results with
available baselines.

The KDD Cup competition22 is one of the few common benchmarks adopted
in the literature. In this competition, systems have been compared on well-known
online courses provided by famous MOOCs such as Coursera and edX. The goal
was to predict the probability of a student dropping out of a course in ten days.
The competition used AUCROC to evaluate the submissions. The authors in
[21, 36, 84, 110, 132] exploit the mentioned benchmark dataset. As reported in

22https://biendata.com/competition/kddcup2015/

https://biendata.com/competition/kddcup2015/
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Table 2.2, we can compare [21, 36, 132] as they use AUCROC for the evaluation.
Instead, we can also compare [36, 84, 110, 132] because they all rely on the F1 score.
From the first triple of papers, Feng et al. [36] is the winner with an AUCROC of
0.9093. In contrast, the most performing strategy from the second quadruple is Li
et al. [84] with an F1 score of 0.9241. However, we note that predicting a student
dropout with ten-day anticipation might not allow in practice the adoption of any
retention strategy by the institution.

For completeness, we mention two studies concerned with traditional degrees
that used data on first-year students enrolled at Wayne State University [2], and
George Mason University [23]. The former does not distinguish between students
of different degrees and uses all the enrolled freshmen for training. Instead, Chen
et al. [23] study the dropout phenomenon by discriminating between newcomers
registered in nine major STEM degrees (e.g. Mathematics, Physics, Chemistry).

Besides KDDCup15 and the Open University, all the other datasets are not
publicly available and require that researchers contact data providers to access
them. These studies often devise prediction strategies tailored for their institutions,
and thus, they do not release sensitive data about their enrolled students. We
note that the publication of sensitive data is to be strictly compliant with privacy
regulations. For this reason, in Section 4.3, we analyse critical aspects related to
privacy infringement mitigation.





43

Chapter 3

Student Trajectory Modelling

Chapter 3

Student modelling
- Plain modelisation

- Sequence labelling 

Background concepts
- Dropout status definition

- Taxonomy of SDP design

  choices

Figure 3.1. This chapter encompasses the background of the SDP research field, including
background concepts and formalisation of the dropout definitions. Because the literature
uses two different input modelling strategies, we divide them into plain modelisation
and sequence labelling with time-series and temporal networks.

Being SDP a novel research field, the literature lacks the structure of providing
a mathematical formalisation of the dropout definitions. Therefore, besides giving
background concepts and formalising the input modelling strategy employed in
the literature, we give also a taxonomy of different approaches utilised on the
student information (e.g. student e-tivities, demographic background and previous
education data). Figure 3.1 summarises the structure of this Chapter. Notice that
we also provide the reader with a detailed description of the differences between the
two identified student modelling techniques. On the one hand, plain modelisation
comprises all time-agnostic student information such as background, data from their
previous education, and current grades. On the other, sequence labelling is a more
complicated task since it includes time-related data engendered from the interaction
of students with the e-platforms.
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3.1 Background Concepts

As summarised in Chapter 2, researchers model student e-tivities adopting either a
recurrent (sequence labelling) or plain modelisation scheme. While a conventional
classification problem assumes that the inputs are independent and identically
distributed (iid), the input features in a sequence labelling task are dependent.
Without loss of generality, we introduce time-aware definitions of the relevant
entities and e-tivities within online courses and e-degrees. Moreover, we extend the
formalisation presented in [108] to the scenario of e-degrees.

An e-degree generally contains one or more courses. We indicate with C =
{c1, ..., c|C|} the set of these courses1. A course c ∈ C is composed of kc sequential
phases - also known as modules in MOOCs - pci (1 ≤ i ≤ kc) that begin at time b(pci )
and finish at time f(pci ). We indicate with b′(c) = b(pc1) and with f ′(c) = f(pckc) the
beginning and the end of course c, respectively.

Upon enrolment, the students have to complete all the courses in an e-degree to
graduate2. Hence, S represents the set of all students in an e-degree, whereas Sc ⊆ S
is the set3 of those students that attend course c. Interacting with the e-platform of
a course c consists of performing some actions from the set of all permissible ones
E . Since e-tivities constitute the basis of SDP, we annotate the student s ∈ S as a
temporal sequence of length mi of its e-tivities throughout the i phases of course c:
i.e.

s =
{
et1pci
, ..., e

tmi
pci

}
where etjpci 1 ≤ j ≤ mi is the e-tivity e ∈ E performed in the phase pci at time tj . We
assume4 that a student s has completed the course phase pci if their sequence of
interaction has a duration equal to the course phase time span: i.e. mi = f(pci )−b(pci ).

For readability purposes, we propose an aggregation function of e-tivities

ws(tb, tf , ci) =
⋃

tb≤tj≤tf

e
tj
pci

(3.1)

that a student s performs in phase pci within a specific time interval [tb, tf ]. According
to this formulation, we can express all the e-tivities that s has performed in phase
pci as ws(pci ) = ws(b(pci ), f(pci ), pci ). Furthermore, we extend Equation 3.1 to describe
e-tivities of student s in the entire course:

ws(tb, tf , c) =
⋃

1≤i≤kc
ws(tb, tf , pci ) (3.2)

Hence, ws(c) = ws(b′(c), f ′(c), c). This is useful when collecting the e-tivities that
stretch to more than one course phase. To cover the scenario of e-degrees, we extend

1The cardinality of the set of courses is equal to one when taking into consideration a single
MOOC or online course.

2If we consider the scenarios of MOOCs and single online courses, then students have to finish
a single course to obtain a completion certificate.

3Sc = S in MOOCs and single online courses.
4Notice that this assumption is strong and it is based only on the time factor without considering

if a student successfully completes assignments/homework.
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Equation 3.2 to obtain the student e-tivities in the period spanning from tb to tf :

ws(tb, tf , C) =
⋃
c∈C

ws(tb, tf , c) =
⋃
c∈C

 ⋃
1≤i≤kc

ws(tb, tf , pci )

 (3.3)

Table 3.1. Notation used with its corresponding meaning.

Relation Notation Meaning

Course

C = {c1, ..., c|C|} The set of all courses in an e-degree
c A single course belonging to C
pci The i-th phase of course c (1 ≤ i ≤ kc)
b(pci ) The time when phase pci begins
f(pci ) The time when phase pci finishes
b′(c) The time when course c begins. b′(c) = b(pc1)
f ′(c) The time when course c finishes. f ′(c) = f(pckc)

Student
S The set of all enrolled students in an online degree
Sc The set of students enrolled in course c
s A single student belonging to S

E-tivity

E The set of all possible e-tivities
e
tj
pci

A single e-tivity performed at time tj in course phase pci

ws(tb, tf , pci )
The set of e-tivities that s performs in phase pci in the
time interval [tb, tf ]

ws(pci )
The set of e-tivities that s performs in phase pci in the
time interval [b(ci), f(ci)]

ws(tb, tf , c)
The set of e-tivities that s performs in course c in the
time interval [tb, tf ]

ws(c)
The set of e-tivities that s performs in course c in the
time interval [b′(c), f ′(c)]

ws(tb, tf , C)
The set of e-tivities that s performs in the e-degree C in the
time interval [tb, tf ]

ws(C)
The set of e-tivities that s performs in the e-degree C in the
time interval [b′(c1), f ′(c|C|)]

Let ns be the length of the temporal sequence of student s:
i.e. ns =

∑
c∈C

∑
1≤i≤kcmi. Notice that two students s′ and s′′ might have different

lengths ns′ 6= ns′′ because their interactions with the online degree have different
durations. We annotate a student s ∈ S as a sequence that spans over the entire
duration of the e-degree denoted as d(C) where d(∗) represents the sum of the
duration of all courses c ∈ C: i.e. d(C) =

∑
c∈C f

′(c) − b′(c). In other words, a
student s ∈ S is denoted as a time series of e-tivities throughout the entire degree

s = ws(C) = ws(b′(c1), f ′(c|C|), C) (3.4)

According to the definition of the duration of an e-degree, d(C), and that of
the length ns of a student trajectory over C, there are three scenarios to consider
assuming that students enrol at the beginning of the e-degree:

• ns < d(C) - the student has stopped interacting with the courses c ∈ C and lacks
the potential to graduate, thus renouncing their studies completely. Notice
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that, in the e-degree scenario, this observation holds because students are not
allowed to graduate before the legal length of the online degree5. Contrarily,
students enrolled in MOOCs or online courses can obtain a certificate even if
the course they are enrolled in has not finished yet.

• ns = d(C) - the student has finished their studies and graduated from the
e-degree.

• ns > d(C) - the student has difficulties completing the e-degree, thus taking
extra time to complete the compulsory courses for graduation. This case refers
to students that have not finished their exams within the prescribed period of
time of the e-degree.

Table 3.1 summarises the used notation and its corresponding meaning.

3.2 Asynchronous Dropout Status Definitions
In the literature, SDP is a binary classification problem. In other words, zero
indicates a persisting student and one represents a dropout student. We formulate
the dropout problem both in a recurrent (sequential labelling) and plain (without
temporal dependence) scenario. Additionally, we discuss the benefits and possible
drawbacks of each formulation.

1. Plain dropout formulation: The student-platform interactions are independent
in time, while in reality, student behaviour may change over time. Given the
e-tivities ws(tb, tf , c) that s ∈ Sc performs, plain dropout determines whether
s drops out or not regardless of how the e-tivities are sequenced in [tb, tf ]. The
formulation is easily extendable to the scenario of e-degrees.

2. Recurrent dropout formulation: The recurrent dropout formulation consists of
using information from previous course phases to decide a student’s dropout
status. When transiting from phase pci−1 to pci , we share hidden information
to efficiently monitor student behaviours in course c in real-time. Therefore,
the label of s in phase pci depends on the activities performed in the preceding
phases pci−r, r ∈ {1, ..., χ ≤ i−1}. The length χ of the window used to consider
previous phases determines how much of a student’s past behaviour we want
to consider. All this information passes as a hidden state to pci .
The recurrent dropout adaptation to the e-degree scenario is more challenging
than the plain dropout formulation. In e-degrees, two courses can happen
in parallel. Therefore, there is no clear relationship between two courses
unless one is a prerequisite to the other. Moreover, a student s may decide to
withdraw from a specific course but not from the whole degree. Nevertheless,
without loss of generality, we assume that an e-degree is a giant course divided
into semesters ψi ∀i ∈ [1, N ] that play the role of the phases introduced before.
Thus, the dropout status of s is decided on the entire e-degree instead of per
single course.

5E-degrees might allow excellent students to graduate before the legal length of the course in
some cases.
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The works in the literature adopt the previous two dropout formulations according
to two different student modelisation strategies. Below we provide their formal
definitions. Notice that we abuse the notation in the following definitions by
indicating e-degrees, MOOCs, and single courses with c.

Definition 3.2.1 Plain dropout: Given a time interval [tb, tf ], a student s is a
dropout from course c if they do not survive until the end of the time span. In other
words, s is a dropout if ∃tu ∈ [tb, tf ] s.t. ws(tu, tf , c) = ∅.

According to Def. 3.2.1, ws(tb, tf , c) return a portion of the e-tivities of student
s. One can monitor the engagement of student s during the entire time span [tb, tf ].
Nevertheless, this definition does not consider a phasic view of the single course nor
the inter-course relationship in an e-degree. The dropout label is based on all the
e-tivities ws(tu, tf , c) that s does after a certain point in time tu.

Fei et al. [35] introduce three recurrent dropout definitions that we reformulate
according to the abovementioned notation. While originally employed in MOOC
contexts, we adapt them to other OLEs such as e-degrees. Moreover, we generalise
them by considering a phasic course unit instead of the original weekly time frame
adopted. Recall that kc sequential phases pc1, ..., pckc form a course c. The following
definitions assume that the e-tivities of s are grouped according to [b(pci ), f(pci )] ∀i ∈
[1, kc] in course c.

Definition 3.2.2 Participation in the final course phase: A student s is a
dropout if they do not persist until the last phase, pckc, of course c; otherwise, they
are a persister. In other words, s is a dropout if ws(pckc) = ∅.

Definition 3.2.3 Last phase of engagement: A student s is a dropout if they
do not produce any e-tivities after the current phase pci : i.e. s is a dropout if
ws(pci ) 6= ∅ ∧ ∀j ∈ [i+1, kc] ws(pcj) = ∅. Notice that this definition is a generalisation
of the previous one: i.e. we emulate Def. 3.2.2 by setting i = kc − 1.

Definition 3.2.4 Participation in the next phase: A student s is a dropout
if they do not have e-tivities in the next phase, pci+1. Hence, s is a dropout if
ws(pci+1) = ∅ ∧ i 6= kc.

Definitions 3.2.2 and 3.2.3 predict the final condition of the students. Contrarily,
Def. 3.2.4 does not refer to the dropout status for the entire course c. Instead, it
has a phasic view of the dropout status6. Thus, a student, which does not finally
dropout but has ws(pci+1) = ∅, is a dropout in phase pci . Recall that, in the scenario
of e-degrees, phases have the role of semesters.

Table 3.2 summarises the advantages and disadvantages of the above definitions.
Def. 3.2.2 disregards any fluctuations in student behaviour during the course phases.
The works in the literature use it to design a model that predicts the student
survivability at the course end. Def. 3.2.3 requires only a partial view of the
performed e-tivities to foretell the dropout label of student s. Nevertheless, because
it corresponds to the final status of dropout, it does not preemptively identify

6For more clarification, check the example in [35].
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Table 3.2. Advantages and disadvantages of the three dropout definitions.

Definition Advantages Disadvantages

Def. 3.2.2 - Simple student survivability model - Final dropout status prediction
- No preemptive identification

Def. 3.2.3 - Prediction using a partial view of
student e-tivities

- Final dropout status prediction
- No preemptive identification

Def. 3.2.4

- Ongoing dropout status prediction
- Prediction using a partial view of
student e-tivities
- Real-time prediction
- Temporarily inactive student
recognition
- Monitoring of student behaviour
in each phase

- Complex prediction mechanism
required

dropout cases. The last week of engagement might be too late to recover at-risk
students. Finally, Def. 3.2.4 is suitable to perform real-time dropout identification
and consistent monitoring of the behaviour of s at each phase. Nevertheless, its
adoption requires implementing complex predictive strategies.

Contrarily, the adaptation of the definitions in [35] to the scenario of e-degrees
implies utilising semesters pC1 , ...pCkC as the phases introduced in Table 3.1. Therefore,
all the above definitions now consider coarse-grained student trajectories w.r.t. fast-
paced MOOCs. Moreover, since e-degrees contain courses happening simultaneously
throughout a particular semester pCi , the student trajectory corresponding to pCi
illustrates e-tivities coming from several courses. To the best of our knowledge, not
only the literature has not experimented on e-degrees but has also disregarded the
intrinsic complexities of complying with e-tivities engendered by the interaction of
students with multiple parallel courses.

3.3 Student Modelling

When designing a student dropout predictor, we must select a suitable student
model to account for the dependencies between two consecutive phases/semesters.
Figure 3.2 illustrates the taxonomy of designing an input modelling strategy for
SDP. Specifically, it shows Plain Modelisation and Sequence Labelling. The former
mostly consider demographics, current study-related information, and their data
derivations. The latter adopts two different structural approaches that, respectively,
exploit temporal series and networks. Additionally, plain modelisation refers to time-
invariant characteristics of the raw logs on student e-tivities; meanwhile, sequence
labelling considers only time-variant features. Sequence labelling on temporal series
is modelled in the form of clickstreams or forum interventions.

Here, we present student modelling features following the taxonomy introduced
in Figure 3.2. We begin by analysing plain modelisation methodologies (Section
3.3.1) and next we consider the vaster class of sequence labelling methods, in Sections
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Figure 3.2. A taxonomy of student modelling approaches. The highlighted rectangles
depict harder approaches suitable for time-related strategies. The darkest path on the
right illustrates the typology of our proposed method.

3.3.2 and 3.3.3.

3.3.1 Plain Modelisation

Plain modelisation exploits student demographic information and data related to the
scores of tests/homework that students achieve in each course. Figure 3.3 shows a
conceptual workflow for transforming raw data into flattened input features. The two
vectors in the upper-left corner represent the demographic and pre-university data,
respectively. The matrices depict the interactions of a student in phase pci ∀i ∈ [1, kc].
Data obtained from the e-tivity matrix concatenation of all phases are flattened into
the vector fc containing grades, exam failures, and various cumulative statistical
features (steps 1.c and 2.b). Finally, all the vectors are merged (steps 3.a and 3.b)
into the input feature vector used for the prediction strategy (step 4). Notice that
the majority of works engage in plain modelisation since it requires less complex
prediction strategies. To have an idea of the features used when considering this
particular input modelling strategy, we provide the reader with some of the most
interesting works. Most of the works rely on cumulative statistical features generated
from the e-tivities. However, some of them exploit previous education information
and current student performance metrics.

SDP studies based on plain modelisation. The authors in [73, 77, 134] use student
demography and academic performance. Xenos et al. [134] also exploit student
interviews and ad-hoc questionnaires to identify other factors that lead to dropout.
The collected data is used to provide additional information regarding a certain
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Figure 3.3. Conceptual workflow illustrating the transformation of raw data in a plain
modelisation format for student s. Time-dependent e-tivities related to each course
phase pci (the matrices in the upper left part of the Figure) are flattened into a vector
of study-related features fc (i.e. statistics derived from all phases). These features are
then composed with demographic information and other information related to previous
studies (upper left part of the Figure). The result is a flat feature vector which acts as a
condensed representation of the interaction history of students.

dropout decision rather than to recognise a persisting student. Kotsiantis et al. [76]
extract only demographic data (e.g. background history, ethnicity, first-generation
in college) from the course of Informatics in the Hellenic Open University (HOU) to
identify struggling students before the midterm of the academic year. The authors
in [75] use assessment scores to classify dropout HOU students. They mark a
student as failing if they have not submitted one of the two required homework. In
this scenario, the authors use the e-tivity matrix on the course phases, and they
extrapolate data regarding the performance of students in assignments without using
other information from the interaction of students with the OLE. Lykourentzou et
al. [88] consider time-varying and invariant attributes by examining demographic
and previous study information. Nevertheless, they flatten the time-varying data
(i.e. e-tivities) to derive grades, GPA, and the number of activities per course phase.
Dekker et al. [30] look at only pre-university data ignoring current performance and
interaction patterns in their OLE. Although most traditional universities predict
different success outcomes for their students based on demographic data, here, the
authors do not have any substantial correlation between background information and
dropout probability. Berens et al. [12] build a self-adjusting early detection system
targeted for German universities. They employ personal, previous education, and
current matriculation information to identify dropouts as soon as the first semester.
Kovavcic [78] performs an exhaustive study of the dropout phenomenon by exploring
socio-demographic and study-environment variables. Similarly, Al-Radaideh et al.
[1] use previous education information and some demographic data to shape their
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model. Jointly with the student responses to ad-hoc questionnaires for several
HarvardX courses, Robinson et al. [113] use general student demographic statistics.

Manhaes et al. [91] propose WAVE, a monitoring architecture for student
academic progress. Alongside other student-performance metrics, WAVE exploits
exam information (e.g. GPA) to determine whether a student attending the first
semester persists in the second one. Although Hu et al. [61] keep track of time-
dependent information, they flatten the e-tivities into plain data for statistical
analysis. Similarly, Gaudioso et al. [41] combine demographic data with information
derived from the student interaction with the e-platform (e.g. total number of visits,
number of sessions, percentage use of each of the learning resources). Wolf et al.
[133] study the Virtual Learning Environment (VLE) clicks for each student enrolled
in the Open University (OU). The authors enrich their dataset with tutor assessment
grades, final exam marks, and demographic information.

Amnueypornsakul et al. [3] use quiz- and activity-related information. For each
week, they transform the activity-related data in a string consisting of e-tivities,
identified with a letter. Gray et al. [45] model a student as a set of η boolean
observations indicating the attendance of a student at each point in time: i.e.
z = {z1, ..., zη}. They utilise an ad-hoc function that combines attendances and non-
attendances of a student from the η observations to calculate engagement behaviour of
a student: i.e. BEMη =

η∑
i=1

(−1)1−zi . They choose the BEM scores for the first three
weeks and demographic features to aid the information gain of their model. Feng et
al. [36] extract student behaviour patterns. They engender statistically aggregated
data from student clickstreams while simultaneously modelling user and course
contextual information. They refer to demographic data for the student context;
whereas, they represent the course context with its category (e.g. maths, physics, and
arts). Ortigosa et al. [99] integrate user data coming from two different systems to
obtain background (socio-demographic data) and static academic information jointly
with details about student e-tivities throughout their course intake. Nevertheless, the
authors aggregate and flatten this information, thus reducing the time complexity.
Isidro et al. [63] extract video-related information such as the number of videos
played and time spent watching them. Additionally, they collect assessment data
and aggregated information about their interaction in the OLE fora (i.e. number of
comments in specific topics).

Finally, it is worth mentioning several studies that, although concerned with
physical rather than online degrees, employ a modelisation strategy similar to those
adopted for online courses/degrees [2, 23]. Ameri et al. [2] use demographics and
pre-enrolment information. Additionally, they collect semester-wise attributes (e.g.
GPA, credits passed/failed/dropped) from study-related data such as exams and
other curricular activities. Chen et al. [23] exploit the same information as the
previous work, but they use a lower quantity of features as input to their forecasting
method.

3.3.2 Sequence Labelling with Temporal Series

Sequence labelling consists of shaping the raw data logs into a discrete temporal
series consisting of the student e-tivities. A discrete-time temporal series [17] is a set
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Figure 3.4. Conceptual modelling of a sequential scheme of course c, with an example of
consecutive and same-width time-slices in phase pc3. Note that periods of non-activity
(the ∆c

i ∀ i ∈ [1, kc)) may have a different length.

of observations, each one being recorded at a specific time t coming from a discrete
set T of times. Essentially, we divide each phase pci into µ consecutive temporal
slices generally of the same duration where the end of the last slice coincides with the
beginning of the current one. Figure 3.4 illustrates the segmentation of the phases
of course c in time-slices. Notice that there can be gaps between two consecutive
phases pci and pci+1, here denoted as inter-phase delay ∆c

i . Additionally, we portray
the course phases with different duration to represent heterogeneity among them.
In this example, we assume that phase pc3 has eight consecutive time-slices (µc = 8).
Based on these information, we can observe ws(tjb, t

j
f , p

c
i ) for each student s to predict

whether they continues with their studies in that particular time frame [tjb, t
j
f ], based

on previous history. Afterwards, one can scale up and generalise, in a hierarchical
manner, for the persistence of s in course c by relying on the information obtained
during their persistence in the different phases.

Notice that the model presented in [108] generalises over what the current research
studies do. In the literature, the courses have the same duration and no inter-phasic
gaps, which are a useful indicator of future dropouts. Moreover, researchers adopt a
time window of the same length of the duration of pci . Referring to the notation of the
previous example, tb of the first slice and tf of the last one correspond, respectively,
to b(pci ) and f(pci ).

Moreover, we provide the reader with a scaled-up version of the student trajectory
in a single online course to a long-term e-degree. Recall that an e-degree C is a
collection of courses C = {c1, ..., c|C|}. We extend Figure 3.4 to represent a more
complex scenario by taking into account several courses that can begin simultaneously.
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Without loss of generality, we suppose that the courses of an e-degree belonging to
the same semester begin in the first day of the semester7. Moreover, some courses
might span over several semesters (e.g. yearly courses). In this case, we alleviate
this constraint by considering the course spanning over more semesters as a chunk of
per-semester sub-courses. Figure 3.5 illustrates an e-degree composed of |C| courses
belonging to different semesters ψ1, ..., ψN . Notice that the student interaction differs
not only from one course to the other but also within the same course if it spans over
more semesters (e.g. c1 over the first two semesters of C). As mentioned above, here
c1 is considered as two sub-courses c′1 and c′′1 where the completion of both implies
successfully passing c1. Now, consider course c1. Notice how, in the first semester, it
ends before the finish date of the semester - i.e. f ′(c′1) < end(ψ1) - and it starts after
and ends before the allotted time in ψ2 - i.e. b(c′′1) > begin(ψ2) ∧ f(c′′1) < end(ψ2).
To tackle "spurious" courses (i.e. those that begin after the start of the semester
or end before the finish of the semester), we pad the student time series with
leading/trailing zeros to indicate inactivities. Although this time-series alignment
simplifies the overall input modelling strategy, it introduces a bias in the prediction
model. Nevertheless, because all students will have leading/trailing holes in their
time series, temporal deep learning models are resilient enough to understand this
manually introduced bias as it does not change the prediction outcome of the dropout
status.

Without loss of generality, we provide Figure 3.6 as a simple representation of
the input model. Here, we refer to a single online course, but the model can be
easily extended to e-degrees by replacing the course phase notion with semesters
ψ1, ..., ψN . The squares in the Figure depict the course phases, pci . They contain the
e-tivities of student s, ws(pci ). Notice that they can also include aggregation features
calculated upon the e-tivities instead of just ws(pci). Differently from Figure 3.4
that considers time-frames within a specific course phase pci , we exploit the whole
engagement patterns for s in pci to engender their dropout probability.

We have identified two main approaches to temporal modelisation: i.e. clickstream-
based and forum intervention-based. However, a minority of works in the literature
uses other approaches derivations of the previous two. As the name suggests, a
clickstream-based schema is based on e-tivities related to clicking resources such
as viewing learning resources and videos. In each course phase pci ∀i ∈ [1, kc],
the student trajectory s comprises of same-type click e-tivities grouped together
according to an aggregation function (e.g. average, variance, count). Notice that
clickstreams do not include forum discussions, such as commenting, starting threads,
or assignment/project grades.

Nevertheless, they incorporate forum click-events, such as liking or disliking
forum comments, and data related to assignment submissions. Contrarily, a forum
intervention-based schema depends on information gathered from student discussions
with their peers/tutors. Data used in this schema comprises both structural (e.g.,
thread starters, thread comments and replies) and temporal information. Generally,
time series from the forum-derived data of s include statistics or NLP-derived metrics

7In the real world, although courses belong to the same semester, they might begin in different
days, thus not permitting the students to interact with the course material until the effective begin
date.
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Figure 3.6. A discrete-time temporal series where student s performs |ws(pci )| e-tivities
in phase pci . In the scenario of e-degrees, the phase pci is represented by a semester ψj ,
where j ∈ [1, N ].

(e.g., total number of responses, text length/density) in each course phase. Only a
minority of works exploits the structural connections engendered by the interaction
of peers in OLE fora.

SDP studies based on clickstream-based schema. Kloft et al. [72] exploit
page-view and video-view logs by performing a weekly aggregation (e.g. summing or
averaging) of the identified features. Their strategy relies on extracting numerical
features by capturing the user activity levels (e.g. number of requests) as well
as some technical features coming from the used browser information. Ramesh
et al. [112] use lecture views and quiz answers to model two forms of student
engagement (i.e. active and passive) derived from user clicks. According to the
authors, active engagement occurs when a student s attends lectures and submits
quizzes/assignments. Meanwhile, passive engagement occurs when s scarcely attends
lessons and does not submit the assigned homework. Hence, by using student
commitment as a latent variable for their predictive model, the authors use student
submissions to gauge the student survival rate.

Similarly, Nagrecha et al. [95] use clickstream information from video viewing
patterns. Each of the data characteristics included in their schema captures latent
factors in the consumption of video contents which is the main interaction feature
in most OLEs. Jointly with data derived from user clickstreams, the authors in
[53, 127] utilise homework submissions and grades. In detail, He et al. [53] compute
statistics at the end of a particular phase (e.g. average attempts on each assignment
done by week i) to train their weekly-based model. Taylor et al. [127] derive input
statistics in the same way as presented in [53], but they use the notions of lag and
lead to train their model. Fei et al. [35] exploit lecture views, downloads, and quiz
attempts. Li et al. [84] consider behavioural patterns such as accessing, viewing and
closing course resources according to their time of occurrence in a certain course
phase. Qiu et al. [109] include a list of statistical features such as the number
of chapters a student browses and the total time they spend on watching videos.
The authors in [21] extract characteristics from weekly learning behaviour records
to provide prompt analyses of the student performances. Their performance is
illustrated as a metric based on video-viewing patterns (i.e. pause, play, stop) in
important lectures before the weekly assignments. Wang et al. [132] distinguish
e-tivities coming from clickstream data according to click-source and click-type in
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a course phase. They transform these data into one-hot vectors and bit-wise sum
the vectors belonging to the same time unit feeding their result into the prediction
model. Haiyang et al. [46] generate three time-series based on forum, video-lecture
and textual resource clicks. Afterwards, they sum up the numbers of clicks from
each module on each day and align the total clicks of students. Ding et al. [33]
use clickstream data corresponding to navigation and video lessons such as playing,
pausing and stopping. Qiu et al. [110] model a temporal series as a one-dimensional
grid data sampled at fixed time intervals. They transform the raw input according to
a time window algorithm (DTTW), obtaining a time-behaviour dimensional matrix.
The time dimension describes the time sequence relationship. In comparison, the
behaviour dimension describes the various behaviours in the corresponding period.
Finally, Tang et al. [125] exploit time-augmented sequences of learning resources. In
this scenario, the authors have a collection of unique URLs corresponding to the
learning resources (e-tivities) of their OLEs and the time accessed by each student.

SDP studies based on forum intervention-based schema. Models based
on forum-derived features are suitable for distinguishing hugely engaging students
from those that exhibit a less determined engagement. However, according to [42],
since only a tiny percentage of students engages in OLE fora, the literature lacks
studies that purely base their strategies on forum intervention. Because temporal
series cannot model the structural patterns of forum discussions, research exploits
forum-derived features to enrich clickstream-based models. Below we report some
studies based on clickstreams that use forum features to boost their performances.

Ramesh et al. [112] use sentiment analysis of the forum threads as linguistic
characteristics and the structural typology of the network formed by the student
discussion (i.e. thread openings, comments, and replies) to capture forum information.
They include the subjectivity and polarity of each thread post to their clickstream-
based feature vector. Fei et al. [35] investigate forum views, thread initiations, posts,
and comments. Finally, the authors in [109] derive features from forum activities.
They also consider the homophily correlation of a student expressed as the number
of replies received from well-performing students. In this way, the students who
received the replies are less prone to drop out.

3.3.3 Sequence Labelling with Temporal Networks

As stated in [127], commenting and replying to threads may suggest a lower dropout
susceptibility. To better model student engagement in fora, a few studies have
exploited temporal networks, and they capture both structural and temporal in-
formation of students that interact with their peers. There are three types of
interactions in the forum:

• Thread initialisation characterises the action of creating a new argument. A
thread θ can have [0, n] comments. We denote with OP (θ) the original poster
of θ as indicated in [139].

• Comments are posts directly correlated to the original thread message. A
comment can have [0, n] replies.
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Figure 3.7. Hierarchical view of the forum discussion in each course phase pci . Here we
assume that only one thread θ has been opened, and we trace the student interactions
throughout the phases. The indentations denote the interactions between two students.
In other words, the student in the innermost layer interacts with that in the layer
immediately above it. We distinguish between the three interaction types of students;
the dark grey represents a thread starter, and the brightest grey a replier. Lastly, the
mid-dark grey illustrates a commenter.

Figure 3.8
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• Reply messages are responses to the comment messages. A reply message can
have other nested replies.

We specialise the temporal-network definitions in [9, 93] for the student inter-
actions in fora to cope with the description of the methodologies that use this
particular form of modelisation. We denote with Θc = {θ1, θ2, .., θx} the set of all
threads in course c. Recall that Sc is the set of students enrolled in course c. A
forum-based social network for a thread θr ∈ Θc during a time interval [tb, tf ] is a
labelled multidigraph (i.e. directed graph with parallel edges [9]) Gθr[tb,tf ] = (V,A, `A)
where V ⊆ Sc, A is the set of arcs (s′, s′′) derived from the following interactions:

• s′ comments to thread θr that s′′ has generated, or

• s′ replies to a comment of s′′ in thread θr

and `A : A → T is a function that maps the arcs (s′, s′′) to their relative
interaction timestamp t. Clearly the social network interactions of phase pci is

Gpci =
⋃

θr∈Θc
Gθr[b(pci ),f(pci )]

and the interactions related to thread θr are captured by

Gθr = Gθr[b′(c),f ′(c)]

For completeness purposes, we denote with

Gθrpci = Gθr[b(pci ),f(pci )]

The same formalisation can be extended to the scenario of e-degrees. In detail,
the social interactions in e-degree C can be expressed as GC =

⋃
c∈C

⋃
1≤i≤kc Gpci .

Whereas, the tracing of θr in e-degree C is equal to GθrC = Gθr[b′(c1),f ′(c|C|)]
. Since a

particular thread θr ∈ Θc begins and finishes in course c, then Gθr = GθrC ∀c ∈ C. In
other words, it is sufficient to trace θr in its belonging course rather than in the
entire e-degree.

Figures 3.7 and 3.8 illustrate an example of a temporal social network showing
the timed interaction patterns between students. Here, we suppose that the students
initiate only a single forum thread in each phase pci . Figure 3.7 depicts the hierarchical
structural representation of the interaction of the students (A,B,C,D,E). Notice
that, for each phase pci , we depict only the threads opened in pci . We do not want to
trace the evolution of the thread influence in each phase but rather check students’
engagement in time in different threads. To distinguish the three forum interaction
types, we highlight them. We indicate the thread’s original poster with a dark shade,
a comment with a lighter shade, and a reply with the lightest shade. Figure 3.8
depicts the hierarchical representation transformed into a labelled multidigraph.
The labels in the edges depict the time of interaction between its endpoints. Notice
that, by examining the phases pc1, ..., pck, we can model the difference in the density
of discussions among peers. For instance, student B is inactive in phase pc2. Hence,
if B does not participate in the discussion in the successive phases pc3, ..., pckc , then



3.3 Student Modelling 59

B is a potential dropout from the whole course. On the contrary, the other students
maintain a linear pattern of interaction with one another; hence, they are likely to
persevere.

In conclusion, temporal network models make it possible to exploit network-
related metrics (e.g. betweenness centrality [97], PageRank, and HITS [71]) to
determine the departure decision for each student in each phase. Furthermore, it
is possible to refine the criterion of considering an engaging student in the forum
by discriminating their participation in the same thread in different time phases.
Accordingly, a student that does not get involved in new discussions in the successive
course phases can be considered a dropout. Additionally, by analysing the interaction
between at-risk students and highly engaging peers, works exploiting this particular
input modelling strategy can fine-tune the predictive model to minimise the false
alarm rate.

Figure 3.9. Temporal network model highlighting the network structure in each course
phase pci according to [136]. Only thread starters (bold circled nodes) have outgoing
arcs towards the other students. The edge labels indicate the number of times a thread
starter has influenced another student into interacting in that particular thread in the
course phase pci . Here, we do not distinguish between comment and reply edges. For
visualisation purposes, the thickness of the direct edges depends on the number of
interactions between its incident nodes.

SDP studies based on temporal networks. As mentioned above, only a hand-
ful of works in SDP base their predictive model on features derived exclusively on
peer-to-peer interactions in fora. Yang et al. [136] partition the enrolled students
into cohorts according to their registration period. They reveal that students in later
cohorts are more isolated while those from earlier ones have a steady interaction rate.
They model the relationships between thread starters and other students. In their
work, the thread initiators have an outgoing connection to all students participating
in the discussion. Therefore, we need to transpose our network structure in each
phase pci . Furthermore, the authors do not model parallel edges to indicate multiple
interactions between students. Instead, they label the edges with the number of
interactions between their endpoints. Essentially, the network that the authors
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Figure 3.10. Temporal graph in each phase pci according to [18]. We connect each node
with all the others that have previously participated in the discussion. For instance,
consider phase pc2. According to the hierarchical interaction in Figure 3.7, firstly E
comments to the initial thread message of D, thus Gpc

2
contains the edge (E,D). Then,

E comments twice, but since we do not model parallel edges we do not Gpc
2
with arc

(E,D) again. The comment of C to D induces the edge (C,D). Lastly, we model both
replies of A to E and C, respectively, as two edges (A,C) and (A,E)the reply of C to the
comment of D. The same reasoning stands behind the other phases. The representation
of OP (θ) remains unaltered from the other figures.

generate is equivalent to a transformation from Gθrci to a simple directed graph
Gθ

r

ci = (V ′, E) where E = {(s, s′)|∃s′ ∈ V ∧ s = OP (θr) ∧ s 6= s′ ∧ degGout(s) 6= 0}
where degGout(s) is the out-degree of s in Gθrci and the weighted function `E : E → Z+

depicts the out-degree, in the original multigraph, of the second element in e ∈ E.
Figure 3.9 illustrates the formalisation adopted in [136], with reference to the

hierarchical model introduced in Figure 3.8. The authors rely on social network
analysis metrics, each providing different insights into the student engagement
patterns.

Gitinabard et al. [42] consider two types of graph generation strategies. Based
on [18], the first type connects the students to all those that have previously
participated in the discussion of the same thread. In this way, each user has an
outgoing edge towards all the others except themselves. This method assumes
that every participant in a thread has read all of the preceding posts first and is
responding to all of them. The network that the authors generate is equivalent
to a transformation from Gθrci to a simple directed graph Gθ

r

ci = (V ′, E) where
E = {(s, s′)|∃s, s′ ∈ V ∧ s 6= s′ ∧ min(`A, s).t ≥ min(`A, s′).t} and min(`A, s) =
{t|∃s′ ∈ V ∧ (s, s′) ∈ A ∧ t = `A((s, s′)) ∧ ∀s′′ ∈ V ∧ (s, s′′) ∈ A → t ≤ `A((s, s′′))}
returns the first timestamp of interaction of student s in thread θr. Figure 3.10
illustrates the interaction of users with all the previous participants in the thread
discussion as described above. In this case, the authors do not model parallel edges
nor they label arcs according to a weight function. Nevertheless, one can extend
this network structure by transforming it into a weighted graph.

The second strategy adopted in [42] relies on thread-tracing networks. Based on
the observation in [139] that students use commenting and replies interchangeably,
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Figure 3.11. Interaction of students in the same thread in different phases. The meaning of
the rectangles is the same as in 3.7. To show how the discussion of the same thread differs
in the various phases, we assume that the number of students enrolled in c increases
(from five to eight in the example) .

Figure 3.12. An example of time-evolving social network for the same thread θ in all
the course phases. The temporal graphs in each phase pci are based on the structure
proposed in [139]. Note that the nodes connected to the OP (θ) - bold border node - form
a strongly connected component. The cardinality of the strongly connected component
with its centre in OP (θr) indicates the popularity of θr. We maintain the bidirectional
edges for consistency with our modelisation of Gθr

ci
.

the authors in [42] connect all the students in a thread to its original poster (initiator).
Notice that the network built in this way has undirected edges, but for consistency
purposes with Gθrci we employ bidirectional arcs. In fact, this network can be seen
as a transformation from multidigraph Gθrci to a simple graph Gθrci = (V ′, E) where
E = {(s, s′)|∃s, s′ ∈ V ∧ s 6= s′ ∧ (s = OP (θr) ∨ s′ = OP (θr)) ∧ vis(s, s′,G) = 1}
and vis(s, s′,G) returns (0, 1) according to a graph search (either breadth or depth
search) from s to s′ in G. In other words, the transformed graph has bidirectional
edges between OP (θr) and all the students that have participated in its discussion.
According to this strategy, thread starters are at the centre of a star network.
Although this approach traces a thread θ in each ci to assess how the neighbourhood
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Figure 3.13. (left) Time-matrixMns,|E|
s for student s with the e-tivities in the designated

cells. For instance, e-tivity e1
1 corresponds to the first e-tivity type being generated at

time t = 1. Notice that certain e-tivities cannot be generated in the same time instant,
hence, some e-tivities in the same row are ∅. (right) Time-matrix Mξ,|E|

s . Here we
reference the subscript of every cell with di to indicate the i-th day. Each cell (i, j)
contains the number of times e-tivity ej has been generated in day di from student s:
i.e. γej

di
. Notice that different students might have different interaction lengths ξ.

of OP (θ) changes, it can be applied as an commitment signal for the students therein.
To show how the neighbourhood of the thread starter changes in time, we base the
thread discussion on Figure 3.11. Additionally, Figure 3.12 depicts Gθrci based on the
hierarchical interaction of Fig. 3.11. Notice how the star network changes structure
in each phase. This is useful to verify per-thread student interactions in different
course phases. Finally, the authors in [42] use similar metrics as Yang et al. [136] to
distinguish persevering students from dropouts.

3.4 Modelisation for Time Gaps and Sparsity Phenom-
ena

Having provided the reading with the necessary background of student dropout
definitions and student trajectory modelisation, we exploit the time factor of e-
tivities engendered by student interaction with the OLEs. Specifically, with the
additional complexity that e-degrees have, we analyse ordered and finite sequences of
e-tivities of a particular student s: i.e. ws(C). Depending on the number of e-tivities
that s can perform in an OLE, we distinguish between univariate and multivariate
trajectories. The datasets (ref. Section 4) taken into consideration contain multiple
interaction ways. Thus, we delve into multivariate e-tivity time-series.

Recall that ns represents the length of the temporal sequence of student s. For
the sake of clarity, instead of having a generic set of timestamp T , here we have a
set of timestamps for every student s: i.e. Ts ∀s ∈

⋃
c∈C Sc. Therefore, min(Ts) and

max(Ts) represent, respectively, the first and last timestamp of the e-tivities that s
performs in C. Formally, a multi-variate time-series of student s can be represented as
a time-matrixMns,|E|

s . Notice that two distinct time-matricesMns′ ,|E|
s′ andMns′′ ,|E|

s′′
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corresponding to student s′ and s′′, respectively, share the same dimensionality
for the e-tivities but not the interaction time-span. To account for problems such
as feature sparsity and the curse of dimensionality, we aggregate e-tivities of the
same type that occur in the same time-slot. The aggregation function can be an
arbitrary function such as the mean time spent of performing a specific e-tivity
or the percentage of the total interaction time spent on performing a particular
e-tivity. In this study, we choose a simple counting function in a specific time-
interval. Additionally, we select a day as the time-interval of aggregation to cope
with fine-grained trajectories for extended courses and online degrees. Hence, the
previous time-matrixMns,|E|

s becomesMξ,|E|
s where ξ = days(max(Ts)−min(Ts)),

max(∗) and min(∗) take the last/first timestamp of interaction for student s and
days(∗) extracts the number of days of the input time-interval.

Figure 3.13 illustrates both definitions of the time-matrices. Specifically, the
left-hand side shows a matrix of dimensions ns × |E| where the cells are the types
of e-tivities done at a certain timestamp. Notice that a student s cannot perform
some e-tivities at the same time. In order to obtain a more condensed view of the
time-matrixMns|,|E|

s , the right-hand side groups together all the e-tivities generated
in the same time slot (i.e. according to a daily time-frame) such that the resulting
compressed matrix contains ξ rows. We refer to γejdi to the count of all e-tivities
of type j generated in day di. Here γejdi can be any statistical metric on a daily
time-frame based on the generation of e-tivity ej .

Although the aggregation function γ on a specific time-frame aids in reducing the
time gap between two different events, it does not provide a solution for the sparsity
in the feature space (i.e. the columns of Mξ,|E|

s ). In other words, students that
generate only a few e-tivities per day (e.g. only watch videos) have time-matrices that
contain a vast amount of zeros. Therefore, space-reduction (i.e. feature-projection)
approaches are useful to cope with the curse of dimensionality. Notice, however, that
linear feature-projection techniques are not useful in our context since there is no
clear linear dependency among the e-tivity generation. Moreover, the complexity of
the feature space arises by introducing the time component, which has a substantial
role in the behaviour of the student interaction with the OLEs. Because we do
not delve into pre-processing the input data and then applying commonly-known
reduction strategies8, we rely on end-to-end learning to generate a low-dimensional
embedding layer that copes with the sparsity of e-tivities in a single day (see Section
5 for more details).

8Principal Component Analysis [103], Non-linear Matrix Factorisation [31], and Generalised
Discriminant Analysis [10]
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Chapter 4

E-degree ad-hoc dataset
- Unitelma:  a fully anonymised dataset

- Difference between MOOC and 

   e-degree student trajectories

Privacy concerns
- Privacy regulations

- Privacy-compliant dataset publication

MOOC-based data
- Time-related information datasets

- Time-agnostic and student 

  background  information

Figure 4.1. The Learning Analytics research field employs several datasets, of which only a
handful made public. This Chapter gives insight into the available MOOC-based datasets
published from well-known OLEs (e.g. edX, Coursera, XuetangX). Furthermore, we delve
into analysing an ad-hoc dataset comprising student trajectories in e-degrees. Finally,
to bridge the gap between scientific works and available benchmarking datasets, we
provide the reader with a data publication schema compliant with privacy preservation
regulations such as the GDPR.

In the last decade, the literature of Learning Analytics has received a plethora
of contributions with novel strategies to resolve the SDP problem. Nevertheless,
only a handful has contributed by publishing their data online and helping the
research area build common testing benchmarks1. Because academia relies on

1In Table 2.3, we provide a full list of datasets used in academia with links to the resources
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Time-related Time-agnostic

XuetangX KDDCup15 Unitelma HarvardX

Number of e-tivities |E| 22 7 97 -
Maximum window length ` 30 25 180 -
Number of time-series S ∼24k ∼120k ∼5k ∼301k
Number of courses 19 39 13 6
Mean daily sparsity 90.02% 90.8% 96.92% -
Mean day gap between e-tivities 10.65± 2.07 18.06± 1.53 34.6± 11.5 -
Class distribution (0:1) 38.7% : 61.3% 20.7% : 79.3% 20.4% : 79.6% 2% : 98%

Table 4.1. Dataset characteristics.

fast-paced MOOCs, here we analyse three different benchmarking datasets. The
first two have time-related information included within that permits to construct
student time-series of e-tivities. We provide the reader with a third time-agnostic
solution that contains only student demography and background information for
completeness purposes. Additionally, we analyse an entirely anonymised dataset
collected from the interaction of students with e-degrees in the University of Rome
Unitelma Sapienza. Here we highlight the differences between the Unitelma dataset
and the MOOC-based ones.

Finally, to bridge the gap between a large number of scientific articles and the
publication of proprietary datasets, we provide the reader with a step-by-step guide
on how to publish sensitive student data while complying with privacy regulations
such as the GDPR.

4.1 MOOC-based Data

4.1.1 Time-related Information Datasets

The literature exploits only two datasets that are available online. Both of them
encompass fast-paced courses. The first contains anonymised courses from the
XuetangX learning platform. XuetangX offers online courses in multiple disciplines
and also certificate and degree programs. It was launched in 2013 as the first Chinese
MOOC platform initiated by Tsinghua University and MOE Research Centre for
Online Education. With more than 2,300 courses covering over 13 different categories,
it has more than 5.3 million subscribed learners. To expand their reach to non-
Chinese territories, recently, it has integrated full support in English of their OLE.
The second covers more OLEs from edX, a MOOC created by Harvard and MIT.
Additionally, it was part of the annual Data Mining and Knowledge Discovery
competition organised by ACM Special Interest Group on Knowledge Discovery and
Data Mining, the leading professional organisation of data miners. Hereafter, we
denote with XuetangX2 and KDDCup153, respectively, the first and second dataset.

where applicable. Notice that the majority of the works does not publish their proprietary student
information due to institutional policies.

2http://moocdata.cn/data/user-activity
3https://data-mining.philippe-fournier-viger.com/the-kddcup-2015-dataset-

download-link/

http://moocdata.cn/data/user-activity
https://data-mining.philippe-fournier-viger.com/the-kddcup-2015-dataset-download-link/
https://data-mining.philippe-fournier-viger.com/the-kddcup-2015-dataset-download-link/
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Figure 4.2. The probability distribution of e-tivities in XuetangX in different time-slices
of the entire time-window ` = 30. The y-axis is log-scaled. The x-axis represents the
exact number of e-tivities present in all the time-series of the dataset.

For XuetangX, we prune all e-courses with less than 350 student trajectories4,
which leaves us with 19 courses overall, whereas in KDDCup15, all courses are
sufficiently populated. Additionally, notice that we extract the student trajectories
of the datasets from raw log files where every timestamp corresponds to a particular
student interaction engendering a specific e-tivity. Hence, the student trajectories
are globally aligned according to their interaction time. MOOCs have a simpler
nature w.r.t. e-degrees since students are enrolled from the first day that the course
commences and, similarly, they are granted a certificate - if they are persisters - at
the end date of the course5. In other words, since we have a short-term scenario
where the start and end dates are globally shared among the students, we can align
each student in the time-axis and monitor their e-tivities.

Table 4.1 summarises the characteristics of the datasets in terms of e-tivities,
the number of time-series (i.e. the number of students enrolled) and the maximum
window length ` considered as interaction history for prediction purposes. Notice
that ` is shorter than the total duration - in days - of the students with the OLEs.
We stop our history time window before the end of the courses because we want
to predict the dropout status as soon as possible. Notice that the daily sparsity in
the time-matrixM is high. This phenomenon is expected due to a large number of
dropout students within the first few course phases [55, 121]. Additionally, students
can get a certificate by completing certain tasks and using only a small fraction
of e-tivities. Hence, the high mean daily sparsity on persisters. Furthermore, in
MOOCs, students have immediate access to the course materials at the beginning of
each phase pci ∀i ∈ [1, kc] inducing them to complete the assignments in the first few
days, leaving their trajectories empty for the remaining duration of pci . Thus, besides
having a mean day gap between e-tivities of ∼ 11 and ∼ 18 days, respectively, for

4The minimum number of trajectories has been experimentally selected to reflect the best
performances on the overall dataset.

5In e-degrees this scenario is optimum. Nevertheless, as stated in Section 3.1, students can enrol
and graduate at any point in time, thus having fewer time constraints as in MOOCs.
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Figure 4.3. The probability distribution of e-tivities in KDDCup15 in different time-slices
in the entire time-window ` = 25. The y-axis is log-scaled. The x-axis represents the
exact number of e-tivities present in all the time-series of the dataset.

XuetangX and KDDCup15, persisting students have sporadic engagements with the
OLEs with, respectively, ∼ 8 and ∼ 16 days between interactions. As expected, both
XuetangX and KDDCup15 are composed of a majority of null values in the time-
matricesMξ,|E|

s . Finally, Figures 4.2 and 4.3 illustrate the probability distribution of
e-tivities in specific time-slices of the time-window ` for XuetangX and KDDCup15,
respectively. Notice that the distribution of e-tivities remains unaltered in time
because most students decide to drop out around the end of the first week for
various reasons (e.g., course complexity rises, time management, underestimation
of workload). The first week of both datasets consists of a more stable interaction
of students with the OLE, with only a small percentage of inactive students from
the beginning of the courses. However, the course first week is more determinant
in discriminating between dropouts and persisters in KDDCup15 than XuetangX.
In the latter, students who hardly ever interact with the OLE constitute more
than 80% of the entire population, and, since this percentage has a non-decreasing
trend, it is safe to state that the decision to drop out shrinks to the first two days.
This phenomenon is expected since most of them enrol to check the arguments
treated in the course. Finally, the class imbalance present in both datasets certifies
that fast-paced courses need to restrict their enrolment policies or place regulations
and consequences on their dropout students besides not refunding the minuscule
enrolment fee6.

4.1.2 Time-agnostic and Student Background Information

Although we focus on time-related and sequential datasets, for completeness purposes,
we provide the reader with a time-agnostic dataset that contains student background
information and current student performance (e.g. GPA and assignment submissions).

6In some OLEs, the initial enrolment fee is reimbursed within a certain period if students do
not enjoy or find the course useful for their career/further education.
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HarvardX [50] 7 is comprised of de-identified data from the first year (autumn 2012
- summer 2013) of Harvard courses on the edX platform.

Each row of the dataset represents a specific student s enrolled into a particular
course c. Every row comprises aggregated data (e.g. last interaction date, the total
number of events, number of active days) that s has performed in c. Moreover, the
dataset provides some personal information such as gender, GPA, world region of
origin, and previous education level if applicable. Recall Table 4.1. Because HarvardX
does not contain time-related information and data related to the generation of
e-tivities and types of student-OLE interactions, the e-tivity set E is empty. For
the same reason, we cannot consider a time-window length as historical data to
predict the dropout status. Moreover, since each row represents a particular student
s, we cannot calculate the daily sparsity nor the temporal gap between two e-tivities.
Finally, having the largest population of enrolled students (i.e. ∼301k) spread only
on six courses, HarvardX has the highest dropout rate (i.e. ∼98%) among all the
datasets8. Notice that HarvardX already comes with a plain input modelling strategy
that permits researchers to assess whether demographic information and cumulative
e-tivity data impact the probability of dropping out.

4.2 E-degree Ad-hoc Dataset

Recall from Section 2.2.2 that one of the most challenging aspects of SDP is the
nature of the student trajectories. To the best of our knowledge, no work has treated
the long-term dependency among e-tivities, especially in slow-paced and temporally
elongated online degrees. This section provides a full understanding of an ad-hoc
dataset encompassing e-tivities generated from different e-degrees at the University
of Rome Unitelma Sapienza. The dataset is fully anonymised to comply with the
institution’s policies following a privacy preservation schema described in Section
4.3.

4.2.1 Unitelma: A Fully Anonymised Dataset

Unitelma includes data collected from 13 different e-degrees held from 2010 to 2018
with ∼5k students enrolled therein. To adhere to the restrictive regulations that
the proprietary institution has, we publish the dataset online in an aggregated
form containing only necessary information about the temporal series for each
student9. Table 4.1 shows that Unitelma has the highest diversity of e-tivities with
the lowest number of trajectories. This aspect is expected since MOOCs, for their
agile structure, limited time commitment and low cost are attended by at least

7Researchers interested in this dataset need to fill a form at https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/26147 to access the data. We hereby declare that
we filled this form as of 07/06/2021 and own the dataset. The observations made in this Section
come from our insight and statistical analyses generated on our server.

8We refer the reader to https://colab.research.google.com/drive/1bJp5_
GCgcug66aawwBIU5JJBLdyGep02?usp=sharing for further analyses on HarvardX. Notice that
we do not include the dataset in the directory of the shared notebook file. Researchers interested in
the dataset need to download it from the previous link at Harvard’s institution.

9The anonymised time-series of the dataset can be downloaded at https://figshare.com/
articles/dataset/UnitelmaSapienza_1_0_zip/14554137.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/26147
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/26147
https://colab.research.google.com/drive/1bJp5_GCgcug66aawwBIU5JJBLdyGep02?usp=sharing
https://colab.research.google.com/drive/1bJp5_GCgcug66aawwBIU5JJBLdyGep02?usp=sharing
https://figshare.com/articles/dataset/UnitelmaSapienza_1_0_zip/14554137
https://figshare.com/articles/dataset/UnitelmaSapienza_1_0_zip/14554137
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Figure 4.4. The probability distribution of e-tivities in Unitelma in different time-slices
in the entire time-window ` = 180. The y-axis is log-scaled. The x-axis represents the
exact number of e-tivities present in all the time-series of the dataset.

one order of magnitude higher number of students w.r.t. online degree programs.
Because the majority of the students enrolled in an OLE - may that be a single
course or an e-degree - exploit only a fraction of the entire e-tivity set to advance
throughout the course phases, we expect Unitelma to have the largest sparsity in the
feature dimension E . Additionally, having to cope with extended temporal series,
the maximum window length to consider as historical data for the predictive models
enlarges to one semester. In many institutions, a semester is considered the least
amount of time before labelling students as dropouts. According to the previous
observation, the average daily gap between two e-tivities in a particular student
time-series is larger w.r.t. MOOC OLEs (i.e. 30 days of inactivity on average).

Similarly to Figures 4.2 and 4.3, we illustrate the temporal probability distribution
of finding u daily events, no matter their type, in a randomly selected trajectory
M

ξ,|E|
s in all the 13 e-degrees in Unitelma (see Figure 4.4). Unitelma has a bell-shaped

temporal probability distribution (i.e., a specular trend in e-tivity generation as
time passes). Hence, unlike the MOOC datasets, students seem to have a period
of limited interaction at the beginning of the course, probably due to the difficulty
of adapting to the rules of the degree course and the use of teaching tools, after
which they present a somewhat more constant interaction behaviour. We expect this
shift in the generation of e-tivities improves the performances of sequential methods,
able to capture long-term dependencies, while it worsens standard machine-learning
strategies.

4.2.2 Difference between MOOC and E-degree Student Trajecto-
ries

Because the raw input of student trajectories between MOOCs and e-degrees is
different, we provide details on coping with these challenges and have a unique input
representation for the predictive models. Figure 4.5 depicts the difference between
the modelisation in MOOCs (up) and e-degrees (down). Here, we concentrate on the
upper part of the Figure. The interaction of students stretches from the beginning
b(c) to the end f(c) of course c. As mentioned before, in the scenario of MOOCs, we
assume that each student enrols at the beginning of the course (i.e. min(Ts) = b(c))
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Figure 4.5. Differences between the student trajectories in the MOOC scenario (up) and in
Unitelma e-degrees (down). The rectangles represent the different days in the e-degree
C and MOOC c. Notice that the trajectory of student s in C is aligned locally according
to the last day of interaction of s.

and their last e-tivity is recorded at the end of the course (i.e. max(Ts) = f(c)).
Therefore, the ξ dimension of the time-matrixMξ,|E|

s for a student s belonging to
the dataset XuetangX/KDDCup15 is equal to the duration of the course in days,
days(f(c)− b(c)). While the series of MOOCs are global (i.e. the start of the e-tivity
data for all students matches the course start date), those for an e-degree - in our
case, Unitelma - are local. In other words, students may enrol in an e-degree and
start/pause/restart their studies at any time. Therefore their time series are not
aligned, a common scenario in entirely online degrees, mainly attended by working
students who can devote themselves to study depending on their work commitments.
We consider the date of their last observed e-tivity and collect one year in the past
for these students. In this way, we align the trajectories locally. The lower part of the
Figure depicts the method to generate the student time-series for Unitelma. For each
student s, we find the timestamp of the last e-tivity generated, max(Ts), and fetch
365 days of the history of s. Thus, d1

s = max(Ts)− 365 represents the first day of
the series. In this scenario, a student might generate their first e-tivity at any given
time after the beginning of the e-degree (i.e. min(Ts) ≥ minc∈C b′(c)) and might
record their last e-tivity at any time before the end (i.e. max(Ts) ≤ maxc∈C f ′(c)).
Hence, we need to take care of two different scenarios:

• The first day in the temporal series is prior to the first generated e-tivity by
s (i.e. d1

s < min(Ts)) - In this case, we need to prepend min(Ts) − d1
s null

vectors toMξ,|E|
s . Formally,M365,|E|

s = [Omin(Ts)−d1
s,|E|;Mξ,|E|

s ] where Ox,y is
the zero matrix of x× y dimensions, and [∗; ∗] concatenates its parameters on
the first dimension.

• The first day in the temporal series is posterior to the first generated e-tivity by
s (i.e. d1

s ≥ min(Ts)) - Here, we need to eliminate the first rows up to d1
s from
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Mξ,|E|
s . Formally, M365,|E|

s = del(Mξ,|E|
s , 0, d1

s) where del(M, x, y) eliminates
the rows from x to y in matrixM.

4.3 Privacy Concerns
Nowadays, every transaction that involves sharing/exchanging personal and sensitive
data has to be protected following well-known privacy regulations, especially in the
EU community. Because data is a primary concern of OLEs, and preserving the
anonymity of e-tivity generations by students is important, disclosing proprietary
information online is a cumbersome task. This challenge becomes even more prob-
lematic since the majority of the works in the literature copes with sensitive data
(e.g. student biography and demography information). Managing this kind of data
is complementary but a crucial aspect of the SDP, specifically if the datasets need
to be published online for further experiments. Hence, in this Section, we provide
insight on concerns and policies that help avoid the violation of students’ privacy
according to regulations of the operating territory.

The works in the literature exploit data either coming from their institutions or
well-established and notorious MOOCs (e.g. Coursera, edX, and Udemy). Hence,
they defer the legal responsibilities to the body of the data property. The US
lacks a comprehensive federal law that regulates the collection and use of personal
information. Instead, the government has approached privacy and security by
adjusting only specific sectors and types of sensitive information, creating overlapping
and contradictory protections10. Meanwhile, the European Union (EU) General
Data Protection Regulation11 (GDPR) intends to12:

• Harmonise data privacy laws across Europe.

• Protect and empower all EU citizens data privacy.

• Reshape the way organisations across the region approach data privacy.

The GDPR is a legal framework that sets guidelines for collecting and processing
personal information from the EU. Since the regulation applies regardless of where
websites are based, it must be heeded by all sites that attract European visitors,
even if not targeted to market goods or services to them. Additionally, it mandates
that EU visitors be given several data disclosures [131]. The site must also facilitate
such EU consumer rights as a timely notification if personal data is breached.

To provide a reliable schema that preserves the integrity and anonymity of the
student information, in Section 4.3.1, we provide some hints in case researchers
would like to share their collected data with the SDP community.

4.3.1 Privacy-compliant Dataset Schema

Having to deal with vast quantities of transactions (i.e. e-tivity generations) every
particular time instant for every student enrolled in OLEs, storing and, then,

10https://www.cfr.org/report/reforming-us-approach-data-protection
11https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-

protection/2018-reform-eu-data-protection-rules_en
12https://eugdpr.org/

https://www.cfr.org/report/reforming-us-approach-data-protection
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://eugdpr.org/
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processing this information is arduous. Therefore, institutions (see as an example
HarvardX) need to select what information to disclose to the public and leave
unpublished. The following are the fundamental entities in SDP that should be
protected:

• Students register in e-platforms with their personal (e.g. demographic data)
information generally anonymised. They can interact in the course forum,
giving sprout to discussions of a specific argument. Notice that their interaction
should be protected as well.

• Courses are allotted in phases, each containing several resources (e.g. videos,
quizzes, reading lectures). Therefore, e-degrees and the courses therein must be
anonymised as well. Additionally, relationships such as prerequisites between
different courses should be maintained ciphered to prevent information leakage
about the syllabus of the e-degree such that malicious users are not facilitated
to extract sensitive information from other available resources.

• E-tivities are the activities produced by events that students cause during
the interaction with the OLE. The event that generates an e-tivity should be
protected since it can leak information such as the resource interacted with, the
grade in the assignment, and the browser/OS/IP data. According to Tankard
et al. [126], session and navigation information is bound to the same regulation
as other sensitive data. Moreover, when treating forum discussions, researchers
need to cypher the thread creations and arguments conducted therein. In
other words, the content of each of the interactions (i.e. comments and replies
to a thread θ) needs to be embedded into a latent space such that one cannot
reverse engineer the information about the course at hand.

To publish an SDP dataset, one should examine whether privacy policy infringement
has happened or not. Authors should protect as much data as possible to avoid
leaking sensitive student information. Nevertheless, some information should not be
ciphered for interpretability purposes. For instance, the type of e-tivities13 provides
tremendous interpretability power. Hence, one can stabilise a correlation between
the e-tivity type and the dropout decision. Student personal information such as
age and prior education could be left unprotected since they do not provide access
to the identity of a student. This particular type of feature can only allow others
to categorise students into cohorts without infringing their privacy. Nevertheless,
as Sweeney et al. [124] suggest, grouping continuous attributes into several bins
(e.g. instead of age, one could have bins that fall into categories such as youth,
middle-aged, elderly) reduces the risk of identification. Finally, a fully anonymised
dataset can enrich the literature with a standard benchmark for evaluation purposes,
but it would not efficiently explain why students fail at persisting throughout a
particular course/e-degree.

13There are several types of e-tivities among which forum-related, video-related and navigational
ones.



74 4. Datasets

4.3.2 Case Study of a Privacy-Preserving Dataset for Data Mining

Privacy-Preserving Data Mining (PPDM) is a multi-disciplinary research area that
consists of prohibiting/minimising the leakage of sensitive information in data mining.
PPDM transforms the original data so that the data mining processes applied to it
do not violate privacy constraints. While protecting sensitive information, PPDM
allows data mining techniques to achieve promising results. Saranya et al. [116]
categorise PPDM techniques into three classes:

• Randomisation uses data distortion strategies to create hidden representations
of the original data - in this case, records of e-tivities. Here, the individual
interaction events cannot be recovered, but their aggregate distributions are
recoverable.

• Anonymisation protects an individual’s direct identity by using obfuscation
techniques. Although there is no cypher method employed at this stage,
anonymisation is a procedure that helps select the information to disclose.
According to Malik et al. [90], there are several hierarchical levels to the
importance of an attribute: i.e. explicit identifiers, quasi-identifiers, sensitive
attributes, and non-sensitive attributes. Explicit identifiers and sensitive
attributes should be retained from the publication of the dataset. However,
as mentioned above, impostors can perform privacy-intrusion attacks when
quasi-identifiers can be linked to publicly available data.

• Encryption encompasses several cryptography algorithms that cypher the raw
data and shares them online. Those interested can obtain the raw data once
the proprietary data share the decryption key via a secure channel. Although
this privacy-preservation technique is the most supported one, it lacks the
flexibility of the previous two. In other words, once the data is published, the
proprietary institution must complete download requests one by one, which is
a tedious job. This kind of privacy-preservation technique is useful when data
needs to be shared only with a few stakeholders.

We can use them to engender a privacy-conform dataset. For a detailed review of
the previous strategies, we point the reader to [120]. By adopting privacy-based
methods of PPDM, the produced dataset does not contain sensitive information
that violates privacy regulations such as the European GDPR. Although the US
and other non-European countries do not possess well-established privacy laws, it is
advisable to cleave to the ethics of protecting the user profile data.

By following the different privacy-preservation techniques for dataset processing
presented in [116], we present a simple solution to the e-degrees in Unitelma and
fully anonymise them. Because we want to publish the dataset to academia, we
do not rely on encryption algorithms that provide interested researchers with a
decryption key. Nevertheless, we satisfy the other two classes (i.e. randomisation
and anonymisation) to cope with sensitive student data. The information that we
publicise consists of aggregated interaction trajectories of students. In other words,
for each e-tivity type in a particular day d, we calculate the number of times that
that e-tivity has happened in d. In this way, malicious users can only recuperate the
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Figure 4.6. An overview of the schema adopted from the publication of the Unitelma
dataset under a privacy-compliant point-of-view. Each student in the Unitelma dataset
contains 365 days of interaction backwards of their last day of interaction. The colours
of the rectangles illustrate the different types of e-tivities. Meanwhile, their width
represents the duration of each e-tivity. In this example, we exploit a simple counting
per e-tivity type aggregation function to randomise the original distribution of e-tivities.

aggregated distribution of e-tivities but not the exact generation moment. Moreover,
the resource involved in the interaction and the course at hand is removed from
the time-series information. The student identity numbers have been anonymised
by following a one-to-one mapping with the set of natural numbers. The original
identity is then discarded from the modified dataset. The same reasoning is applied
to de-identify the e-degrees in the dataset as well as the e-tivity type. Therefore,
according to Malik et al. [90] we only deal with explicit identifiers since we do not
distribute information about the interaction of students in fora, nor do we share
student demographic data. Referring to the lower part of Figure 4.5 and to the
matrix notation in Section 3.4, for each e-degree Ci s.t. i ∈ [1, 13] in the Unitelma
dataset we only disclose the time-matrixM365,|E|

s for each student s ∈
⋃
c∈Ci Sc.

Figure 4.6 summarises the schema that we followed to publish the Unitelma
dataset. Recall that, to align student trajectories locally, we obtain the last interac-
tion day for each student s and travel backwards up to 365 days to establish d1

s. We
group the e-tivities coming from the raw logs by days and order them in the time
axis. Finally, we obtain summarised data by exploiting a particular aggregation
function - a counting function - per e-tivity type (i.e. the different colours for the
rectangles) and report the outputs per day. Notice that the aggregation function
can be complex to account for more information. However, we chose not to disclose
more information because of the stringent privacy policies at the University of Rome
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Unitelma Sapienza institution. Hence, as mentioned above the reported data for
each student s has a dimension of 365 × |E| = 365 × 97. As a consequence, each
e-degree Ci s.t. i ∈ [1, 13] in Unitelma is a tensor of dimensions |

⋃
c∈Ci Sc| × 365× 97.
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Figure 5.1. Simple solutions fail to extrapolate long-term dependencies between e-tivities
because they have to cope with critical issues such as feature-space sparsity and inter-
activity gaps. This Chapter provides details on the proposed architecture to distinguish
dropouts from persisting students in highly imbalanced datasets. Moreover, we identify
the main benefits of the combination of hidden and raw input features to the SDP
problem. Finally, we provide details on how we train the model end-to-end by choosing
a composite loss function to optimise.

According to Prenkaj et al. [108], one of the open challenges that the SDP research
field has is the lack of deep sequential methods that prioritise the identification of
at-risk students as early as possible in the course/e-degree timeline. One of the
main reasons academia is hesitant to contribute with novel deep learning solutions
is the poor interpretability power of so-called black-box models or lack thereof.
Although knowing the reasons behind a dropout decision for a particular student is
of paramount importance, we noticed that the models presented in the literature do
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not exploit key predictive factors to improve their performances. In other words, the
literature does not exploit the latent and intrinsic long-term relationship between
e-tivities that constitute student behavioural patterns. This Chapter addresses the
phenomenon of combining hidden representations with the raw input features to
obtain an overall better-performing model. Additionally, we provide the reader
with the details about the architecture of the proposed model - hereafter GRU-AE.
Finally, to have a functioning end-to-end model, we rely on a composite loss function
that we optimise for the SDP problem.

5.1 Gated Recurrent Unit with Autoencoding (GRU-
AE)

We propose a novel sequential strategy based on the latent and raw input feature
space to cope with the last research gap. We name our strategy GRU-AE, as
introduced in [106], since it combines autoencoders with stacked layers of GRUs.
Before delving into the description of the architecture, we provide some of the major
reasons to consider latent information as well as the raw feature space as crucial
parts of the proposed prediction strategy (see Section 5.1.1). Finally, we give a
detailed representation of the architecture of GRU-AE in Section 5.1.2.

5.1.1 Reasons to Care about Hidden and Raw Representations

Recurrent neural networks (RNNs) and their specialisations (i.e. LSTMs [57] and
its GRU [24] variation) are the most prominent approaches for learning sequential
patterns. In RNNs, at each time step t, the recurrent cell obtains hidden information
on the history of a trajectory from the hidden state of the previous step t − 1.
Despite their popularity, naive LSTM/GRU approaches may fail to capture temporal
dependencies under the following constraints:

• The feature sparsity - Since most students do not perform all the possible
e-tivities, but rather they concentrate on some of them1, features tend to be
very sparse. This phenomenon induces models to overfit.

• The gap between e-tivities - In addition to feature sparsity, often e-tivities are
interleaved by temporal gaps of variable lengths. When gaps between e-tivities
increase, sequential models may forget the latent information extracted in the
blocks that are further away. According to a pure statistical point-of-view, the
authors in [137] prove that the recurrent process of propagating information
from one hidden state to the other of RNNs and its variations is geometrically
ergodic and has a short memory. Additionally, LSTMs suffer from catastrophic
forgetting when proceeding with transfer learning to fine-tune the model
weights [6].

We know that the gap between e-tivities induces recurrent networks to forget
the information extracted that are distant in time. Nevertheless, the temporal gaps
are useful to discriminate between highly- and sporadically-engaging students. The

1This is motivated both by the students’ commitments and by the course schedule.
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number of gaps and their temporal extensiveness is clear indications of unmotivated
and at-risk students, although they do not necessarily indicate a certain dropout
student. Moreover, the temporal gaps in e-degrees should provide the predictive
model with a higher information gain w.r.t. MOOCs. Online degrees should have
fewer gaps between e-tivities since several courses are held simultaneously in a
specific semester.

Additionally, one can specify and choose to analyse the gap between the same
e-tivity types. In this way, we can measure the dropout probability and behavioural
pattern shifts per e-tivity type. Although interpretability is out of scope for this
work, researchers can rely on gaps to assess whether the distribution of e-tivities of
an at-risk student diverges from the average temporal distribution of e-tivities for
persisting students. Therefore, gaps in an e-degree are useful to distinguish between
failing and persisting students in a particular time frame.

On the contrary, the vast sparsity in the feature dimension induces the model
not to generalise and have a lower prediction power. According to the literature,
students interact with only a fraction of resources, thus neglecting the possible
interaction methods in an OLE. This phenomenon of sparsity has also been shown in
Table 4.1. Sparse time-matrices, especially when the feature dimension is vast, might
degrade the performances of the predictive model. Hence, projection/densification
strategies can embed the features mapped into a denser vector space by combining
the significance of temporal gaps between e-tivities in the input student trajectories
with the condensed representation of same-type e-tivities.

5.1.2 Architecture Description and Details

Figure 5.2 shows the four components of the GRU-AE architecture: the Autoencoder,
the Stacked Embedded GRU, the Stacked raw GRU, and the Fully Connected layer.
The input is represented by the time-matrixMξ,|E|

s , where rows are the vectors of
e-tivities performed by a student s at day dj , j = 1 . . . ξ. Note that the length ξ of
the observed trajectory varies for each student. Additionally, notice that, for a given
student, a prediction can be made about their future dropout status at different
times in their career (e.g., after 30 days, three months, six months), which is a
meaningful strategy, especially for long trajectories as in e-degrees.

Autoencoder The upper component of GRU-AE is an autoencoder [44, 79, 118] -
hereafter AE - comprised of two modules: an encoder and a decoder. The task of
the autoencoder, in our scenario, is to learn a compact and denoised representation
of the features to mitigate the sparsity phenomenon. As illustrated in Figure
5.2, the AE component takes a vectorial representationMξ×|E|

s of the time-matrix
Mξ,|E|

s by exploiting a row-major order flattening procedure. It then projects the
original feature into a denser vector space ~h. In detail, the encoder learns a hidden
representation ~h of the input M ξ×|E|

s and the decoder extracts the information from
~h to produce a reconstruction of the input M̃ ξ×|E|

s . The lower the reconstruction
error ∥∥∥∥∥M ξ×|E|

s − M̃ ξ×|E|
s

∥∥∥∥∥
a

b

= a

√√√√ ∑
i∈[1,ξ×|E|]

M [i]b − M̃ [i]b
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Figure 5.2. The architecture and components of GRU-AE. Rather than using a recurrent
autoencoder, we opt to embed the temporal information in the connections of the network.
Notice how the aggregated data, for each day dj ∀i ∈ [1, ξ], is connected only to its
corresponding neuron hj which, in turn, is a vector of m cells. The reconstructed matrix
is then de-flattened into an embedded matrix Hξ,ms and fed to the stacked embedded
GRU. The raw time-matrixMξ,|E|

s is fed to the stacked raw GRU. The output of both
GRUs, respectively, ~h′

p and ~h′
q is concatenated into a single vector ~o of r cells. Finally, o

is the input layer to a fully connected layer which predicts the dropout probability ỹ
according to a sigmoid function σ.
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the better the latent representation of the input. Besides using a reconstruction error
which measures the difference between the original input and the reconstructed output
- e.g. mean squared and root mean squared errors, Kullbach-Leibner divergence - one
can also use similarity metrics (i.e. cosine similarity, normalised mutual information)
to measure how much the reconstructed trajectories are related to the original ones.

Notice that recurrent AEs can be used when treating sequential data, as in our
case of student trajectories. Nevertheless, we modify a fully connected AE, where
the input neurons γeidj ∀i ∈ [1, |E|] are only connected to hj ∀j ∈ [1, ξ]. We use the
same logic to link the latent layer to the output one in a specular way. Notice that
each hj is represented as a single neuron for illustration purposes, but it can have m
dimensions. Hence, the vector ~h has a length of ξ ×m, where m is the embedding
dimension within each temporal interval dj , as represented by the vector u1, ..., um
in the upper-right side of Figure 5.2. The idea behind the proposed architecture
is to build an autoencoder made of smaller autoencoders that operate on feature
counts in any time slot dj and learn which e-tivities occur together in the original
feature space. In this way, we mitigate the problem of the sparsity of e-tivities as
well as the gaps between e-tivity generation in different days, since null e-tivities
are transformed in real (negative or positive) numbers and compressed into a latent
dimension.

Stacked embedded GRU The usage of stacked neural networks was reported to
be beneficial in performance gain [62, 123] and in obtaining a higher model complexity
capable of extracting latent information. The rationale of using a recurrent network
on the hidden representation of the original time-matrices is to obtain a dense
representation in both the feature space (thanks to the AE) and the daily gap
between e-tivities performed by the students.

The purpose of the stacked embedded GRU component is to further compress the
hidden representation ofMξ,|E|

s , built by the AE according to the encoding function
E : Nξ×|E| → Rξ×m where ξ ×m is the dimension of the hidden vector ~h. However,
because ~h does not contain the temporal dimension as the original input Mξ,|E|

s ,
we need to reconstruct the temporal dimension in order for the GRU to work. As
shown in Figure 5.2, we perform the inverse operation of the previous flattening
function on ~h. This process consists of reversing the row-major order operation
performed by the flattening procedure on Mξ,|E|

s . By employing a de-flattening
operation, we obtain a hidden matrix Hξ,ms that restores the original time dimension
ξ but has a denser feature space, as described above. This new matrix is the input
of the first component of the stacked embedded GRU network. At each time step
dj ∈ [1, ξ], this GRU is fed with the j-th row (i.e. j-th day) of Hξ×ms . At the end
of the sequence, the first block produces an output of sequences represented as a
matrix. The output matrix of the previous GRU block becomes the input of the
subsequent block. Finally, instead of computing the output of the last GRU block,
we use only its latent state h′q.

For the sake of completeness, we also provide a brief description of a GRU unit.
A GRU unit resembles an LSTM unit with a forget gate but has fewer parameters
because of the lack of the output gate. In this work, we use a fully gated unit as
represented in Figure 5.3. We refer the reader to [25] for the equation details of the
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Figure 5.3. Gated Recurrent Unit block.

update and reset gates and that of the current memory content.

Stacked raw GRU Similarly to the component described above, we use a parallel
sequence of stacked raw GRUs to learn time-related information from the original
student trajectoryMξ,|E|

s . Although the original time matrix contains much sparsity
and daily gaps (see Section 4), it contains time-related information that captures
the behaviour of the student throughout the days of the course. Like for the stacked
embedded GRU, the output of this stack is the last hidden state h′p. Notice that
the length p of the sequence of GRU networks adopted in this component can be
different from that of the stacked embedded GRU q. The activation function of both
the recurrent components is a Rectified Linear unit (ReLU).

Fully connected neural network Finally, we concatenate ~h′q and ~h′p (i.e. ~o =
[ ~h′p; ~h′q] where |~o| = r = | ~h′q| + | ~h′p|) thus forming the input vector to the fully
connected neural network layer. Notice that this layer can be a deep neural network
formed of multiple layers of neurons. Its objective is to leverage the joint information
of the two stacked GRUs and to use the time-related information and the time-
unrelated embedded representation. The contribution of ~h′q and ~h′p is boosted by
updating the weights of the final component via backpropagation. Finally, we use
a sigmoid activation function for the first layer and the output layer. For all the
other layers, we use the ReLU activation function. The reason for this choice is
twofold. Since the sigmoid function is prone to the vanishing gradient problem, we
use the ReLU unit to mitigate this phenomenon. Furthermore, the ReLU function
suffers from the dying ReLU problem as analysed in [87]; this causes neurons to
become stale when dealing with large gradients. To avoid this phenomenon, we use
the sigmoid function in the first and output layers. The output of the architecture
is the estimated probability that s is a dropout student. In other words, the closer ỹ
is to 1, the more s is to be considered a future dropout; otherwise, s is a persisting
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student.

5.1.3 End-to-End Architecture Training

Notice - see the shaded areas in Figure 5.2 - that the architecture of the model contains
two separate logic components: i.e. the reconstruction component that generates
the latent embedding of the student trajectories and the predictive component
encompassing both stacked GRUs and the fully connected layer. The training of
an autoencoder is executed differently from that of a recurrent neural network with
a final dense predictive layer. Nevertheless, because we need to train the entire
architecture end-to-end to be useful, we combine two separate loss functions into
one and minimise it.

The loss function of the reconstruction component The first loss function
encompasses the minimisation of the reconstruction error. Notice that training an
autoencoder is a special case of solving a regression problem. There are several
loss functions related to regression problems, among whom the most important is
the mean squared error (MSE) and the mean absolute error (MAE). Both of them
have advantages and drawbacks over the other, considering the characteristics of the
datasets. Here, we briefly introduce both of them and describe their strengths and
flaws.

Mean Square Error (MSE) is the most commonly used regression loss function.
MSE is the sum of squared distances between the target variable and predicted
values.

LMSE = 1
|S|

|S|∑
i=1

(yi − ỹi)2

where |S| is the number of students (i.e. trajectories) enrolled in an online degree C.
Similarly, MAE is the sum of absolute differences between the target and predicted
variables:

LMAE = 1
|S|

|S|∑
i=1
|yi − ỹi|

Therefore, it measures the average magnitude of errors in a set of predictions without
considering their directions. The domain of MAE/MSE ranges from 0 (i.e. there is
no difference between the target and the predicted values) to ∞.

For instance, let us analyse both errors in two different scenarios, where the first
contains predictions close to the true values and the second has some variations due
to the presence of outliers (see Table 5.1). As expected, the outlier instances produce
higher errors since the predictive models tend to generalise instead of memorising
the instances one by one, leading the model to learn a representation that suffers
from data instances skewed from the normal data distribution. Since MSE squares
the error yi − ỹi, its value increases a lot if yi − ỹi > 1. If we have an outlier in our
data, the value of yi − ỹi will be high and (yi − ỹi)2 >> |yi − ỹi|. Outliers make the
model with MSE loss give more weight to them w.r.t. a model with MAE loss. In
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Table 5.1. MSE and MAE for two toy examples with the outlier instance underlined. Every
row is a new instance in the dataset. Each column represents the error between the
predicted and the true values.

Dataset without outliers Dataset with outliers

yi − ỹi |yi − ỹi| (yi − ỹi)2 yi − ỹi |yi − ỹi| (yi − ỹi)2

0 0 0 0 0 0
1 1 1 1 1 1
-2 2 4 1 1 1
-0.5 0.5 0.25 -2 2 4
1.5 1.5 2.25 15 15 225

LMSE 1.4884 46.1041
LMAE 1 3.8

the second case in the Table, the model with the MSE as the loss will be adjusted to
minimise that single outlier case at the expense of other common examples, which
reduces its overall performance. MAE loss is useful if the training data is corrupted
with outliers. In other words, MAE is better than MSE if we receive unrealistically
large negative/positive values in our training set 2. Nevertheless, the MAE loss
has the same gradient throughout the entire dataset, which entails a large number
even for small loss values. The gradient for MSE is high for larger loss values and
decreases as it approaches 0, making it more stable and precise during training.

Because our scenario encompasses dropout students (outliers) that we want to
identify, the MSE loss is more suitable than MAE since, as mentioned above, it is
more sensitive to outlier instances. However, the high sensitivity of MSE towards
outlier data makes it impracticable in our case. Therefore, we rely on the Huber loss
function, which is less sensitive to outliers than MSE. Moreover, differently from
MAE, the Huber loss is differentiable at 0 being a continuous function. The Huber
loss function incorporates the positive aspects of both MAE and MSE:

LΩ,Huber(yi, ỹi) =
{ (yi−ỹi)2

2 if |yi − ỹi| ≤ Ω
Ω|yi − ỹi| − Ω2

2 otherwise
(5.1)

where Ω represents the amount for which the residuals (i.e. errors) need to be
considered as outliers or as normal instances. Residuals larger than Ω are minimised
with MAE (see the otherwise condition), while those smaller than Ω are minimised
with MSE. Notice that we specify the input to the loss function as it operates on
each predictive value separately, and it does not have an accumulated form as in the
cases of LMSE and LMAE . The only drawback the adoption of the Huber loss brings
to our overall training mechanism is the optimisation of the Ω hyperparameter.

The loss function of the predictive component Recall that the literature
considers the dropout prediction problem a binary classification problem. Therefore,
dropout students are labelled with a 0, and the persisting ones with a 1. Moreover,

2Notice that we cannot make any observations regarding the content of the test set since it
is considered unseen data. Moreover, the overall performances of a particular model cannot be
disclosed only by referring to the data distribution in the test set.
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recall that the activation function of the output layer in the fully connected component
is a sigmoid function, which allows us to produce dropout probabilities. Generally,
the literature exploits binary cross-entropy loss, also known as the log loss, to learn
a model in a binary classification scenario.

Binary cross-entropy compares each of the predicted probabilities to the actual
class. Then, it calculates the score that penalises the probabilities based on the
distance from the expected value. We describe the binary cross-entropy for one
single student. The overall loss function is the summation of all the cross-entropies
divided by the number of the population |S|:

LBCE(ỹi) = ỹi × log(p(ỹi)) + (1− ỹi)× log(p(1− ỹi))

where ỹi is the label corresponding to the i-th student in S and p(ỹi) is the
predicted probability of that student to be a dropout. Besides using this particular
loss function in our scenario, the binary cross-entropy loss is beneficial to undo
any exponential behaviour - due to the gradient descent - given in output by the
activation units in the intermediate layers of the architecture. The logarithm avoids
that the gradient saturates for extreme values since large gradients are useful to make
progress in learning in each iteration [44]. Finally, cross-entropy is used because
it is equivalent to fitting the model using maximum likelihood estimation, which
can be interpreted as minimising the Kullback-Leibner (KL) divergence between the
distribution of the training data and that produced by the model.

Combined loss function To train the architecture end-to-end, we need to min-
imise both the loss functions introduced above. Notice that the sole hyperparameter
induced to the loss function is the Ω parameter of the Huber loss, hence the subscript
in the minimisation. Moreover, because the binary cross-entropy and the Huber
losses are continuous and differentiable, their sum is also differentiable, equal to the
sum of the derivatives of the losses.

argmin
Ω

{
− 1
|S|
∑|S|
i=1 LBCE(ỹi) +

∑|S|
i=1 LΩ,Huber(yi, ỹi)

}
=

argmin
Ω

{∑|S|
i=1

(
|S|LΩ,Huber(yi, ỹi)− 1

|S|LBCE(ỹi)
)}

To prove that the proposed combined loss function is differentiable, let LBCE be
function f and LΩ,Huber be function g. Now, if f is differentiable at point c, then
by definition f ′(c) = limh→0

f(c+h)−f(c)
h . Similarly, if g is differentiable at c, then

g′(c) = limh→0
g(c+h)−g(c)

h . Now, because (f + g)(x) = f(x) + g(x) we need to prove
that

lim
h→0

[f(c+ h) + g(c+ h)]− [f(h) + g(h)]
h

= f ′(c) + g′(c)

By applying simple mathematical manipulations on the limit above we obtain
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lim
h→0

[f(c+ h) + g(c+ h)]− [f(h) + g(h)]
h

= lim
h→0

[
f(c+ h)− f(h)

h
+ g(c+ h)− g(h)

h

]

= lim
h→0

f(c+ h)− f(h)
h

+ lim
h→0

g(c+ h)− g(h)
h

= f ′(c) + g′(c)

An interesting property of the proposed composite loss function is minimising both
its components that go hand-in-hand with the modules of the overall architecture.
In other words, to obtain a small loss, we need to minimise the overall sum of the
losses. Notice that we do not rely on the product between the Huber and the binary
cross-entropy losses because it would be sufficient to minimise only one of them
to have an overall small loss. Hence, we obtain promising performances, but we
also show that the reconstruction error of the student trajectories has a decreasing
trend as the interaction history becomes more extensive (see Section 6.2 for further
details). For completeness purposes, we provide the reader with an ablation study
of the performances of GRU-AE according to the Ω hyperparameter of the Huber
loss function (see Section 6.2.1).
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Figure 6.1. While scrutinising the most suitable evaluation metrics under a high-class
imbalance issue and the presence of a large portion of inter-e-tivity gaps, we compare
state-of-the-art methods - both simple machine learning and deep learning approaches
- against GRU-AE. We illustrate how our proposed method has better performance
than the other strategies while demonstrating how long-term trajectories (i.e. e-degrees)
benefit our methodology more. Conclusively, we show how a lower reconstruction error
benefits higher predictive power for our model.

Since the SDP literature does not have a common benchmarking and evaluation
framework, we follow the guidelines provided in [108] while taking into consideration
issues such as high-class imbalance and the daily gap between e-tivities as illustrated
in Table 4.1 and Section 5.1.1. In this Chapter, we determine the most suitable
metrics for evaluation in our scenario (see Section 6.1.2) and compare GRU-AE with
ten state-of-the-art simple machine learning and deep learning strategies (see Section
6.2.2). In conclusion, we discuss the relationship of the trajectories’ reconstruction
error with the overall performances of the architecture.
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6.1 Evaluation Framework
Recall from Section 2.2.3 that the literature has little to no contribution for a standard
evaluation benchmark regarding the optimal metric to measure performances under a
high-class imbalance problem and the training characteristics according to a stabilised
time window. Here, we give a detailed description of the compared state-of-the-art
methods. Notice that most of the strategies enlisted below are easily implemented
from modern programmatic libraries. Moreover, we provide the reader with the
choices of the evaluation metric and the selection of the time window we use to
determine the amount of history of the student trajectories for training.

6.1.1 Compared Methods and Hyperparameter Settings

To comparatively assess the performances of GRU-AE, we select five off-the-shelf
machine learning models, two ensemble and five deep learning techniques1 grouped
as follows:

Off-the-shelf machine learning approaches. Because the majority of the lit-
erature concentrates on simple machine learning models and simple modelisation
strategies - see Table 4 in [108] - we select four of the most widespread prediction
approaches. Then, to assess the performances of unsupervised methods in a binary
classification problem, we provide the reader with a simple unsupervised strategy
suitable for the SDP problem. The last one in the list depicts the simplest strategy
possible in this scenario that illustrates the lower bound in terms of performances
(i.e. for a method to be considered "fit" to solve the SDP problem, then it needs to
surpass the lower bound performances according to the baseline mentioned above
strategy).

• Logistic Regression (LR) - We use logistic regression with lasso regularisation
as in [42, 113]. We also specify the maximum number of iterations to help the
model converge.

• Gaussian Naive Bayes (GNB) - We use Naive Bayes [41, 76, 91] but we do not
rely on prior probabilities for the target labels.

• Decision Tree (DT) - We exploit the optimised version of the CART algorithm
[83] with the Gini impurity to measure the quality of the splits per level [78, 95].
Furthermore, we noticed that a cost matrix, used in [30], does not support
performance boosting.

• Support Vector Machines (SVM) - We use the radial basis function as the
kernel for this method. Only the authors in [3] adopt the same structure as
reported here.

• K-Nearest Neighbours (KNN) - Inspired by the nature of unsupervised learning,
we use a 2-nearest neighbours algorithm to assess whether the cluster formations

1The implementation of all methods and the benchmark datasets can be found at http:
//iim.di.uniroma1.it/projects/hsdsrpst/. The Unitelma dataset can be found at https://
doi.org/10.6084/m9.figshare.14554137.

http://iim.di.uniroma1.it/projects/hsdsrpst/
http://iim.di.uniroma1.it/projects/hsdsrpst/
https://doi.org/10.6084/m9.figshare.14554137
https://doi.org/10.6084/m9.figshare.14554137
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speculate the binary target labels. Little to no contribution has been made in
the literature using unsupervised learning methods [74, 135].

• Cox Proportional Hazard Model (CoxProp) [70] - The Cox (proportional
hazard) model is one of the most popular model combining the covariates and
the survival function. It models the hazard function

hs(t|X =Mξ,|E|
s ) = hs0(t)eM

ξ,|E|
s [:,j]β

where β is the vector of coefficients of each covariate, hs0(t) is the baseline
hazard function for student s, andMξ,|E|

s [:, j] represents a random covariate
(e-tivity) at any row (day). From the previous equation, we can derive the
cumulative conditional hazard function

Hs(t|Mξ,|E|
s ) = eM

ξ,|E|
s [:,j]β

∫ j

0
hs0(w)dw = eM

ξ,|E|
s [:,j]βHs

0(j)

which helps us get the survival function for each student. Since a survival
analysis model needs to have a duration at which the dropout status gets
verified, we condense the matrixMξ,|E|

s until that specific time according to
the summation aggregation function (see how the selection of the time-window
is performed in Section 6.1.2).

• Majority Class (MC) - Finally, we use a baseline that always predicts the
majority class of the training data.

Ensembles. We use a Random Forest (RF) with bootstrapped samples and the
Gini impurity to evaluate the splits [45, 46]. Next, as in [75], we construct an ad-hoc
ensemble mechanism - hereafter KENS - with majority voting as the consensus
function. The base components are WINNOW [85], 1-Nearest Neighbour and Naive
Bayes without priors.

Deep feed-forward neural networks. We implement a three- and five-layered
neural network as in [36], respectively DNN-3 and DNN-5. We use a shrinking factor
α to calculate the number of neurons: i.e., ni = bα× ni−1c where ni is the number
of neurons in layer i.

Inspired by the network architecture in [82], we implement a CNN, namely Simple
CNN. It consists of two convolutions (with max-pooling) and three dense layers. The
activation of each layer is the ReLU function. The last layer has a sigmoid function.
The number of output channels is 6 and 16 for the first and second convolution
layers, respectively. The convolutional layers have a kernel of size 5 and a padding
of 2. The pooling layers have both the kernel size and stride equal to 2. The first
dense layer receives the flattened volume produced by the last pooling layer and
passes it through the other layers. The output neurons of the dense layers are 20,
10, and 1, respectively.
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Deep sequential methods. We implement an LSTM [35] - namely Simple LSTM
- and a combination of CNNs and RNNs - namely ConRec [132]. Simple LSTM
has m LSTM cells where m is the portion of the sequence length that we consider.
We specify a hidden vector size of 100. Lastly, the output of the LSTM network
is flattened and goes into a dense layer with a sigmoid activation function. We
implement ConRec by stacking two convolutional layers before passing the output to
an RNN. The number of kernels in the convolution layers are 20 and 50, respectively,
with kernel sizes of 2. We set the hidden vector of the recurrent neural network to
50. Finally, we feed the hidden vector to a dense layer with a sigmoid activation
function.

Deep sequential with attention. First, we incorporate an attention mechanism
to a 1d CNN as in CFIN [36] that infers the kernel size. Because the datasets
presented in Section 4 do not contain user-specific data (e.g. grades, exams taken,
homework submitted), we skip the augmentation and smoothing processes introduced
in the paper. Instead, we use an attention context that is initialised according to a
uniform distribution with µ = 0 and σ = 0.05. Finally, we have a fully connected
layer that outputs the probability of a dropout student relying on a sigmoid activation
function.

GRU-AE. First, we need to set the hyperparameters of all the four architecture
components described in Chapter 5. We performed a grid search on all hyperparam-
eters to find the best combination. Instead, the number of observed days ξ for each
student depends on the characteristics of the considered dataset. We decided to
predict the dropout probability of each student at fixed intervals of time. We refer
the reader to Section 6.1.2 for additional details on the setting of this hyperparameter.
We use Ω = 10−2 as the Huber loss function threshold parameter (see Section 6.2.1
for further details on the selection of Ω). For the remaining hyperparameters, they
have been set as follows:

• AE - To set the size of the embedding dimension m we use a shrinking factor
γ on the dimension of e-tivities |E|, thus m = bγ × |E|c. We used the range
[0.05, 0.5] with a step of 0.05 to search for the best performing γ. We obtained
the best performances when γ = 0.15.

• Stacked embedded GRU - We set the stacking level q according to the values of
the set {2, 4, 6, 8, 10}. A value of q = 2 produced the most promising results.
Additionally, we set the hidden vector h′i ∀i ∈ [1, q] size equal to 100. To prevent
overfitting during the learning, we used a dropout factor ρ ∈ [0.05, 0.25] with
a step of 0.05. We reached the best trade-off performance-overfitting when
ρ = 0.15.

• Stacked raw GRU - Similarly to the previous hyperparameter setting, we
obtained the best performances of the model when the stacking level of this
component p = 2. We set the hidden vector h′′i ∈ [1, p] size equal to 100. Finally,
as in the stacked embedded GRU, the dropout factor for the connections in
the GRU is 0.15.
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• Fully connected component - We choose the number of layers according to a
grid search on the set [1, 10] where the best performances are achieved with a
number of layers equal to 5.

6.1.2 Evaluation Settings

Evaluation metric Since, as shown in Chapter 4, all datasets exhibit a class
imbalance, accuracy is not an informative metric since the model could achieve good
performances by predicting only the majority class. Moreover, Saito et al. [115]
show that the visual interpretation of Receiver Operating Characteristics (ROC)
curves, when dealing with imbalanced datasets, is biased by a large number of true
negatives. The same study shows that Precision-Recall (PR) curves are a better
metric to evaluate the performances of binary classifiers in an unbalanced setting
because they evaluate the ratio between the predicted positive and the true positive
instances. A related popular evaluation metric is the area under the precision-recall
curve (AUCPR) that we adopt in our study. However, since the majority class in our
datasets might change from one course (or e-degree) to another, we weigh Precision
(P) and Recall (R) by the support (i.e., the number of true instances). Then, we use
these weighted metrics to build the PR curve and calculate the AUCPR. Finally,
for completeness, we show the average F1, precision, and recall scores to express
the goodness of classification for each strategy. Notice that deep strategies output
real numbers in the range of [0,1] according to the sigmoid function. Hence, we use
thresholds θ ∈ {0.1, 0.2, ..., 0.9} to binarise the labels and calculate the average R
(F1) on all θ. In other words, all the scores over θ are set to 1, and those under θ
are set to 0.

Selection of the time window The real-time detection of dropout students is
of paramount importance. It is critical to minimise the time window during which
students are observed to predict their risk of dropout early. In our experiments, we
analysed the performances of each method with different time windows of different
fixed interval lengths (i.e. `1,`2,...,`n). When training a model, we extract the first
`i ∀i ∈ [1, n] rows (days) of Mξ,|E|

s producing a matrix M`i,|E|
s for each student s.

Notice that `i << ξ ∀i. In case of simple machine learning strategies, we flatten
the time-matrixM`i,|E|

s into a vectorM`i×|E|
s . We expect that, in the scenario of

e-degrees, with the increase of i ∈ [1, n], the performances of GRU-AE will have a
non-decreasing monotonic trend. In other words, the performances corresponding to
`i+1 will be greater than or equal to those of `i where i ∈ [1, n). Hence, the longer
the history of a particular student s is, the more certain the dropout status is. This
phenomenon is justified because of the long-term dependencies captured from the
built-in component in GRU-AE.

For the CoxProp2 model to produce meaningful results, we need to modify the
input data accordingly. In this scenario, for each student s and `i, we squash the
rows ofM`i,|E|

s into a vectorM|E|s =
∑`i
i=1M

`i,|E|
s [i]. Moreover, we have to add an

additional feature to the matrix that depicts the time in which the dropout event has
2Implementation guidelines can be found at https://lifelines.readthedocs.io/en/latest/

fitters/regression/CoxPHFitter.html

https://lifelines.readthedocs.io/en/latest/fitters/regression/CoxPHFitter.html
https://lifelines.readthedocs.io/en/latest/fitters/regression/CoxPHFitter.html
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occurred. Notice that we do not possess information about the exact time in which a
specific student has abandoned their studies. Rather, we know that a student s has
abandoned/persisted at the end of course c (i.e f ′(c)). Hence at each `i, the added
feature will be `i because the dropout status of s is immutable since we are taking
into consideration the status at f ′(c). Differently from the other methods that have
a global ground truth label, for CoxProp we need to repeat n times the dropout
label and associate it to `i ∀i ∈ [1, n]. Finally, if the survivability probability exceeds
the threshold 0.75, we indicate that s is a persister in `i; otherwise, s is a dropout
student.

Training characteristics The loss function for deep strategies is binary cross-
entropy (BCE). We use the ADAM optimiser with a learning rate of 10−3 β1 =
9× 10−1, β2 = 9.99× 10−1, and a weight decay of 5× 10−5 for every deep model.
We use 50 epochs for the three- and five-layered networks, GRU-AE, LSTM, and
the simple CNN. In contrast, we use 10 epochs for ConRec, 15 epochs for CFIN
and 100 for the WINNOW base component of KENS. We specify the batch size for
each dataset to be 16. Finally, we divide all datasets into 70:10:20 splits for training,
validation, and test, respectively.

6.2 Results and Discussions

This Section demonstrates that GRU-AE is statistically comparable to the compared
methods in short-term MOOCs while outperforming them in long-term and complex
e-degrees. Furthermore, we provide the reader with analyses that illustrate the
effectiveness of our proposed method for both MOOCs and online degrees.

6.2.1 Loss Function Ablation Study

Prior to comparing state-of-the-art strategies with GRU-AE, we perform an ablation
study of the combined loss function, specifically the Huber loss - i.e. reconstruction
component - according to the hyperparameter Ω. Table 6.1 illustrates the perfor-
mances in terms of average AUCPR and F1 on 30 runs for each dataset. Because
the binary cross-entropy (BCE) loss function of the predictive component does not
include any hyperparameters, we vary Ω only for the Huber loss and assess the
differences in performances. We perform an ANOVA test on the 30 runs and verify
that the mean of GRU-AE with the different loss function is not similar. Afterwards,
we exploit a post-hoc Tukey HSD with a p-value of 0.01 to extract those couples of
compared methods (signed with * or §) whose mean performances are statistically
and significantly similar. The last row of the table depicts the best-performing
GRU-AE variation that we use to compare our performances with the methodologies
in the literature (see Section 6.2.2). For completeness purposes, we also include
MSE and MAE as the loss functions for the reconstruction component of GRU-AE
to empirically assess the interval of Ω values for which the Huber loss translates
into MAE/MSE. Notice that the most contribution on the overall performances
comes from the MAE component of the Huber loss (i.e. |yi − ỹi| > Ω) because
the performances tend to decrease with the increase of the magnitude order of Ω.
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Table 6.1. Ablation study of the performances of GRU-AE according to the different loss
functions. Notice that the binary cross-entropy remains the same since it represents
the loss of the prediction component. We alter the loss function for the reconstruction
component to asses the impact of the hyperparameters on the overall architecture. A
value is in bold if it is the best value on average (30 runs); it is labelled (* or §) when
it is not significantly diverse from any other model with the same label according to a
one-way ANOVA test with post-hoc Tukey HSD with p-value of 0.01.

XuetangX KDDCup15 Unitelma
AUCPR F1 AUCPR F1 AUCPR F1

HuberΩ=101 + BCE 0.6555∗ 0.6199∗ 0.6814∗ 0.6498∗ 0.6700∗ 0.6399∗
HuberΩ=100 + BCE 0.6589∗ 0.6101∗ 0.6807∗ 0.6478∗ 0.6750∗ 0.6378∗
HuberΩ=10−1 + BCE 0.7544 0.7290 0.8676 0.8021 0.7331 0.7009
HuberΩ=10−3 + BCE 0.7112§ 0.7027§ 0.8312§ 0.7845§ 0.7282§ 0.6820§

MSE + BCE 0.6672∗ 0.6182∗ 0.6890∗ 0.6525∗ 0.6789∗ 0.6443∗
MAE + BCE 0.7189§ 0.7091§ 0.8357§ 0.7789§ 0.7200§ 0.6898§

HuberΩ=10−2 + BCE 0.7900 0.7520 0.9346 0.8430 0.7715 0.7346

Therefore, when Ω → 101, the Huber loss is represented as a simple MSE (see
Equation 5.1), and MSE induces GRU-AE to have statistically significantly similar
performances as the GRU-AE variant with the Huber loss with 100 ≤ Ω ≤ 101.
Contrarily, when Ω ≥ 10−3, the Huber function translates into MAE (notice the
§ annotation in the Table). The variant of the Huber loss with Ω = 10−1 reaches
satisfactory performances, but the one with Ω = 10−2 reaches the maximum of
average AUCPR and F1 scores.

6.2.2 Deep vs Simple Learning Approaches

In order to perform a thorough analysis of the performance of the state-of-the-
art methods with our proposed framework, we consider the following aspects and
compare the results to the performances of GRU-AE.

AUCPR performance of deep vs. simple machine learning techniques.
Considering the irregular patterns that the temporal series in our datasets have,
simple machine learning strategies underperform w.r.t. more complex and deep
methods. Figures 6.2 and 6.3 illustrate the average AUCPR scores on 30 runs for
all time windows `i on XuetangX and KDDCup15, respectively. Notice that, with
the increase of `i, deep strategies perform significantly better, whereas predictions
based on observing shorter time windows are comparable to simpler models. Notice
that all methods perform better than the MC baseline, which indicates that they
have successfully learned to distinguish between the binary classes Additionally, our
method (red curve) in XuetangX is the best performing strategy among all the
compared ones. Contrarily, Figure 6.3 shows that DNN-5 is the best performing
method. Concerning Unitelma (Figure 6.4), we observe a variegated behaviour
as the dimension of the temporal windows increases, with deep strategies (and
especially GRU-AE) outperforming simple methods only as the length of the time
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Figure 6.2. Average AUCPR scores on 30 runs for XuetangX. The curves without symbols
represent off-the-shelf machine learning strategies. Meanwhile, the curves with symbols
are deep learning approaches. Notice how the majority class (MC) approach is constant
with the change of `i since the majority class does not change if the history per student
trajectory is enlarged/shrunk.
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Figure 6.3. Average AUCPR scores on 30 runs for KDDCup15. The curves without
symbols represent off-the-shelf machine learning strategies. Meanwhile, the curves with
symbols are deep learning approaches. Notice how the majority class (MC) approach is
constant with the change of `i since the majority class does not change if the history
per student trajectory is enlarged/shrunk.
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Figure 6.4. Average AUCPR scores on 30 runs for Unitelma. The curves without symbols
represent off-the-shelf machine learning strategies. Meanwhile, the curves with symbols
are deep learning approaches. Notice how the majority class (MC) approach is constant
with the change of `i since the majority class does not change if the history per student
trajectory is enlarged/shrunk.

windows increases over 30 days. As expected, our proposed method shows a higher
capability of capturing long-term time dependencies. Figure 6.4 shows that all the
state-of-the-art strategies have a non-decreasing trend with a history of 30 days
for the temporal series. Successively, the performances of GRU-AE increase with
the increment of `i; whereas the AUCPR curve of the compared methods has a
steep decrease reaching worse performances than the naive MC baseline, especially
that of simple machine learning approaches. This phenomenon in trend shifting
of performances is due to the dependencies of e-tivities in longer periods. While
simple machine learning techniques reach their peak performances at `5 = 30, their
decrease for `6, `7 and `8 suggests that these methods overfit the data, having to
cope with an average per-day sparsity of ∼ 97%.

Furthermore, as mentioned in Section 6.1.2, machine learning methods take the
flattened version of time-matrixM`i,|E| in input, thus losing the time-information
between the e-tivities. The performances decrease in the case of simpler methods
and with deep and more complex ones. DNN-5 performs badly at the end of the
time window (i.e. `8 = 180) since it does not learn the temporal information coming
from an embedded representation of the temporal series. Similarly, ConRec, whose
performances are not significantly different from that of GRU-AE, according to
the ANOVA test in KDDCup15, has an analogous performance curve as DNN-5.
Finally, GRU-AE successfully extrapolates hidden information when the time window
expands by merging dense and raw trajectories.

To summarise, Figures 6.2, 6.3 and 6.4 show that GRU-AE improves over the
methods presented in Section 6.1.1, mostly in the scenario of long-term e-degrees.
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XuetangX KDDCup15 Unitelma
CFIN 0.7233 0.8497 0.6539
ConRec 0.7676 0.9349 0.7427
Simple CNN 0.7470 0.8489 0.7267
Simple LSTM 0.7522 0.8486 0.7296
DNN-5 0.7829 0.9357 0.6950
DNN-3 0.7677 0.8697 0.7244
LR 0.7411 0.8719 0.7469
DT 0.7493 0.8897 0.6501
GNB 0.7346 0.8708 0.6981
KNN 0.7723 0.8740 0.6388
RF 0.7536 0.8824 0.7443
SVM 0.7316 0.8754 0.6729
KENS 0.7500 0.8897 0.4440
CoxProp 0.7562 0.8672 0.7418
MC 0.7121 0.8270 0.5265

GRU-AE 0.7900 0.9346 0.7715
GRU-Densed 0.7430 0.9164 0.7214
GRU-Raw 0.7637 0.9270 0.6938

Table 6.2. Average AUCPR values (over 30 runs) for all methods. A value is in bold if it
is the best value on average; it is underlined when it is not significantly diverse from the
best-performing model according to a one-way ANOVA test with post-hoc Tukey HSD
with p-value of 0.01.

Nevertheless, to show no statistically significant difference between the performances
of GRU-AE and the other top performing state-of-the-art methods, we performed a
statistical significance evaluation relying on a one-way ANOVA test with a post-hoc
Tukey HSD test with a p-value threshold equal to 0.01. The group observations
that we give in input to the ANOVA test are the scores on 30 runs of each model.
The hypothesis that we want to prove wrong with the one-way ANOVA is that all
models have the same average performances (i.e., H0 : µ1,= ... =, µn). Once the
one-way ANOVA establishes that the means of the performances are different (i.e.
H0 is rejected), we apply a Tukey HSD test to determine the pairs of models whose
mean AUCPRs are statistically significantly unequal. Those pairs of models that
have a difference between the average performances greater than the Tukey-criterion
according to a p-value of 0.01 are considered statistically different; otherwise, the
models are statistically indifferent. Then, we inspect the statistically different pairs
that involve the best performing model on average. For completeness purposes,
Table 6.2 reports the average AUCPR scores on all-time windows for each method
in the datasets. For each dataset, the technique with the best performance score on
average is bold-faced. The scores that are statistically and significantly indifferent to
the best-performing model are underlined. The Table demonstrates that, on average,
GRU-AE is the best system. Otherwise, GRU-AE does not show a statistically
significant difference compared to the other best methods.

Finally, in Figure 6.5, we illustrate a strict comparison between GRU-AE and the
second best-performing methods or those that have statistically significantly similar
performances. Here, we depict each time-window `i for all datasets. We demonstrate
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Figure 6.5. Distribution of performances of GRU-AE in all three datasets. To demonstrate
the superiority (or statistically significant similarity) of GRU-AE for each dataset, we
choose the second best-performing strategy on average or all similar strategies according
to the ANOVA test. Here, we illustrate the AUCPR scores for every time window ` on
30 different runs. Notice that we do not represent the distribution of performances for
the other methods. Rather, we show the mean AUCPR score for a specific `i.

how, when ` increases, the performances of the other methods either remain compa-
rable or degrade abruptly (see Unitelma). Notice that, for visualisation purposes, we
only provide the mean AUCPR score for the other methods for each `i. In the case
of KDDCup15, DNN-5 and ConRec remain within the performance distribution of
GRU-AE during the entire history of the student trajectories because, according
to the one-way ANOVA test with the post-hoc Tukey test, they have statistically
significantly similar performances (see Table 6.2). Contrarily, in XuetangX and
Unitelma, k-nearest neighbours (KNN) and the linear regression (LR) reside under
the mean performances and, successively, outside the box plots, clearly indicating
a difference from the proposed strategy. Notice that the average performances of
GRU-AE and the other compared methods follow the curve trend present in Figures
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XuetangX KDDCup15 Unitelma

CFIN 0.6718 0.7719 0.4920
ConRec 0.7522 0.8422 0.5194
Simple CNN 0.7366 0.8340 0.6284
Simple LSTM 0.7379 0.8236 0.5167
DNN-5 0.7330 0.8194 0.5978
DNN-3 0.6972 0.8203 0.5554
LR 0.4948 0.7873 0.6535
DT 0.4487 0.4378 0.4299
GNB 0.7436 0.7849 0.6640
KNN 0.7531 0.7873 0.6423
RF 0.7523 0.4378 0.6987
SVM 0.7052 0.7849 0.4640
KENS 0.7513 0.7893 0.4640
CoxProp 0.5012 0.7779 0.6430
MC 0.6218 0.7849 0.4449

GRU-AE 0.7520 0.8430 0.7346
GRU-Densed 0.7473 0.7792 0.7283
GRU-Raw 0.7511 0.8164 0.7264

Table 6.3. Average F1 scores for 30 runs on all time-windows `i. A value is in bold if it is
the best value on average; it is underlined when it is not significantly diverse from the
best-performing model according to a one-way ANOVA test with post-hoc Tukey HSD
with p-value of 0.01.

6.2, 6.3, and 6.4.

Precision, Recall, and F-measure of deep vs simple machine learning
techniques. To assess the classifiers’ general performances and resilience to false
negatives, we also show F1 and Recall average scores. Table 6.3 shows the average F1
scores on 30 runs on all time-windows `i. As with the AUCPR scores, we performed
a one-way ANOVA test to determine whether the performances are truly different
or show negligible variance. The MOOC courses present interesting cases, with
XuetangX having the highest number of methods whose performances do not have
any statistical difference. Here, simple machine learning (i.e., KNN) and ensemble
models (i.e., RF and KENS) have higher F1 scores.

Nevertheless, according to the ANOVA test, our method is statistically signifi-
cantly similar to the previous methods on average. GRU-AE is the most performing
method in KDDCup15, with ConRec having similar scores. Finally, as expected, our
method excels in Unitelma being the sole system with the best performing strategy.

Furthermore, to show the absence of the statistical difference in F1 scores in
XuetangX and KDDCup15 between GRU-AE and the other compared methods, we
calculate the average recall score on 30 different runs on all-time windows `i. We
remark that Recall is more important than Precision because, in critical scenarios
such as recuperating a student who intends to withdraw from their studies, we can
tolerate false positives but not false negatives. Figures 6.6, 6.7, and 6.8 clearly
show that GRU-AE and its variants outperform the state-of-the-art strategies. As
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expected and demonstrated by Table 6.3, the average recall scores of GRU-AE in
Unitelma lead by a margin of 25% over the best performing method (i.e., CFIN).

Figure 6.6. Average recall scores on 30 runs for XuetangX. The darkest bin corresponds
to the highest recall score, meanwhile the lightest ones to the lowest. When two or more
bins share the same shade, then their performances are statistically significantly similar.
For illustration purposes, we present in bold the best-performing method, whereas in
underscore the worst-performing one.

Figure 6.7. Average recall scores on 30 runs for KDDCup15. The darkest bin corresponds
to the highest recall score, meanwhile the lightest ones to the lowest. When two or more
bins share the same shade, then their performances are statistically significantly similar.
For illustration purposes, we present in bold the best-performing method, whereas in
underscore the worst-performing one. Notice that, differently from XuetangX, deep
strategies have similarly distributed performances w.r.t. GRU-AE, the best-performing
model. This aspect suggests that KDDCup15 has more regular student interactions in
time such that there is an inter-dependency between the engendered e-tivities, hence the
higher AUCPR scores in Table 6.2.
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Figure 6.8. Average recall scores on 30 runs for Unitelma. The darkest bin corresponds to
the highest recall score, meanwhile the lightest ones to the lowest. When two or more
bins share the same shade, then their performances are statistically significantly similar.
For illustration purposes, we present in bold the best-performing method, whereas in
underscore the worst-performing one. Notice that the components - i.e. GRU-raw and
GRU-densed - of the overall architecture and GRU-AE itself have visually detached
performances from the rest of the strategies because of the long-term relationship between
e-tivities in Unitelma

Sensitivity Analysis. We perform a sensitivity analysis to describe the benefits
of the components in our framework. Here, we detach from the overall architecture
one of the two components and measure the AUCPR of the two variants w.r.t.
the entire model.Hence, we denote the model with GRU-Densed (see Figure 6.9)
without the stacked raw GRU component in the architecture. Similarly, we denote
the model with GRU-Raw (see Figure 6.10) without the stacked embedded GRU in
the architecture.

Figure 6.9. GRU-Densed component architecture.

Although the difference in AUCPRs and F1 is not that substantial (see the
rightmost columns of Tables 6.2 and 6.3), the average daily sparsity and inter-e-tivity
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Figure 6.10. GRU-Raw component architecture.

daily gap induces GRU-Raw to underperform (on average) in Unitelma (see Table
6.2) while it performs better than GRU-Densed in both XuetangX and KDDCup15.
We conclude that GRU-AE benefits from both GRU-Raw and GRU-Densed, noticing
that combining these components into an overall architecture makes the model more
complex and, thus, capable of extracting latent information and combining them in
an end-to-end approach.

6.2.3 Reconstruction Error Analysis on Short and Long-Term Tra-
jectories

While we have demonstrated that GRU-AE has better/comparable performances
w.r.t. state-of-the-art methods, it is interesting to analyse the relationship between
the reconstruction error of the reconstruction component (see Figure 5.2) and
the overall performances of the architecture. Figure 6.11 illustrates the curves
corresponding to the AUCPR scores and the reconstruction error for each time
window `i ∀i ∈ [1, n]. We report all values as averages of 30 different runs. Notice
that the AUCPR scores are the same as those in Figures 6.2, 6.3, and 6.4. Whereas
the reconstruction errors are reported as the MSE for every student trajectory
averaged on 30 runs. In other words, the reconstruction error for a particular `i for
a certain student s is

RMSEs`i =

√√√√√ `i∑
j=1

|E|∑
k=1

(Mj,k
s − M̃j,k

s )2

whereMj,k
s represent the original value for the k-th e-tivity in day j for student s,

and M̃j,k
s is the reconstructed counterpart. For visualisation purposes, we normalise

the reconstruction error in the range [0,1] by applying a min-max scaling operator
as follows:

NRMSEs`i =
RMSEs`i −min

s∈S
RMSEs`i

max
s∈S

RMSEs`i

Finally, the normalised reconstruction error for all students s ∈ S is the mean
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Figure 6.11. The relationship between the reconstruction error of the original trajectories
and the average AUCPR score over 30 runs for GRU-AE. Notice that the reconstruction
errors have been normalised in the range [0,1] for illustration purposes. The average
AUCPR score is the same to the ones reported in the AUCPR trends in Figures 6.2, 6.3,
6.4. Meanwhile, the reconstruction error, for each `1, ..., `n, is the RMSE for all student
trajectory averaged over 30 different runs.

reconstruction error of NRMSEs`i ∀s ∈ S:

NRMSE`i = 1
|S|

∑
s∈S

NRMSEs`i

As expected, while the AUCPR curve has a non-decreasing trend for all datasets,
the reconstruction error has a non-increasing trend. The reconstruction component
of GRU-AE plays an important role in boosting the performances of the overall
architecture - hence the upwards trend of the AUCPR curve - while minimising
the dissimilarity between the original student trajectory and the reconstructed one.
Furthermore, notice how the reconstruction error curve has the steepest decreasing
trend in Unitelma w.r.t. the other MOOC datasets. The reconstruction error
decreases abruptly after considering time windows larger than 30 days, a similar
tipping point for the AUCPR curve of GRU-AE in Figure 6.4. Additionally, notice
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Figure 6.12. Average reconstruction error for time-series that contain exactly i e-tivities
for specific time-intervals on XuetangX and KDDCup15. The x-axis in each subplot
represents those trajectories with exactly i e-tivities engendered within that particular
time-frame (e.g. Days 1-7 or Days 15-20). The y-axis illustrates the mean reconstruction
error for all temporal series that contain exactly i e-tivities. The shades of each bin
in the plot represent the probability of having exactly i e-tivities in all time-series of
the datasets as in Figures 4.2 and 4.3. For visualisation purposes we illustrate this
probability as a heatmap. The y-axis is log scaled.

the difference between the reconstruction errors in XuetangX and KDDCup15.
The former has a clear downward trend, and the performances reach newer highs
with each `i. Contrarily, in KDDCup15, the reconstruction component does not
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Figure 6.13. Average reconstruction error for time-series that contain exactly i e-tivities
for specific time-intervals on Unitelma. The x-axis in each subplot represents those
trajectories with exactly i e-tivities engendered within that particular time frame (e.g.
Days 1-7 or Days 15-20). The y-axis illustrates the mean reconstruction error for all
temporal series that contain exactly i e-tivities. The shades of each bin in the plot
represent the probability of having exactly i e-tivities in all time-series of the datasets
as in Figure 4.4. For visualisation purposes, we illustrate this probability as a heatmap.
The y-axis is log scaled.

substantially impact the performances, and rather, it maintains a constant trend
throughout the entire period of the history of the student time series. Without
loss of generalisation, we can conclude that there is an inverse relationship between
the overall performances of GRU-AE in terms of AUCPR scores and the average
normalised reconstruction error of the input data.
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To motivate the efficacy of our strategy on discriminating between dropouts and
persisting students, in Figures 6.12 and 6.13, we depict the average reconstruction
error for the student time series in specific time-intervals. For each time-interval
[db, df ], we measure the average reconstruction error for every temporal-matrix
Mξ,|E|

s of each student s in [b, f ]. In other words, we use GRU-AE to reconstruct
M[db,df ],|E|

s , the temporal matrix of student s projected in the time-interval with
beginning day db and end day df . Notice how the average reconstruction error for
those trajectories that do not contain any e-tivities is constantly high throughout
all time intervals. Having a high reconstruction error for the time series that do
not contain any e-tivities means that the reconstruction component of GRU-AE
does not include them in the normal distribution of the other students and labels
them as dropouts. Contrarily, the time-series with ten or more e-tivities generated
throughout the interaction of a particular student s with the OLEs have a lower
reconstruction error because they contain meaningful information that GRU-AE can
exploit to determine the status of s.

Furthermore, in the scenario of MOOCs, the reconstruction error follows a non-
increasing trend when the time-interval comes closer towards the maximum window
length ` (see Table 4.1). Based on the performances in Table 6.2, it is clear that
also the average reconstruction error entails a more difficult classification task for
XuetangX than KDDCup15 (i.e. the errors for XuetangX are an order of magnitude
bigger than KDDCup15). Meanwhile, the reconstruction error in the scenario of
Unitelma follows a bell shape. While students are more interested in interacting
with the course content at the beginning and ending of their trajectories, the middle
suffers from the most sparsity, inducing our method’s reconstruction error to become
higher. However, even in the middle of the designated time intervals - i.e. days 21-24
and 25-30 - the trajectories containing more e-tivities present lower reconstruction
errors than the others. In conclusion, we can determine that the reconstruction
error in specific time intervals is directly proportionate to the probability of the time
series containing a specific number of e-tivities (i.e. sparsity of the time series).
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Chapter 7

Extending to the General
Context of Symbolic Trajectory
Prediction Applications

Besides the student dropout prediction problem, several other tasks are included
in the more general category of symbolic trajectory prediction applications. We
here consider the problem of survival prediction in critical care telehealth systems.
Like SDP, predicting a particular patient’s survival probability according to specific
laboratory test results is a critical task. While students interact directly with OLEs
to generate e-tivities, patients do not have any interaction patterns in this scenario.
Nevertheless, patients are involved in several events such as laboratory examinations,
periodical medical checks, and hospital recoveries in certain critical situations.

These personal files can be translated into time-series (i.e. every event generated
by a particular patient is associated with a specific timestamp) relying on sequence
labelling modelisation techniques described in Section 3.3.2. Thus, we have a similar
problem as SDP, where dropouts become deceased patients, and persisters recover
and are released from the hospital, suggesting how our input modelisation approaches
are generalisable and tunable to any other trajectory prediction problem besides
SDP.

7.1 eICU: A Fatality-based Telehealth Dataset

The medical dataset eICU describes fatalities of patients admitted to multi-centre
critical care in US hospitals between 2014 and 2015. Patient-related events include
laboratory tests, medications, admissions, physical examinations, and visits. We
prune all patient trajectories, including zero events, which results in a final set of 65k
trajectories. Similar to the datasets in the student dropout scenario, as suggested in
[46], we perform a daily grouping of events concerning each patient. Therefore, we
represent each individual’s trajectory u with a time-matrixMξ,|E|

u where ξ << ` is
the length of the adopted time-window in days and |E| is the number of different
events types (i.e., features) available in the dataset. In detail, a cell (i, j) ∈ Mu

contains the number of events of type j found in day i of a trajectory u.



108
7. Extending to the General Context of Symbolic Trajectory Prediction

Applications

Num. of event
types m

Max. time window
length ` in days

Num. of time-series
(trajectories)

Avg. per-day
sparsity

Avg. day gap
between events

Class distribution
(0:1)

9 30 ∼65k 73.4% 8.11± 7.74 91.45% : 8.55%

Table 7.1. eICU dataset characteristics

Figure 7.1. Probability mass function for the number of per-day events for each dataset
on max-length sequences.

Table 7.1 summarises the characteristics of the eICU dataset similarly to those
illustrated in Table 4.1. The Table shows that eICU exceeds the class imbalance
of all time-related student dropout datasets with only 8.55% of fatalities (class 1).
This severe imbalancement induces the patient survival prediction - henceforth PSP
- problem to treat fatalities as anomalous instances in the dataset, thus making their
identification more arduous in terms of evaluation. Contrarily, the average day gap
between events within the same patient trajectory is more contained than those of
SDP because eICU contains patients in critical health conditions posed to regular
and periodical check-ups and blood tests. Additionally, notice that the average
gap between events in eICU has the highest variance. These gaps are a common
phenomenon in medical trajectories since events are not recorded in real-time, as
instead happens in the e-learning domains. By not recording the events in real-time,
eICU is a far more challenging domain than e-learning. In e-learning, an absence of
events corresponds, being a relevant predictor of dropout, to a sporadic usage of the
platform by the students. In the medical domain at hand, a gap with an absence
of events is ambiguous: i.e. it may describe a healthy patient (class 0) that needed
only some test or a critical patient that died - class 1 - during their hospitalisation.

Finally, Figure 7.1 shows the probability distribution of finding i daily events, no
matter their type, in a randomly selected trajectory u for XuetangX, KDDCup15,
and eICU. We do not consider Unitelma for this comparison because trajectories
in eICU are short-term or at most have a one-year duration until either the death
or the complete recovery from hospitalisation of a particular patient. Although all
distributions are Zipfian, and KDDCup15 exhibits the steepest curve, the probability
of at least 1-5 events is much higher (up to over 20%) w.r.t. the other datasets.
Moreover, the probability mass function of eICU resembles that of XuetangX, with
the difference that all patients have at least one event in their medical files. Therefore,
we expect the performances of eICU to follow the same trend as those in XuetangX.
All in all, the data analysis performed suggests that eICU represents a challenging
PSP problem.
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7.1.1 The Class Imbalance Effect on Hospital Fatalities

To analyse the effect on the performance of class imbalance - observed especially
in the eICU dataset - we train our systems both with eICU "as is" and with an
oversampling method called ADASYN [52], which is currently reported amongst the
most effective. We oversample the minority class using five nearest neighbours for
sampling with a balanced level of the synthetic samples β = 1. Thus, we balance
the dataset such that the majority and minority classes have the same number of
examples. Apart from this, we do not perform any other feature normalisation or
pre-processing of any sort before training. The rest of the training hyperparameters
are set as described in Section 6.1.2. Finally, we perform experiments similar to
those described in Section 6.2 for the eICU dataset and compare the results.

Notice that we did not perform any class balancing in the educational datasets
because the class imbalance in the SDP scenario is not as severe as in the e-health
domain (compare the class distributions in Tables 4.1 and 7.1) . Additionally,
ADASYN generates synthetic data based on k-nearest neighbours w.r.t. a specific
instance belonging to the minority class. Thus, if xu is randomly chosen from the
set of neighbours of an instance xi in the minority class, then ADASYN generates a
synthetic instance si = xi+(xu−xi)×λ where λ ∈ [0, 1]. We empirically verified that
this generation of synthetic samples does not provide any information/performance
gain for the methods presented in Section 6.1.1 in the educational datasets because
the daily sparsity of the student sequences exceeds 90% and the average inter-activity
day gap can span for over ∼ 46 days (e.g. Unitelma’s case). Moreover, the student
sequences in the minority class contain at most 3 e-tivities throughout all their
monitoring time. The issue is more pronounced when taking into consideration
long-term e-degrees such as Unitelma. Hence, the neighbours of each of the instances
belonging to the minority class do not contain enough variation for ADASYN to be
able to generate meaningful synthetic samples. This particular challenge induces
ADASYN to produce replicas of xi scaled by λ and it impedes the prediction
strategies to retrieve benefits from the balanced dataset. In other cases where the
trajectories of persisting and dropout students do not have any significant difference1,
we witnessed an increase in the false positive rate, which, in turn, makes the AUCPR
and F1 decrease substantially after applying ADASYN.

7.1.2 Experiments and Discussions

Figure 7.2 illustrates the average AUCPR scores on 30 runs for different time windows
in the set {7, 14, 20, 25, 30} for both eICU and eICU balanced with ADASYN. Similar
to short-term MOOCs, all AUCPR curves in eICU have a non-decreasing trend
when the number of days in the temporal matrix increases. The separation of
GRU-AE from the rest of state-of-the-art methods is clearer when the portion of
patient history becomes larger. Contrarily, in a perfectly balanced scenario where
patient recoveries and fatalities have the exact number of instances, there is no clear

1In Unitelma, students collaborate and share study materials among each other outside the
authorised OLEs. In other words, if a student s completes course c and downloads its materials
(e.g. projects, video transcripts, minute files), s can disseminate them on social media without any
repercussion. Additionally, this material spread among the peers of s can lead them to complete/fail
c without having to interact with the e-platform, creating so-called ghost students.
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CoxProp

Figure 7.2. Average AUCPR scores on 30 runs for eICU (up) and eICU balanced with
ADASYN (down).

distinction between simple machine and deep learning approaches. Additionally,
although there is some upward trend going on all AUCPR curves, the patient history
does not impact the performances as much as in the normal scenario of eICU.

Furthermore, because the average per-day event gap is not pronounced as in the
e-learning domain, GRU-AE does not capture important latent information to have
a great increase in performances (i.e. the performances remain approximately similar
throughout the entire history of patient recoveries in hospital). Finally, the balanced
eICU is an easier task also for simple learning techniques that, differently from the
imbalanced version of the dataset, have comparable results. To prove this, in Table
7.2, we present the average AUCPR values for all time windows for eICU and eICU
with ADASYN. While the one-way ANOVA test with post-hoc Tukey HSD does not
entail any of the strategies to be significantly similar to the best-performing one in
either eICU or eICU with ADASYN, notice how GRU-AE, being the best-performing
method in eICU, on average does not compare with the other simpler methods (i.e.
Simple CNN, Simple LSTM, DNN-5, and DNN-3). Additionally, in eICU with
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eICU eICU with ADASYN
CFIN 0.4273 0.8613
ConRec 0.4633 0.8553
Simple CNN 0.4578 0.9093
Simple LSTM 0.4774 0.9614
DNN-5 0.3848 0.9167
DNN-3 0.3937 0.9190
LR 0.0993 0.0993
DT 0.1769 0.8735
GNB 0.1120 0.5397
KNN 0.1421 0.8815
RF 0.2628 0.9379
SVM 0.0977 0.6897
KENS 0.0950 0.5726
CoxProp 0.1019 0.0999
MC 0.0852 0.5022

GRU-AE 0.5843 0.9067
GRU-Densed 0.5136 0.8500
GRU-Raw 0.5069 0.8921

Table 7.2. Average AUCPR values (over 30 runs) for all methods for eICU and eICU with
ADASYN. A value is in bold if it is the best value on average.

ADASYN, Random Forests is the second best-performing method meaning that
ensemble strategies are useful to reduce the variance of the trajectories of deceased
patients, thus incrementing the overall performances of the strategy (i.e. KENS has
a ∼ 6.1 times increment from eICU to eICU with ADASYN).

Figure 7.3. F1 scores averaged on all time-windows varying the threshold θ on eICU and
eICU with ADASYN.

In order to assess the general performances and resilience of the classifiers to
false negatives, we also show F1 and Recall - Figures 7.3 and 7.4 when varying
the threshold θ introduced in Section 6.1.2. Notice that the trend of the curves2 is

2We study only the scores according to the variation of θ for the deep strategies because surface
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Figure 7.4. Recall score averaged on all time-windows varying the threshold θ on eICU
and eICU with ADASYN.

non-decreasing when θ → 1 because the majority class of eICU is 0. The bell-shaped
curve for eICU with ADASYN indicates that the classifiers’ posterior probability
distribution follows a uniform distribution with a mean approximately equal to 0.5.
Therefore, one can think that the number of the posterior probabilities less than
0.5 is equal to those greater than or equal to 0.5. In fact, P (x < 0.5) = P (x ≥ 0.5)
under a uniform distribution, justifying that the F1 and R scores reach their peak
at θ = 0.5 and have mirrored performances for the other thresholds.

As observed in Section 7.1, the trajectories in the medical domain eICU present
several challenges, like the variegated number of events per trajectory (Figure 7.1),
the variance of day-gaps and the high-class unbalance (see Table 7.1). Because
eICU is the most challenging dataset, one expects that, for all methods, the average
AUCPR scores would be lower than those in the other datasets. Figure 7.2 confirms
this expectation. Now, consider Figures 7.3 and 7.4. Although we do not show
precision curves, we can deduce that, since F1 and R are high, but AUCPRs are
lower in eICU, the precision score must be small. On the other side, in risk prediction
scenarios, such as a critical care system, we can tolerate false positives but not false
negatives. Next, to study the effect of high-class imbalance on performance, we
augment eICU with ADASYN. In Figure 7.2, the class balancing strategy entails a
substantial increase (almost 40%) in terms of AUCPRs between the unbalanced and
the balanced versions of eICU for all methods. In conclusion, when analysing the
curves in Figures 7.3 and 7.4, GRU-AE, although not the best-performing strategy
in terms of mean AUCPR scores, has the steadiest trend of them all in terms of F1
and Recall, respectively. Additionally, considering that false alarms - i.e. predicting
that a particular patient might die instead of missing it - are important in a critical
hospitalisation scenario, the recall curve of GRU-AE on eICU with ADASYN suggests
that our method is the most suitable predictor for patient fatalities. Contrarily,
GRU-AE is comparable with other methods until θ > 0.7, where it reaches higher
highs with θ → 1 (see the plot for eICU in Figure 7.4).

machine learning methods imply a horizontal line as their output (0/1) does not change with θ.
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7.2 Other Temporal Health-Related Scenarios

Here, we describe additional examples of health-related scenarios where the properties
of GRU-AE are being exploited in our ongoing work.

7.2.1 Prediction of viral spread

As of 2020’s diffusion of coronavirus infectious cases, researchers have contributed to
the literature on predicting the dissemination trend in specific countries. Most works
use daily aggregated statistics3 on the infection data such as number of recovered
patients, number of deaths, and number of patients in intensive care. Additionally,
with mobility patterns being publicly available4,5, researchers have tested isolation
policies issued by the governments to assess their efficacy in containing the virus’s
spread. In this manner, Aragona et al. [4, 5] have exploited - where applicable -
daily statistics and mobility information. They forecast the daily positive cases at t
time steps further than the reference window taken into consideration. However, the
authors ignore the temporal modelisation of the mobility patterns. In other words,
they use condensed features of movement transitions from one public area to the
other. Therefore, we can exploit the movement patterns at each timestamp to create
a time matrix similar to what is illustrated in Section 3.4. In this scenario, the
student set S corresponds to the set of different countries taken into consideration -
named Υ. Hence, Υ = {υ1, υ2, . . . , υ|Υ|}. Now, instead of having a time matrixM
for each student s ∈ S, we have a time matrix for each country υi ∈ Υ. ForM to
be appropriately adapted for this scenario, we have to model the set of e-tivities
E to represent the possible actions that people can perform. In this case, we have
means of transportation and areas in which people can transit. Hence, the set
A = {α1, α2, . . . , α|A|} corresponds to E . Finally, the time matrixMξ,A

υ represents
the mobility patterns αi ∈ A in each day for country υ ∈ Υ in a period of ξ days.
Notice that the target of this particular problem is to predict the daily positive cases
(i.e. regression problem). By simply scaling the daily positive cases of each country
to the interval [0,1], GRU-AE can be exploited to predict the infective cases of any
country with daily mobility information.

7.2.2 Anomaly detection in behavioural sequences

Another interesting scenario where GRU-AE can be used with a few tweaks is that
of elderly behaviour monitoring6. Older people (i.e. patients in retirement homes)
can be tracked throughout their daily routine by introducing some non-invasive
sensors and a smartwatch to communicate with them. Therefore, these patients can
perform various activities such as going to the toilet, taking showers, and dining
in the canteen. When the smartwatch is in the vicinity of the sensors representing
the areas in which a specific activity occurs, then the tuple patient-activity gets

3https://ourworldindata.org/coronavirus
4https://www.google.com/covid19/mobility/
5https://covid19.apple.com/mobility
6This is based on the study conducted on the Lazio region project eLinus (Avviso Pubblico

“Emergenza Coronavirus e oltre” - Domanda prot. n. A0376-2020-070051, CUP: F84E21000000006)
in support to DATAWIZARD SRL.

https://ourworldindata.org/coronavirus
https://www.google.com/covid19/mobility/
https://covid19.apple.com/mobility
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persistently memorised at time t. The memorised activities can be ordered in time
for each patient, thus represented as discrete temporal series. By analysing the
trend shifts of the patient behaviours (i.e. action engenderings), we can stabilise
whether anomalies happen throughout the monitoring period. Therefore, healthcare
personnel can intervene promptly by treating these patients who frequently suffer
from mental diseases or severe depression. The goal here is to predict whether
there is an anomaly in the behaviour of the patient trajectory in a specific period
(e.g. daily, weekly, monthly). As expected, the formalisation of the time matrix
in SDP can also be utilised in this case. Here, the student set S becomes the set
of patients P = {π1, π2, . . . , π|P|}. The set of e-tivities E corresponds to the set of
actions the patients perform Ê . Therefore, the time matrixMξ,Ê

π depicts the daily
aggregated history of patient π performing activities in Ê for ξ days. Similar to the
previous scenario, GRU-AE is a possible solution to identify anomalous days in the
behavioural pattern of elderly patients.
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Chapter 8

Conclusion

Nowadays, education, and especially online education, is one of the top industries in
the world. OLEs are increasingly gaining popularity because of several benefits of
learning anywhere, anyplace, and anytime. Public and private universities and many
corporations have adopted e-learning systems for employee training and learning to
create a collaborative learning environment. However, despite the benefits of distance
learning courses, educational institutions have a growing concern for low retention
rates and, in general, low certification/graduation rates of these kinds of degrees.
Students enrolled in online degree programs have a higher chance of dropping
out than those attending a conventional classroom environment. For corporate
universities, the main issue is the lack of motivation to learn for employees and the
inability to decipher one’s preferred learning style. It may lead to poor efficacy and
alignment of employee needs with strategic organisational goals. Therefore, it is
of paramount importance for both public and private institutions to increase the
efficiency and efficacy of learning outcomes, both for social and economic reasons.

Early prediction of students at the risk of dropout is one of the challenging
tasks researchers face in the learning analytics field. The purpose of this work was
to present an in-depth analysis of student dropout prediction (SDP) in e-learning
environments, under the central perspective, but not exclusive, of machine learning.
We organised existing literature according to a hierarchical classification that follows
the workflow of design choices in SDP. Furthermore, we introduced a formal notation
to uniformly describe the alternative dropout models adopted by researchers in the
field and model MOOCs and e-degrees. Besides synthesising the most promising
predictive strategies presented in the literature, we analysed several additional, and
yet crucial, issues such as the evaluation strategy, the identification of data sets
available for comparative studies and the consideration of privacy issues.

State-of-the-art approaches to predicting student withdrawal in OLEs have
focused primarily on the more common scenario of single MOOCs. However, the
recent pandemic has widely expanded the ubiquity of OLE platforms, extending
them to entire degree courses and, thus, introducing novel challenges. We presented
GRU-AE to mitigate the problems of feature sparsity, long trajectories, and long
temporal gaps during which students remain inactive that arise in the context of
e-degrees. GRU-AE exploits an autoencoder to mitigate feature sparsity and stacked
embedded GRUs to extract latent information and temporal dependencies even in
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the presence of long temporal gaps. Our methodology has been compared with
state-of-the-art simple and deep architectures, both in the scenario of short and
long-term courses. We have shown that our solution surpasses the others in long-term
e-degrees and is not statistically different in comparison with the best methods in
the context of MOOCs.

We also observed that deep methods, in general, outperform simple machine
learning methods and ensembles in problems where temporal sequences of events
as the input data. However, we demonstrated that the superiority of each deep
method over the others is often minimal. At the same time, the highest impact on
performance is either due to the complexity of input data (in particular, the ratio
between the number of different features and the available dimension of training
data) or to the application of data engineering methods (e.g. methods to cope
with unbalanced classes). Furthermore, different performance indicators may tell
a different story. The ranking of systems may significantly change with different
evaluation measures that may be more or less appropriate depending upon the task
objectives and the distribution of data samples. We deduce that researchers should
carefully investigate the contexts in which one system is superior to the others by
using datasets with different characteristics, variable parameters, and evaluation
measures.

While SDP has been characterised as a binary classification problem, an anomaly
detection approach on the time-dependent student time series is also viable. Dropout
students are, in fact, time series that do not fit the normal distribution of the data,
thus being outliers; meanwhile, persisting students are the inliers. Since GRU-AE
already contains an autoencoding component in the overall architecture, we can
exploit a temporal autoencoder (e.g. LSTM autoencoder) to reconstruct the input
trajectory. Afterwards, the reconstruction of the input can be exploited to rank
order the instances. The trajectories that are harder to reconstruct are expected
to be at the top of the ordered list. The higher the reconstruction error, the more
anomalous the time series is. Thus, we can employ a decision function (e.g. step
function) to decide the dropout status of each student. This way, one can solve the
SDP problem while referring to a completely different research field yet unexplored
in Learning Analytics.

Because of the black-box nature of GRU-AE to predict the dropout status
in OLEs, performing interpretability is arduous. Thus, as an extension to this
work, predicting why students drop out from a specific online course/degree is
of paramount importance in devising intervention strategies. Integrating a global
attention mechanism in the prediction component of GRU-AE gives insight on which
course phase (e.g. week, semester) gives the highest contribution to the dropout
decision. Meanwhile, a local attention mechanism indicates which e-tivities have the
highest impact preventing students from withdrawing early from a particular course.
In the end, the attention mechanism provides a score ranking of each feature in the
time matrix. It provides solid ground to design tailored study programmes for each
student in the OLE.

Additionally, as an add-on to the autoencoding feature of GRU-AE, we aim to
explore in our future studies the prediction uncertainty (according to Monte Carlo
dropouts) concerning the reconstruction error. Model uncertainty can improve the
identification of more subtle dropout cases where only the generation of e-tivities
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throughout the student interaction is not enough. Lastly, we will perform experiments
on predicting the daily positive cases on the coronavirus infectious curves and the
elderly daily behaviour patterns using our proposed method. More importantly, we
will generalise the sequence input modelling to include series with timely ordered
events, thus, providing a contribution to the time series analysis literature.
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