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ABSTRACT

In this work we introduce a convolution operation over the tangent
bundle of Riemannian manifolds exploiting the Connection Lapla-
cian operator. We use this convolution operation to define tangent
bundle filters and tangent bundle neural networks (TNNs), novel
continuous architectures operating on tangent bundle signals, i.e.
vector fields over manifolds. We discretize TNNs both in space and
time domains, showing that their discrete counterpart is a princi-
pled variant of the recently introduced Sheaf Neural Networks. We
formally prove that this discrete architecture converges to the under-
lying continuous TNN. We numerically evaluate the effectiveness
of the proposed architecture on a denoising task of a tangent vector
field over the unit 2-sphere.

Index Terms— Geometric Deep Learning, Tangent Bundle Sig-
nal Processing, Tangent Bundle Neural Networks, Cellular Sheaves

1. INTRODUCTION

The success of deep learning is mostly the success of Convolutional
Neural Networks (CNNs) [1]. CNNs have achieved impressive per-
formance in a wide range of applications showing good generaliza-
tion ability. Based on shift operators in the space domain, one (but
not the only one) key attribute is that the convolutional filters sat-
isfy the property of shift equivariance. Nowadays, data defined on
irregular (non-Euclidean) domains are pervasive, with applications
ranging from detection and recommendation in social networks pro-
cessing [2], to resource allocations over wireless networks [3], or
point clouds for shape segmentation [4], just to name a few. For
this reason, the notions of shifts in CNNs have been adapted to
convolutional architectures on graphs (GNNs) [5, 6] as well as a
plethora of other structures, e.g. simplicial complexes [7–10], cell
complexes [11,12], and manifolds [13]. In [14], a framework for al-
gebraic neural networks has been proposed exploiting commutative
algebras. In this work we focus on tangent bundles, a formal tool for
describing and processing vector fields on manifolds, which are key
elements in tasks such as robot navigation or flocking modeling.
Related Works. The renowned manifold assumption states that high
dimensional data examples are sampled from a low-dimensional
Riemannian manifold. This assumption is the fundamental block
of manifold learning, a class of methods for non-linear dimension-
ality reduction. Some of these methods approximate manifolds
with k-NN or geometric graphs via sampling points, i.e., for a fine
enough sampling resolution, the graph Laplacian of the approxi-
mating graph “converges” to the Laplace-Beltrami operator of the
manifold [15]. These techniques rely on the eigenvalues and eigen-
vectors of the graph Laplacian [16], and they give rise to a novel

perspective on manifold learning. In particular, the above approx-
imation leads to important transferability results of graph neural
networks (GNNs) [17,18], as well as to the introduction of Graphon
and Manifold Neural Networks, continuous architectures shown to
be limit objects of GNNs [19, 20]. However, most of the previ-
ous works focus on scalar signals, e.g. one or more scalar values
attached to each node of graphs or point of manifolds; recent devel-
opments [21] show that processing vector data defined on tangent
bundles of manifolds or discrete vector bundles [22, 23] comes with
a series of benefits. Moreover, the work in [24] proves that it is
possible to approximate both manifolds and their tangent bundles
with certain cellular sheaves obtained from a point cloud via k-NN
and Local PCA, such that, for a fine enough sampling resolution,
the Sheaf Laplacian of the approximating sheaf “converges” to the
Connection Laplacian operator. Finally, the work in [25] generalizes
the result of [24] by proving the spectral convergence of a large class
of Laplacian operators via the Principal Bundle set up.
Contributions. In this work we define a convolution operation over
the tangent bundles of Riemannian manifolds with the Connection
Laplacian operator. Our definition is consistent, i.e. it reduces to
manifold convolution [19] in the one-dimensional bundle case, and
to the standard convolution if the manifold is the real line. We intro-
duce tangent bundle convolutional filters to process tangent bundle
signals (i.e. vector fields over manifolds), we define a frequency rep-
resentation for them and, by cascading layers consisting of tangent
bundle filterbanks and nonlinearities, we introduce Tangent Bundle
Neural Networks (TNNs). We then discretize the TNNs in the space
domain by sampling points on the manifold and building a cellular
sheaf [26] representing a legit approximation of both the manifold
and its tangent bundle [24]. We formally prove that the discretized
architecture over the cellular sheaf converges to the underlying TNN
as the number of sampled points increases. Moreover, we further
discretize the architecture in the time domain by sampling the fil-
ter impulse function in discrete and finite time steps, showing that
space-time discretized TNNs are a principled variant of the very re-
cently introduced Sheaf Neural Networks [23,27,28], discrete archi-
tectures operating on cellular sheaves and generalizing graph neu-
ral networks. Finally, we numerically evaluate the performance of
TNNs on a denoising task of a tangent vector field of the unit 2-
sphere.
Paper Outline. The paper is organized as follows. We start with
some preliminary concepts in Section 2. We define the tangent bun-
dle convolution and filters in Section 3, and Tangent Bundle Neural
Networks (TNNs) in Section 4. In Section 5, we discretize TNNs in
space and time domains, showing that discretized TNNs are Sheaf
Neural Networks and proving the convergence result. Numerical re-
sults are in Section 6 and conclusions are in Section 7.IC

A
SS

P 
20

23
 - 

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

co
us

tic
s, 

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g 

(I
C

A
SS

P)
 | 

97
8-

1-
72

81
-6

32
7-

7/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

A
SS

P4
93

57
.2

02
3.

10
09

69
34

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 13,2023 at 09:12:36 UTC from IEEE Xplore.  Restrictions apply. 



2. PRELIMINARY DEFINITIONS

Manifolds and Tangent Bundles. We consider a compact and
smooth d−dimensional manifold M isometrically embedded in Rp.
Each point x ∈ M is endowed with a d−dimensional tangent (vec-
tor) space TxM ∼= Rd, v ∈ TxM is said to be a tangent vector at
x and can be seen as the velocity vector of a curve over M passing
through the point x (formal definitions can be found in [29]). The
disjoint union of the tangent spaces is called the tangent bundle
T M =

⊔
x∈M TxM. The embedding induces a Riemann structure

on M; in particular, it equips each tangent space TxM with an inner
product, called Riemann metric, given, for each v,w ∈ TxM, by

⟨v,w⟩TxM = iv • iw, (1)

where iv ∈ TxRp is the embedding of v ∈ TxM in TxRp ⊂ Rp

(the d-dimensional subspace of Rp which is the embedding of TxM
in Rp), with i : T M → TxRp being an injective linear mapping
referred to as differential [29], and • is the dot product. The Riemann
metric induces also a probability measure µ over the manifold.
Tangent Bundle Signals. A tangent bundle signal is a vector field
over the manifold, thus a mapping F : M → T M that associates
to each point of the manifold a vector in the corresponding tangent
space. An inner product for tangent bundle signals F and G is

⟨F,G⟩T M =

∫
M

⟨F(x),G(x)⟩TxMdµ(x), (2)

and the induced norm is ||F||2T M = ⟨F,F⟩T M. We denote with
L2(T M) the Hilbert Space of finite energy (w.r.t. || · ||T M) tangent
bundle signals. In the following we denote ⟨·, ·⟩T M with ⟨·, ·⟩ when
there is no risk of confusion.
Connection Laplacian. The Connection Laplacian is a (second-
order) operator ∆ : L2(T M) → L2(T M), given by the trace of
the second covariant derivative defined (for this work) via the Levi-
Cita connection [24]. The connection Laplacian ∆ has some desir-
able properties: it is negative semidefinite, self-adjoint and elliptic.
The Connection Laplacian characterizes the heat diffusion equation

∂U(x, t)

∂t
−∆U(x, t) = 0, (3)

where U : M × R+
0 → T M and U(·, t) ∈ L2(T M)∀t ∈ R+

0

(see [21] for a simple interpretation of (3)). With initial condition set
as U(x, 0) = F(x), the solution of (3) is given by

U(x, t) = et∆F(x), (4)

which provides a way to construct tangent bundle convolution, as
explained in the following section. The Connection Laplacian ∆ has
a negative spectrum {−λi,ϕi}∞i=1 with eigenvalues λi and corre-
sponding eigenvector fields ϕi satisfying

∆ϕi = −λiϕi, (5)

with 0 < λ1 ≤ λ2 ≤ . . . . The λis and the ϕis can be interpreted as
the canonical frequencies and oscillation modes of T M.

3. TANGENT BUNDLE CONVOLUTIONAL FILTERS

In this section we define the tangent bundle convolution of a filter
impulse response h̃ and a tangent bundle signal F.
Definition 1. (Tangent Bundle Filter) Let h̃ : R+ → R and let
F ∈ L2(T M) be a tangent bundle signal. The manifold filter with
impulse response h̃, denoted with h, is given by

G(x) = hF(x) :=
(
h̃ ⋆T M F

)
=

∫ ∞

0

h̃(t)U(x, t)dt, (6)

where U(x, t) is the solution of the heat equation in (3) with
U(x, 0) = F(x). Injecting (4) in (6), we obtain

G(x) = hF(x) =

∫ ∞

0

h̃(t)et∆F(x)dt = h(∆)F(x). (7)

The convolution in Definition 1 is consistent, i.e. it generalizes the
manifold convolution [19] and the standard convolution in Euclidean
domains (see Appendix A.4 in [30]). The frequency representation
F̂ of F can be obtained by projecting F onto the ϕis basis[

F̂
]
i
= ⟨F,ϕi⟩ =

∫
M

⟨F(x),ϕi(x)⟩TxMdµ(x) (8)

Definition 2. (Bandlimited Tangent Bundle Signals) A tangent bun-
dle signal is said to be λM -bandlimited with λM > 0 if

[
F̂
]
i
= 0

for all i such that λi > λM .
Proposition 1. Given a tangent bundle signal F and a tangent bundle
filter h(∆) as in Definition 1, the frequency representation of the
filtered signal G = h(∆)F is given by[

Ĝ
]
i
=

∫ ∞

0

h̃(t)e−tλidt
[
F̂
]
i
. (9)

Proof. See Appendix A.1 in [30].
Definition 3. (Frequency Response)The frequency response ĥ(λ)
of the filter h(∆) is defined as

ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt. (10)

This leads to
[
Ĝ
]
i
= ĥ(λi)

[
F̂
]
i
, meaning that the tangent bundle

filter is point-wise in the frequency domain. Therefore, we can write
the frequency representation of the tangent bundle filter as

G = h(∆)F =

∞∑
i=1

ĥ(λi)⟨F,ϕi⟩ϕi. (11)

We note that the frequency response of the tangent bundle filter gen-
eralizes the frequency response of a standard time filter as well as a
graph filter [31].

4. TANGENT BUNDLE NEURAL NETWORKS

We define a layer of a Tangent Bundle Neural Network (TNN) as a
bank of tangent bundle filters followed by a pointwise non-linearity.
In this setting, pointwise informally means “pointwise in the ambi-
ent space”. We introduce the notion of differential-preserving non-
linearity to formalize this concept.
Definition 4. (Differential-preserving Non-Linearity) Denote with
Ux ⊂ TxRp the image of the injective differential i in x. A mapping
σ : L2(T M) → L2(T M) is a differential-preserving non-linearity
if it can be written as σ(F(x)) = i−1◦σ̃x◦iF(x), where σ̃x : Ux →
Ux is a point-wise non-linearity in the usual (Euclidean) sense.

Furthermore, we assume that σ̃x = σ̃ for all x ∈ M. Thus, the
l−th layer of a TNN with Fl input signals {Fq

l }
Fl
q=1, Fl+1 output

signals {Fu
l+1}

Fl+1
u=1 , and point-wise non linearity σ(·) is written as

Fu
l+1(x) = σ

(
Fl∑
q=1

h(∆)u,ql Fq
l (x)

)
, u = 1, ..., Fl+1. (12)

A TNN of depth L with input signals {Fq}F0
q=1 is built as the stack

of L layers defined in (12), where Fq
0 = Fq . To globally represent

the TNN, we collect all the filter impulse responses in a function set
H =

{
ĥu,q
l

}
l,u,q

and we describe the TNN u−th output as a map-

ping Fu
L = Ψu

(
H,∆, {Fq}F0

q=1

)
to enhance that it is parameterized

by filters H and Connection Laplacian ∆.
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5. DISCRETIZATION IN SPACE AND TIME

Tangent Bundle Filters and Tangent Bundle Neural Networks oper-
ate on tangent bundle signals, thus they are continuous architectures
that cannot be directly implemented in practice. Here we provide a
principled way of discretizing them both in time and space domains.
Discretization in the Space Domain. The manifold M, the tan-
gent bundle T M, and the Connection Laplacian ∆ can be approxi-
mated starting from a set of sampled points (point-cloud). Knowing
the coordinates of the sampled points, it is indeed possible to build
a specific (orthogonal) cellular sheaf over an undirected geometric
graph (see Appendix A.3 in [30]) such that its Sheaf Laplacian con-
verges to the manifold Connection Laplacian as the number of sam-
pled points (nodes) increases [25]. We assume that a set of n points
X = {x1, . . . , xn} ⊂ Rp are sampled i.i.d. from measure µ over
M. We build a cellular sheaf T Mn following the Vector Diffusion
Maps procedure whose details are listed in [24]. In particular, we
build a geometric graph Mn, with weights for nodes i and j set as

wi,j = exp

(
||xi − xj ||2√

ϵ

)
I
(
0 < ||xi − xj ||2 ≤

√
ϵ
)
, (13)

where ϵ controls the chosen Gaussian Kernel. We then assign to
each node i an orthogonal transformation Oi ∈ Rp×d̂ computed via
a local PCA procedure, that is an approximation of a basis of the
tangent space TxiM, where d̂ is an estimate of d obtained from the
same procedure. At this point, an approximation of the transport
operator [29] from TxiM to TxjM is also needed. In the discrete
domain, this translates to associating a matrix to each edge of the
above graph (the restriction maps of the sheaf). For ϵ small enough,
TxiM and TxjM are close, meaning that the column spaces of Oi

and Oj are similiar. If they were coinciding, then the matrices Oi

and Oj would have been the same up to an orthogonal transforma-
tion Õi,j satisfying Õi,j = Oi

TOj . However, the subspaces are
not coinciding due to curvature. For this season, the transport op-
erator approximation Oi,j is defined as the closest orthogonal ma-
trix [24] to Õi,j , and it is computed as Oi,j = Mi,jV

T
i,j ∈ Rd̂×d̂,

where Mi,j and Vi,j are the SVD of Õi,j = Mi,jΣi,jV
T
i,j . We

now build a block matrix S ∈ Rnd̂×nd̂ and a diagonal block matrix
D ∈ Rnd̂×nd̂ with d̂× d̂ blocks defined as

Si,j = wi,jD̃
−1
i Oi,jD̃

−1
j , Di,i = ndeg(i)Id̂, (14)

where D̃i = deg(i)Id̂, deg(i) =
∑

j wi,j is the degree of node
i, and ndeg(i) =

∑
j wi,j/(deg(i)deg(j)). Finally, we define the

(normalized) Sheaf Laplacian as the following matrix

∆n = ϵ−1(D−1S− I
)
∈ Rnd̂×nd̂, (15)

which is the approximated Connection Laplacian of the discretized
manifold. A sheaf T Mn with this (orthogonal) structure is also said
to be a discrete O

(
d̂
)
−bundle and represents a discretized version of

T M. We introduce a linear sampling operator ΩX
n : L2(T M) →

L2(T Mn) to discretize a tangent bundle signal F as a sheaf signal
fn ∈ Rnd̂ (a 0-cochain of the sheaf) such that

fn = ΩX
n F, (16)

fn(xi) := [fn]((i−1)d̂+1):(i+1)d̂ = Oi
T iF(xi). (17)

We are now in the condition of plugging the discretized operator and
signal in the definition of tangent bundle filter in (7), obtaining

gn =

∫ ∞

0

h̃(t)et∆n fndt = h(∆n)fn ∈ Rnd̂. (18)

Following the same considerations of Section 4, we can define a dis-
cretized space tangent bundle neural network (D-TNN) as the stack
of L layers of the form

xu
n,l+1 = σ

(
Fl∑
q=1

h(∆n)
u,q
l xq

n,l

)
, u = 1, ..., Fl+1, (19)

where (with a slight abuse of notation) σ has the same point-wise
law of σ̃ in Definition 4. As in the continuous case, we describe the
u − th output of a D-TNN as a mapping Ψu

(
H,∆n, {xq

n}F0
q=1

)
to

enhance that it is parameterized by filters H and the Sheaf Lapla-
cian ∆n. As the number of sampling points goes to infinity, the
Sheaf Laplacian ∆n converges to the Connection Laplacian ∆ and
the sheaf signal xn converges to the tangent bundle signal F. Com-
bining these results, we prove in the next proposition that the output
of a D-TNN converges to the output of the corresponding TNN as
the sample size increases.
Theorem 1. Let X = {x1, . . . , xn} ⊂ Rp be a set of n i.i.d. sam-
pled points from measure µ over M ⊂ Rp and F a bandlimited
tangent bundle signal. Let T Mn be a cellular sheaf built from X
as explained above, with ϵ = n−2/(d̂+4). Let Ψu

(
H, ·, ·

)
be the

u − th output of a neural network with L layers parameterized by
the operator ∆ of T M or by the discrete operator ∆n of T Mn. If:

• the frequency response of filters in H are non-amplifying Lip-
schitz continuous;

• the non-linearities are differential-preserving;

• σ̃ from Definition 4 is point-wise normalized Lipschitz con-
tinuous,

• ΩX
n F is a bandlimited sheaf signal

then it holds for each u = 1, 2, . . . , FL that:

lim
n→∞

||Ψu

(
H,∆n,Ω

X
n F
)
−ΩX

n Ψu

(
H,∆,F

)
||T Mn = 0, (20)

with the limit taken in probability.
Proof. See Appendix A.2 in [30].
Discretization in the Time Domain. The discretization in space
introduced in the previous section is still not enough for implement-
ing TNNs in practice. Indeed, from Definition 1, we should learn
the continuous time function h̃(t), and this is generally infeasible.
To make TNNs and their training implementable, we discretize the
function h̃(t) in the continuous time domain with a fixed sampling
interval Ts. We replace the filter response function with a series of
coefficients hk = h̃(kTs), k = 0, 1, 2 . . . . With Ts = 1 and fixing
K samples over the time horizon, the discrete-time version of the
convolution in (6) can be thus written as

h(∆n)F(x) =

∞∑
k=0

hke
k∆F(x), (21)

which corresponds to the form of a finite impulse response (FIR) fil-
ter with shift operator e∆. We can now inject the space discretization
in the finite-time architecture in (21), obtaining an implementable
manifold filter on the discretized manifold (cellular sheaf) T Mn as

gn = h(∆n)fn =

K−1∑
k=0

hke
k∆n fn, (22)

where ek∆n is the matrix exponential. The discretized manifold
filter of order K can be seen as a generalization of graph convo-
lution [5] to the (orthogonal) cellular sheaf domain, thus we refer
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τ = 10−2 τ = 5 · 10−2 τ = 1 · 10−1

n = 200
DD-TNN 2 · 10−4 ± 1.6 · 10−5 4.9 · 10−3 ± 2.4 · 10−4 1.9 · 10−2 ± 1.3 · 10−3

MNN 2.9 · 10−4 ± 1.5 · 10−5 7 · 10−3 ± 2.8 · 10−4 2.9 · 10−2 ± 1.5 · 10−3

n = 800
DD-TNN 2 · 10−4 ± 5.7 · 10−6 5 · 10−3 ± 1.2 · 10−4 1.9 · 10−2 ± 4.6 · 10−4

MNN 2.8 · 10−4 ± 8.7 · 10−6 7.3 · 10−3 ± 1.7 · 10−4 2.9 · 10−2 ± 6.9 · 10−4

Table 1: MSE on the denoising task

e∆n as a sheaf shift operator. At this point, by replacing the filter
hpq
l (∆n) in (19) with (22), we obtain the following architecture:

fun,l+1 = σ

(
Fl∑
q=1

K∑
k=1

hu,q
k,l

(
e∆n

)k
fqn,l

)
, u = 1, ..., Fl+1, (23)

that we refer to as discretized space-time tangent bundle neural net-
work (DD-TNN), which can be seen as a principled variant of the
recently proposed Sheaf Neural Networks [23, 27, 28], with e∆n

as (sheaf) shift operator with order K diffusion. The layer in (23)
can be rewritten in matrix form by introducing the matrices Xn,l =

{fun,l}
Fl
u=1 ∈ Rnd̂×Fl , and Hl,k = {hu,q

k,l }
Fl,Fl+1
q=1,u=1 ∈ RFl×Fl+1 as

Xn,l+1 = σ

(
K∑

k=1

(
e∆n

)k
Xn,lHl,k

)
∈ Rnd̂×Fl+1 , (24)

where the filter weights {Hl,k}l,k are learnable parameters. We have
completed the process of building TNNs from cellular sheaves and
back. Manifolds and their Tangent Bundles can be seen as the limits
of graphs and cellular sheaves on them, making TNNs also a tool for
analyzing large graphs with vector data.

6. NUMERICAL RESULTS

We assess the consistency of the proposed framework by designing
a denoising task1. We work on the unit 2-sphere (M = S2) and
its tangent bundle. In particular, we uniformly sample the sphere on
n points X = {x1, . . . ,xn}, and we compute the corresponding
cellular sheaf T Mn, Sheaf Laplacian ∆n and signal sampler ΩX

n

as explained in Section 5 (also obtaining d̂ = 2). We consider the
tangent vector field over the sphere given by

iF(x, y, z) = (−y, x, 0) ∈ R3, (25)

depicted in Fig. 1 for a realization of X with n = 200. At this point,
we add AWGN with variance τ2 to iF obtaining a noisy field ĩF,
then we use ΩX

n to sample it, obtaining f̃n ∈ R2n. We test the perfo-
mance of the TNN architecture (implemented with a DD-TNN as in
(23)) by evaluating its ability of denoising f̃n. We exploit a one layer
architecture with 1 output feature (the denoised signal), and 5 filter
taps. We train the architecture to minimize the MSE 1

n
∥f̃n − fn,1∥2

between the noisy signal f̃n and the output of the network fn,1 via
the ADAM optimizer [32], with hyperparameters set to obtain the
best results. We compare our architecture with a 1-layer Manifold
Neural Network (MNN) architecture (implemented via a GNN as
explained in [19]); to make the comparison fair, ĩF evaluated on X
is given as input to the MNN, organizing it in a matrix F̃n ∈ Rn×3.
We train the MNN to minimize the MSE 1

n
∥F̃n − Fn,1∥2F , where

1https://github.com/clabat9/Tangent-Bundle-Neural-Networks

Fig. 1: Visualization of the embedded tangent vector field iF

∥∥F is the Frobenius Norm and Fn,1 is the network output. It is easy
to see that the “two” MSEs used for TNN and MNN are completely
equivalent due to the orthogonality of the projection matrices Oi. In
Table 1 we evaluate TNNs and MNNs for two different sample sizes
(n = 200 and n = 800), for three different noise standard devia-
tion (τ = 10−2,τ = 5 · 10−2 and τ = 10−1), showing the (again
equivalent) MSEs 1

n
∥fn − fn,1∥2 and 1

n
∥Fn − Fn,1∥2F , where fn

is the sampling via ΩX
n of the clean field and Fn is the matrix col-

lecting the clean field evaluated on X . The results are averaged over
5 sampling realizations and 5 noise realizations per each of them.
As the reader can notice from Table 1, TNNs always perform better
than MNNs, due to their “bundle-awareness”. Moreover, the mean
performance remains stable as the number of points decreases, but
the variances increase, meaning that having more sampling points
(thus a better estimation of the Connection Laplacian) results in a
more stable decision of the network. A real-world instance of this
synthetic task could be denoising of Earth wind fields.

7. CONCLUSIONS
In this work we introduced Tangent Bundle Filters and Tangent Bun-
dle Neural Networks (TNNs), novel continuous architectures op-
erating on tangent bundle signals, i.e. manifold vector fields. We
made TNNs implementable by discretization in space and time do-
mains, showing that their discrete counterpart is a principled variant
of Sheaf Neural Networks. The results of this preliminary work, in
addition to the introduction of a novel tool for processing manifold
vector fields, could lead to a deeper understanding of topological
neural architectures in terms of transferability and stability, with the
opportunity of designing proper signal processing frameworks on
tangent bundles and cellular sheaves. We plan to investigate these
problems as well as applying TNNs to real-world complex tasks.
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