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Abstract Machine learning regression can predict macroscopic fault properties such as shear stress,
friction, and time to failure using continuous records of fault zone acoustic emissions. Here we show that
a similar approach is successful using event catalogs derived from the continuous data. Our methods are
applicable to catalogs of arbitrary scale and magnitude of completeness. We investigate how machine
learning regression from an event catalog of laboratory earthquakes performs as a function of the catalog
magnitude of completeness. We find that strong model performance requires a sufficiently low magnitude
of completeness, and below this magnitude of completeness, model performance saturates.

Plain Language Summary Seismologists analyze faults in the earth by creating earthquake
catalogs-records of the times, locations, and sizes of earthquakes. For decades, researchers have attempted
to use the these catalogs to predict the timing and size of future earthquakes. Recently, researchers have
found that machine learning algorithms can forecast the motion of the fault using subtle “creaking” sounds,
both in the laboratory and in the real world. These creaking sounds had previously been thought to be
noise and were not commonly cataloged as earthquake activity. We installed a very powerful sensor in a
laboratory fault and created a very detailed catalog that captures very small quakes—small enough that
they would have looked like noise to a less powerful sensor. We then used machine learning on this catalog
to try and forecast the large laboratory earthquakes. We found that machine learning model is successful
when small-enough events are part of the catalog. This says that subtle seismic sounds that look like noise
may be very small earthquakes that were previously overlooked. These findings suggest that to improve
earthquake forecasting, we might broaden our ideas of what signals to label as potential earthquakes and
save in catalogs.

1. Introduction

Earthquake catalogs are a key seismological tool for problems involving location, precursors, and earthquake
source parameters (Aki & Richards, 2002; Meier et al., 2017; Gutenberg & Richter, 1956; Scholz, 1968). Catalogs
are fundamental to determining where, when, and how a fault has ruptured (Aki & Richards, 2002; Scholz,
2002), and they are central to studies of earthquake precursors and seismic hazard based on both field obser-
vations (Bouchon & Karabulut, 2008; Bouchon et al., 2013; Huang et al., 2017; Marsan et al., 2014; Meng et al.,
2018) and theory (Aki & Richards, 2002; Ferdowsi et al., 2013; Kazemian et al., 2015). Laboratory studies of
earthquake precursors also rely on event catalogs (Lei & Ma, 2014; Johnson et al., 2013; Rivière et al., 2018).
Such studies include the temporal evolution of the Gutenberg-Richter b-value, which is a fundamental param-
eter relating laboratory and field studies of earthquake physics (Gulia et al., 2015; Kwiatek et al., 2014; Rivière
et al., 2018; Scholz, 2015, 2002; Smith, 1980; Wang et al., 2016).

Laboratory-based studies of seismic hazard and earthquake forecasting have traditionally relied on earth-
quake catalogs. However, recent work shows that lab earthquakes can be predicted based on contin-
uous acoustic data (Hulbert et al., 2018; Rouet-Leduc et al., 2017, 2018a). These works show that sta-
tistical characteristics of the continuous seismic signal emanating from lab fault zones can predict the
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timing of future failure events as well as the frictional state of the fault zone. Moreover, recent work has
extended this approach to field observation by showing that statistical characteristics of continuous seismic-
ity recorded in Cascadia contain a fingerprint of the megathrust displacement rate that can be used to predict
the timing of episodic tremor and slip events (Rouet-Leduc et al., 2018b). The methods are based on machine
learning (ML) and rely exclusively on continuous measurements of acoustic emission (AE). Thus, a key question
involves whether this approach can be extended to catalog-based measurements of seismic activity.

Applications of ML to seismology and geosciences are becoming increasingly common (Asim et al., 2018;
Holtzman et al., 2018; Lary et al., 2016; Li et al., 2018; Ueki et al., 2018). Here we apply the ML random forest
(RF) method (Breiman, 2001) to study laboratory earthquake catalogs. We find that as the catalog degrades,
so does our ability to infer fault physics, as quantified by the ability to predict shear stress and the time to and
since failure. We begin by describing the biaxial shearing experiment, our methods to construct a catalog from
the continuous waveform data, the statistical descriptors we extract from the catalog, and the RF method used
to make inferences from these descriptors. This results in successful models for estimating the fault physics
variables using local-in-time catalog data. Then, from the original catalog we construct a series of progres-
sively more degraded catalogs, each of which contains only the events that exceed a variable magnitude of
completeness. We examine the performance of this method as a function of the magnitude of completeness
and observe that the learned signatures of fault physics degrade dramatically if small enough events are not
detected. However, the performance plateaus for low magnitudes of completeness; the smallest 80% events
in the catalog can be dropped without sacrificing performance. Our results show that ML methods based
on event catalogs can successfully model laboratory faults, with the caveat that predictive power requires a
sufficiently complete catalog.

2. Data Collection
2.1. Biaxial Shear Experiment
We used data from laboratory friction experiments conducted with a biaxial shear apparatus (Johnson et al.,
2013; Marone, 1998) pictured in Figure 1a. Experiments were conducted in the double direct shear configu-
ration in which two fault zones are sheared between three rigid forcing blocks. Our samples consisted of two
5-mm-thick layers of simulated fault gouge with a nominal contact area of 10 × 10 cm2. Gouge material con-
sisted of soda-lime glass beads with initial particle size between 105 and 149 μm. Additional details about the
apparatus and sample construction can be found in Anthony and Marone (2005), Rivière et al. (2018), and the
supporting information Text S1. Prior to shearing, we impose a constant fault normal stress of 2 MPa using a
servo-controlled load-feedback mechanism and allow the sample to compact. Once the sample has reached
a constant layer thickness, the central block is driven down at constant rate of 10 μm/s. In tandem, we collect
an AE signal continuously at 4 MHz (Figure 1b, yellow curve) from a piezoceramic sensor embedded in a steel
forcing block ≈22 mm from the gouge layer.

Figure 1c shows the shear stress measured on the fault interface for a full experiment. Experiments begin
with a run-in stage where the shear stress increases and macroscopic shearing of the fault zone transitions
from stable sliding to stick-slip failure. The repetitive cycles of loading and failure represent laboratory seismic
cycles and transition from periodic to aperiodic as a function of load-point displacement in our experiments
(Anthony & Marone, 2005; Johnson et al., 2013). Here we focus on aperiodic slip cycles and measure the slip
history for a set of 23 failure events that occur over 268 seconds (Figure 1c). We define large failure events as
times for which stress drop exceeds 0.05 MPa within 1 ms.

2.2. Event Catalog
Our event catalog is built from the acoustic signal (example in Figure 1b, yellow) during the time interval
noted in Figure 1c, inset. The catalog is composed of event amplitudes A(tk) and times tk , where k is an event
index, built following methods described in Rivière et al. (2018) and Text S2. We define laboratory magnitudes
mk = log10 A(tk). The catalog contains Ntot ≈ 3.8 × 105 slip events with laboratory magnitudes that range
from about 1.0 to 4.2. Our lab magnitudes are based only on acoustic signal amplitude, and although they do
not connect directly to earthquake magnitude, previous works have demonstrated the connection between
seismic b-value and lab frequency magnitude statistics (Scholz, 2002).

To visualize the distribution of magnitudes, we construct the cumulative event distribution

N(M) =
∑

mk≥M

1. (1)
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Figure 1. (a) Diagram of biaxial shear apparatus. The blue arrow indicates the direction of shear, and the red arrow
locates the piezoceramic sensor that records acoustic emission (AE). (b) Example cataloged events (gray circles) derived
from continuously recorded AE (yellow) using the statistics of the smoothed signal envelope (black). (c) Observed
shear stress for an experiment at fixed strain rate. Sharp drops in stress correspond to failure events. (inset) The data
segment analyzed in this paper. An event catalog is constructed from AE data sampled at 4 MHz. Our models are
constructed using event data from the training segment (blue) and evaluated on data from the test segment (green).

That is, N(M) is the count of all events with magnitude at least M. We plot log N(M)∕Ntot in Figure 2a and
observe reasonable Gutenberg-Richter scaling with a b-value of 1.66.

Figure 2b shows the rate of events as a function of time to failure (TTF), averaged over all slip cycles. The
rate of events increases significantly as failure is approached, similar to what has been observed in prior
works (Goebel et al., 2013; Johnson et al., 2013; Ponomarev et al., 1997; Rivière et al., 2018; Weeks et al.,
1978). Figure 2c shows that the median event magnitude changes steadily but slowly from approximately
Mmedian = 1.4 to Mmedian = 1.5 as a function of time during the lab seismic cycle. The trends of the catalog
event count and size reflected in Figures 2b and 2c motivate the creation of ML features that describe the
evolution event count and size in more detail.

Figure 2. a) Normalized count of training events with magnitude exceeding M. The dashed line represents ideal Gutenberg-Richter scaling with a b-value of 1.66.
b) Event rates vs. TTF stacked over all 23 failure cycles. c) Stacked event statistics for median event magnitude vs. time to failure. TTF = time to the next failure.
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3. ML Methods
3.1. Regression With RFs
Abstractly, a regression model maps input points Xi to continuous output labels ŷi . Input points are repre-
sented by a feature vectors Xi = (Xi,1, Xi,2,… Xi,Nfeatures

) that are designed to capture the relevant information
about ŷi . The training data set {(Xi, yi)} consists of many points Xi associated with true labels yi . From this
training set, one aims to learn a model that is successful at predicting labels ŷi for new data points that were
unseen within the training process. In this work, the features will be statistics extracted from the catalog, the
labels will describe the macroscopic state of the fault (such as shear stress); both are indexed by time window i.

We use the RF algorithm (Breiman, 2001) as it is implemented in the scikit-learn package (Pedregosa et al.,
2011). A single RF model contains many decision trees, each of which is a simple regression model constructed
stochastically from the training data. To make a prediction, the decision tree begins at its root node and asks a
series of yes/no questions. Each question has the following form: Is some input feature above or below some
threshold value? Eventually a unique leaf node is reached, from which the decision tree makes its prediction.
The RF makes a prediction by averaging over many decision trees and tends to be more robust than any
individual tree. Additional details about our training procedure are available in Text S3. We investigated other
regression methods (Friedman, 2001; Hoerl & Kennard, 1970; Tibshirani, 1996; Zou & Hastie, 2005) besides
the RF, and although all were successful to some extent, none offered definitive improvement over the RF
(see Table S1).

A regression model is successful if its predicted labels ŷi agree with the true labels yi for data points in the
testing data set, which is separate from the training data set. We use the dimensionless R2 value to quantify
the performance of the model,

R2 = 1 −

∑
i
(ŷi − yi)2

∑
i
(ȳ − yi)2

, (2)

where ȳ is the mean output label for the testing data set. Let us review the significance of the R2 metric, which
is maximized at R2 = 1, and can take on arbitrarily low values. Using the mean label as a constant predictor
for all data points, ŷi = ȳ, yields R2 = 0. Thus, R2 < 0 indicates that a model performs worse than a constant
learned only from the labels, without utilizing the features; if R2 ≤ 0, a model has failed to discover useful
correlations between the features and the labels. The condition R2 = 1 would indicate that a model makes
perfect predictions for all labels in the test set.

3.2. Feature and Label Creation
Our task is to build a regression model that uses the event distribution within a local time window to under-
stand and make predictions about the stress state and times to and from large failure events. Each time
window is labeled, and predictions of the labels will depend only on features from within the window. Thus,
each test prediction is independent of prior predictions, and the model cannot exploit the quasi-periodicity
of the fault state.

There is significant interest in predicting the TTF for an upcoming earthquake event. Rouet-Leduc et al. (2017)
and Rouet-Leduc et al. (2018a) showed that the continuous AE from a fault is remarkably predictive of the TTF
and instantaneous friction. In both previous works, Xi is a collection of statistical features extracted from the
continuous AE signal for the time window. Here we build features for each time window using only the event
catalog, rather than the continuous acoustic signal.

We divide our full event catalog (cf. section 2.2) into subcatalogs that contain only the events occurring in
nonoverlapping time windows of length ΔT = 1 s. The feature vector contains information about events in
the subcatalog for this time window. Our analysis region consists of 270 s, which we divide into 1-s windows.
We train on the first 60% (159 windows) and test on the remaining 40% (111 windows).

We construct regression models for three labels: (a) the shear stress, (b) the time to the next failure event (TTF),
and (c) the time since the last failure event (TSF). The shear stress label is assigned using the mean shear stress
over that window. TTF is measured following the end of time window, and TSF is measured preceding the
beginning of the time window. For windows including failures, both TTF and TSF are zero.

Abstractly, the features for each time window describe the cumulative statistics of event counts and ampli-
tudes from the subcatalog evaluated at magnitude thresholds extracted from the full catalog. More precisely,
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Table 1
R2 Performance for Regression of Shear Stress, TSF, and TTF for Catalog-RF
Models on Complete Catalogs

Shear stress TSF TTF

Xcount 0.898 0.842 0.551

Xampl 0.848 0.882 0.612

Note. The choice of count- or amplitude-based features ( Xcount or Xampl)
affects performance slightly. TSF = time since failure; TTF = time to failure.

the feature vector Xi for time window i will have components Xi,1, Xi,2,… Xi,Nfeatures
. Each feature component Xi,j

is associated with a characteristic magnitude Mj . For each j, we define Mj to be the largest observed magnitude
that satisfies

N(Mj)
Ntot

≥ 𝛼j, (3)

where the j in the right-hand side is applied as an exponent; 𝛼 is a parameter of range 0 < 𝛼 < 1 that controls
the fineness of the magnitude bins and the total number of bins, Nfeatures. Recall from equation (1) that N(M)
is the cumulative event count of our entire training catalog and that Ntot ≈ 3.8 × 105. In this work, we select
𝛼 = 0.7, and this leads to Nfeature = 35 nonempty bins. We emphasize that the characteristic magnitudes Mj

are derived from the entire training catalog, independent of window index i.

We now define the feature vector Xi for each window i from the subcatalog of event magnitudes m(i)
k , where

k indexes the events within the window. We test two simple schemes for Xi , sensitive to the counts and
amplitudes in the catalog. Mathematically, the jth components of these two feature vectors are

Xcount
i,j =

∑

m(i)
k
≥Mj

1 (4)

Xampl
i,j =

∑

m(i)
k
≥Mj

10m(i)
k (5)

where the sums run over all subcatalog events k with magnitude m(i)
k at least Mj . In words, Xcount

i,j is the count
of events in the ith window with magnitude exceeding Mj (analogous to N(Mj), but restricted to subcatalog
i). The features Xampl

i,j measure the total amplitude of all events in window i above the magnitude Mj .

3.3. Catalog Ablation Test
To understand how our catalog-RF model performs with decreasing information, we vary the magnitude of
completeness of our catalog by discarding all events with magnitude below a cutoff, Mcut. In practice, we
implement this ablation by removing features Xi,j for indices j that correspond to magnitudes Mj below the
cutoff Mcut. We can then quantify the performance as a function of the ablation cutoff Mcut.

4. Results
4.1. Performance on Full Catalogs
Table 1 shows the R2 performance of our catalog-RF models for shear stress, TSF, and TTF, trained using the full
catalogs. The TTF models (R2 = 0.551, R2 = 0.612) do not capture fine details. The TTF prediction is worse than
the TSF and shear stress models (R2 > 0.8)—in other words, it is harder to predict the future than to estimate
aspects of the past or present. Table 1 also indicates that the cumulative counts Xcount are better for predicting
the shear stress, and the cumulative amplitudes Xampl are slightly better for TTF and TSF. The count-based
catalog features predict shear stress with an accuracy of R2 = 0.898, nearly equal to the continuous acoustic
approach of Rouet-Leduc et al. (2018a), who report R2 = 0.922 using the same data (i.e., same train and
test segments on the same experiment). We note that although the same data are analyzed, the methods
cannot be compared exactly; for example, the time window in Rouet-Leduc et al. (2018a) is 1.33 s, and each
time window has 90% overlap with the previous window. (Recall that in our work the time window length is
1 s, and windows do not overlap.) Figure 3 shows the predictions compared to the true labels over time for
the amplitude-based features Xampl, as well as scatter-plots showing a comparison of the true and predicted
labels. Figure S1 shows that models perform nearly as well for shear stress and TSF when analyzing a larger
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Figure 3. Regression performance for the catalog-ML model using amplitude-based features. The rows show
performance for shear stress, TSF, and TTF, respectively. The left panel of each row shows predictions on training and
testing data over time. True values are shown as black squares, and predicted values as colored circles. Time windows
for features are contiguous and nonoverlapping. Each point is plotted at the end of the time window represented. The
right panel of each row plots the prediction versus true values for each label. Testing data are shown with dark markers,
and training data are shown with faint markers. ML = machine learning; TSF = time since failure; TTF = time to failure.

region of 573 s of data (44 failure cycles), but with reduced performance for TTF. This fact can be accounted
for by drift in cycle length over time; TTF performance is restored by randomly assigning cycles to testing data
from throughout the entire data analysis region (Figure S2).

4.2. Performance on Ablated Catalogs
Next we build our catalog-RF models on ablated catalogs that include events only above an imposed mag-
nitude of completeness, Mcut. For this study, we use the amplitude features Xampl of equation 5. Figure 4,
left side, shows the R2 performance as a function of the imposed magnitude cutoff. As one might expect,
catalog-RF models generally perform worse when provided less information. However, it is interesting to note
that R2 decays relatively slowly until Mcut reaches about 2.0, after which the performance drops precipitously,
plateauing near magnitude 3.0. In this regard we say that Mcut = 2.0 provides a sufficient magnitude of com-
pleteness for the catalog-RF model with the given window size. In Figure 4, right side, we plot R2 as a function

Figure 4. The accuracy of the catalog-RF model decreases as training subcatalogs are artificially limited to varying
magnitudes of completeness, Mcut. (left) R2 performance versus Mcut. The drop of R2 for Mcut between 2.0 and 3.0
indicates that this range of event magnitudes plays a key role in our RF models. The dashed vertical line at Mcut = 3.67
denotes the smallest event magnitude associated with a large stress drop. (right) R2 is plotted against N(Mcut)∕Ntot, that
is, the fraction of events remaining in the full catalog after ablation. One observes that most events contribute very little
to the catalog-RF performance. RF = random forest.
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of the remaining event fraction N(Mcut)∕Ntot. This highlights that the performance drop at Mcut ≈ 2.0 corre-
sponds to ablating ≈ 80% of the events from the catalog. Likewise, the sharp decay in performance indicates
that events M ≲ 2.5 are required to make an accurate determination of the fault state. The performance of
the method for Mcut ≳ 3 plateaus at a nonzero value of R2 because the algorithm is still able to differentiate
between windows that contain a large failure and those that do not, but is otherwise unable to discern useful
differences between subcatalogs.

A study of the ablation curve as a function of window size (Figure S3) shows that the sharp decay in perfor-
mance shifts to smaller cutoff magnitudes as the window size is decreased; while regression can be performed
with small window sizes, the sufficient magnitude of completeness is lower. This leads us to hypothesize that
the sharp decay in performance may be related to the number of events within a window; to keep the number
of events in a window fixed, one must lower the magnitude of completeness along with the window size.

5. Conclusions

We analyze a dense acoustic event catalog obtained from biaxial shearing friction experiment. The device pro-
duces dozens of aperiodic stick-slip events during an experiment. Stacking catalog statistics over many cycles
shows that as failure approaches, events are more common and typically larger (Figure 2). We then use a ML
workflow to show that physical characteristics of the fault (shear stress, TSF, and TTF) can be obtained from
catalog statistics over a short time window using a RF regression model. Previous work employed the con-
tinuous AE and showed remarkable ability to forecast failure (Rouet-Leduc et al., 2017), as well as to infer the
instantaneous shear stress and friction (Rouet-Leduc et al., 2018a). Here we demonstrate that the continuous
acoustic waveform is not needed if a catalog with sufficient completeness is available. Our models achieve
similar accuracy to the continuous approach.

We note, however, that our catalogs are extraordinarily well resolved. To create these catalogs, we recorded AE
at very high frequency (4 MHz) using a sensor very near the fault (distance ≈ 22 mm). One would not expect
such fidelity in real earthquake catalogs, except perhaps if the sensors happened to be located very close
to the slip patch. We find that the smallest events in our catalog contribute little to the prediction accuracy;
increasing Mcut from 1.0 to 2.0 only slightly diminishes the catalog-RF model performance (visible in Figure 4).

The fact that the smallest events are not required offers hope that a catalog-based ML approach could even-
tually contribute to the understanding of natural seismicity. We note a few potential differences between
laboratory conditions and natural seismicity that may pose challenges. Laboratory data corresponds to a sin-
gle isolated fault. Tectonic fault zones are typically comprised of many subfaults, and predictions may be vastly
more difficult. While precursors are frequently observed in laboratory studies, they are not as reliably observed
in natural faults. Moreover, large seismic cycles in the earth are far slower (Ellsworth et al., 1981; Nelson et al.,
2006), and thus, fewer cycles are available to train ML models.

We note that Rouet-Leduc et al. (2018b) have applied the continuous approach developed in the laboratory
to slow slip in Cascadia with surprisingly good results. Thus we are hopeful that the catalog-based approach
described here may prove fruitful to the study of real earthquakes, given sufficient catalog quality. It may have
particular importance in regions where continuous data are not yet available, where the continuous data are
quite noisy, or for examining archival catalogs.
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