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Abstract. – In Western countries, calcific aor-
tic valve stenosis (CAS) is widely common, rep-
resenting the third cause of death among cardio-
vascular diseases (CVD). The burden of CAS is 
high, with an increasing prevalence rate related 
to age. An efficient medical treatment, accord-
ing to guidelines, lacks to prevent the develop-
ment and to reduce the progression of CAS. In 
this context, due to the aging population and 
the lack of effective medical management, the 
prevalence is expected to double-triple within 
the next decades. In our review, we aim to pro-
vide an overview of the underlying mechanisms 
of pathogenesis and the current state of the art 
regarding pathophysiological insights and novel 
potential therapeutic targets.
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Introduction

The global burden of calcific aortic valve dis-
ease (CAVD) is increasing, representing the most 
common valvular heart disease in the aging pop-
ulation. It was estimated that in 2017 more than 12 
million people were affected, and it was responsi-
ble for more than 100,000 deaths1. The prevalence 
rate of calcific aortic stenosis (CAS) ranges from 
1.7% in people over 65 years to more than 6% in 
people aged 852-4, having an increasing impact 
both for the public health and healthcare resourc-
es4. CAS is a chronic progressive disease strict-
ly age-related and characterized by fibro-calcific 
remodeling of aortic leaflets, which results in an 
obstruction of the left ventricular outflow, myo-
cardial hypertrophy, and, once symptoms appear, 
risk of heart failure and sudden death. No med-
ical treatments to prevent the development or to 

reduce the progression of CAS are currently rec-
ommended by both American Heart Association/
American College of Cardiology (AHA/ACC) 
and European Society of Cardiology and the Eu-
ropean Association for Cardio-Thoracic Surgery 
(ESC/EACTS) guidelines5,6; the only option avail-
able for the treatment of severe and symptomatic 
CAS still remains aortic valve replacement, even 
with minimal invasive approach, or trans-catheter 
implantation7-11. Patients with severe CAS in the 
absence of surgical or percutaneous intervention 
have a poor prognosis with a high rate of re-hos-
pitalization and risk of mortality4. The onset of 
symptoms changes dramatically the natural his-
tory of the disease, with a mortality rate of ap-
proximately 50% after two years without any in-
tervention12. Risk factors such as age, male sex, 
smoking, hypertension, dyslipidemia, high levels 
of Lipoprotein (a) (Lp(a)), diabetes mellitus, and 
obesity are evidenced in CAS and atherosclero-
sis leading to consider them as a diversified ex-
pression of the same disease13-15. In addition, the 
bicuspid aortic valve (BAV), a congenital mal-
formation of the aortic valve, with related abnor-
mal hemodynamic stress and genetic factors, is a 
powerful risk factor16. 

Aortic Valve Anatomy and Features

To better understand the pathophysiological in-
sights of CAS is essential to describe the anatomic 
and histological features of the aortic valve (AV). 
The AV is an avascular structure, which modu-
lates the unidirectional blood flow from the left 
ventricle to the aorta, opening during the systole 
and closing during the diastolic phase of the car-
diac cycle. The AV is normally composed of three 
cusps named according to their relationship with 
the coronary artery ostia (the left coronary, the 
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right, and the non-coronary cusp) and a fibrous 
annulus in continuity with the anterior leaflet of 
the mitral valve and the membranous septum. 
The AV consists of connective tissue stratified 
into three layers: the fibrosa, the spongiosa, and 
the ventricularis layer. The connective tissue is 
composed of extracellular matrix components (fi-
bronectin, lamin, collagen, and elastin fibers, etc.) 
and predominantly two cellular populations: the 
aortic valve interstitial cells (AVICs) and the aor-
tic valve endothelial cells (AVECs)17,18. The AVICs 
in healthy patients are described as “quiescent” 
sharing phenotypic similarities with fibroblast 
and can be activated by different stimuli in the 
osteogenic and myofibroblastic phenotype. The 
AVECs are located over the surface of the leaflets 
as a physical barrier. They have been shown to 
possess mechanosensitive properties and contrib-
ute to extracellular matrix homeostasis by com-
municating with the underlying AVICs18. Addi-
tionally, extra valvular cells may be involved in 
the homeostasis of the extracellular matrix, espe-
cially in the elderly, as suggested by experimental 
data based on animal models19.

Pathophysiological Insights

 CAS is a complex age-related multifactorial 
disease still incompletely understood. Predispos-
ing risk factors such as age, male sex, smoking, 
hypertension, dyslipidemia, high levels Lp(a), di-
abetes mellitus, and obesity are determinants to 
increase susceptibility and speed up the progres-
sion20. Moreover, in younger patients, BAV rep-
resents the most common etiology of CAS21.

BAV is the commonest congenital heart dis-
ease, with a worldwide incidence ranging up to 
2%. Its natural history is characterized by val-
vular (insufficiency, stenosis, endocarditis) and 
vascular complications (dilatation, aneurysm, dis-
section)22. In BAV disease AV forms two instead 
of three leaflets and, according to the number of 
raphes, can be classified into three types (Figure 
1)23. It is genetically determined in most cases. 
The inheritance appears to be autosomal domi-
nant with incomplete penetrance. However, some 
studies24 suggested the existence of an X-linked 
form, as indicated by the high prevalence of this 
pathology in patients with Turner syndrome. 
Although a single gene defect has not yet been 
identified, NOTCH1, GATA gene mutations, and 
endothelial nitric oxide synthase abnormalities 
were found22. Genetic factors in association with 

abnormal shear stress in these patients lead to 
earlier leaflets degeneration and consequent ear-
lier need for surgery compared to tricuspid aortic 
valve patients16,22.

It is, therefore, evident that CAS and vascular 
atherosclerosis share the same risk factors and, 
consequently, the early molecular pathogenic 
mechanisms. Different research groups have al-
ready investigated the association between ath-
erosclerosis and CAS, finding that about 50% of 
patients with CAS have a concomitant coronary 
artery disease or vascular disease25,26. Both are 
chronic inflammatory diseases, whereas common 
risk factors activate and promote a self-mainte-
nance inflammatory state leading respectively 
to the formation and progression of the valvular 
fibro-calcific remodeling and the atheromatous 
plaques13. As in atherosclerosis, mechanical stress 
is a key determinant of endothelial damage, lead-
ing to the infiltration and accumulation of lipids 
beneath the endothelium of the valve. Progressive 
endothelial injury and lipid oxidization activate 
the inflammatory response and exacerbate oxida-
tive stress. This pro-inflammatory state promotes 
the activation of AVICs in CAS and the pheno-
typic switch of vascular smooth muscle cells in 
atherosclerosis, leading to extracellular matrix re-
modelling27. However, discrepancies exist, as re-
cently reported by Lee et al28 who showed that AV 
calcification progression was associated only with 
the progression of calcified atherosclerotic plaque 
but not with non-calcified plaque. Additionally, 
ultrastructural differences were found between 
leaflet calcification and atherosclerotic plaque 
showing in atherosclerosis the unique massive 
accumulation of lipids and the pronounced neo-
vascularization27.

For many years the pathogenesis of CAS was 
considered only a passive process characterized by 
dystrophic calcification and remodeling of valve 
leaflets due to cells aging and death with consec-
utive calcification of their degradation products29. 
New evidence suggests that CAS is a complex ac-
tive process still incompletely understood in which 
several pathways drive the progression of the dis-
ease15,30. Based on this thesis, two different phases of 
pathogenesis can be identified: the initiation and the 
propagation phase (Figure 2). In the initiation phase, 
CAS pathogenesis is like atherosclerosis: mechani-
cal/shear stress is at the basis of endothelial damage, 
allowing the infiltration and accumulation of lipids 
in the endothelium of the valve. The oxidation of 
lipoproteins activates the inflammatory response, 
exacerbating oxidative stress, which promotes the 
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phenotypic change in AVICs from a quiescent to an 
osteogenic and myofibroblastic one14.

The AVICs activation starts the propagation 
phase leading to leaflets calcification and fibro 
remodeling due to activated and self-maintained 
calcific and inflammatory signaling pathways15.

The Initiation Phase

Endothelial damage represents the primum 
movens of CAS pathogenesis, allowing cell infil-
tration and lipid accumulation through mechan-
ic-sensitive signaling pathways. Dysfunctional 
endothelium by altered paracrine signaling leads 
to up-regulation of cell adhesion molecules such 
as intercellular adhesion molecule 1 ( ICAM-1) 
and vascular cell adhesion molecule 1 (V-CAM-1), 
which promote the invasion of macrophages and 
T cells in the valvular fibrosa. The immune cells 
infiltration results in pro-fibrotic and pro-inflam-
matory markers activation, such as extracellular 
protease, cytokines, and growth factors27,31. Inter-
estingly macrophages demonstrated a crucial role 
in extracellular matrix remodeling and degrada-
tion13. Histopathologic studies32,33 on early calcific 
valve lesions showed lipoproteins deposition and 
diffuse distribution of T cells both in the bicuspid 
and tricuspid aortic valves. On the contrary, on 
normal aortic valves, the absence of these cells 
has been reported. Moreover, neo-vascularization 
and inflammatory infiltrates are reported as his-
tological features of the CAS valve, in addition 
to intra-leaflet hemorrhages and iron accumula-
tion27,34-36. Laguna-Fernandez et al36 found that 
the iron accumulated can be uptake by AVICs 
and potentially contributes to their activation and 
extracellular matrix remodeling and calcification. 
Emerging evidence highlighted the involvement 
of the NF-κB pathway through toll-like receptors 
and NOD-like receptor signaling pathways37,38. 
The immune system activation leads to the pro-
duction and release of several cytokines. Interest-
ingly Urban et al39 found in their work that patients 
with CAS had higher levels of pro-inflammatory 
cytokines than both controls and patients with 
aortic regurgitation. Transforming growth factor 
β1 (TGF-β1), interleukin-1β (IL-1β), and tumor 
necrosis factor-α (TNF-α) are reported as the 
predominant inflammatory cytokines involved 
in vascular calcification40. They contribute to a 
self-maintained inflammatory state by increasing 
the local production of matrix metalloproteinas-
es, modulating apoptosis, cell proliferation, mi-

gration, and differentiation. Additionally, they 
can promote the endothelial-mesenchymal tran-
sition of AVECs into AVICs and, subsequently, 
their activation in the osteogenic phenotype41. 
AVICs (myo)fibroblast phenotype differentiation 
can be stimulated directly by TGF-β1 and leads 
to extracellular matrix rearrangement, colla-
gen deposition, etc42. Interestingly, Chakrabarti 
et al43, in a study on animal model, found that 
the inhibition of the TGFβ1-dependent SMAD3 
signaling pathway reduces significantly the AV 
calcification. Inflammatory cytokines from dif-
ferent stimuli increase oxidative stress, which 
promotes the formation of oxidized low-density 
lipoproteins (Ox-LDLs) and phospholipids (Ox-
PL). Oxidized lipids trigger and add further stim-
uli to endothelial dysfunction and inflammation 
by up-regulating cell adhesion molecules and 
inducing the activation of the Toll-like receptors 
and NF-κB (nuclear factor κB) pathway44. In ad-
dition to inflammatory stimuli, biomechanical 
stress, and valve injury can activate an autocrine 
signal which leads to AVICs activation and dif-
ferentiation into the osteoblast-like and myofi-
broblast-like phenotype45. In a recent pre-clinical 
study, Rogers et al46 found that the retinoid acid 
may be involved in AVICs osteogenic differentia-
tion and potentially represent a novel therapeutic 
target.

The Propagation Phase

When the inflammatory state is established, 
and the AVICs are activated from prolonged dif-
ferent stimuli, CAS disease progresses into the 
propagation phase. The AVICs switch phenotype 
into myofibroblast- and osteoblast-like cells may 
represent the critical step in the pathogenesis and 
progression of CAS, leading to valve calcification 
and remodeling. At the beginning of pathogen-
esis, the inflammatory pathways seem to drive 
the progression of the disease. On the contrary, 
in the later stages, the calcific pathways such as 
the RANK (receptor activator of nuclear factor 
kappa B)/RANKL (RANK ligand)/OPG (osteo-
protegerin), the Wnt (wingless and Int-1)/β-caten-
in, and the NOTCH signaling pathways seem to 
become predominant44. The NOTCH1 signaling 
pathway is involved in the repression of Runx2 
a transcriptional regulator of osteoblast cell fate. 
Inactivating NOTCH1 mutations was reported as 
a predisposing risk factor and faster progression 
for CAS and also may contribute to the develop-
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ment of BAV47,48. Moreover, NOTCH1 appears to 
be involved in the activation of bone morphoge-
netic protein (BMP)-2, essential for osteoblas-
tic differentiation49. The RANK/RANKL/OPG 
pathway can promote AVICs switch phenotype 
and subsequently matrix calcification and calcific 
nodules deposition. Not only the differentiation 
but also the apoptosis of AVICs can enhance and 
perpetuate the disease through dystrophic calci-
fication30.

Dyslipidemia and 
Lipid-Lowering Therapy

The pivotal role of dyslipidemia in triggering 
and promoting AV calcification is well recognized 
by several studies50,51. In patients with homozy-
gous familial hypercholesterolemia is described 
an increased incidence and progression of valve 
degeneration. Elevated low-density lipoproteins 
(LDL) and reduced high-density lipoproteins 
(HDL) levels were associated with a higher risk 
of incidence of CAS14,52. Several immunohisto-
chemical studies33,52,53 demonstrated the pres-
ence of various apolipoproteins, including apoE, 
apoA1, apo(a), and ApoB in association with high 
levels of oxidized phospholipid (OxPL)33, which 
concentration directly correlated with the degree 
of inflammation and fibro-calcific remodeling52,53. 
Visceral obesity and metabolic syndrome are im-
portant risk factors for CAS leading to an inflam-

Figure 1. Representation of BAV morphologies, according to Sievers classification23. BAV type 0 or “true” BAV is charac-
terized by the absence of raphe; on the contrary, type I and type II are characterized by the presence, respectively, of one and 
two raphes. BAV: bicuspid aortic valve.

matory state and enhancing oxidative stress54,55. 
Interestingly, these conditions increased the risk 
of CAS not only due to hypercholesterolemia and 
the consequent increase in LDL levels but also 
to the reduction in adiponectin and HDL serum 
levels20,55. In particular, adiponectin is a peptide 
hormone with anti-inflammatory and anti-ather-
omatous properties, produced by the adipocyte, 
which is greatly reduced in obese patients (BMI 
≥ 30) and in patients with metabolic syndrome56. 
Serum levels of adiponectin have been recog-
nized as a risk factor for atherosclerosis and a 
potential novel therapeutic target for CAS and its 
progression57,58. 

The potential of Statin therapy in CAS disease 
was largely described in literature14,59-62. Statins 
are competitive inhibitors of HMG-Coa (3-hy-
droxy-3methylglutaryl-coenzyme) reductase, a 
key enzyme in sterol biosynthesis, and are a mile-
stone of cardiovascular disease prevention. They 
have been shown to possess notable pleiotropic 
effects. In addition to lowering lipid levels, statins 
reduce the expression of inflammatory cytokines 
decreasing oxidative stress and inflammation as 
well as improving endothelial function63. Despite 
the strong correlation of CAS with altered lipid 
metabolism, chronic inflammation, and essential 
factors of atherosclerosis, none of the randomized 
clinical trials showed significant benefits of statin 
therapy64-66 regarding both clinical presentation 
and CAS disease progression, with the exception 
of a non-randomized study67.
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Nevertheless, a limitation of all these stud-
ies63-67 may be the introduction of statin therapy 
in the late phases of the disease when fibrosis and 
structural changes of the leaflets are already in 
an advanced step and when the pro-inflamma-
tory state was established and AVICs activated 
in a self-feeding circuit. Differences age-related 
in patients with CAS were shown by Owens et 
al68; they found that elevated LDL was a risk fac-
tor for CAS only in participants younger than 65 
years. In addition, results from the PROGRESSA 
study69 and the EPIC-Norfolk prospective study70 
evidenced that, especially in younger patients, 
there was a significant association between high 
apoB/apoA-I ratio (ApoB is the main component 
of LDL and ApoA-I of HDL) and the hemody-
namic progression rate of CAS; conversely, in el-
derly patients, this association was less evident, 
probably due to the predominant role of age-relat-
ed factors such as osteoporosis, disorders of the 
calcium-phosphorus metabolism and the other 
side statins effects such as osteogenic properties, 
increased levels of Lp(a) and increased resistance 
to insulin. Likewise, dyslipidemia may have a piv-
otal role in the early stage (initiation phase) and 
has a minor impact when the activation of AVICs 
and the pro-inflammatory state are established 

(propagation phase). Lp(a) is a lipoprotein com-
posed of apoB100 of LDL covalently attached to 
apo(a). It is genetically determined and represents 
a random and independent risk factor for CAS70,71 
and atherosclerotic cardiovascular disease72,73. As 
reported in recent reviews73,74, elevated Lp(a), as a 
major carrier of OXlp, promote a pro-inflamma-
tory state by stimulating activation of monocytes 
and macrophages, pro-inflammatory cytokines 
(e.g., IL1β, IL-6, IL-8, and TNF-α) and mediators 
both involved in the development and progression 
of CAS and atherosclerosis. Elevated Lp(a) lev-
els and the corresponding associated genotypes 
(rs10455872, rs3798220, kringle IV type 2 repeat 
polymorphism) were also correlated with an in-
creased risk of aortic stenosis in the general pop-
ulation and a tripled risk for Lp(a) > 90 mg/dl75. 
Due to its potential as a novel therapeutic target, 
great interest emerged in the scientific commu-
nity regarding agents that can potentially act to 
decrease Lp(a) levels. Lp(a) levels are not signifi-
cantly modified by statin treatment, but the use of 
new therapeutic agents such as Proprotein Con-
vertase Subtilisin/Kexin Type 9 (PCSK9) inhibi-
tors and antisense oligonucleotides (ASOs) gain a 
huge interest (Supplementary Table I). Emerg-
ing evidence showed that patients with a loss-of-

Figure 2. Schematic representation of CAS pathogenesis and its related two phases: the initiation and the propagation phase. 
CAS: calcific aortic stenosis, ECM: extracellular matrix components.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I-59.pdf
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function mutation of PCSK9 have reduced levels 
of Lp(a), LDL cholesterol and lower risk of CAS 
and cardiovascular diseases76,77. Indeed this pro-
tein reduces the hepatocyte receptors that remove 
LDL cholesterol (LDL-C) from the blood; its in-
hibition leads to a reduction in the degradation of 
the receptor with a consequent reduction in blood 
concentrations of LDL-C78. Newsworthy, the use 
of monoclonal antibodies against PCSK9, Evolo-
cumab, and Alirocumab, seems to significantly 
reduce Lp(a) values and potentially the incidence 
of cardiovascular disease and adverse events72,79,80. 
Promising results from clinical trials81,82 showed 
the effectiveness of PCSK9 inhibitors as lip-
id-lowering therapy, especially in association 
with statin. The FOURIER (Further Cardiovas-
cular Outcomes Research With PCSK9 Inhibition 
in Patients With Elevated Risk) trial83 evaluated 
the effectiveness of Evolocumab, a monoclonal 
antibody against PCSK9, compared with placebo 
in patients with dyslipidemia who were receiving 
statin therapy to reduce the cardiovascular death, 
myocardial infarction, and stroke (ClinicalTrials.
gov Identifier: NCT01764633). A significant re-
duction in all cardiovascular events was found. 
The combination of Evolocumab with statin ther-
apy lowered the LDL-C levels by 60% compared 
to statin therapy alone. A secondary analysis of 
the FOURIER trial highlighted the potential of 
Evolocumab to reduce the risk of CAS progres-
sion and its adverse events84. In the ODYSSEY 
Outcomes trial82 (Evaluation of Cardiovascular 
Outcomes After an Acute Coronary Syndrome 
During Treatment With Alirocumab) in patients 
with previous acute coronary syndrome, the com-
bination of Alirocumab with statin therapy sig-
nificantly reduce the risk of cardiovascular events 
(ClinicalTrials.gov Identifier: NCT01663402). 
An interesting ongoing clinical trial85 is investi-
gating the effectiveness of monoclonal antibod-
ies against PCSK9 in association with statins in 
preventing and delaying the progression of CAS 
(ClinicalTrials.gov Identifier: NCT04968509). 
Emerging evidence highlights the potential of 
synthetic ASOs as a pharmaceutical intervention 
to directly decrease Lp(a) levels in patients with 
cardiovascular disease or CAS86,87. Indeed the 
antisense oligonucleotides IONIS-APO(a)Rx and 
the IONIS-APO(a)LRx, completed, respective-
ly, the trial phase 2 and phase 186. Randomized, 
double-blind, placebo-controlled trials (Clinical-
Trials.gov Identifier: NCT02160899; ClinicalTri-
als.gov Identifier: NCT02414594, ClinicalTrials.
gov Identifier: NCT03070782; EudraCT Number: 

2012-004909-27)86-89 were conducted to evaluate 
their efficacy and safety to lower Lp(a) levels. 
Both the two ASOs resulted tolerable and highly 
effective to reduce Lp(a) concentrations88,89 (Sup-
plementary Table I). Additionally, they seem to 
reduce the pro-inflammatory activation of circu-
lating monocytes in patients with elevated Lp(a)90. 
Promising findings resulted from a clinical trial91 
investigating the effectiveness of Mipomersen, an 
ASOs inhibitor of apo(b) synthesis, in the man-
agement of patients at higher cardiovascular risk 
with severe hypercholesterolemia. Interestingly, 
Thomas et al91 found that Mipomersen as an add-
on therapy significantly modified LDL-C and li-
poproteins levels (Supplementary Table I). 

Newsworthy, some studies92 suggest that Au-
totaxin, an enzyme involved in the production of 
extracellular lysophosphatidic acid, may promote 
inflammation and osteogenic transition in the 
AVICs resulting in a potential novel biomarker of 
CAS progression. 

Dysregulated Mineral Metabolism 
and Antiresorptive Agents

Recent evidence93-95 suggests the association be-
tween CAS and dysregulated mineral metabolism 
and/or osteoclast deficiency, although the underline 
mechanisms remain still unclear. A correlation has 
been observed between the incidence of CAS and 
disorders of bone turnover, such as low bone min-
eral density, as well as chronic kidney disease and 
Paget’s disease93,94. In the pathophysiology of CAS, 
a critical step is represented by the AVICs differ-
entiation in the osteogenic phenotype leading to 
increase expression of osteoblast-specific proteins 
such as bone sialoprotein and osteopontin30. Calcif-
ic signaling pathways seem to have a dominant role 
in the later phases of the disease, when the differ-
entiation of AVICs drives the disease progression. 
The AVICs activation enables positive feedback 
in which calcium deposition on leaflets increases 
mechanical stress and consequently injury-induced 
activation of the Wnt/b-catenin pathway, with fur-
ther osteoblast differentiation30,95. Interestingly it 
has been reported that the factors, such as inflam-
matory cytokines and modified lipoproteins, that 
in skeletal bone cells induce bone resorption in 
vascular mineralization appear to have the opposite 
effect30,96. Therefore, over the last few years, there 
has been growing interest in studying the potential 
of antiresorptive agents (e.g., denosumab and alen-
dronate, etc.) on AV calcification (Supplementary 
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Table I). Denosumab is a human monoclonal anti-
body RANKL inhibitor used for the medical treat-
ment of osteoporosis97. In vitro and observational 
studies98,99 have demonstrated the potential of De-
nosumab as an inhibitor of AVICsto delays CAS 
progression. Additionally, Alendronate, a bisphos-
phonate that inhibits bone resorption by suppress-
ing the activity of osteoclast, appears to slow down 
the progression of CAS, especially in patients with 
concomitant osteoporosis100. Despite the promising 
findings of in vitro and observational studies98,99, 
in a recent double-blind, randomized controlled 
trial101, neither Denosumab nor Alendronate affect-
ed the progression of valve calcification in patients 
with CAS (Supplementary Table I). 

 

Novel Therapeutic Targets

Both innate and adaptive immunities seem to 
be independently related to the leaflet remodeling 
process and the CAS progression. In vitro stud-
ies102,103 have investigated the potential of anti-in-
flammatory agents to suppress AVICs activation 
and calcium deposition, such as IL-38 and IL-37, 
underlying the potential of anti-inflammatory 
therapies in the treatment and prevention of CAS 
as a chronic inflammatory disease. Interesting-
ly, two randomized clinical trials are evaluating 
the effectiveness of colchicine in CAS progres-
sion (ClinicalTrials.gov Identifier: NCT05162742; 
EudraCT Number: 2021-005586-40)104,105 (Sup-
plementary Table I). Additionally, some authors 
proposed natural antioxidant agents as a potential 
novel therapeutic option. In the field of vascular 
calcification, vitamin K2 as an inhibitor of arte-
rial calcification has been suggested to potential-
ly slow valve calcification, showing significant 
changes in observational studies in the levels of 
calcification agents, although no effect has been 
proved in elderly men treated with vitamin K2 
and vitamin D supplementation106. Currently, an-
other ongoing trial107 is evaluating its efficacy on 
AV calcification (Supplementary Table I). News-
worthy, pre-clinical studies108 showed that non-vi-
tamin K antagonist oral anticoagulants (NOACs) 
inhibit AVICs activation and subsequently may 
potentially reduce aortic valve calcification.

Conclusions

CAS is a complex multifactorial disease where 
different molecular agents are involved and dom-

inate the progression of the disease according to 
the stage of pathogenesis. In the initiation phase, 
like atherosclerosis, endothelial injury, dyslipid-
emia, and inflammation trigger the activation of 
the AVICs in the osteogenic and fibroblastic phe-
notype. In the propagation phase, when the in-
flammatory state is established, and the AVICs are 
activated, a self-feeding mechanism is triggered: 
the AVICs activated induce calcific deposition and 
remodeling of the matrix through the activation of 
calcium pathways and the immune system, on the 
other hand, the immune system adds further stim-
ulus both directly and indirectly by stimulating the 
activity of AVICs and enabling the rearrangement 
of the extracellular matrix components.

The complexity of the molecular mecha-
nisms underlying the onset and progression of 
valve remodeling reveals the difficulty of iden-
tifying a therapeutic target that is effective in 
the various stages of the disease and, therefore, 
an effective medical treatment. A different 
therapeutic management for the prevention and 
treatment of CAS may be considered according 
to the different stages of the disease. In support 
of this thesis, the promising results of retrospec-
tive studies in delaying the onset and progres-
sion of CAS in patients treated for long-term 
with medical therapy recommended for athero-
sclerosis (statin therapy, etc.) didn’t show effec-
tiveness when introduced in the late phases of 
the disease, when the propagation phase speed 
out the progression and a self-maintained vi-
cious circle was established. 

To date, CAS still remains a complex, still not 
fully understood disease, as demonstrated by the 
controversial results of potential medical thera-
pies in animal model studies and clinical trials.

Further methodological studies are needed 
to extend our knowledge on the pathogenesis 
of age-related CAS and on the effectiveness of 
the treatments used to prevent and control this 
pathology; maybe a tailored therapy charac-
terized by drugs association could be suggest-
ed since several different pathways have been 
shown to be implicated in the progression of 
valve degeneration. 
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