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ABSTRACT
Several landslide susceptibility (LS) maps at various scales of analysis have been performed with
specific zoning purposes and techniques. Supervised machine learning algorithms (ML) have
become one of the most diffused techniques for landslide prediction, whose reliability is firmly
based on the quality of input data. Site-specific landslide inventories are often more accurate
and complete than national or worldwide databases. For these reasons, detailed landslide
inventory and predisposing variables must be collected to derive reliable LS products. However,
high-quality data are often rare, and risk managers must consider lower-resolution available
products with no more than informative purposes. In this work, we compared different ML
models to select the most accurate for large-scale LS assessment within the Municipality of
Rome. The ExtraTreesClassifier outperformed the others reaching an average F1-score of 0.896.
Thereafter, we addressed the reliability of open-source LS maps at different scales of analysis
(global to regional) by means of statistical and spatial analysis. The obtained results shed light
on the difference in hazard zoning depending on the scale and mapping unit. An approach for
low-resolution LS data fusion was attempted, assessing the importance of the adopted criteria,
which increased the ability to detect occurred landslides while maintaining precision.
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1. Introduction

Shallow landslides are slope instabilities which involve
the most superficial deposits, mainly colluvium, rather
than bedrock formations (Baeza and Corominas 2001;
Bordoni et al. 2021). They are most frequently triggered
by extreme rainfall and can be densely distributed across
small catchments (Hungr, Leroueil, and Picarelli 2014).
In urban areas, even in case of small-sized, shallow slope
failures, their occurrence as spatially distributed clusters
as frequent as their triggering rainfall event is capable of
tearing the physical structure as well as the network of
socio-economic, cultural, material and immaterial
relations that make up the life of cities (Iadanza et al.
2009; 2013; Salvati et al. 2010; Trigila, Iadanza, Munafò,
et al. 2015; Trigila, Iadanza, and Spizzichino 2010). This
is due to their rapid or extremely rapid movement and
intrinsic damage potential both in terms of human and
economic losses (Trigila, Iadanza, Esposito, et al. 2015).
The recent expansion of urban areas entails a significant
soil cover consumption and demands correct and sus-
tainable urban planning to face off with the delineation
of landslide-prone areas. Human pressure has modified

geological, geomorphological, and hydrological features
of original terrains through centuries, acting on topo-
graphy, stratigraphy, and even geotechnical properties
of the subsurface, by developing networks of superficial
and underground structures, modifying or obliterating
water streams (Luberti et al. 2018). Therefore, the
importance of the analysis and evaluation of hazard
sources for risk mitigation actions in urban areas is evi-
dent. Since the 1980s, the role of urban planning in the
knowledge and prevention of landslides has expanded
considerably. Nowadays, landslide hazard analysis is
usually mandatory to approach proper land use plan-
ning and management (Mateos et al. 2020). Neverthe-
less, in some cases regulatory plans lack detailed
thematic mapping of geohazard-related data (Cui et al.
2019) despite cities are frequently affected by landslides
and exposed to high risk (Crosta et al. 2005; Kiersch
1964; Martino et al. 2019; Mazzanti and Bozzano
2011; Tonini et al. 2022).

Landslide hazard management can be developed at
different spatial scales and with different methods with
increasing degrees of sophistication and different
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zoning purposes (Fell et al. 2008), which can be infor-
mative or advisory up to statutory and regulatory or
devoted to engineering design (Cascini 2008; Coromi-
nas et al. 2013; Flentje et al. 2007), whose reliability is
strongly based on quality and completeness of the avail-
able landslide catalogues.

Several open-source landslide inventories exist
worldwide; however, the amount and quality of avail-
able data may be inadequate to build accurate large-
scale predictive models. Open-source landslide inven-
tories may have incomplete spatial and temporal infor-
mation and heterogeneous features, which affirms the
need to integrate them to gain reliability (Mastrantoni
et al. 2022). Alternatively, recent developments have
shown the potential of SAR satellite imagery for multi-
temporal mapping of landslides (Bhuyan et al. 2023).

To achieve a proper prediction of landslide suscepti-
bility (LS), landslide inventory data must be processed
together with predisposing and preparatory factors to
model hidden patterns, thus suggesting new potentially
unstable slopes (Basu and Pal 2018; Corominas et al.
2013; van Westen, Castellanos, and Kuriakose 2008;
Vijith et al. 2014). In the past decades, various
approaches to determine the degree of LS have been
proposed and applied by employing heuristic, data-dri-
ven and physically based methods for various types of
landslides at different observation scales (Brabb 1984;
Fell et al. 2008; Guzzetti et al. 1999; Günther et al.
2014; Kainthura and Sharma 2022; Luo et al. 2022; Nga-
disih, Bhandary, and Dahal 2014; Soeters and Van Wes-
ten 1996). Among data-driven approaches, multivariate
analysis is one of the most sophisticated techniques for
LS assessment. The spatial distribution of landslides is
predicted through the estimation of the relationship
between several independent predisposing factors and
response variables, relying on the information on pre-
vious landslide and non-landslide samples (Persichillo
et al. 2017; Su et al. 2022). A recent and important stat-
istical improvement for LS studies is the advance in
machine learning algorithms (ML). During the past
two decades several models have been developed (e.g.
random forest, support vector machines, artificial
neural networks etc.). Although some methods per-
formed better than others, no single method proved to
be superior under all conditions (Reichenbach et al.
2018). Hence, it is not recommended to select the
model in advance, but as many models as possible
should be built and compared. Once obtained, the
best-performing one is selected and used for landslide
zoning purposes.

Since several LS maps at medium to small scale are
available, understanding their potentiality and that of
their integration for the prediction of stable and

unstable areas may become relevant when detailed pro-
ducts are not yet available. Therefore, two main topics
were investigated in the following: (i) the achievement
of a reliable urban-scale assessment of landslide suscep-
tibility in the Municipality of Rome and, (ii) the com-
parison with each available map and with the products
derived by their fusion.

The exploiting of geospatial information through
Machine Learning algorithms allowed us to estimate
an urban-scale landslide susceptibility zoning (LSZ)
for the Municipality of Rome, weighting and validating
the different models adopted, selecting the most accu-
rate one for the area of interest. The obtained result is
then compared with open-source, regional, national,
European, and global scale susceptibility maps to quan-
titatively assess their similarity and accuracy, and there-
fore the overall reliability. The fusion of LSZ products
based on different analysis unit and resolution was
addressed to evaluate the information gain or loss of
the obtained output. By merging the LSZ maps we
wanted to assess whether the adopted data fusion cri-
teria can lead to a significant increase in accuracy and
reliability of small-scale maps (i.e. global to national)
generally available worldwide, thus potentially rising
their applicability from informative to at least advisory.

2. Case study

The study area corresponds to the Municipality of
Rome, extending to about 1287 km2. The area within
the city of Rome has experienced a series of geological
processes over the last hundreds of thousands of years
that encompass volcanic activity and relative sea-level
changes that have influenced the erosional and deposi-
tional stages of the lower part of the Tiber River catch-
ment. Sedimentary complexes deposited during the
Plio-Pleistocene are constituted by both marine and
continental deposits (e.g. clays, sands and conglomer-
ates of alluvial deposits) outcropping the hills on the
right bank of the Tiber River. They are superimposed
by an alternating succession of volcanic products and
continental sediments. Volcanic products erupted
about 600k years ago by monogenic and polygenic com-
plexes of the Alban Hills and the Sabatini volcanic dis-
trict. Recent alluvial deposits of the Tiber River and its
tributaries have filled the valley reaching thicknesses
of tens of metres (Bozzano et al. 2000; Funiciello and
Giordano 2008; Parotto 2008). The left and right
embankments of the Tiber River valley have distinct
geological units, thus resulting in different responses
to natural and anthropogenic hazard processes, includ-
ing subsidence (Bozzano et al. 2015), sinkholes (Ciotoli
et al. 2014; Esposito et al. 2021), urban and fluvial floods
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and landslides (Amanti, Chiessi, and Guarino 2012; Del
Monte et al. 2016), that affected the area over the years.

Landslides in Rome are mainly represented by shal-
low landslides (soil slips and translational slides) with
reduced and comparable volumes. Recently occurred
landslides in Rome are characterised by an average
area of 2.1 × 103 m2, that due to the shallow position
of the sliding surfaces (2–5 m) correspond to an average
volume of 5 × 103 m3 as order of magnitude (Alessi et al.
2014; Del Monte et al. 2016). Additionally, ephemeral
hydraulic circulation built up along permeability con-
trasts between volcanic, or debris covers overlying sedi-
mentary deposits, may induce transient seeping that
reduces slope stability. The Monte Mario and Monte
Ciocci hills are the areas where most of the recorded
landslides have occurred (Figure 1). Their proneness
to landsliding might be related to high slope angles
formed of the Monte Vaticano and Monte Mario For-
mations, which consist of a thick succession of clays,
silty-clays, and silty-sands highly sensitive to shallow
and translational landslides. The weathering of these
deposits produced unsaturated shallow soil covers,
which have been proven to host ground instabilities
(Schilirò et al. 2019).

According to Esposito et al. (2023), the city of Rome
has experienced at least 566 landslide events over the
last century, 356 of which are reported as translational,
flow or shallow landslides (Figure 1b,c). These land-
slides have almost always been associated with heavy
rainfall, among which sixty-seven occurred during the

exceptional rainfall event registered from 31 January
to 2 February 2014 (Alessi et al. 2014). This event and
the landslide related damages declare Rome’s suscepti-
bility to geological hazards, which can interact with
socio-economic activities, posing relevant risk con-
ditions, and causing a significant impact, as documented
by the service and road infrastructure interruption after
the event, whose consequences lasted for months.
Although landslide hazard in Rome, as well as in
other major cities in Italy, is widely known, it still
lacks urban-scale regulatory or advisory landslide sus-
ceptibility zonation, except for national scale suscepti-
bility or hazard indicators (Iadanza et al. 2021; Trigila
et al. 2013).

3. Materials & methods

3.1. Urban-scale assessment of landslide
susceptibility

Analysis based on ML methods needs reliable data on
which the model is based. The main prerequisite is
information on the spatial occurrence of landslide
events (van Westen, Castellanos, and Kuriakose 2008)
together with conditioning factors picked because of
their expected relationship with the occurrence of
slope failures. Although landslide inventories are often
incomplete in spatial and temporal terms, integration,
cross-validation, and processing of open-source data-
bases produced at different scales of observation are

Figure 1. Number of landslide events per geomorphological slope unit (Alvioli, Guzzetti, and Marchesini 2020) within the Municipality
of Rome (a); percentage of landslides by type of failure, as defined by Hungr, Leroueil, and Picarelli (2014) (b); slope angle distribution
of landslide events by type (c). Slope units are shown for non-flat areas only.
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required to reduce bias before training the predictive
models to be compared. In this study, the standardised
and boosted landslide database of Rome was used to
train different supervised ML algorithms.

The database contains both Landslide Initiation
Points (LIP) and related polygons representing the
area involved. The best performing model was then
employed to estimate the LS level for the whole area,
thus resulting in the urban-scale LSZ which in this
study is referred to as “URGENT Rome”. It is developed
within the PRIN project entitle “URGENT – URban
Geology and geohazards: Engineering geology for
safer, resilieNt and smart ciTies”.

Figure 2(a) describes the pipeline implemented in
this study to achieve the urban-scale shallow landslide
susceptibility map of Rome.

3.1.1. Data pre-processing
All ML algorithms use some input data to create out-
puts. Input data comprise features, which are usually
in the form of structured columns. Algorithms require
features with some specific characteristics to work prop-
erly. Here, the need to feature engineering arises.

Feature engineering was performed with two main
goals: (1) preparing the proper input dataset, compatible
with the ML algorithm requirements (i.e. tidy struc-
ture), and (2) improving the performance of the models.

Data about terrain, lithological, hydrological, soil,
roads and streams were selected as potential predictor
variables (Table 1). A total of 20 variables are included,
of which 14 represent terrain features derived from the
5 m resolution DTM. Distances from roads, hydraulic
permeability limits (i.e. hydrogeological units that
cause significant contrast in hydraulic conductivity)
and water streams were also computed. The remaining
are categorical variables representing litho-technical
units and urban land characteristics.

We derived litho-technical units from the official
lithological map of Rome by grouping geological for-
mations with similar geotechnical characteristics. We
did not include the individual formations as a predictor
variable due to the large number of categories, which
would result in a high-cardinality feature. According
to Maxwell et al. (2020), this allows embedding expert
knowledge into the prediction. We also included land
cover and soil consumption information to account

Figure 2.Workflow developed to obtain an urban-scale landslide susceptibility zoning of Rome territory (a), and reliability assessment
of open-source LS maps at different scales of observation (b).
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for urban assets and activities. Thereafter we encoded
categorical variables by replacing the original value of
the feature with the frequency distribution, thus con-
verting the feature into a numeric. Since we are dealing
with rainfall-triggered shallow landslides, we took
advantage of 33 distributed rain gauge records (from
1951 to 2021) to derive Thiessen polygons and their
amount of ordinary annual rainfall.

All raster-based variables were then extracted at the
mapped LIP and stable point locations using the Point
sampling tool plugin (Jurgiel 2013) of QGIS 3 to generate
tables from which to extract train, validation and test data.

Input data consist of LIPs and stable points with a
ratio of 35–65%, for an overall amount of 2992 records

stored as geo-dataframe. The few dated landslide
records (i.e. those triggered by the heavy rainfall of 31
January 2014) were formerly split from the database
and treated as event-based test samples to assess the
capability of the six LSZs to correctly detect landslide
occurrences.

The importance of features in ML algorithms plays a
very crucial role in prediction analysis in any field. First,
we explored the data to select a subset of input features
that would be relevant to the prediction, thus avoiding
the issue of dimensionality, as some algorithms perform
badly when in high dimensionality. Correlations
between features, or multicollinearities, were calculated
and variables were systematically removed if a pairwise
correlation exceed 75%, as recommended by Kuhn and
Johnson (2013). The algorithm used to filter out multi-
collinearity calculated a correlation matrix and the high-
est pairwise correlation was found (Figure 3). The
variable within this pair with the lower correlation
with the target variable was removed from the dataset.
This was repeated until no pairwise correlation
exceeded 75%. Sixteen out of 20 variables remained to
be used in model training after verifying that there
was no missing or redundant information.

3.1.2. Machine learning modelling
Candidate models include Naïve Bayes, logistic
regression, k-nearest neighbours and decision trees-
based methods. The complete list of trained models
can be found in Table 2. The data were split into two
subsets. The former being the training set containing

Table 1. List of variables deemed predictors of landslide
susceptibility in Rome.
Variable Abbreviation Description

Digital Terrain
Model

DTM 5 × 5 m DTM model derived by
points and contour lines of
elevation with Anudem
algorithm (Hutchinson, Xu, and
Stein 2011).

Slope Angle slope 5 × 5 m slope angle map
Relative Relief rrelief100 Difference between max and min

altitude within a cell of 100 m
(Oguchi 1997)

Topographic
Position Index

tpi TPI with a neighbourhood equal
to 300 m

Dissection Ratio dess_ratio Topographic dissection within
100 m grid.

Drop drop Relative height within a radius of
50 m.

Aspect aspect Topographic aspect as degrees
from north.

Aspect classes aspect_8 Topographic aspect reclassified
in 8 dials.

Curvatures curv_plan,
curv_prof,
curv_tot

Planar, parallel and total
curvature based on 5 × 5 m
DTM

Flow
Accumulation

flow_acc Amount of upstream area
draining into a cell.

Topographic
Wetness Index

twi Steady state wetness index map.

Ordinary annual
rain

ord_rain Based on rainfall analysis of 33
distributed rain gauges records
(from 1951 to 2021)

Soil thickness soil_thickness Soil thickness based on Saulnier’s
equation (Saulnier, Beven, and
Obled 1997)

Land use land_use Regione Lazio land cover map
https://dati.lazio.it/catalog/it/
dataset/carta-uso-suolo-2016

Litho-technical
units

litho Based on 1:25000 lithological
map of the Regione Lazio
https://dati.lazio.it/catalog/it/
dataset/carta-geologica-
informatizzata-regione-lazio-
25000

Distance to
streams

dist_idro Euclidean distance to nearest
stream

Distance to roads dist_road Euclidean distance to nearest
road.

Distance to
permeability
limit

dist_lim_k Based on hydrogeological
complex defined in the
Hydrogeological map of Rome
(La Vigna et al. 2015).

Figure 3. Pairwise correlation of all continuous numerical fea-
tures originally included in the study.
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80% of the data, whereas the latter being the hold-out set
containing the remaining 20%. Stratified random
sampling was used to account for the imbalanced binary
outcome (Kotsiantis, Kanellopoulos, and Pintelas 2006).
K-fold cross validation was performed on the training
set to train and validate the model with ten subsets vali-
dation data.

Cross-validation results were then used to compute
ten confusion matrices for each model. Given a con-
fusion matrix (Figure 4), the distribution of the overall
accuracy (Equation 1), recall (Equation 2), precision
(Equation 3), F1-Score (Equation 4) and ROC-AUC
(Fawcett 2006) was derived. Score metrics were then
used to select the best performing model to be further
optimised with hyperparameters tuning. Since F1-
score considers not only the number of prediction

errors that the model makes, but also looks at the type
of errors that are made, it works well on imbalanced
data. For this reason, we chose the F1-score to select
the most suitable model to predict susceptibility levels
in the whole area. GridSearchCV function of the Sci-
kit-learn library (Pedregosa et al. 2011) was exploited
to determine the optimal set of hyperparameter values,
thus minimising both variance and bias. To better
understand and explain how the model works, we
implemented the permutation feature importance
method to assess feature relevance avoiding bias from
categorical variables (Altmann et al. 2010).

Once tested, the trained model was applied to predict
the probability of each raster cell being a landslide
initiation point, thus resulting in the LS map with values
ranging from 0 to 1, representing minimum and maxi-
mum susceptibility respectively.

All the machine learning model development and
deployment were coded in Python 3 taking advantage
of Scikit-learn and PyCaret libraries among others (Ali
2020; Pedregosa et al. 2011).

Accuracy = TP + TN
TP + FP + FN + TN

, (1)

Recall = TP
TP + FN

, (2)

Precision = TP
TP + FP

, (3)

F1− score = 2 × Recall × Precision
Recall+ Precision

, (4)

3.2. Accuracy assessment and data fusion

This section focuses on evaluating and merging the
available open-source LS maps originally produced at
different scales of analysis to boost their performance.
To this aim, the assessment of both similarity and accu-
racy of open-source LSZ with reference to the urban-
scale map produced in this study was required. Accord-
ing to Cascini (2008), different scales of analysis denote
different purposes. However, regional- to urban-scale
susceptibility maps are often lacking. Therefore, there
is a need to assess the reliability and potentials of
small- to medium-scale LSZ in case more detailed
studies have not yet been conducted. For that purpose,
five LS maps at different scales and mapping units,
including regional, national, European and global scale
products, were collected and compared with the one
produced in this study. Figure 2(b) illustrates maps
and workflow implemented to carry out the perform-
ance assessment and to achieve multiscale-based LSZ
products.

Figure 4. Confusion matrix for binary classification where TP
and TN denote the number of positive and negative examples
that are classified correctly, while FN and FP denote the number
of misclassified positive and negative examples respectively.

Table 2. Machine learning classifiers being compared in this
study. Abbreviations defined in this table will be used
throughout the paper.
ML model Abbreviation Type of algorithm

Extra Trees Classifier ET Ensemble of decision
trees

Light Gradient Boosted
Machine

LightGBM Ensemble of decision
trees

Random Forest RF Ensemble of decision
trees

Gradient Boosting Classifier GBC Ensemble of decision
trees

Ada Boost Classifier ADA Ensemble of decision
trees

Decision Tree DT Single tree structure
Logistic Regression LR Sigmoid function
Naïve Bayes NB Bayes theorem
Linear Discriminant Analysis LDA Linear decision boundary
K Nearest Neighbours KNN k-nearest neighbours

vote
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FranaRisk LSZ (Argentieri et al. 2018) covers the
entire province of Rome with a cell size of 20 m.
ISPRA 2013 (Trigila et al. 2013) and CNR-IRPI 2022
shallow LSZ (Loche et al. 2022) both cover the whole
Italian territory but adopting different mapping units.
The first is grid-based (500 m resolution) while the lat-
ter relies on geomorphological slope units (hereafter
named SU). ELSUSv2 represents the official European
LSZ (Wilde et al. 2018); it has a pixel size of 200 m.
Lastly, NASA LSZ covers the entire globe with a grid
size of 1 km (Stanley and Kirschbaum 2017).

Out of the six LS maps, two are already categorised
in five classes (i.e. NASA, ELSUSv2), while the others
have continuous numerical susceptibility values.
Regarding the ISPRA 2013 LS map, we rescaled it in
the range of 0–1 to make it comparable. The vector-
based map utilising SU was rasterised to the resolution
of URGENT Rome LSZ (5 m grid cell). Among the
methods reported by the literature to select class
thresholds (Baeza, Lantada, and Amorim 2016), we
decided to focus on the capacity of the model to detect
true landslides (i.e. true positives). Empirical cumulat-
ive distribution functions (ECDF) were computed
specifically from the predictions made on the event-
based test samples as well as on the overall landslides
polygons stored in the database. Class thresholds were
defined by detection rates of 10%, 15%, 25% and 50%
to classify the probabilities as “very low”, “low”, “mod-
erate”, “high” and “very high” landslide susceptibility.
The detection rate percentiles were chosen following
the same values adopted for ELSUSv2 Pan-European
LSZ (Wilde et al. 2018). This step was necessary to
standardise the LSZs and make them quantitatively
comparable.

Following the LSZ reclassification, a similarity evalu-
ation process was implemented by means of Wasser-
stein distance metric together with spatialised
accuracy assessment. We exploited recorded landslides
polygons to evaluate the ability of each LSZ to predict
landslide hazardous areas by quantifying the difference
between the ECDF. Furthermore, we also compared
the distributions of the event-based test samples, i.e.
the January 2014 rainfall-triggered landslides, related
to non-ordinary conditions (Alessi et al. 2014). This
was achieved by means of the Wasserstein distance
metric (Piccoli and Rossi 2016). The Wasserstein Dis-
tance represents the area between the curves of the
cumulative distribution of the two groups. It tells how
much, on average, you should move each point of one
group to get the other group, while maintaining the
quantile of the points; for categorical features, it
expresses the difference in classes between the tested
LSZ map and a benchmark, here assumed in the

URGENT Rome, which is the most detailed and
updated one.

Even though these statistical approaches allow us to
determine quantitatively which is the closest LS map,
spatial data also needs spatial analysis to reveal trends
and patterns, thus visualising the spatial location of
differences and similarities. To do so, we achieved a spa-
tialised accuracy assessment for each collected LSZ with
the benchmark map (i.e. URGENT Rome). For this pur-
pose, the respective excerpts of the categorised LSZ were
binarized by merging the two highest susceptibility
classes (“high” and “very high”) as susceptible areas
with the rest as non-susceptible terrain in each case
(Günther et al. 2014). Overlying binarized maps allow
incorrectly classified terrains to be derived in terms of
false positives and false negatives. This results in a
new raster map for each comparison showing true/
false positives and true/false negatives in the space, i.e.
an accurate or inaccurate prediction. We also report
the overall confusion matrix together with metrics
scores, thus allowing a performance analysis of each
open-source LSZ compared to URGENT Rome. The
analysis ended up with an F1-score value for each LSZ
which has been considered an indicator of its reliability
in Rome. F1-scores were then used as weighting par-
ameters when fusing the LS maps. Two approaches
were tested (Figure 2b) with the aim to evaluate the
improvement of predictive performance by data fusion
approaches: firstly, a cumulative fusion of all LSZ was
implemented from smallest to largest scale, assessing
the performance at each step; then, a pairwise fusion
was performed between the two maps built at closer
scale. Equation 5 represents the adopted criteria to
merge the maps, rounding decimals to the ceil value.
Where LSI is the fused landslide susceptibility index;
F1 and LS denote the F1-score and landslide suscepti-
bility class relative to the i-th LSZ, respectively.

LSI = 1∑
i F1i

×
∑

i

(F1i × LSi), (5)

4. Results

4.1. Urban-scale LSZ

F1 scores calculated from the validation folds of cross-
validation phase for each separate model are provided
in Figure 5. Table 3 represents performance scores
based on the 10 independent validation sets of candidate
models. The best four models (i.e. ET, LightGBM, RF
and GBC) are characterised by a distribution of F1
scores always greater than 0.8, with the ET model stand-
ing out better in the mean and maximum value, and
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throughout the overall distribution (i.e. lower variance).
The other models have lower scores both in terms of
mean values and whisker length, with KNN being the
worst. By considering also other metrics the ET model
remains the best among candidates.

Figure 6 shows an instance of ET decision regions
pre- and post-optimisation by finding the best combi-
nation of hyperparameter values to minimise both var-
iance and bias. The pre-optimisation decision regions
(Figure 6a) highlight some overfitting represented by
small regions that split only a few isolated samples of
one class embedded in the other. Those erroneous
regions suggest overfitting and need to be removed to
allow the model to better generalise to new data.
Among other hyperparams (e.g. max depth, number
of estimators, etc.), the tuned ET model was set to not
split below a minimum number of samples, thus remov-
ing those isolated regions as shown in Figure 6(b).

To understand how the model works, the importance
of each variable was sorted from the most to least pre-
dictive (Figure 7). The higher the slope and relative
relief the higher the landslide susceptibility, as also
shown by the decision regions plot. Land use results
as the third most important variable. Ordinary annual
rainfall, distance to streams, litho-technical units,

distance to permeability limits as well as TWI follow
respectively. It should be noted the high consistency
of variable importance given the slight standard devi-
ation displayed. Permutation features importance
results also denote the positive contribution of almost
all the predictor variables to model performance, thus
indicating that the selected variables should be kept.
Flow accumulation is the only feature that appears irre-
levant to the model.

To represent the ability of the model to generalise to
never seen data, the confusion matrix together with ker-
nel density of probabilities (Figure 8) have been com-
puted on the 20% of the data we held before creating
the model (i.e. out-of-sample test set). The tabular con-
fusion matrix denotes the number of predictions made
by the model where it classified the classes correctly or
incorrectly. Using a probability threshold of 0.5, we
have almost 90% of correctly classified data for both
0s (i.e. stable points) and 1s (i.e. LIP). The reliability
of the model is also certified by the overall precision,
recall and F1-score which have values of 0.88 or 0.89.
The kernel density plot represents the distribution of
predicted probabilities for the withheld test data. This
plot suggests a strong separation between LIP samples
and stable point data. LIP samples are almost never get-
ting a probability below 0.4. The median probabilities
stand close to 0 and 0.9 for stable and LIP samples
respectively (Figure 8).

The resulting prediction across the whole mapped
extent and some example areas at a larger scale is pro-
vided in Figure 9. Red areas are those that are predicted
to have a high likelihood of slope failure occurrence
while green areas are predicted as having a low
likelihood.

4.2. Multiscale LSZ reliability assessment

Figure 10 shows the empirical cumulative distribution
of susceptibility values in the overall landslide polygons
for each quantitative LSZ. The distributions appear

Table 3. The mean and standard deviation (SD) of scoring metrics resulting from K-fold cross validation analysis for candidate models.
Data are sorted by F1 score.

Model

Accuracy AUC Recall Precision F1

Mean SD Mean SD Mean SD Mean SD Mean SD

et 0.933 0.018 0.979 0.007 0.906 0.034 0.886 0.034 0.896 0.028
lightgbm 0.928 0.019 0.977 0.006 0.903 0.033 0.876 0.043 0.889 0.029
rf 0.915 0.019 0.970 0.009 0.875 0.032 0.861 0.034 0.868 0.029
gbc 0.904 0.017 0.964 0.007 0.856 0.046 0.843 0.027 0.849 0.042
ada 0.088 0.009 0.953 0.008 0.836 0.030 0.810 0.025 0.817 0.014
dt 0.869 0.019 0.854 0.019 0.814 0.034 0.783 0.041 0.797 0.026
lr 0.857 0.020 0.931 0.013 0.732 0.059 0.799 0.031 0.661 0.054
nb 0.828 0.022 0.907 0.021 0.873 0.030 0.679 0.036 0.763 0.028
lda 0.859 0.014 0.935 0.011 0.705 0.055 0.826 0.030 0.759 0.032
knn 0.808 0.025 0.879 0.021 0.699 0.052 0.698 0.046 0.558 0.057

Figure 5. Distribution of cross-validation F1 scores obtained
during model training.
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significantly different among all scales of analysis. The
national scale maps (i.e. ISPRA 2013 and CNR-IRPI
2022) have a totality of values below 0.2. It should be

noted that the distribution of URGENT Rome predic-
tions is typically greater than the others, with FranaRisk
close behind. The FranaRisk LSZ performs better than
others until the 15th percentile and then decreases
with respect to the URGENT Rome values.

Once reclassified, similarity analysis of the pair of
LSZ for the event-based test samples LIP (Figure 11)
and the overall landslide polygons (Figure 12) allowed
us to compute a mean distance in susceptibility class
distribution between the existing maps and URGENT
Rome LSZ (i.e. the Wasserstein distance). Regarding
the event-based test samples, the NASA Global LSZ as
well as the ELSUSv2 Pan-European map are the furthest
from URGENT Rome with an average distance of 1.84
and 1.82 classes respectively. CNR-IRPI 2022 and
ISPRA 2013 maps gained much more predictive
capacity as reported by the Wasserstein distance results
of 0.33 and 1.12. FranaRisk confirms to be the closest to
URGENT Rome with only 0.12 classes of distance.

Figure 6. Decision regions between slope angle and relative relief computed by the ExtraTreesClassifier before (A) and after (B) the
optimisation process achieved with hyperparameters tuning, which returned optimal parameter values, including number of trees,
minimum number of samples to split and maximum depth equal to 60, 2 and 25 respectively.

Figure 7. Average permutation feature importance with standard
deviations derived by repeating the shuffling process 15 times.

Figure 8. Confusion matrix plot (left) and classification report (right) of predicted labels for the test dataset. Kernel density plot of
predicted probabilities for the test samples.
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As regards landslide polygons, the NASA Global LS
map and ELSUSv2 still remain the furthest, while
ISPRA 2013 and CNR-IRPI 2022 got even closer than
FranaRisk, with the CNR-IRPI 2022 being almost iden-
tical (0.05 classes).

Spatialised accuracy assessment confirms the low
capacity of LSZ at European and global scales to detect
true landslides since 97% and 89% of false negatives
were recorded by NASA LSZ and ELSUSv2 respect-
ively (Figure 13). The national scale LSZ (i.e. ISPRA
2013 and CNR-IRPI 2022) improves the ability to
detect true landslides. However, they report a high
landslide susceptibility level even in areas not prone

to landslides (i.e. false positives). Whereas FranaRisk
LSZ keeps the predictive capabilities for true landslides
but improves the detection of true negatives compared
to the nationwide maps. As a result, the spatial accu-
racy assessment returned scoring metrics (e.g. F1-
score) that increase proportionally with the scale of
the LSZ (Figure 14).

Performance metrics relative to original and merged
LS maps (both cumulative and pairwise) are summar-
ised in Figure 15. Precision scores (Figure 15c) highlight
low performance of all the considered maps. Among the
others, the original LSZ at regional scale (i.e. FranaRisk)
stands as the closer to the reference, and it is closely

Figure 9. Urban-scale landslide susceptibility of Rome (namely URGENT Rome) derived with the tuned Extra Trees Classifier (left). A
detailed example of Monte Mario hill with superimposed the event-based test samples (right).

Figure 10. ECDF of mean susceptibilities predicted to landslides stored in the database as polygons. Black dots represent the per-
centile thresholds employed to derive the five classes.
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followed by its integration with the national scale map
(i.e. ISPRA 2013). Eventually, precision values of multi-
scale maps remain close to the original ones.

On the other hand, recall scores (Figure 15b) are always
higher than original maps, with the fusion of the two
nationwide maps (i.e. ISPRA 2013 and CNR-IRPI 2022)
producing the highest performance (0.75). Anyway, the
cumulative fusion of all LSZ is only 0.02 away.

By bringing together recall and precision, the
resulting F1 scores (Figure 15a) provided an overall
picture of the performance. As a result, the map that
comes closest to URGENT Rome LSZ is provided by
the fusion of FranaRisk and ISPRA 2013 maps (F1-
score of 0.39), improving the performance of the
best original map.

5. Discussion

The several supervised machine learning classifiers indi-
vidually trained and validated by means of the K-fold
cross validation technique allowed us to identify the
ET model as the best performing one among others.
Generally, all the trained models perform well, but the
ET outperforms the others in any calculated metric.
We stress the importance of model optimisation by tun-
ing its hyperparameters, thus finding the optimal mini-
mum between bias and variance. Moreover, tree-based
models have a strong tendency to overestimate the
importance of continuous numerical or high cardinality
categorical features because they provide more opportu-
nity for the models to split the data in half than the

Figure 11. Wasserstein distance as the area between cumulative distributions of 2014 event-based LIPs as predicted by LSZ. The
Wasserstein Distance of categorical features expresses the difference in landslide susceptibility classes between the tested map
and the benchmark (i.e. URGENT Rome).

Figure 12. Wasserstein distance as the area between cumulative distributions of the overall landslides as predicted by LSZ. The Was-
serstein Distance of categorical features expresses the difference in landslide susceptibility classes between the tested map and the
benchmark (i.e. URGENT Rome).
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discrete features. Therefore, the default feature impor-
tance function of tree-based models returns biased
results. Indeed, to overcome this problem we rec-
ommend using the permutation feature importance
method, which also lists the features that worsen the
model performance. In urban areas like the city of
Rome, morphological variables such as slope angle
and relative relief play the most important role in the
prediction of the landslide susceptibility value, which
is consistent with previous studies (Baeza, Lantada,
and Amorim 2016; Maxwell et al. 2020; Titti et al.
2022). This is probably due to urbanisation activities

which generate man-made steep slopes close to the
almost flat urban network. Nevertheless, cumulated
annual rainfall, land use and litho-technical units play
an important role as preparatory and predisposing fac-
tors for shallow landslides.

The final optimised model tested with the held 20%
of the samples correctly classified almost 90% of both
positive and negative samples, thus confirming its gen-
eralisation capabilities and allowing its deployment to
predict landslide susceptibility for the whole area of
the Municipality of Rome. Indeed, incorrectly classified
samples never get susceptibility further than 0.1 from
the binary classification threshold (i.e. 0.5).

The urban-scale LS map (i.e. URGENT Rome) high-
lights the hotspots of Monte Mario and Monte Ciocci
hills. This was indeed confirmed by considering the
event-based test samples related to the landslides of Janu-
ary 2014 that occurred mostly along the south-eastern
slope of the hill. We stress that the rainfall-triggered land-
slides in winter 2014 represent an out-of-sample set that
the model has never seen. Other high susceptibility areas
are represented by steep slopes near the streams, especially
in the northern sector of the municipality, where volcanic
deposits have been strongly eroded.

Once obtained the urban-scale URGENT Rome LSZ
has been compared to other available open-source LSZ
built at different scales of investigation. Firstly, we

Figure 13. Spatialised performance assessment of each open-source LSZ with reference to URGENT Rome LSZ.

Figure 14. Line plot of evaluation metrics obtained from the
spatialised accuracy assessment of open-source LSZ at different
scales of investigation.
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applied the empirical cumulative distribution function
to reclassify quantitative maps in 5 hazard classes.
This allowed us to make them comparable with the
already qualitative maps (i.e. NASA and ELSUSv2
LSZ). Since the ECDF curve shows the probability of
local landslides to be predicted, we stress that this reclas-
sification method may strongly increase the predictive
performance of hazard products made at small and
medium scales. However, percentiles values to be used
as class thresholds are not standardised and they rely
on expert judgment. This is proved by the similarity
analysis, in which the national scale maps show reduced
differences with the URGENT Rome LSZ. The similarity
analysis carried out on both 2014 event-based LIPs and
landslide polygons highlighted the effect of mapping
unit as well as pixel size, and therefore the overall
scale of analysis. Among the maps that were compared,
grid-based ones perform better when predicting land-
slide initiation points, and the larger the scale the closest
the map with respect to the reference. The SU-based
LSZ turns out to be the closest to URGENT Rome
when predicting the entire area potentially affected.
This is because it assigns a uniform hazard level to the
whole slope. Although the similarity analysis carried
out with the Wasserstein distance metric concerns
true positives only, the ability of hazard products to
detect stable areas (i.e. true negatives) must be also eval-
uated. With this purpose, we carried out a spatialised
accuracy assessment which returned the number of

true/false positives and true/false negatives throughout
the map. The results confirm the low capacity of global
and European scale maps to detect true landslides, thus
resulting in a significant underestimation of landslide
hazard in Rome. As suggested by the similarity analysis,
national scale maps may be adequate to detect areas sus-
ceptible to landsliding, but they overestimate them, thus
resulting in high false positive rates (i.e. low precision).
The regional scale map has the most high and balanced
scores. It’s worth noting that landslide inventory is par-
tially overlapped with the one considered in URGENT
urban susceptibility zoning. Although it has the biggest
F1-score, it is still far from URGENT Rome. According
to Cascini (2008) and Corominas et al. (2013), the larger
the scale the most reliable the zoning is, thus changing
its purposes. Hereby, we spotted the linear increment
of F1-scores with the scale of analysis. We stress that
this is probably due to the resolution and distribution
of input data which inevitably are biased and incom-
plete when very large areas must be considered. Land-
slide hazard assessment at a large or detailed scale is
often lacking. However, the proposed method for mer-
ging a variety of low accuracy products represents an
attempt to improve the predictive performance of the
single ones and gaining reliability. The several LSZ
were integrated cumulatively and pairwise to evaluate
the accuracy at each integration. The closest reliability
and classification scores can be achieved by merging
the FranaRisk and ISPRA 2013 maps (i.e. regional,

Figure 15. Comparison of F1-score (a), Recall (b) and Precision (c) scores for both original and multiscale landslide susceptibility maps
with reference to URGENT Rome LSZ.

GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS 13



and national scale). Despite a general limited improve-
ment reached by merging the multiple scale maps, the
implemented method can enhance the proportion of
actual landslides correctly classified (i.e. the recall
metric). With this perspective, the adopted data fusion
criteria increased the ability to detect occurred land-
slides while maintaining precision. However, the num-
ber of false positives remains high as for original
maps, thus affecting the overall F1 scores.

As an example, Figure 16 shows how the Monte
Mario hill is classified by the different LS maps. In con-
trast to URGENT Rome (Figure 16a), the fusion of
lower resolution original LSZ (Figure 16g–i), although
they properly classify all LIPs, also misclassify some ter-
rains surrounding the slopes that may not be prone to
landslide. This reflects on the number of buildings
that would be exposed to landslide risk within the muni-
cipality. In fact, it goes from a truthful 3% of the urban-

scale URGENT Rome map up to about 25% recorded
with the fusion of the two nationwide maps. With this
perspective, site-specific urban scale landslide suscepti-
bility analyses are always required for a balanced assess-
ment of landslide hazard when detailed risk analysis
and/or land-use planning are carried out.

6. Conclusion

This study reports the complete and comprehensive
workflow that should be implemented to obtain
urban-scale LS maps when dealing with data-driven
methods as supervised machine learning (ML) algor-
ithms. Thorough pre-processing stages are fundamental
to prepare data for machine learning. In this research,
we tested various ML models to select the optimal and
most performing one for landslide and stability classifi-
cation in the urban area of Rome (Italy). Through

Figure 16. Details of predicted landslide susceptibility at the Monte Mario hill and overall percentage of exposed buildings within the
municipality of Rome according to each product. The URGENT Rome map (a) compared with the original open-source LS products
built at different scales of analysis (b – f) and with the top performing products obtained with the fusion criteria: regional and national
scale (b), all available maps (c) and the two nationwide maps based on different mapping unit (d). Landslide Initiation Points (LIP) and
the Roman urban network are plotted on each map.
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empirical cumulative distribution functions applied to
the out-of-samples landslides we selected susceptibility
class thresholds based on model performance to correctly
classify landslides. Once validated, the largest scale LSZ
available in Rome was compared with regional, national,
European and global scale LS products.

ECDF were used to standardise the reclassification of
continuous LS maps once values of percentiles are
determined. Comparisons between LSZ reveal differ-
ences in the ability to predict instability and stability
with respect to the reference. The main outcomes
revealed how the pixel size as well as the adopted map-
ping unit play a crucial role in the result. Specifically,
wide grids fail to accurately localise potential landslide
and stable areas. Whereas LSZ based on slope unit
may give comprehensive information about the overall
area potentially affected by the landslide evolution, they
do not allow the direct definition of the source areas,
which can be improved by merging grid and SU-based
products. The implemented multiscale zoning method
assigns a specific accuracy value to individual maps,
which is appropriately accounted for when merging.

In a general perspective, the fusion of multiple low-
resolution maps increased the ability to correctly classify
occurred landslides; however, with the adopted method,
the improvement in general performance is not enough
to justify its deployment due to the high number of false
positives. Nevertheless, when both urban and regional
scale products are lacking, the fusion of national, Euro-
pean and global maps might significantly help in better
predict landslides occurrence in urban areas.
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