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Abstract—The aim of this paper is to propose a novel dynamic
resource allocation strategy for energy-efficient adaptive feder-
ated learning at the wireless network edge, with latency and
learning performance guarantees. We consider a set of devices
collecting local data and uploading processed information to an
edge server, which runs stochastic gradient-based algorithms
to perform continuous learning and adaptation. Hinging on
Lyapunov stochastic optimization tools, we dynamically optimize
radio parameters (e.g., set of transmitting devices, transmit
powers, bits, and rates) and computation resources (e.g., CPU
cycles at devices and at server) in order to strike the best
trade-off between power, latency, and performance of the fed-
erated learning task. The framework admits both a model-based
implementation, where the learning performance metrics are
available in closed-form, and a data-driven approach, which
works with online estimates of the learning performance of
interest. The method is then customized to the case of feder-
ated least mean squares (LMS) estimation, and federated training
of deep convolutional neural networks. Numerical results illus-
trate the effectiveness of our strategy to perform energy-efficient,
low-latency, adaptive federated learning at the wireless network
edge.

Index Terms—Federated learning, Lyapunov stochastic
optimization, edge learning, resource allocation.

I. INTRODUCTION

IN THE last few years, with the advent of 5G (and beyond)
systems, communication networks are evolving from a

pure communication framework to service enablers in several
different sectors (including verticals), such as Industry 4.0,
Internet of Things (IoT), autonomous driving, remote surgery,
etc. [1]–[5]. As key enablers of this vision, machine learn-
ing (ML) and artificial intelligence will be largely exploited
in future wireless communication networks, in order to build
an effective complex system able to learn and dynamically
adapt to the evolving network landscape [6]. Indeed, the advent
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of a new breed of intelligent devices and high-stake appli-
cations foreseen in beyond 5G have sparked a huge interest
in distributed, low-latency and reliable ML, calling for a
novel system design coined edge machine learning, in which:
(i) training data is unevenly distributed over a large num-
ber of edge devices (including phones, cameras, vehicles, and
drones); (ii) every edge device has access to a tiny fraction
of the data and training is carried out collectively and dis-
tributively; (iii) the inference process is performed on the
edge devices, requiring not only high learning accuracy and
reliability, but also a very short response time necessary for
autonomous decision making in highly dynamic environments.
However, differently from cloud-based ML that has virtually
infinite computing resources, edge ML is a nascent research
field whose system design is entangled with communication
and on-device resource constraints (e.g., energy and comput-
ing power). Moreover, the process of decentralized training
involves a large number of devices that are interconnected
over wireless links, hindering learning and adaptation due
to communications under poor channel conditions. As such,
enabling edge ML introduces novel research problems in terms
of jointly optimizing inference, training, communication, com-
putation, and control under end-to-end latency, reliability, and
learning performance requirements [7]–[10].

Related works: Training ML models at the edge mainly
relies on federated learning (FL) [11]–[19]. These learning
architectures perform (variants of) parallel stochastic gra-
dient descent (SGD) across multiple edge devices, whose
intermediate results are aggregated by an Edge Server (ES).
FL has several benefits of data privacy, and is empowered
by a large amount of device participants with modern power-
ful processors and low-delay mobile-edge networks. The work
in [11] provides a comprehensive survey on FL algorithms
and introduces various challenges, problems, and solutions for
enhancing FL effectiveness. In [12], the authors develop two
update methods to reduce the uplink communication costs for
FL. The work in [15] presents a practical update method for a
deep FL algorithm and conduces an extensive empirical evalu-
ation for different FL models. The authors in [18] study FL and
the problem of joint power and resource allocation for ultra-
reliable low latency communication in vehicular networks.
The work in [19] develops a new approach to minimize the
computing and transmission delay for FL algorithms. Other
works on FL explicitly focus on the optimization of radio
resource allocation [20]–[33]. In [20], the authors propose a
control algorithm that determines the best trade-off between

2473-2400 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 08,2023 at 08:19:31 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0090-5355
https://orcid.org/0000-0002-4130-3177
https://orcid.org/0000-0001-8538-1268
https://orcid.org/0000-0001-9846-8741


266 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 1, MARCH 2023

local update and global parameter aggregation to minimize
the loss function under a given resource budget. In [21], the
authors propose energy-efficient strategies for bandwidth allo-
cation and scheduling to enable latency-constrained FL. The
work in [22] proposes a joint learning and wireless resource
allocation framework to optimize the FL performance. In [23],
the authors characterize how the computation and communi-
cation latencies of edge devices affect the trade-offs between
energy consumption, learning time, and accuracy of the FL
task. The work in [25] studies the relationship between batch
size and convergence rate to alleviate the negative impact
of synchronization barrier through adaptive batch size dur-
ing model training in the FL paradigm. In [26], the authors
model the interaction between a global server and the partic-
ipating devices for federated learning via a Stackelberg game
to motivate the participation of the devices in the federated
learning process. In [27], the authors provide an optimization
problem whose goal is to minimize the total energy consump-
tion of the system under a latency constraint; to solve the
problem, an iterative algorithm is proposed where, at every
step, closed-form solutions for time allocation, bandwidth allo-
cation, power control, computation frequency, and learning
accuracy are derived. The work in [28] propose a federated
deep-reinforcement-learning-based cooperative edge caching
framework which enables base stations (BSs) to cooperatively
learn a shared predictive model by considering the first-round
training parameters of the BSs as the initial input of the local
training, and then uploads near-optimal local parameters to
the BSs to participate in the next round of global training.
In [29], the authors propose adapting federated averaging to
use a distributed form of Adam optimization along with a com-
pression technique. The work in [30] proposes a FL approach
with adaptive and distributed parameter pruning, which adapts
the model size during FL to reduce both communication and
computation overhead and minimize the overall training time,
while maintaining a similar accuracy as the original model.
In [31], the authors consider two transmission protocols for
edge devices to upload model parameters to edge server, based
on non orthogonal multiple access and time division multiple
access, respectively. Under both protocols, they minimize the
total energy consumption at all edge devices over a particular
finite training duration subject to a given training accuracy, by
jointly optimizing the transmission power and rates at the edge
devices for uploading model parameters and their central pro-
cessing unit frequencies for local update. In [32], the authors
propose a joint device scheduling and resource allocation pol-
icy to maximize the model accuracy within a given total
training time budget for latency constrained wireless FL. The
work in [34] analyzes how to design dynamic FL in mobile
edge networks that optimally chooses the number of selected
clients and the number of local iterations in each training
round to minimize the total cost while ensuring convergence.
Reference [33] proposes a dynamic user selection scheme to
minimize the FL convergence time. In [35] authors propose
two bandwidth allocation schemes to maximize the number
of active clients under latency and bandwidth constraints. The
work in [36] focuses on the design and analysis of physi-
cal layer quantization and transmission methods for wireless

FL. In [37] authors propose a strategy that allocates different
aggregation weights to different clients based on the hetero-
geneous quantization errors of all clients. The work in [38]
propose a strategy for joint allocation of wireless resources and
quantization bits across the clients to minimize the quantiza-
tion errors while making the clients have the same transmission
outage probability. Finally, some works exploited Lyapunov
optimization for federated learning [39]–[41]. In [39] authors
propose to statically optimize agents’ schedule and power allo-
cation to minimize the global learning loss under an energy
consumption constraint. In [40] authors propose to optimize
admitted data proportions, load balancing, training scheduling
and numerical accuracy to minimize a unified cost func-
tion under stability of the data queue constraint. Finally, the
work in [41] proposes to optimize agents’ schedule to mini-
mize long-term average model exchange time under a fairness
constraint.

Contributions: The goal of this paper is to introduce a novel
dynamic optimization framework for adaptive federated learn-
ing, which jointly encompasses communication, computation,
and learning aspects of the problem. Differently from previous
works that mainly focused on a static learning task (where FL
is carried out up to convergence and then the learning process
stops), here we consider adaptive FL strategies, with the aim of
endowing wireless networks with continuous learning, adap-
tation, and tracking capabilities [42]. Hinging on Lyapunov
stochastic optimization [43], we develop a dynamic resource
allocation strategy that works at the same time-scale of the
gradient-based algorithm, while optimizing on the fly radio
parameters (e.g., set of transmitting devices, transmit powers,
bits and rates) and computation resources (e.g., CPU cycles
at devices and at edge server) in order to strike the best
trade-off between energy, latency, and performance (e.g., con-
vergence rate, accuracy or mean-squared error) of the adaptive
FL task. The proposed method encompassing jointly commu-
nication, computation, and learning aspects of FL represents
the main distinctive difference with respect to the previous
approaches hinging on Lyapunov optimization [39]–[41]. In
this paper, particular emphasis is devoted to the definition and
the online control of proper performance metrics in both a
model based scenario, where the metrics are known in closed-
form, and in a data-driven case, where performance must
be inferred online from data. In both cases, the method is
able to adaptively minimize the average power needed for
the FL task, while ensuring guaranteed latency and learn-
ing performance. Finally, the proposed strategy is customized
to adaptive federated Least Mean Squares (LMS) estimation
and deep convolutional neural network training. Part of this
work was presented in the preliminary conference paper [44],
which is here largely extended in terms of theory, models,
and numerical results. Due to the upcoming convergence of
communication and learning in beyond 5G networks, it is
fundamental to merge these aspects with a mathematically for-
mal analysis of both communication and computation power
consumption and delays, as well as learning performance
metrics in terms of accuracy of the learning task, rate of
convergence and adaptation. This mathematical analysis, also
exploited in the proposed online solution, represents the main
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Fig. 1. Federated learning scenario.

contribution of our work with respect to the current state of
the art previously presented.

Notation: Scalar, column vector, and matrix variables are
respectively indicated by plain letters a (A), bold lowercase
letters a, and bold uppercase letters A. I(·) denotes the indica-
tor function; aij is the (i, j)-th element of A, I is the identity
matrix, and 1N (0N ) is the N × 1 vector of all ones (zeros).
diag{a} denotes a diagonal matrix having vector a on its main
diagonal. E{·} denotes the expectation operator, Tr{·} denotes
the matrix trace operator, and λmin{·} represents the minimum
eigenvalue. Other specific notation is defined along the paper.

II. SYSTEM MODEL

In this section, we present the mathematical model used
to describe the FL algorithm and its performance, the overall
latency, and the system power consumption. Let us consider a
scenario with N edge devices and an AP equipped with an edge
server, as illustrated in Fig. 1. The devices are cooperatively
performing a training task aimed at learning a weight vector
w ∈ Rm . To this aim, at each time t, the devices collect
labelled data (i.e., input/output pairs) given by (x i ,t , yi ,t ) ∈
Rd × R, for all i = 1, . . . ,N , and t ≥ 0 . Then, assuming
that device i has a local loss function Ji (w;x i ,t , yi ,t ), whose
structure depends on the specific learning task, the goal of FL
can be mathematically cast as:

min
w

N∑

i=1

E{Ji (w;x i , yi )}, (1)

where the expectation is carried out over the data distribution.
Now, at each time t, letting wt be the instantaneous guess for
the weight vector w, we proceed by optimizing problem (1)

using an adaptive stochastic gradient descent procedure [42].
In particular, let us denote

g i ,t (wt ) = ∇wJi (wt ;x i ,t , yi ,t ),

for all i, t, to shorten the notation. Then, the adopted SGD
recursion reads as:

wt+1 = wt − μ
∑

i∈St

g i ,t (wt ), (2)

where t ≥ 0 , μ > 0 is a (sufficiently small) step-size
parameter, and St is the set of nodes that participate to the
optimization at time t. In the considered FL scenario, the
algorithm in (2) can be implemented in two ways. The straight-
forward one requires that, at each time t, the edge devices
belonging to St (to be determined for all t) compute in paral-
lel the gradients of the local cost functions (i.e., g i ,t (wt ))
and upload them to the AP. Then, the edge server aggre-
gates the local information to compute the new estimate wt+1,
which is finally fed back to the devices. An example of the
data exchange required for this implementation is illustrated in
Fig. 1. The second implementation of algorithm (2) requires
instead that, at each time t, multiple edge devices compute one
step of gradient-based algorithms on the current model using
local data, and then the server takes a weighted average of
the resulting models. In particular, device i evaluates a local
estimate ψ i ,t given by:

ψ i ,t = wt − μ|St | g i ,t (wt ), ∀i ∈ St . (3)

Then, the edge server aggregates the local information in (3)
to compute wt+1 as:

wt+1 =
1

|St |
∑

i∈St

ψ i ,t . (4)
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It is straightforward to see that the combination of (3) and (4)
is equivalent to the direct SGD implementation in (2). The lat-
ter implementation is known as federated averaging (FedAvg),
and is typically preferred for privacy reasons [15], since trans-
mitting the gradients might reveal information about the data.
However, the first implementation is less sensible to errors
introduced by quantization effects, which can be controlled
through the choice of the step-size μ. For this reason, fol-
lowing the idea of [10], we will act on the source encoder
of each transmitting device, dynamically adapting the quan-
tization level in order to strike the best trade-off between
power, latency, and learning performance. Furthermore, adding
quantization noise to gradients naturally induces a differ-
ential privacy behavior [45], [46]. Thus, in the sequel, we
will consider only the direct SGD implementation in (2),
thus modeling its energy consumption, latency, and learn-
ing performance. Similar expressions hold for the FedAvg
implementation in (3)-(4).

A. Dithered Quantization of Uplink Data

We assume that each device i is endowed with a dynamic
uniform quantizer that uses bi ,t bits to transmit data to the AP
at time t. The quantizer used by device i at time t is defined
by the following vector mapping q(·; bi ,t ) as:

q(z ; bi ,t ) =
[
l1Δi ,t , . . . , lnΔi ,t

]T
= z + e i ,t (z ), (5)

where the entries of z, the dynamic quantization step Δi ,t > 0,
and the error e i ,t satisfy

⎧
⎪⎨

⎪⎩

Δi ,t =
A

2bi,t−1
, ∀i , t ,

(ln − 1/2)Δi ,t ≤ zn ≤ (ln + 1/2)Δi ,t , ∀n, i , t ,
−Δi,t

2 1m ≤ e i ,t (z ) ≤ Δi,t

2 1m , ∀z , i , t ,
(6)

with A denoting the size of input data variation. Conditioned
on the input, the quantization error e i ,t (z ) in (5) is determin-
istic. This induces a correlation among the quantization errors
at different times, which may affect the convergence proper-
ties of the iterative algorithm (2). To avoid undesired error
correlations, we introduce dithering [47], [48]. In particular,
the dither added to randomize the quantization effects satis-
fies a special condition, namely the Schuchman condition, as
in subtractively dithered systems [49]. Then, adding to each
component zn a dither noise νn,i ,t of i.i.d. uniformly dis-
tributed random variables on [−Δi ,t/2,Δi ,t/2) independent
of the input sequence, the resultant error εn,i ,t becomes

εn,i ,t = q(zn + νn,i ,t ; bi ,t )− (zn + νn,i ,t ), (7)

which is uniformly distributed over [−Δi ,t/2,Δi ,t/2) and
independent of zn . To implement (2), the devices transmit
dithered quantized versions of g i ,t (wt ) at time t, which
from (7) read as:

q(g i ,t (wt ) + νi ,t ; bi ,t ) = g i ,t (wt ) + νi ,t + εi ,t︸ ︷︷ ︸
v i,t (bi,t )

, (8)

where v i ,t (bi ,t ) is an additive zero mean noise term with

covariance
Δ2

i,t

6 I. The dithered gradients in (8) are encoded
into m · bi ,t bits, and transmitted by device i at time t.

B. Performance of Adaptive Federated Learning

In this section, we derive expressions for the learning
performance of the proposed FL strategy. Using the dithered
quantized gradients (8) in (2), the SGD recursion is given by:

wt+1 = wt − μ
∑

i∈St

q(g i ,t (wt ) + νi ,t ; bi ,t )

= wt − μ
∑

i∈St

[
g i ,t (wt ) + v i ,t (bi ,t )

]

= wt − μ
∑

i∈St

[
E
{
g i ,t (wt )

}
+ s i ,t

(
wt , bi ,t

)]
, (9)

where si ,t (wt , bi ,t ) is a gradient noise process defined as:

s i ,t (wt , bi ,t ) = g i ,t (wt )− E
{
g i ,t (wt )

}
+ vi ,t (bi ,t ), (10)

for all i ∈ St and t ≥ 0, which depends on both data and
dithered quantization statistics. Then, from (9), the aim of the
analysis is to find expressions for the algorithm’s performance
in terms of learning accuracy and convergence rate. Let us
denote by Gt the performance metric for the learning problem
at time slot t. Depending on the specific task, Gt might repre-
sent different metrics as, e.g., prediction error or classification
accuracy. Also, let us denote by αt the convergence rate at time
slot t. Now, performing a mean-square analysis for the recur-
sion in (10) can be a formidable task for general cost functions.
Thus, in the sequel, we consider two different assumptions on
the global loss function in (1).

1) Strongly Convex Objective: In this case, we assume
that (1) has a favorable structure that helps making the problem
mathematically tractable. In particular, letting

J (w) =

N∑

i=1

E{Ji (w;x i , yi )},

we consider the following assumption [42].
Assumption 1: The aggregate cost J(w) is twice differen-

tiable, ν-strongly convex, and its gradient is δ-Lipschitz.
This is the case of many important learning paradigms,

spanning from least-mean squares adaptation, support vector
machines, logistic regression, and so on [42]. As we will see in
the sequel, Assumption 1 is useful to give closed form expres-
sions for the steady-state performance and convergence rate
of our federated learning strategy (cf. (13) and (15)), which
are in turn important to control the resource allocation of our
system in a very efficient manner using Lyapunov optimization
(cf. Section III). Furthermore, following similar arguments as
in [42, Ch. 5], we consider the following assumption on the
gradient noise process affecting (9).

Assumption 2: The gradient noise process in (10) is zero-
mean and satisfies

E

{
‖s i ,t (wt , bi ,t )‖2|Ft−1

}
≤ β2‖wt − wo‖2 + σ2s , (11)

for all i = 1, . . . ,N and t ≥ 0, and some β2 and σ2s ,
where Ft−1 is the filtration of the random process wt up to
time t − 1, and wo is the global minimum of J(w) (which
exists under Assumption 1). Assumption 2 ensures bounded-
ness of the second-order moments of the gradient noise in (10),
and is instrumental to derive the mean-square performance

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 08,2023 at 08:19:31 UTC from IEEE Xplore.  Restrictions apply. 



BATTILORO et al.: LYAPUNOV-BASED OPTIMIZATION OF EDGE RESOURCES 269

of the algorithm in (9). From (9) and (10), it is clear that
the performance of the SGD algorithm depends on the set St
(i.e., which devices are transmitting) and {bi ,t}i∈St

(i.e., how
many bits encode the information transmitted by each device).
Of course, the two variables are related to each other as:

i ∈ St ⇐⇒ bi ,t 
= 0, (12)

i.e., a device belongs to the set of transmitting nodes if the
number of uploaded bits is different from zero, and viceversa.
Thus, the set St is fully known given the quantization bits
{bi ,t}Ni=1, which represent the variables to be selected by the
resource allocation algorithm. In particular, for a fixed trans-
mission scheme (i.e., St = S ⇐⇒ bi ,t = bi for all t), under
Assumptions 1 and 2, for any 0 < μ < 2ν/(δ2 + β2), the
Mean-square Deviation (MSD) and the Excess Risk (ER) can
be expressed as [42, Ch. 5]:

MSD = lim
t→∞

E

{
‖wt − wo‖2

}

=
μ

2
Tr

⎧
⎨

⎩

(
∑

i∈S
Hi

)−1(∑

i∈S
Ri (bi )

)⎫⎬

⎭, (13)

ER = lim
t→∞

E{J (wt )− J (wo)} = μ

4
Tr

{
∑

i∈S
Ri (bi )

}

(14)

where Hi = ∇2
wE{Ji (wo ;x i , yi )} is the local Hessian, and

Ri (bi ) = E

{
s i (w

o , bi )s i (w
o , bi )

T |Ft−1

}

is the covariance matrix of the local gradient noise in (10), both
evaluated at wo , for all i = 1, . . . ,N . Also, we can approx-
imate the convergence rate (i.e., the rate at which the error
variance E{‖wt − wo‖2} approaches its steady-state region)
of the algorithm in (9) by [42, Ch. 5]:

α = 1− 2μλmin

(
∑

i∈S
Hi

)
. (15)

The smaller is α from (15), the higher is the convergence
rate. Thus, hinging on (13) and (15), a possible way to define
approximate learning performance metrics of (9) at time t is:

Gt = MSD(St , {bi ,t}Ni=1) (16)

αt = α(St , {bi ,t}Ni=1). (17)

Alternatively, the learning accuracy Gt can be defined with
respect to the ER in (14). Of course, the expressions (16)
and (17) represent only (instantaneous) approximations of the
learning performance achieved by (9), considering the values
of {bi ,t}i∈St

at a given time-slot t. However, as we will show
in the numerical results, an accurate performance prediction
can still be achieved, thanks to the fast adaptation capabilities
of algorithm (9) in both training and steady-state phases.

2) Non-Convex Objective: The non-convex scenario is typ-
ical of many FL tasks involving, e.g., (deep) neural network
training. In such a case, we almost never have theoreti-
cal performance metrics, which enable reliable prediction of
the algorithm’s accuracy, following a model-based approach.
Thus, we follow an alternative data-driven approach, which

involves an online estimation of learning performance, i.e.,
accuracy and convergence rate, in order to drive the dynamic
resource allocation.

In Section III, we will first derive the resource allocation
framework assuming to have access to some closed form
expression of the performance metrics Gt and αt , as in (13)
and (15). Then, in Section IV, we will extend the proposed
framework to handle the case where closed form expressions
for Gt and αt are not generally available and must be inferred
online from the data, which is typical of non-convex scenar-
ios. Specific details of the proposed data-driven approach will
be provided in Section IV.

C. Latency of SGD Iterations

The latency necessary to perform one SGD iteration at time
t, together with the convergence rate in (17), quantify the time
the FL algorithm in (9) needs to learn and adapt. In particular,
the overall latency of one iteration is composed of four main
sources of delay, which vary over time due to availability of
resources (radio and computation) and wireless channel states.

(i) The local processing time to compute the gradient
gi ,t (wt ) at the i-th device reads as:

Ll
i ,t =

N l
i

f li ,t
, i ∈ St , (18)

where N l
i is the number of CPU cycles necessary to perform

this task, and f li ,t is the CPU frequency of device iy at time t.
(ii) The uplink communication time, necessary to upload the

local gradients to the edge server. Since the i-th device adopts
a dithered quantization scheme that encodes local gradients
into m · bi ,t bits at time ty, this latency term reads as:

Lu
i ,t =

m · bi ,t
Ru
i ,t

, i ∈ St , (19)

where Ru
i ,t is the uplink data rate. In principle, if device iy

belongs to St , it is going to compute and transmit at time t,
incurring in the delays (18) and (19).

(iii) The remote processing time at the edge server, neces-
sary to produce the global estimate in (9) is given by

Lr
t =

O |St |
f rt

, (20)

where O is the number of CPU cycles necessary to perform
one summation (between m-dimensional vectors), the cardi-
nality |St | denotes the number of transmitting nodes, and f rt
is the CPU frequency of the edge server.

(iv) A downlink communication time, say Ld
i ,t , i =

1, . . . ,N , necessary to send the global estimate wt+1 back
to the devices. Here, we assume that the number of bits used
to encode downlink data is a fixed value, which is chosen suffi-
ciently large to have a negligible impact on the performance of
the algorithm in (9). Also, since our interest is mainly focused
on uplink communications, the downlink communication time
Ld
i ,t is assumed to be given and ensured by the AP at any slot;

thus, it will not be optimized over time.
Finally, to evaluate the overall latency of each SGD

iteration, we need to consider the maximum among communi-
cation delays of all transmitting (and receiving) devices in the
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overall latency, plus the computation time at the edge server,
which at a given time ty reads as:

Lt = max
i∈St

{
Ll
i ,t + Lu

i ,t

}
+ Lr

t + max
i=1,...,N

{
Ld
i ,t

}
. (21)

As we will show in the sequel, our aim is to keep the average
value of Lt in (21), i.e., the average time of SGD iterations,
below a given threshold.

D. Power Consumption

In this paragraph, we evaluate the power consumption of the
proposed federated learning strategy. We consider two sources
of power consumption for each device: local computation and
transmission; then, we take into account the power spent for
computation at the edge server. At time t, the power spent by
device i for local computation is:

pci ,t = κl (f
l
i ,t )

3, (22)

where κl is the effective switched capacitance of the proces-
sor [50]. Moreover, given the uplink data rate Ru

i ,t , the power
spent for uplink transmission is computed by inverting the
Shannon formula, thus obtaining:

pui ,t =
Bu
i ,tN0

hui ,t

[
exp

(
Ru
i ,t ln 2

Bu
i ,t

)
− 1

]
, (23)

where Bu
i ,t is the bandwidth assigned to device iy at time ty,

hui ,t is the uplink channel power gain, and N0 is the noise
power spectral density. At each time t, we assume that the
AP allocates orthogonal frequency channels with pre-allocated
bandwidth Bu

i ,t to all transmitting users (i.e., those belonging
to St ). On the other side, at time ty, the power spent by the
edge server for computation of (9) is given by:

pcs,t = κr (f
r
t )

3, (24)

where f rt and κr are the CPU frequency and the effective
switched capacitance of the ES processor, respectively.

In this paper, our goal is to minimize the long-term average
of the system power consumption, given by the sum of the
devices and ES powers, which reads as:

ptott =
∑

i∈St

(
pui ,t + pci ,t

)
+ pcs,t . (25)

In the following section, we will formulate the proposed
dynamic strategy for wireless network edge optimization,
aimed at performing energy-efficient FL with guaranteed
latency and learning performance requirements.

III. DYNAMIC OPTIMIZATION OF WIRELESS

EDGE RESOURCES

We can now formulate the problem of dynamic resource
allocation for FL. The aim is to find the optimal joint dynamic
resource allocation of radio (i.e., the set St of transmit-
ting devices, uplink data rates {Ru

i ,t}i∈St
, quantization bits

{bi ,t}i∈St
) and computation (i.e., CPU cycles at devices

{f li ,t}i∈St
and at the server f rt ) resources to minimize the

long-term average system power consumption in (25), with
constraints on the average learning performance in (16)-(17),

and the average latency in (21). Then, the dynamic resource
allocation problem can be cast as:

min
Ψt

lim
t→∞

1

t

∑t−1

τ=0
E
{
ptotτ

}

subject to (a) limt→∞
1

t

t−1∑

τ=0

E{Lτ} ≤ L;

(b) lim
t→∞

1

t

t−1∑

τ=0

E{Gτ} ≤ G;

(c) lim
t→∞

1

t

t−1∑

τ=0

E{ατ} = α;

bi ,t ∈ Bi ∀i ∈ St , t ;
Rmin
i ≤ Ru

i ,t ≤ Rmax
i ,t ∀i ∈ St , t ;

f min
i ≤ f li ,t ≤ f max

i ∀i ∈ St , t ;
f r ,min ≤ f rt ≤ f r ,max, ∀t ,

⎫
⎪⎪⎬

⎪⎪⎭
Xt (26)

where Ψt = [{bi ,t}i∈St
, {Ru

i ,t}i∈St
, {f li ,t}i∈St

, f rt ], and the
expectations are taken with respect to the random channel
states, whose statistics are supposed to be unknown. The con-
straints of (26) have the following meaning: (a) the average
latency of SGD iterations does not exceed a predefined value
L (although more sophisticated probabilistic or instantaneous
constraints can be used [51], the average latency constraint
(a) relaxes the resource allocation policy, avoiding excessive
power consumption or unfeasible solutions in the case of bad
channel conditions); (b) the average performance metric Gt

does not exceed a predefined value G; if Gt represents an
accuracy metric, the sign of the constraint should be reversed,
i.e., the average accuracy must be greater than a certain tar-
get value; (c) the average convergence rate is constrained
to be equal to α; finally, the constraints in Xt impose that
{bi ,t}i∈St

can take values only from a finite set Bi of discrete
quantization bits, and impose instantaneous bounds (e.g., bud-
get constraints, minimum rates and CPU frequencies) on the
resource variables {Ru

i ,t}i∈St
, {f li ,t}i∈St

, f rt . In the sequel,
we introduce a dynamic algorithmic framework to solve the
long-term optimization problem (26).

A. Algorithmic Solution via Stochastic Optimization

We now introduce a method to transform (26) into a sta-
bility problem, building on the tools of stochastic Lyapunov
optimization [43]. In particular, to deal with the long-term
constraints (a)-(c), we introduce three virtual queues. The first
one, used to impose (a), evolves as:

Zt+1 = max
{
0,Zt + εz

(
Lt − L

)}
, (27)

where εz is a positive step-size used to control the conver-
gence speed of the algorithm. The second virtual queue, used
to impose constraint (b), read as:

Qt+1 = max
{
0,Qt + εq

(
Gt −G

)}
, (28)

with εq > 0. Finally, the virtual queue associated with
constraint (c) is given by:

Yt+1 = Yt + εy (αt − α), (29)

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 08,2023 at 08:19:31 UTC from IEEE Xplore.  Restrictions apply. 



BATTILORO et al.: LYAPUNOV-BASED OPTIMIZATION OF EDGE RESOURCES 271

with εy > 0. Note that virtual queue Yt reads slightly differ-
ently from the others, due to the fact that it is used to impose
an equality constraint [43]. Interestingly, ensuring the mean-
rate stability of the virtual queues in (27)-(29) is equivalent to
satisfy the three corresponding constraints [43]. To this aim,
we first define the Lyapunov function as:

Ut = U(Φt ) =
1

2

(
Z 2
t +Q2

t + Y 2
t

)
, (30)

where Φt = [Zt ,Qt ,Yt ]. The Lyapunov function is a mea-
sure of the congestion state of the virtual queues, and is
fundamental to define the drift-plus-penalty function [43]:

Δp
t = E

{
Ut+1 − Ut + V · ptott

∣∣ Φt
}
. (31)

The drift-plus-penalty function in (31) is the conditional
expected change of Ut over successive slots, with a penalty
factor that weights the objective function of (26), with a
weighting parameter V. Now, if Δp

t is lower than a finite con-
stant for all ty, the virtual queues are stable and the optimal
solution of (26) is asymptotically reached as V increases
[43, Th. 4.8]. In practical scenarios with finite Vy values, the
higher is V, the more importance is given to the objective func-
tion, rather than the virtual queue backlogs, thus pushing the
solution toward optimality while still guaranteeing stability of
the system. Thus, we proceed by minimizing an upper-bound
of the drift-plus-penalty in (31), which reads as follows:

Δp
t ≤ ζ + E

{
Zt
(
Lt − L̄

)
+Qt

(
Gt −G

)

+Yt (αt − ᾱ) + V · ptott

∣∣∣∣Φt

}
, (32)

where Gt , αt and p tot
t are defined in (16), (17) and (25),

respectively; whereas, ζ is a positive finite constant. The
derivations leading to (32) and the value of ζ can be found
in the Appendix. Finally, using stochastic approximation argu-
ments [43], we optimize (32) removing the expectation, thus
obtaining the following deterministic problem at each time-slot
t (omitting all the constant terms):

min
Ψt

ZtLt +QtGt + Ytαt + V · ptott

subject to Ψt ∈ Xt (33)

where Xt is the instantaneous feasible set of (26). Now, fol-
lowing [43], for a fixed Vy, solving (33) in each time slot
guarantees that all virtual queues are mean-rate stable, so that
constraints (a), (b), (c) of (26) are met. Furthermore, hing-
ing on the concept of a C-additive approximation [43], if the
per-slot solution comes within a finite constant C from the
optimum, we have:

lim sup
t→∞

1

t

t−1∑

τ=0

E{ptotτ } ≤ ptot,opt +
ζ + C

V
, (34)

where p tot,opt is the infimum time average power achievable
by any policy that meets the required constraints, and ζ is
the constant whose expression can be found in the Appendix,
see (57). Of course, the higher is C, the higher is the value
of V needed to approach this asymptotic optimality, which
in this case translates into higher queue backlogs. Based

on the above concept, to further decrease complexity, we
now solve (33) by replacing Lt with an upper bound L̃t

given by

L̃t =
∑

i∈St

(
N l
i

f li ,t
+

m · bi ,t
Ru
i ,t

)
+

O |St |
f rt

+ max
i=1,...,N

{
Ld
i ,t

}
,

(35)

obtained by applying the straightforward upper bound
max
i
{xi} ≤

∑N
i=1 xi . Now, because of the structure of

Xt , (33) is a mixed-integer nonlinear optimization problem,
which might be very complicated to solve. However, for any
given {bi ,t}Ni=1 at time-slot t, it is easy to see that (33) is sepa-
rable into three sub-problems that admit closed form solutions
for the optimal uplink data rates, the optimal CPU frequency
of devices, and the optimal CPU frequency of the edge server,
respectively. In the sequel, we present the formulation and the
solution of the three sub-problems.

B. Uplink Radio Resource Allocation

The uplink radio resource allocation sub-problem aims at
optimizing the transmission rates {Ru

i ,t}i∈St
of each transmit-

ting device at time-slot t, once the quantization bits {bi ,t}Ni=1
have been fixed. Of course, if bi ,t = 0, we have Ru

i ,t = 0.
Instead, for any bi ,t > 0, from (25), (33) and (35), we obtain:

min
{Ru

i,t}i∈St

∑
i∈St

(
Zt

m · bi ,t
Ru
i ,t

+ Vpui ,t

)

subject to Rmin
i ≤ Ru

i ,t ≤ Rmax
i ,t ∀i ∈ St , (36)

where Rmax
i ,t is the maximum rate achievable using the max-

imum transmitted power, and Rmin
i represents the minimum

rate that a user should use in the case of transmission. Of
course, in (36), there is an intrinsic admission control condi-
tion embedded in terms of feasibility. In particular, denoting
the set of nodes for which problem (36) is feasible by:

At = {i ∈ {1, . . . ,N } : Rmax
i ,t > Rmin

i }, (37)

it clearly holds that the set St of transmitting nodes must be
selected as a subset of At (St ⊆ At ). If problem (36) is
feasible, it is also strictly convex with respect to the rates
{Ru

i ,t}i∈St
, and admits a unique closed-form solution. In

particular, the Lagrangian function of (36) writes as:

LRi =
∑

i∈St

[(
Zt

m · bi ,t
Ru
i ,t

+ Vpui ,t

)
− δi

(
Ru
i ,t − Rmin

i

)

+ ξi

(
Ru
i ,t − Rmax

i ,t

)]
, (38)

where δi and ξi are the Lagrange multipliers associated with
the constraints of (36) over the variable Ru

i ,t , for i ∈ St . Then,
the Karush-Kuhn-Tucker (KKT) conditions of the strictly
convex problem (36) are given by:

i)
∂LRi
∂Ri ,t

= −Zt
m · bi ,t
(Ru

i ,t )
2
+

VN0

hui ,t
exp

(
Ru
i ,t ln(2)

Bu
i ,t

)

−δi + ξi = 0; (39)
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ii)Ru
i ,t ≥ Rmin

i , δi ≥ 0, δi

(
Ru
i ,t − Rmin

i

)
= 0; (40)

iii)Ru
i ,t ≤ Rmax

i ,t , ξi ≥ 0, ξi

(
Ru
i ,t − Rmax

i ,t

)
= 0; (41)

for all i ∈ St , where we used (23) for pui ,t . Now, exploiting
the principal branch of the Lambert function W (·) [52], the
KKT conditions (39)-(41) can be solved in closed form as:

Ru
i ,t =

⎡

⎣2B
u
i ,t

ln(2)
W

⎛

⎝ ln(2)

Bu
i ,t

√
Zt m · bi ,t hui ,t

2VN0

⎞

⎠

⎤

⎦
Rmax

i,t

Rmin
i

(42)

for all i ∈ St , if problem (36) is feasible.

C. Local Computing Resources Allocation

The local computing resource allocation problem aims at
optimizing the CPU frequencies {f li ,t}i∈St

of the transmitting
(and computing) devices. From (33), (35) and (25), for a given
time t, it is easy to see how the local computing resource
allocation problem decouples over the computing devices and
over the iterations within a slot. Thus, we obtain the following
sub-problem at each device:

min
f li,t

Zt
N l
i

f li ,t
+ V κl (f

l
i ,t )

3

subject to f min
i ≤ f li ,t ≤ f max

i , (43)

for all i ∈ St . Problem (43) is strictly convex and enjoys a sim-
ple closed form solution. Indeed, solving the KKT conditions,
it is immediate to obtain:

f li ,t =

⎡

⎣
(
ZtN

l
i

3κlV

) 1
4

⎤

⎦
fmax
i

fmin
i

for all i ∈ St . (44)

Note that (44) contains implicitly the admission control con-
dition of the radio resource problem (36), i.e., a local compu-
tation is needed only if data can be subsequently uploaded to
the AP. Thus, if i /∈ St , then Ru

i ,t = 0 and also f li ,t = 0.

D. Remote CPU Frequencies Allocation

The remote computing resource allocation problem aims at
optimizing the CPU frequency f rt of the ES. From (33), (35)
and (25), for a given St at time t, the remote computing
resource allocation problem writes as:

min
f rt

Zt
O |St |
f rt

+ V κr (f
r
t )

3

subject to f r ,min ≤ f rt ≤ f r ,max. (45)

Problem (45) is a strictly convex optimization problem, which
enjoys a simple closed form solution. Then, solving the KKT
conditions, it is straightforward to see that the optimal remote
CPU cycle frequency is given by

f rt =

[(
ZtO |St |
3κlV

) 1
4

]f r,max

f r,min

. (46)

E. Online Selection of Transmitting Users, Quantization
Bits, and Wireless Edge Resources

In Sections III-B–III-D, we have derived the optimal allo-
cation of edge resources as a function of the quantization bits
{bi ,t}Ni=1. Thus, exploiting (42), (44), and (46), the objective
of (33), say Δ̃p

t , can now be expressed as a function of only
{bi ,t}Ni=1, i.e., Δ̃p

t = Δ̃p
t ({bi ,t}Ni=1). In principle, to find the

optimal solution of (33) at each time-slot t, one should com-
pute the optimal allocation of edge resources for all possible
combinations of {bi ,t}Ni=1, evaluate the corresponding objec-
tive function Δ̃p

t in (33), and then select the one that yields
the lowest value. This approach faces a main challenge: Even
if for the single choice of {bi ,t}Ni=1 the resource allocation
is efficient (cf. (42), (44), and (46)), the overall search pro-
cedure has still a complexity that grows exponentially with
the number N of devices and the maximum cardinality of the
set of quantization bits (i.e., maxi |Bi |). For this reason, in
the sequel we act some simplifications to reduce the com-
plexity of (33), while still achieving good performance. In
particular, instead of performing an exhaustive search over all
possible combinations, we use an iterative greedy approach
that, starting from the empty set of transmitting nodes, iter-
atively adds the most convenient devices, selecting jointly
the best number of quantization bits and the associated edge
resources in (42), (44), and (46). The method keeps adding
devices from the admissible set At in (37) until the result-
ing value of the objective Δ̃

p
t in (33) decreases, and stops

when there is no more incentive (in terms of reduction of the
objective function) in letting other nodes to transmit any bit of
information. Of course, if At is empty, the t-th iteration of the
FL algorithm in (9) does not take place. Such greedy method
drastically reduces the complexity of the procedure, which
becomes polynomial in N and maxi |Bi |. Then, once the
resource have been selected, the federated learning algorithm
is updated as in (9), and, finally, the virtual queues Zt , Qt

and Yt are updated as in (27), (28) and (29), respectively. The
overall dynamic optimization procedure for adaptive federated
learning is illustrated in Algorithm 1.

Remark 1: Of course, there are no guarantees that the
proposed greedy procedure in Algorithm 1 finds the optimal
solution of (33), inevitably representing only an approxima-
tion of it, so that our approach can be, also in this case,
interpreted as a C-additive approximation [43, p. 59], which
entails inexact solutions (with bounded error) of the drift-plus-
penalty method in (33) at each iteration t, as anticipated in
Section III-A. In our case, since the objective and the fea-
sible set of (33) are both bounded for all ty, the proposed
greedy approach clearly leads to a valid C-approximation. In
Section IV, we will numerically assess the performance of
the proposed dynamic resource allocation strategy for adaptive
federated learning at the wireless network edge.

IV. DATA-DRIVEN RESOURCE ALLOCATION FOR

ADAPTIVE FEDERATED LEARNING

In the previous section, we have proposed a model-based
algorithm for dynamic resource allocation to enable FL at the
wireless edge, which exploits closed-form expressions for the
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Algorithm 1: Model-Based Dynamic Resource
Optimization for Adaptive Federated Learning

for t ≥ 0 do

S1. Observe Zt ,Qt ,Yt , {hui ,t}Ni=1 and compute At

in (37).

if At = ∅ then
continue

else
S2. Find St , the quantization bits {bi ,t}i∈St

, and
the edge resources through the greedy procedure:

Set St = ∅, {bi ,t}Ni=1 = 0, Δc =∞, Flag = 1

while Flag do

S3. [Δ∗
j , (j

∗, b∗j )] =
argmin

j∈At\St , bj∈Bj

Δ̃
p
t (St ∪ {j}, bj )

if Δ∗
j < Δc then

St ← St ∪ {j ∗}; bj ∗,t = b∗j ;
Δc = Δ∗

j ;

Ru
j ∗,t as in (42); f lj ∗,t as in (44); f rt as

in (46);
else

Flag = 0
end

end

S4. Update the federated learning algorithm as in
(9);

S5. Update the virtual queues Zt , Qt and Yt as
in (27), (28) and (29), respectively;

end
end

learning performance and convergence rate metrics (e.g., (13)
and (15)). Indeed, some convex learning tasks admit closed
form expressions for different learning metrics, allowing us
to use Algorithm 1. However, in several other cases (e.g.,
non-convex learning tasks such as deep neural network train-
ing), we do not have knowledge of such performance metrics
expressions. Therefore, in this section, we extend the previous
strategy incorporating an online mechanism that estimates
the learning performance and the convergence rate in a fully
data-driven fashion, in order to drive the dynamic resource
allocation based on Lyapunov optimization. One of the nicest
features of the proposed data-driven approach is that it does
not necessarily rely on SGD recursions as in (9), but it works
also with more sophisticated gradient-based algorithms such
as, e.g., Adam, Adagrad, SGD with momentum, etc. Now, let
us assume that the agents collect and process batches of data of
size Bt at time-slot ty. For simplicity, we assume that the batch
size Bt is the same for all devices, and that can be selected
from a set C of discrete values at each time slot t. Then,
assuming that N l

i in (18) is the number of CPU cycles to com-
pute the local gradient from one data unit, if we have batches
of Bt data, the local processing time in (18) will be simply

multiplied by a factor Bt . Furthermore, considering a general
gradient-based algorithm (e.g., Adam), the remote processing
time is obtained as in (20) simply generalizing the meaning of
the constant Oy that, starting from the received local gradient,
represents the number of CPU cycles necessary to perform the
single step of the gradient-based algorithm for each device. Of
course, the overall remote processing time is still proportional
to the number of transmitting devices. To estimate online the
learning performance, we assume that either the ES is provided
with a validation set T or, in the absence of a validation set, the
agents can sense an additional batch T of data at each time-
slot, compute their local learning performance and send it (one
scalar) to the server for the computation of the overall learn-
ing performance. Then, two task-dependent functions Ĝt and
α̂t are introduced to measure online the learning performance
Gt and convergence rate αt , respectively. As an example, let
us consider a classification task, whose validation (or batch)
accuracy and its moving average with length 2K can be used
to estimate learning performance and convergence rate as:

Ĝt =
1

|T |
∑

y∈T
I(ŷt = y), (47)

α̂t =
1

K

∑K−1

τ=t−K

(
Ĝτ − Ĝτ−1

)
, (48)

where ŷt is the prediction for data unit yy at time-slot t.1

Clearly, different metrics can be used based on the task and
its complexity, e.g., the ratio of gradients norms at successive
time-slots can be exploited for tasks whose learning accu-
racy/error could be difficult or inefficient to estimate [23].
Then, we propose to exploit the performance estimates in
(47)-(48) to drive the Lyapunov-based resource allocation. In
particular, we introduce two new virtual queues updates, which
are specific of this data-driven approach. The first virtual queue
reads as:

Q̂t+1 = max
{
0, Q̂t + εq

(
G− Ĝt

)}
, (49)

and has the goal to drive the estimated learning performance
Ĝt above the target G. The second queue aims at controlling
the convergence rate of the FL algorithm, and is updated as:

Ŷt+1 =
[
Ŷt + εy,t (α̂t − α)

]
· I
(
Ĝt ≤ G

)
, (50)

where εy,t is an adaptive (i.e., time-dependent) step-size. The
queue evolution defined in (50) is motivated by the fact that,
if the distribution of the data is stationary, there is no need to
overshoot the convergence rate after the target level of learn-
ing performance is reached. Thus, when Ĝt ≥ G (i.e., the
estimated learning performance is greater than the target), the
queue Yt is set to zero and has no more impact on the conver-
gence rate and the resource allocation. Moreover, the dynamic
step-size εy,t is chosen to adapt the update speed of the queue
Yt depending on the distance of Ĝt from the target G. A pos-
sible choice is εy,t = εy |G − Ĝt |. The rationale avoids the
queue to unnecessarily impact the resource allocation when
the learning performance is approaching G, because the target

1Note that, if we use the accuracy metric in (47), the long term constraints
(b) in (26) must have opposite sign, i.e., the average performance must be
greater than or equal to a target threshold G.
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convergence rate αt is no more achievable at that point. At the
same time, non-stationary behaviors can be detected observ-
ing a sharp deterioration in Ĝt , which reactivates the virtual
queue Yt , thus boosting again the learning process with the
desired convergence rate. Moreover, an adaptive step-size εz ,t
can also be exploited also for the latency queue in (27) to
speed up the adaptability of the method.

Using Ĝt and α̂t is useful for the virtual queues update
in (49) and (50), but they are not explicitly (i.e., mathemat-
ically) related to the number of quantization bits and to the
batch size, which must be optimized and adapted to drive the
learning performance and the convergence rate. Thus, the con-
trol action might still not be easily implementable, due to the
lack of closed-form expressions for the performance metrics.
One possible solution to this issue builds on the following
assumptions [10], which are consistently verified both from a
theoretical and a numerical point of view (practical examples
follow in Section V).

Assumption 3: Gt is a monotone non-decreasing function
of the quantization bits {bi ,t}i∈St

.
Assumption 4: αt is a monotone non-decreasing function of

the quantization bits {bi ,t}i∈St
and of the batch size Bt .

Assumption 3 hinges on the fact that a finer representation
of the data generally leads to better learning performance. At
the same time, Assumption 4 exploits the fact that, increas-
ing the batch size and the number of quantization bits, the
(stochastic) gradient estimates in (2) get better, thus improv-
ing the overall convergence rate. Then, under Assumption 3
and Assumption 4, we propose to exploit two surrogate func-
tions, say G̃t and α̃t , which respectively approximate the
non-decreasing behavior of Gt and αt with respect to the
quantization bits {bi ,t}i∈St

and the batch size Bt . Of course,
there are several possible surrogates that we can exploit, but
the best choice depends on the specific performance metric that
we need to approximate (e.g., classification accuracy, mean-
squared error, etc.). Examples will be given in Section V-B,
for the case of deep neural network training. The rationale
underlying the choice of the surrogates comes again from the
concept of Cyy-additive approximation [43] of the drift-plus-
penalty method in (33), which makes possible to use inexact
updates of the algorithm at each iteration, provided that the
approximation error can be bounded within a finite error C.
Then, at a given time slot t, exploiting (49), (50), and the sur-
rogate functions G̃t and α̃t in (33), we solve the following
deterministic problem:

min
Γt∈Zt

Zt L̃t − Q̂t G̃t − Ŷt α̃t + V · ptott (51)

where Γt = [{bi ,t}i∈St
, {Ru

i ,t}i∈St
, {f li ,t}i∈St

, f rt ,Bt ], and
Zt = Xt ∪{Bt ∈ C}, with C denoting the discrete set of pos-
sible choices for the batch size Bt . We solve problem (51) as
in the previous case, slightly modifying Algorithm 1, as illus-
trated in Algorithm 2. Essentially, Algorithm 2 adds a further
selection step for the batch size Bt to the greedy procedure of
Algorithm 1. This is done with a small additive complexity,
since the number of selectable batch sizes is assumed to be
small (e.g., 3 or 4 possibilities). The main steps of the proposed
data-driven approach are the same as in Algorithm 1, with

Algorithm 2: Data-Driven Dynamic Resource
Optimization for Adaptive Federated Learning

for t ≥ 0 do

S1. Observe Zt , Q̂t , Ŷt , {hui ,t}Ni=1 and compute At

in (37).

if At = ∅ then
continue

else
S2. Find St , the quantization bits {bi ,t}i∈St

, the
batch size Bt , and the edge resources through the
greedy procedure:

Set St = ∅, {bi ,t}Ni=1 = 0, Δc =∞, Flag = 1

for B ∈ C do

while Flag do

S2. [Δ∗
j , (j

∗, b∗j )] =
argmin

j∈At\St ,bj∈Bj

Δ̃p
t (St ∪ {j}, bj ,B)

if Δ∗
j < Δc then

St ← St ∪ {j ∗}; bj ∗,t = b∗j ;
Δc = Δ∗

j ;

Ru
j ∗,t as in (42); f lj ∗,t as in (44); f rt

as in (46);
Bt = B

else
Flag = 0

end
end

end

S3. Update the federated learning algorithm as in
(9), or according to a tailored gradient-based
optimizer;

S4. Update the virtual queues Zt , Q̂t and Ŷt as
in (27), (49) and (50), respectively;

end
end

the difference that the virtual queues Qt and Yt are replaced
by Q̂t and Ŷt in (49)-(50). This data-driven strategy will be
numerically assessed in Section V.

Remark 2: Interestingly, Algorithms 1 and 2 implement a
double-step struggler mitigation at each time-slot, which selec-
tively avoids that worst-case devices hinder the performance of
the proposed strategy. First, there is a radio admission control
step defined in (37), which selects the set At of agents that
can transmit with a minimum rate Rmin, thus discarding the
agents experiencing bad wireless channel conditions (and, con-
sequently, high communication latency). Then, starting from
the set At of potential transmitters, Algorithms 1 and 2 choose
the set St ⊆ At of transmitting agents in order to minimize
the per-slot optimization problems in (33) and (51), respec-
tively. Since the objectives of (33) and (51) encompass jointly
power, latency, and learning performance of the FL task, this
second struggler mitigation step selects the subset St in order
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to strike the best trade-off between these three fundamental
aspects of the problem.

V. NUMERICAL RESULTS

In this section, we assess the performance of the proposed
method, considering both model-based and data-driven scenar-
ios. In particular, we will exploit the model-based approach for
a least-mean squares regression task (in Section V-A), and the
data-driven approach for a classification task aimed at training
a deep convolutional neural network (in Section V-B). We con-
sider a scenario with N = 9 devices and one AP equipped with
an edge server, as illustrated in Fig. 1. We set the radio and
computation parameters as follows: N0 = −174 dBm/Hz,
A = 25, f max

r = 3.3 GHz, f max
i = 2.5 GHz, Rmax

i ,t =
Bu
i ,t log2(1 + hui ,tP

max
i /(N0B

u
i ,t )) where Pmax

i = 15 mW

for all i; B t
i ,u is assigned equally splitting the overall band-

width among the devices transmitting at time t. Moreover,
Bi = [2, 4, 8], and Rd

i ,t = Rmax
i ,t for all i, and t. The chan-

nels are generated using the ABG model [53], with a carrier
frequency of 23 GHz and adding a Rayleigh fading with unit
variance. The LMS results are obtained with MATLAB, using
a PC with an Intel Core i7-7700HQ CPU at a frequency of
2.80 GHz. The data-driven results are obtained using Python
and the JAX framework, exploiting an NVIDIA Tesla K80
GPU.

A. Federated Least-Mean Squares

For this learning task, the input data x i ,t ∈ R
20 is related to

the corresponding output via a linear model yi ,t = xT
i ,tw

o +
vi ,t , at each time instant t. In this context, the SGD algorithm
in (2) boils down into a federated LMS adaptive algorithm
aimed at learning (and tracking over time) the vector wo [42].
The devices locations are chosen at random such that the dis-
tance of each device from the AP is sampled from a uniform
distribution in the interval [70, 130], for all i = 1, . . . ,N .
We assume that input data x i ,t are zero-mean random vec-
tors with covariance matrix σ2x ,i I20 with σ2x ,i = 1 for all i.
The observation noise vi ,t is Gaussian, zero-mean with vari-
ance σ2v ,i uniformly selected in the interval [0, 2 × 10−3],
for all i = 1, . . . ,N , independent from the data and among
devices. Also, the overall bandwidth is 100 KHz, O = 2 ·103,
N l
i = 5 · 106. The step-size μ is set to 0.015. The learning

performance is measured in terms of MSD as in (13), and
the convergence rate is given by (15). As a first result, in
Fig. 2, we illustrate the learning curve of the FL algorithm
in (2), obtained for different values of learning performance
constraints G = MSD, while fixing the convergence rate to
α = 0.99 and the latency constraint L = 20 ms. The results
are averaged over 50 independent simulations, setting empiri-
cally εz , εq , εy to obtain the fastest convergence. From Fig. 2,
we can notice how the proposed optimization method is able
to guarantee the prescribed performance in terms of conver-
gence rate α and steady-state accuracy MSD. Then, in Fig. 3,
we show the histogram of quantization bits usage for dif-
ferent values of MSD, fixing α = 0.99 and L = 20 ms.
From Fig. 3, we notice how the method requires on aver-
age more quantization bits to obtain a stricter requirement

Fig. 2. MSD vs tyy, for different values of MSD.

Fig. 3. Quantization bits, for different MSD.

on learning performance, due to the finer required represen-
tation of transmitted data. Finally, in Fig. 4 (a) we illustrate
the trade-off curve between average latency and TX power
consumption (i.e., the sum of powers transmitted by all users)
achieved by the proposed method, considering different val-
ues of MSD and fixed α = 0.99. Each point in the curves
of Fig. 4 (a) represents a different value of V, whose mag-
nitude grows from right to left. From Fig. 4 (a), increasing
V, the method reduces the transmission power up to a limit
value (i.e., the optimum) that still enables to guarantee the tar-
get latency constraint. As expected, the trade-off gets worse
imposing a stricter requirement on learning performance, due
to the larger power (and number of bits) necessary to obtain
the target performance. Also, from a computation point of
view, in Figs. 4 (b) we illustrate the average remote and local
processing power consumption vs V, fixing MSD = −40 dB,
α = 0.99 and L = 20 ms. As expected, the proposed method
is able to reduce all the single contributions of the overall
power consumption as V increases.

B. Federated Deep Neural Network Training

In this section, we consider a learning task aimed at train-
ing a classifier based on deep convolutional neural networks
(CNN). We exploit a CNN made of four convolutional layers
with 32, 32, 10 and 10 filters, respectively, with final flat-
ten and dense layers; SAME padding, ReLu non-linearities
and Batch Normalization are applied after each convolutional
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Fig. 4. (a) Latency vs power consumption, (b)-(c) Power consumption vs V for MSD = −40 dB.

layer, and a final Softmax non-linearity is applied after the
flatten and dense layers. The filters dimensions are 5 × 5,
5 × 5, and 3 × 3 and 3 × 3, respectively. To train the
CNN, we use the MNIST dataset [54], which is made of
28 × 28 grayscale images of handwritten digits divided in
10 classes. The training data is composed of 6 × 104 exam-
ples, while the test set is made of 104 elements. The loss is
the well-known cross-entropy, and the model is trained using
a federated ADAM optimizer [55]. The devices locations are
random and the distance of each device from the AP is sam-
pled from a uniform distribution in the interval [20, 80], for
all i = 1, . . . ,N . Also, the overall bandwidth is 100 MHz,
O = 106, and N l

i = 107. The ADAM step-size is set to
0.008, with forgetting factors β1 = 0.9, and β2 = 0.99. For
this experiment, we use the performance estimate Ĝt in (47),
and α̂t in (48) with K = 10. Also, as a surrogate function for
the accuracy metric, we exploit:

G̃t =
∑

i∈St
σ(bi ,t −Median{Bi}), (52)

where σ(·) is the logistic sigmoid function, and Median{·}
represents the median value. Clearly, (52) satisfies
Assumption 3. Regarding the convergence rate, we use
instead the surrogate α̃t = Bt

∑
i∈St

bi ,t , which of course
satisfies Assumption 4. Moreover, C = [1, 3, 7, 14] for Fig. 5
and C = [1, 3, 7] for the others. As a first result, in Fig. 5, we
illustrate the temporal behavior of the estimated accuracy of
the FL algorithm, obtained for different values of the conver-
gence rate α, while fixing the accuracy to G = 0.8 and the
latency constraint L = 50 ms. As we can notice form Fig. 5,
the proposed data-driven method is able strike the desired
learning performance, while controlling the convergence rate.
Similarly, in Fig. 6 (a), we illustrate the temporal behavior
of the estimated accuracy, obtained for different values of
the performance constraint G, while fixing the convergence
rate to α = 0.2 and the latency constraint L = 50 ms. Then,
in Fig. 6 (b) we show the temporal evolution of the overall
latency and the overall uplink transmission power consump-
tion, respectively, corresponding to Fig. 6 for G = 0.8 and
G = 0.9. As we can notice from Fig. 6, the proposed method
keeps the latency around the requirement L, while driving the

Fig. 5. Accuracy vs t, for different values of α.

accuracy on the target value G during the steady state phase.
Interestingly, from Fig. 6 (c), we notice how a significant
power saving can be achieved at steady-state if the accuracy
requirement is not very strict (i.e., for G = 0.8), thanks to
the impact of the adaptive step-size in (50). Furthermore,
the results empirically confirm the choice of the adopted
surrogate functions, and the consistence of Assumptions 3
and 4.

Comparisons: Even though there are several works on
resource allocation for FL, our problem formulation, jointly
encompassing communication, computation and learning
aspects of FL in a dynamic and adaptive fashion is novel,
and does not come from a straightforward modification of
existing results. Thus, it is extremely difficult to provide fair
comparisons with other techniques available in the literature.
However, we decided to assess the advantages of our joint
strategy by comparing it with (sub-)procedures involving the
optimization only of single aspects. We consider the follow-
ing strategies for comparison: i) Equal Rate Policy (referred
to as Equal Rate): All the agents always transmit with a
fixed number of quantization bits (to match a certain learn-
ing accuracy), the remote and local frequencies are fixed, and
the uplink rate is equally adapted for all the agents to match
the latency constraint; ii) Fixed Scheduling & Quantization
Bits Policy (referred to as Fixed S&B): All the agents always
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Fig. 6. (a) Accuracy vs t, (b) Latency vs t and Power consumption vs t, for different G.

Fig. 7. Power consumption vs latency.

transmit with a fixed number of quantization bits (to match a
certain learning accuracy), whereas remote frequency, local
frequencies and uplink rates are optimized via Lyapunov
Optimization. iii) Joint Optimization with Random Scheduling
and Quantization Bits (referred to as Random Joint): It is
our joint procedure, but the scheduling and quantization bits
are not assigned via the proposed greedy method, but rather
with a random search of comparable complexity, meaning that
multiple random realizations of the variables are checked to
select the best one. In Fig. 7, we illustrate the trade-off curve
between average total power consumption and average latency
L for the aforementioned strategies, referring to our procedure
as Proposed. The values are obtained by fixing the accuracy
threshold Ḡ = 0.8, the frequencies for Equal Rate strategy
to the average frequencies of our procedure, the quantization
bits to six for Equal Rate and Fixed S&B strategies (to tightly
match the accuracy constraint). From Fig. 7, the proposed
method results in a better trade-off with respect to the other
strategies, i.e., in a sensible power saving for any given delay.
Moreover, we empirically observed that our strategy is the
only one effectively able to control also the convergence rate.
Although the proposed comparisons do not (and cannot) refer
to specific other works, they follow the optimization approach
(in terms of optimization variables) of other works, e.g., [39]
(they optimize only scheduling and power allocation), [36]

Fig. 8. Accuracy vs t in a non-stationary.

(they optimize quantization schemes), [22] (they optimize
scheduling, power allocation and RB-OFDMA allocation).

Adaptation in non-stationary conditions: Finally, in Fig. 8
we illustrate the temporal behavior of the estimated accuracy in
a non-stationary scenario, in order to highlight the adaptation
capabilities of the proposed method. In particular, the MNIST
dataset is divided into two sub-dataset of 5 classes each; then,
the architecture is trained for the first 180 time-slot with one
of the two sub-datasets and for the remaining time-slots with
the other one (the last dense layer is obviously reduced to
a 5 dimensional output). Equivalently, this introduces a non-
stationary behavior of the data distribution. Then, at time slot
401, we change the accuracy requirement from G = 0.8 to
G = 0.9, introducing a further level of non-stationarity. The
results are averaged over 10 independent simulations. From
Fig. 8, we can notice that our dynamic strategy is able to
react promptly to both changes in the data distribution and
in the accuracy requirement, exhibiting powerful learning and
adaptation capabilities in a fully data-driven fashion.

VI. CONCLUSION

In this paper, we have proposed a dynamic resource allo-
cation strategy enabling adaptive federated learning at the
wireless network edge. The strategy dynamically minimizes
the power expenditure of the system, while guaranteeing target
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learning performance and latency constraints. The proposed
method builds on stochastic Lyapunov optimization, which
leads to low-complexity procedures for the resource alloca-
tion at each time slot, without requiring a-priori knowledge
of wireless channel statistics. The approach is valid both for
a model-based approach, where performance metrics can be
evaluated in closed-form, or for a data-driven approach, where
performance are estimated online from streaming data. Several
numerical results assess the performance of the proposed
strategy over both synthetic and real data. Future research
directions include model-based approaches for the non-convex
learning scenario, where theoretical expressions for the con-
vergence rates to (local) optimality can be used to control the
performance of FL.

APPENDIX

Let us present the derivations leading to the upper bound
in (32). In particular, considering Zt defined in (27) and

defining ΔZ =
Z 2
t+1−Z 2

t

2 , we have [43]:

ΔZ ≤
(Lt−L̄)

2

2 + Zt (Lt − L̄). (53)

From (26), since we assume a minimum uplink data rate Rmin
i

and a minimum local CPU frequency f min
i for every device

i ∈ St , and a minimum server CPU clock frequency f r ,min,
the term Lt in (53) is bounded for all t by a finite constant
LSGD,max, i.e.,

ΔZ ≤
(LSGD,max − L̄)2

2
+ Zt

(
Lt − L̄

)
. (54)

Applying the same arguments to Qt defined in (28), and
exploiting the upper-bound Gt ≤ Gmax (which holds for any
suitable performance metric), we obtain:

ΔQ ≤
(Gmax −G)2

2
+Qt (Gt −G). (55)

This last condition holds due to (16) and the fact that we
impose

∑N
i=1 ai ,t ≥ 1 (cf. (26)). Finally, let us consider the

virtual queue Yt defined in (29). Although Yt presents a dif-
ferent evolution from the other virtual queues, we can still
apply the same arguments and, exploiting the upper-bound
αt ≤ αmax (which holds for any metric of convergence rate),
we obtain:

ΔY ≤
(αmax

t − ᾱ)2

2
+ Yt (αt − ᾱ). (56)

Finally, plugging (54), (55) and (56) into (31), we derive the
upper bound in (32), i.e.,

Δ
p
t ≤ ζ + E

{
Zt
(
Lt − L̄

)
+Qt

(
Gt −G

)

+ Yt (αt − ᾱ) + Vptott

∣∣∣∣Φt

}
,

where ζ is a finite positive constant that reads as

ζ =

(
LSGD,max − L̄

)2

2
+

(
Gmax −G

)2

2
+

(αmax − ᾱ)2

2
(57)
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