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g Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia 
h Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, Rome, Italy 
i Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece 
j Center for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, QLD 4006, Australia   

A R T I C L E  I N F O   

Keywords: 
Wave energy converter 
OSWEC 
Hydrodynamic effects 
Geometric design 
Metaheuristic optimization 
Multi-verse optimizer 

A B S T R A C T   

In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are 
the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source 
that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this 
type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ 
performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization 
methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy 
Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to 
model different geometries which were then inserted into a numerical model developed in Flow3D software. A 
Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter inter-
action. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this 
application. The results showed that the converter performs better with greater wave heights, flap freeboard 
heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better 
performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, 
tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter 
in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other 
existing cutting-edge metaheuristic approaches.   

1. Introduction 

The increase in energy demand, the limitations of fossil fuels, as well 
as environmental crises, such as air pollution and global warming, are 
the leading causes of calling more attention to harvesting renewable 
energy recently [1,2,3]. While still in its infancy, ocean wave energy has 
neither reached commercial maturity nor technological convergence. In 

recent decades, remarkable progress has been made in the marine en-
ergy domain, which is still in the early stage of development, to improve 
the technology performance level (TPL) [4,5] and technology readiness 
level (TRL) of wave energy converters (WECs). This has been achieved 
using novel modeling techniques [6,7,8,9,10,11,12,13,14] to gain the 
following advantages [15]: (i) As a source of sustainable energy, it 
contributes to the mix of energy resources that leads to greater diversity 
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and attractiveness for coastal cities and suppliers. [16] (ii) Since wave 
energy can be exploited offshore and does not require any land, in-land 
site selection would be less expensive and undesirable visual effects 
would be reduced. [17] (iii) When the best layout and location of 
offshore site are taken into account, permanent generation of energy will 
be feasible (as opposed to using solar energy, for example, which is time- 
dependent) [18]. 

In general, the energy conversion process can be divided into three 
stages in a WEC device, including primary, secondary, and tertiary 
stages [19,20]. In the first stage of energy conversion, which is the 
subject of this study, the wave power is converted to mechanical power 
by wave-structure interaction (WSI) between ocean waves and struc-
tures. Moreover, the mechanical power is transferred into electricity in 
the second stage, in which mechanical structures are coupled with 
power take-off systems (PTO). At this stage, optimal control strategies 
are useful to tune the system dynamics to maximize power output 
[10,13,12]. Furthermore, the tertiary energy conversion stage revolves 
around transferring the non-standard AC power into direct current (DC) 
power for energy storage or standard AC power for grid integration 
[21,22]. We discuss only the first stage regardless of the secondary and 
tertiary stages. While Page 1 of 16 WECs include several categories and 
technologies such as terminators, point absorbers, and attenuators 
[15,23], we focus on oscillating surge wave energy converters 
(OSWECs) in this paper due to its high capacity for industrialization 
[24]. 

Over the past two decades, a number of studies have been conducted 
to understand how OSWECs’ structures and interactions between ocean 
waves and flaps affect converters performance. Henry et al.’s experi-
ment on oscillating surge wave energy converters is considered as one of 
the most influential pieces of research [25], which demonstrated how 
the performance of oscillating surge wave energy converters (OSWECs) 
is affected by seven different factors, including wave period, wave 
power, flap’s relative density, water depth, free-board of the flap, the 
gap between the tubes, gap underneath the flap, and flap width. These 
parameters were assessed in their two models in order to estimate the 
absorbed energy from incoming waves [26,27]. In addition, Folly et al. 
investigated the impact of water depth on the OSWECs performance 
analytically, numerically, and experimentally. According to this and 
further similar studies, the average annual incident wave power is 
significantly reduced by water depth. Based on the experimental results, 
both the surge wave force and the power capture of OSWECs increase in 
shallow water [28,29]. Following this, Sarkar et al. found that under 
such circumstances, the device that is located near the coast performs 
much better than those in the open ocean [30]. On the other hand, other 
studies are showing that the size of the converter, including height and 
width, is relatively independent of the location (within similar depth) 
[31]. Subsequently, Schmitt et al. studied OSWECs numerically and 
experimentally. In fact, for the simulation of OSWEC, OpenFOAM was 
used to test the applicability of Reynolds-averaged Navier-Stokes 
(RANS) solvers. Then, the experimental model reproduced the numeri-
cal results with satisfying accuracy [32]. In another influential study, 
Wang et al. numerically assessed the effect of OSWEC’s width on their 
performance. According to their findings, as converter width increases, 
its efficiency decreases in short wave periods while increases in long 
wave periods [33]. One of the main challenges in the analysis of the 
OSWEC is the coupled effect of hydrodynamic and geometric variables. 
As a result, numerous cutting-edge geometry studies have been per-
formed in recent years in order to find the optimal structure that max-
imizes power output and minimizes costs. Garcia et al. reviewed hull 
geometry optimization studies in the literature in [19]. In addition, Guo 
and Ringwood surveyed geometric optimization methods to improve the 
hydrodynamic performance of OSWECs at the primary stage [14]. Be-
sides, they classified the hull geometry of OSWECs based on Fig. 1. 
Subsequently, Whittaker et al. proposed a different design of OSWEC 
called Oyster2. There have been three examples of different geometries 
of oysters with different water depths. Based on its water depth, they 

determined the width and height of the converter. They also found that 
in the constant wave period the less the converter’s width, the less power 
captures the converter has [34]. Afterward, O’Boyle et al. investigated a 
type of OSWEC called Oyster 800. They compared the experimental and 
numerical models with the prototype model. In order to precisely 
reproduce the shape, mass distribution, and buoyancy properties of the 
prototype, a 40th-scale experimental model has been designed. Overall, 
all the models were fairly accurate according to the results [35]. 

Inclusive analysis of recent research avenues in the area of flap ge-
ometry has revealed that the interaction-based designs of such con-
verters are emerging as a novel approach. An initiative workflow is 
designed in the current study to maximizing the wave energy extrication 
by such systems. To begin with, a sensitivity analysis plays its role of 
determining the best hydrodynamic values for installing the converter’s 
flap. Then, all flap dimensions and characteristics come into play to 
finalize the primary model. Following, interactive designs is proposed to 
increase the influence of incident waves on the body by adding ribs on 
both sides of the flap as a novel design. Finally, a new bi-level meta-
heuristic method is proposed to consider the effects of simultaneous 
changes in ribs properties and other design parameters. We hope this 
novel approach will be utilized to make big-scale projects less costly and 
justifiable. The efficiency of the method is also compared with four well 
known metaheuristic algorithms and out weight them for this 
application. 

This paper is organized as follows. First, the research methodology is 
introduced by providing details about the numerical model imple-
mentation. To that end, we first introduced the primary model’s ge-
ometry and software details. That primary model is later verified with a 
benchmark study with regard to the flap angle of rotation and water 
surface elevation. Then, governing equations and performance criteria 
are presented. In the third part of the paper, we discuss the model’s 
sensitivity to lower and upper parts width (we proposed a two cross- 
sectional design for the flap), bottom elevation, and freeboard. Finally, 
the novel optimization approach is introduced in the final part and 
compared with four recent metaheuristic algorithms. 

2. Numerical methods 

In this section, after a brief introduction of the numerical software, 
Flow3D, boundary conditions are defined. Afterwards, the numerical 
model implementation, along with primary model properties are 
described. Finally, governing equations, as part of numerical process, 
are discussed. 

2.1. Model setup 

FLOW-3D is a powerful and comprehensive CFD simulation platform 
for studying fluid dynamics. This software has several modules to solve 
many complex engineering problems. In addition, modeling complex 
flows is simple and effective using FLOW-3D’s robust meshing 

Fig. 1. Different designs of fixed and floating OSWECs [14].  
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capabilities [36]. Interaction between fluid and moving objects might 
alter the computational range. Dynamic meshes are used in our 
modeling to take these changes into account. At each time step, the 
computational node positions change in order to adapt the meshing area 
to the moving object. In addition, to choose mesh dimensions, some 
factors are taken into account such as computational accuracy, 
computational time, and stability. The final grid size is selected based on 
the detailed procedure provided in [37]. To that end, we performed grid- 
independence testing on a CFD model using three different mesh grid 
sizes of 0.01, 0.015, and 0.02 m. The problem geometry and boundary 
conditions were defined the same, and simulations were run on all three 
grids under the same conditions. The predicted values of the relevant 
variable, such as velocity, was compared between the grids. The 
convergence behavior of the numerical solution was analyzed by 
calculating the relative L2 norm error between two consecutive grids. 
Based on the results obtained, it was found that the grid size of 0.02 m 
showed the least error, indicating that it provided the most accurate and 
reliable solution among the three grids. Therefore, the grid size of 0.02 
m was selected as the optimal spatial resolution for the mesh grid. 

In this work, the flume dimensions are 10 m long, 0.1 m wide, and 
2.2 m high, which are shown in Fig. 2. In addition, input waves with 
linear characteristics have a height of 0.1 m and a period of 1.4 s. Among 
the linear wave methods included in this software, RNGk-ε and k- ε are 
appropriate for turbulence model. The research of Lopez et al. shows 
that RNGk- ε provides the most accurate simulation of turbulence in 
OSWECs [21]. We use CATIA software to create the flap primary model 
and other innovative designs for this project. The flap measures 0.1 m ×
0.65 m × 0.360 m in ×, y and z directions, respectively. In Fig. 3, the 
primary model of flap and its dimensions are shown. In this simulation, 
five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. 
Converter flap, 4. Bed flume, and 5. Water surface, which are shown in 
Fig. 2. Besides, to avoid wave reflection in inlet and outlet zones, 
Flow3D is capable of defining some areas as damping zones, the length 
of which has to be one to one and a half times the wavelength. Therefore, 
in the model, this length is considered equal to 2 m. Furthermore, there 
is no slip in all the boundaries. In other words, at every single time step, 
the fluid velocity is zero on the bed flume, while it is equal to the flap 
velocity on the converter flap. According to the wave theory defined in 
the software, at the inlet boundary, the water velocity is called from the 
wave speed to be fed into the model. 

2.2. Verification 

In the current study, we utilize the Schmitt experimental model as a 
benchmark for verification, which was developed at the Queen’s Uni-
versity of Belfast. The experiments were conducted on the flap of the 
converter, its rotation, and its interaction with the water surface. Thus, 
the details of the experiments are presented below based up on the 
experimental setup’s description [38]. In the experiment, the laboratory 
flume has a length of 20 m and a width of 4.58 m. Besides, in order to 
avoid incident wave reflection, a wave absorption source is devised at 
the end of the left flume. The flume bed, also, includes two parts with 
different slops. The flap position and dimensions of the flume can be 
seen in Fig. 4. In addition, a wave-maker with 6 paddles is installed at 

one end. At the opposite end, there is a beach with wire meshes. Addi-
tionally, there are 6 indicators to extract the water level elevation. In the 
flap model, there are three components: the fixed support structure, the 
hinge, and the flap. The flap measures 0.1 m × 0.65 m × 0.341 m in x, y 
and z directions, respectively. In Fig. 5, the details are given [32]. The 
support structure consists of a 15 mm thick stainless steel base plate 
measuring 1 m by 1.4 m, which is screwed onto the bottom of the tank. 
The hinge is supported by three bearing blocks. There is a foam 
centerpiece on the front and back of the flap which is sandwiched be-
tween two PVC plates. Enabling changes of the flap, three metal fittings 
link the flap to the hinge. Moreover, in this experiment, the selected 
wave is generated based on sea wave data at scale 1:40. The wave height 
and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, 
which are tantamount to a wave with a period of 13 (s) and a height of 
1.5 (m). 

Two distinct graphs illustrate the numerical and experi-mental study 
results. Fig. 6 and Fig. 7 are denoting the angle of rotation of flap and 
surface elevation in computational and experimental models, respec-
tively. The two figures roughly represent that the numerical and 
experimental models are a good match. However, for the purpose of 
verifying the match, we calculated the correlation coefficient (C) and 
root mean square error (RMSE). According to Fig. 6, correlation coef-
ficient and RMSE are 0.998 and 0.003, respectively, and in Fig. 7 cor-
relation coefficient and RMSE are respectively 0.999 and 0.001. 
Accordingly, there is a good match between the numerical and empirical 
models. It is worth mentioning that the small differences between the 
numerical and experimental outputs may be due to the error of the 
measuring devices and the calibration of the data collection devices. 

Including continuity equation and momentum conserva- tion for 
incompressible fluid are given as [32,39]: 

∂
∂xj

(ui) = 0 (1)  

∂
∂t
(ui) +

∂
∂xj

(ujui) =
1
ρ

∂P
∂xj

+

1
ρ

∂
∂xj

[μeff (
∂uj

∂xi
+

∂ui

∂xj
)] − Diui + gi

(2)  

where P represents the pressure, g denotes gravitational acceleration, u 
represents fluid velocity, and Di is damping coefficient. Likewise, the 
model uses the same equation to calculate the fluid velocity in other 
directions as well. Considering the turbulence, we use the two-equation 
model of RNGK- ε. These equations are: 

∂
∂t
(ρk)+

∂
∂xj
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∂
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∂
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∂
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∂ε
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] +C*
1εPk

ε
k
− ρC2ε

ε2

k
(4)  

where C2ε and C1ε are constants. In addition, αε and αk represent the 
turbulent Prandtl number of ε and k, respectively. 

Pk also denote the production of turbulent kinetic energy of k under 

Fig. 2. Boundary conditions and waves damping zone in flume.  
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the effect of velocity gradient, which is calculated as follows: 

Pk = μeff [
∂ui

xj
+

∂uj

xi
]

∂ui

xj
(5)  

μeff = μ+ μf (6)  

μeff = μ+ μf (7)  

where μ is molecular viscosity,μf represents turbulence viscosity, k de-
notes kinetic energy, and ∊ is energy dissipation rate. The values of 
constant coefficients in the two-equation RNGK − ∊ model is as shown in 

Fig. 3. Flap primary model in CATIA software (a) flap primary model 3D view (b) flap primary model side view (c) flap primary model front view factor equations 
are applied. RANS equations. 

Fig. 4. Diagram of flume, water level, and flap position. Dimensions are in millimeters [32].  

Fig. 5. Schematic view of flap and support structure [32].  

Fig. 6. Comparing the angle of rotation of flap in computational and experi-
mental model. 

Fig. 7. Comparing surface elevation in computational and experimental model.  
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the Table 1 [40]. 
It is worth mentioning that the volume of fluid method is used to 

separate water and air phases in this software [41]. Below is the equa-
tion of this method [40]. 

∂α
∂t

+
∂

∂xj
(uiα) = 0 (8)  

where α and 1 − α are portion of water phase and air phase, respectively. 
As a weighting factor, each fluid phase portion is used to determine the 
mixture properties. Finally, using the following equations, we calculate 
the efficiency of converters [42,34,43]: 

P =
1
4

|F|2

B +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B2 + (I + Ia)
2
(ω2

n − ω2)
2

√ (9)  

where ωn represents natural frequency, I denotes the inertia of OSWEC, 
Ia is the added inertia, F is the complex wave force, and B denotes the 
hydrodynamic damping coefficient. Afterward, the capture factor of the 
converter is calculated by [44]: 

CF =
P

(1/2)A2
I Cgw

(10)  

Cgw where Cf represents the capture factor, which is the total efficiency 
of device per unit length of the wave crest at each time step [15], AI 
represent the dimensional amplitude of the incident wave, w is the flap’s 
width, and Cg is the group velocity of the incident wave, as below: 

Cg =
ω
k0

⋅
1
2

[

1 +
2k0h

sinh(2k0h)

]

(11)  

where k0 denotes the wave number, h is water depth, and H is the height 
of incident waves. 

According to previous sections ,RNGK − ∊ modeling is used for all 
models simulated in this section. For this purpose, the empty boundary 
condition is used for flume walls. In order to preventing wave reflection 
at the inlet and outlet of the flume, the length of wave absorption is set to 
be at least one incident wavelength. In addition, the structured mesh is 
chosen, and the mesh dimensions are selected in two distinct directions. 
In each model, all grids have a length of 2 (cm) and a height of 1 (cm). 
Afterwards, as an input of the software for all of the models, we define 
the time step as 0.001 (s). Moreover, the run time of every simulation is 
30 (s). As mentioned before, our primary model is Schmitt model, and 
the flap properties is given in Table 2. For all simulations, the flume 
measures 15 m in length and 0.65 m in width, and water depth is equal 
to 0.335 (m). The flap is also located 7 m from the flume’s inlet. 

Finally, in order to compare the results, the capture factor is calcu-
lated for each simulation and compared to the primary model. It is worth 
mentioning that capture factor refers to the ratio of absorbed wave en-
ergy to the input wave energy. 

According to primary model simulation and due to the decreasing 
horizontal velocity with depth, the wave crest has the highest velocity. 
Considering the fact that the wave’s orbital velocity causes the flap to 
move, the contact between the upper edge of the flap and the incident 
wave can enhance its performance. Additionally, the numerical model 
shows that the dynamic pressure decreases as depth increases, and the 
hydrostatic pressure increases as depth increases. 

To determine the OSWEC design, it is imperative to understand the 
correlation between the capture factor, wave period, and wave height. 
Therefore, as it is shown in Fig. 8, we plot the change in capture factor 

over the variations in wave period and wave height in 3D and 2D. In this 
diagram, the first axis features changes in wave period, the second axis 
displays changes in wave height, and the third axis depicts changes in 
capture factor. According to our wave properties in the numerical 
model, the wave period and wave height range from 2 to 14 s and 2 to 8 
m, respectively. This is due to the fact that the flap does not oscillate if 
the wave height is less than 2 (m), and it does not reverse if the wave 
height is more than 8 (m). In addition, with wave periods more than 14 
(s), the wavelength would be so long that it would violate the deep- 
water conditions, and with wave periods less than 2 (s), the flap 
would not oscillate properly due to the shortness of wavelength. The 
results of simulation are shown in Fig. 8. As it can be perceived from 
Fig. 8, in a constant wave period, the capture factor is in direct pro-
portion to the wave height. It is because of the fact that waves with more 
height have more energy to rotate the flap. Besides, in a constant wave 
height, the capture factor increases when the wave period increases, 
until a given wave period value. However, the capture factor falls after 
this point. These results are expected since the flap’s angular displace-
ment is not high in lower wave periods, while the oscillating motion of 
that is not fast enough to activate the power take-off system in very high 
wave periods. 

As is shown in Fig. 9, we plot the change in capture factor over the 
variations in wave period (s) and water depth (m) in 3D. As it can be 
seen in this diagram, the first axis features changes in water depth (m), 
the second axis depicts the wave period (s), and the third axis displays 
OSWEC’s capture factor. The wave period ranges from 0 to 10 s based on 
our wave properties, which have been adopted from Schmitt’s model, 
while water depth ranges from 0 to 0.5 m according to the flume and flap 
dimensions and laboratory limitations. According to Fig. 9, for any 
specific water depth, the capture factor increases in a varying rate when 
the wave period increases, until a given wave period value. However, 
the capture factor falls steadily after this point. In fact, the maximum 
capture factor occurs when the wave period is around 6 s. This trend is 
expected since, in a specific water depth, the flap cannot oscillate 
properly when the wavelength is too short. As the wave period increases, 
the flap can oscillate more easily, and consequently its capture factor 

Table 1 
Constant coefficients in RNGK-∊ model.  

Factors β η0 C1 C2 αe αk Cμ 

Quantity  0.012  4.38  1.42  1.68  1.39  1.39  0.084  

Table 2 
Flap properties.  

Joint height (m) 0.476 

Height of the center of mass (m)  0.53 
Weight (Kg)  10.77  

Fig. 8. OSWEC’s capture factor changes with incident wave periods 
and heights. 
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increases. However, the capture factor drops in higher wave periods 
because the wavelength is too large to move the flap. Furthermore, in a 
constant wave period, by changing the water depth, the capture factor 
does not alter. In other words, the capture factor does not depend on the 
water depth when it is around its maximum value. 

3. Sensitivity analysis 

Based on previous studies, in addition to the flap design, the location 
of the flap relative to the water surface (freeboard) and its elevation 
relative to the flume bed (flap bottom elevation) play a significant role in 
extracting energy from the wave energy converter. This study measures 
the sensitivity of the model to various parameters related to the flap 
design including upper part width of the flap, lower part width of the 
flap, the freeboard, and the flap bottom elevation. Moreover, as a novel 
idea, we propose that the flap widths differ in the lower and upper parts. 
In Fig. 10, as an example, a flap with an upper thickness of 100 (mm) and 
a lower thickness of 50 (mm) and a flap with an upper thickness of 50 
(mm) and a lower thickness of 100 (mm) are shown. The influence of 
such discrepancy between the widths of the upper and lower parts on the 
interaction between the wave and the flap, or in other words on the 
capture factor, is evaluated. To do so, other parameters are remained 
constant, such as the freeboard, the distance between the flap and the 

flume bed, and the wave properties. 
In Fig. 11, models are simulated with distinct upper and lower 

widths. As it is clear in this figure, the first axis depicts the lower part 
width of the flap, the second axis indicates the upper part width of the 
flap, and the colors represent the capture factor values. Additionally, in 
order to consider a sufficient range of change, the flap thickness varies 
from half to double the value of the primary model for each part. 

According to this study, the greater the discrepancy in these two 
parts, the lower the capture factor. It is on account of the fact that when 
the lower part of the flap is thicker than the upper part, and this 
thickness difference in these two parts is extremely conspicuous, the 
inertia against the motion is significant at zero degrees of rotation. 
Consequently, it is difficult to move the flap, which results in a low 
capture factor. Similarly, when the upper part of the flap is thicker than 
the lower part, and this thickness difference in these two parts is 
exceedingly noticeable, the inertia is so great that the flap cannot 
reverse at the maximum degree of rotation. As the results indicate, the 
discrepancy can enhance the performance of the converter if the dif-
ference between these two parts is around 20%. As it is depicted in the 
Fig. 11, the capture factor reaches its own maximum amount, when the 
lower part thickness is from 5 to 6 (cm), and the upper part thickness is 
between 6 and 7 (cm). Consequently, as a result of this discrepancy, less 
material will be used, and therefore there will be less cost. 

As illustrated in Fig. 12, this study examines the effects of freeboard 
(level difference between the flap top and water surface) and the flap 
bottom elevation (the distance between the flume bed and flap bottom) 
on the converter performance. In this diagram, the first axis demon-
strates the freeboard and the second axis on the left side displays the flap 
bottom elevation, while the colors indicate the capture factor. In addi-
tion, the feasible range of freeboard is between − 15 to 15 (cm) due to 
the limitation of the numerical model, so that we can take the wave 
slamming and the overtopping into consideration. Additionally, based 
on the Schmitt model and its scaled model of 1:40 of the base height, the 
flap bottom should be at least 9 (cm) high. Since the effect of surface 
waves is distributed over the depth of the flume, it is imperative to 
maintain a reasonable flap height exposed to incoming waves. Thus, the 
maximum flap bottom elevation is limited to 19 (cm). As the Fig. 12 
pictures, at constant negative values of the freeboard, the capture factor 
is in inverse proportion with the flap bottom elevation, although 
slightly. 

Fig. 9. Tracing the effect of changes in wave period and depth on the OSWEC’s 
capture factor. The color bar represents capture factor values. 

Fig. 10. Dimensions of the flap with different widths. (a): Three dimensional 
and side views of a flap with thicker upper half, (b): Three dimensional and side 
views of a flap with thicker lower half. 

Fig. 11. Effects of changes in the flap thickness in lower and upper parts on the 
capture factor of OSWEC. 
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Furthermore, at constant positive values of the freeboard, the cap-
ture factor fluctuates as the flap bottom elevation decreases while it 
maintains an overall increasing trend. This is on account of the fact that 
increasing the flap bottom elevation creates turbulence flow behind the 
flap, which encumbers its rotation, as well as the fact that the flap sur-
face has less interaction with the incoming waves. Furthermore, while 
keeping the flap bottom elevation constant, the capture factor increases 
by raising the freeboard. This is due to the fact that there is overtopping 
with adverse impacts on the converter performance when the freeboard 
is negative and the flap is under the water surface. Besides, increasing 
the freeboard makes the wave slam more vigorously, which improves 
the converter performance. 

Adding ribs to the flap surface, as shown in Fig. 13, is a novel idea 
that is investigated in the next section. To achieve an optimized design 
for the proposed geometry of the flap, we determine the optimal number 
and dimensions of ribs based on the flap properties as our decision 
variables in the optimization process. As an example, Fig. 13 illustrates a 
flap with 3 ribs on each side with specific dimensions. 

Fig. 14 shows the flow velocity field around the flap jointed to the 
flume bed. During the oscillation of the flap, the pressure on the upper 
and lower surfaces of the flap changes dynamically due to the changing 
angle of attack and the resulting change in the direction of fluid flow. As 
the flap moves upwards, the pressure on the upper surface decreases, 
and the pressure on the lower surface increases. Conversely, as the flap 
moves downwards, the pressure on the upper surface increases, and the 
pressure on the lower surface decreases. This results in a cyclic pressure 
variation around the flap. Under certain conditions, the pressure field 
around the flap can exhibit significant variations in magnitude and di-
rection, forming vortices and other flow structures. These flow 

structures can affect the performance of the OSWEC by altering the lift 
and drag forces acting on the flap. 

4. Design optimization 

We consider optimizing the design parameters of the flap of con-
verter using a nature-based swarm optimization method, that fall in the 
category of metaheuristic algorithms [45]. Accordingly, we choose four 
state-of-the-art algorithms to perform an optimization study. Then, 
based on their performances to achieve the highest capture factor, one of 
them will be chosen to be combined with the Hill Climb algorithm to 
carry out a local search. Therefore, in the remainder of this section, we 
discuss the search process of each algorithm and visualize their perfor-
mance and convergence curve as they try to find the best values for 
decision variables. 

4.1. Metaheuristic approaches 

As the first considered algorithm, the Gray Wolf Optimizer (GWO) 
algorithm simulates the natural leadership and hunting performance of 
gray wolves which tend to live in colonies. Hunters must obey the alpha 
wolf, the leader, who is responsible for hunting. Then, the beta wolf is at 
the second level of the gray wolf hierarchy. A subordinate of alpha wolf, 
beta stands under the command of the alpha. At the next level in this 
hierarchy, there are the delta wolves. They are subordinate to the alpha 
and beta wolves. This category of wolves includes scouts, sentinels, el-
ders, hunters, and caretakers. In this ranking, omega wolves are at the 
bottom, having the lowest level and obeying all other wolves. They are 
also allowed to eat the prey just after others have eaten. Despite the fact 

Fig. 12. Effects of changes in flap displayed bottom elevation on the Cap-
ture factor. 

Fig. 13. 3D view (a) and 2D side views (b,c) of the flap of OSWEC with three added ribs, the optimal number of ribs are.  

Fig. 14. Flow velocity field around the WEC flap (side view).  
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that they seem less important than others, they are really central to the 
pack survival. Since, it has been shown that without omega wolves, the 
entire pack would experience some problems like fighting, violence, and 
frustration. In this simulation, there are three primary steps of hunting 
including searching, surrounding, and finally attacking the prey. 
Mathematically model of gray wolves’ hunting technique and their so-
cial hierarchy are applied in determined by optimization this study. As 
mentioned before, gray wolves can locate their prey and surround them. 
The alpha wolf also leads the hunt. Assuming that the alpha, beta, and 
delta have more knowledge about prey locations, we can mathemati-
cally simulate gray wolf hunting behavior. Hence, in addition to saving 
the top three best solutions obtained so far, we compel the rest of the 
search agents (also the omegas) to adjust their positions based on the 
best search agent. Encircling behavior can be mathematically modeled 
by the following equations: [46]. 

D→= |C→⋅ Xp
̅→

(t) − X→(t)| (12)  

X→(t + 1) = Xp
̅→

(t) − A→⋅D→ (13)  

C→= 2.r2
→ (14)  

A→= 2 a→⋅r1
→− a→ (15)  

where X→ indicates the position vector of gray wolf, Xp
̅→ defines the 

vector of prey, t indicates the current iteration, and A→ and C→are coef-
ficient vectors. To force the search agent to diverge from the prey, we 
use A→ with random values greater than 1 or less than − 1. In addition, C 
→ contains random values in the range [0,2], and r→ 1 and r2

→ are random 
vectors in [0,1]. The second considered technique is the Moth Flame 
Optimizer (MFO) algorithm. This method revolves around the moths’ 
navigation mechanism, which is realized by positioning themselves and 
maintaining a fixed angle relative to the moon while flying. This effec-
tive mechanism helps moths to fly in a straight path. However, when the 
source of light is artificial, maintaining an angle with the light leads to a 
spiral flying path towards the source that causes the moth’s death [47]. 
In MFO algorithm, moths and flames are both solutions. The moths are 
actual search agents that fly in hyper-dimensional space by changing 
their position vectors, and the flames are considered pins that moths 
drop when searching the search space [48]. The problem’s variables are 
the position of moths in the space. Each moth searches around a flame 
and updates it in case of finding a better solution. The fitness value is the 
return value of each moth’s fitness (objective) function. The position 
vector of each moth is passed to the fitness function, and the output of 
the fitness function is assigned to the corresponding moth. With this 
mechanism, a moth never loses its best solution [49]. Some attributes of 
this algorithm are as follows:  

• It takes different values to converge moth in any point around the 
flame.  

• Distance to the flame is lowered to be eventually minimized.  
• When the position gets closer to the flame, the updated positions 

around the flame become more frequent. 

As another method, the Multi-Verse Optimizer is based on a multi-
verse theory which proposes there are other universes besides the one in 
which we all live. According to this theory, there are more than one big 
bang in the universe, and each big bang leads to the birth of a new 
universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three 
phenomena in cosmology: white holes, black holes, and wormholes. A 
white hole has never been observed in our universe, but physicists 
believe the big bang could be considered a white hole [51]. Black holes, 
which behave completely in contrast to white holes, attract everything 
including light beams with their extremely high gravitational force [52]. 
In the multiverse theory, wormholes are time and space tunnels that 

allow objects to move instantly between any two corners of a universe 
(or even simultaneously from one universe to another) [53]. Based on 
these three concepts, mathematical models are designed to perform 
exploration, exploitation, and local search, respectively. The concept of 
white and black holes is implied as an exploration phase, while the 
concept of wormholes is considered as an exploitation phase by MVO. 
Additionally, each solution is analogous to a universe, and each variable 
in the solution represents an object in that universe. Furthermore, each 
solution is assigned an inflation rate, and the time is used instead of 
iterations. Following are the universe rules in MVO:  

• The possibility of having white hole increases with the inflation rate.  
• The possibility of having black hole decreases with the inflation rate.  
• Objects tend to pass through black holes more frequently in universes 

with lower inflation rates. 
• Regardless of inflation rate, wormholes may cause objects in uni-

verses to move randomly towards the best universe [54] 

Modeling the white/black hole tunnels and exchanging objects of 
universes mathematically was accomplished by using the roulette wheel 
mechanism. With every iteration, the universes are sorted according to 
their inflation rates, then, based on the roulette wheel, the one with the 
white hole is selected as the local extremum solution. This is accom-
plished through the following steps: 

Assume that 

xj
i =

{
xj

k r1 < NI(Ui)
xj

ir1 ≥ NI(Ui)
(16) 

Where xj
i represents the jth parameter of the ith universe, Ui indicates 

the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 
is a random number in [0,1], and j xk shows the jth parameter of the kth 
universe selected by a roulette wheel selection mechanism [54]. It is 
assumed that wormhole tunnels always exist between a universe and the 
best universe formed so far. This mechanism is as follows: 

xj
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if r2 < WEP :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xj+

TDR × ((ubj − lbj) × r4 + lbj) r3 < 0.5
Xj−

TDR × ((ubj − lbj) × r4 + lbj) r3 ≥ 0.5
else : xj

i

(17)  

where Xj indicates the jth parameter of the best universe formed so far, 
TDR and WEP are coefficients, where Xj indicates the jth parameter of 
the best universelbjshows the lower bound of the jth variable, ubj is the 
upper bound of the jth variable, and r2, r3, and r4 are random numbers 
in [0,1] [54]. 

Finally, one of the newest optimization algorithms is WOA. The WOA 
algorithm simulates the movement of prey and the whale’s discipline 
when looking for their prey. Among several species, Humpback whales 
have a specific method of hunting [55]. Humpback whales can recognize 
the location of prey and encircle it before hunting. The optimal design 
position in the search space is not known a priori, and the WOA algo-
rithm assumes that the best candidate solution is either the target prey or 
close to the optimum. This foraging behavior is called the bubble-net 
feeding method. Two maneuvers are associated with bubbles: upward 
spirals and double loops. A unique behavior exhibited only by hump-
back whales is bubble-net feeding. In fact, The WOA algorithm starts 
with a set of random solutions. At each iteration, search agents update 
their positions for either a randomly chosen search agent or the best 
solution obtained so far [56,55]. When the best search agent is deter-
mined, the other search agents will attempt to update their positions 
toward that agent. It is important to note that humpback whales swim 
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around their prey simultaneously in a circular, shrinking circle and 
along a spiral-shaped path. By using a mathematical model, the spiral 
bubble-net feeding maneuver is optimized. The following equation 
represents this behavior: 

X→(t + 1) = D′
̅→

⋅ebl⋅cos(2πl)+ X*
̅→

(t) (18)  

where: 

D′
̅→

= | X*
̅→

(t) − X→(t)| (19)  

X→(t+ 1) indicates the distance of the it h whale to the prey (best solution 
obtained so far),b is a constant for defining the shape of the logarithmic 
spiral, l is a random number in [− 1, 1], and dot (.) is an element-by- 
element multiplication [55]. 

Comparing the four above-mentioned methods, simulations are run 
with 10 search agents for 400 iterations. In Fig. 15, there are 20 plots the 
optimal values of different parameters in optimization algorithms. The 
five parameters of this study are freeboard, bottom elevations, number 
of ribs on the converter, rib thickness, and rib Height. The optimal value 
for each was found by optimization algorithms, naming WOA, MVO, 
MFO, and GWO. By looking through the first row, the freeboard 
parameter converges to its maximum possible value in the optimization 
process of GWO after 300 iterations. Similarly, MFO finds the same 
result as GWO. In contrast, the freeboard converges to its minimum 
possible value in MVO optimizing process, which indicates positioning 
the converter under the water. Furthermore, WOA found the optimal 

value of freeboard as around 0.02 after almost 200 iterations. In the 
second row, the bottom elevation is found at almost 0.11 (m) in all al-
gorithms; however, the curves follow different trends in each algorithm. 
The third row shows the number of ribs, where results immediately 
reveal that it should be over 4. All algorithms coincide at 5 ribs as the 
optimal number in this process. The fourth row displays the trends of 
algorithms to find optimal rib thickness. MFO finds the optimal value 
early and sets it to around 0.022, while others find the same value in 
higher iterations. Finally, regarding the rib height, MVO, MFO, and 
GWO state that the optimal value is 0.06 m, but WOA did not find a 
higher value than 0.039. 

4.2. HCMVO Bi-level approach 

Despite several strong search characteristics of MVO and its high 
performance in various optimization problems, it suffers from a few 
deficiencies in local and global search mechanisms. For instance, it is 
trapped in the local optimum when wormholes stochastically generate 
many solutions near the best universe achieved throughout iterations, 
especially in solving complex multimodal problems with high di-
mensions [57]. Furthermore, MVO needs to be modified by an escaping 
strategy from the local optima to enhance the global search abilities. To 
address these shortages, we propose a fast and effective meta-algorithm 
(HCMVO) to combine MVO with a Random-restart hill-climbing local 
search. This meta-algorithm uses MVO on the upper level to develop 
global tracking and provide a range of feasible and proper solutions. The 
hill-climbing algorithm is designed to develop a comprehensive 

Fig. 15. Tracing the change of freeboard (first row), bottom elevation (second row), number of ribs (third row), rib thickness (forth row), and rib height (fifth row) 
by each optimization method. 
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neighborhood search around the best-found solution proposed by the 
upper-level (MVO) when MVO is faced with a stagnation issue or falling 
into a local optimum. The performance threshold is formulated as 
follows.   

Algorithm 1: Hill Climb Multiverse Optimization 

01: procedure HCMVO 
02: N = 30, M = 5▹Population size and performance index 
03: S = {〈F1,B1,N,R,H1〉,…〈FN ,B2,N,R,HN〉}⇒ lbN

1 ⩽S⩽ubN 

04: Initialize parameters WER,TDR,WEP , Best u,MaxiterN ▹ 
Wormhole existence probability (WEP)

05: SU = sort(Si)

06: NI = Normalize the inflation rate SI 

07: for iter in [1,⋯,Maxiter ] do 
08: for i in [1,⋯,N] do 
09: Update WEP,TDR, Black HoleIndex = i 
10: for jin[1,⋯,M]do 
11: r1 = rand()
12: if r1 ≤ NI(Ui) then 
13: White Hole Index = Roulette Wheel Selection (− NI)

14: U(Black HoleIndex , j) = SU(White HoleIndex , j)
15: end if 
16: r2 = rand([0, I])
17: if r2 ≤ WEP then 
18: r3 = rand(), r4 = rand()
19: if r3 < 0.5 then 
20: ω1 = ((ub(j) − lb(j))× r4 + lb(j))
21: U(i, j) = Bestu(j) + TDR × ω 
22: else 
23: U(i, j) = Bestu(j) − TDR × ω 
24: end if 
25: end if 
26: end for 
27: end for 
28: THD = Eval([U1,U2,⋯,UNp ])

29: BestTHDitr = Max(THD)

30: 
Δ Best THD =

∑M
k=1

(
Best TIIDk − Best TIIDk− 1

)

M 
31: if Δ Best THD<Tr then ▹Perform hill climbing local search 
32: Best THD = Hill − climbing ( Best THD)

33: end if 
34: end for 
35: return U, Best THD▹Final configuration 
36: end procedure  

Δ Best THD =

∑M
k=1

(
Best THDk − Best THDk− 1

)

M
(20)  

where BestTHDis the best-found solution per generation, andM is related 
to the domain of iterations to compute the average performance of MVO. 
If the proposed best solution by the local search is better than the initial 
one, the global best of MVO will be updated. HCMVO iteratively runs hill 
climbing when the performance of MVO goes down, each time with an 
initial condition to prepare for escaping such undesirable situations. In 
order to get a better balance between exploration and exploitation, the 
search step size linearly decreases as follows: 

St = St −

(
iter

Maxiter
St

)

+ 1 (21)  

where iter and Maxiter are the current iteration and maximum number of 
evaluation, respectively. St stands for the step size of the neighborhood 
search. Meanwhile, this strategy can improve the convergence rate of 
MVO compared with other algorithms. 

Algorithm 1 shows the technical details of the proposed optimization 
method (HCMVO). The initial solution includes freeboard (F), bottom 
elevation (B), number of ribs (Nr), rib thickness (R), and rib height(H). 

5. Conclusion 

The high trend of diminishing worldwide energy resources has 
entailed a great crisis upon vulnerable societies. To withstand this effect, 

developing renewable energy technologies can open doors to a more 
reliable means, among which the wave energy converters will help the 
coastal residents and infrastructure. This paper set out to determine the 
optimized design for such devices that leads to the highest possible 
power output. The main goal of this research was to demonstrate the 
best design for an oscillating surge wave energy converter using a novel 
metaheuristic optimization algorithm. In this regard, the methodology 
was devised such that it argued the effects of influential parameters, 
including wave characteristics, WEC design, and interaction criteria. 

To begin with, a numerical model was developed in Flow 3D soft-
ware to simulate the response of the flap of a wave energy converter to 
incoming waves, followed by a validation study based upon a well- 
reputed experimental study to verify the accuracy of the model. Sec-
ondly, the hydrodynamics of the flap was investigated by incorporating 
the turbulence. The effect of depth, wave height, and wave period are 
also investigated in this part. The influence of two novel ideas on 
increasing the wave-converter interaction was then assessed: i) 
designing a flap with different widths in the upper and lower part, and ii) 
adding ribs on the surface of the flap. Finally, four trending single- 
objective metaheuristic optimization methods. 

The implementation details of the hill-climbing algorithm applied in 
HCMPA can be seen in Algorithm 2. One of the critical parameters isg,
which denotes the resolution of the neighborhood search around the 
proposed global best by MVO. If we set a small step size for hill-climbing, 
the convergence speed will be decreased. On the other hand, a large step 
size reinforces the exploration ability. Still, it may reduce the exploita-
tion ability and in return increase the act of jumping from a global op-
timum or surfaces with high-potential solutions. Per each decision 
variable, the neighborhood search evaluates two different direct 
searches, incremental or decremental. After assessing the generated 
solutions, the best candidate will be selected to iterate the search algo-
rithm. It is noted that the hill-climbing algorithm should not be applied 
in the initial iteration of the optimization process due to the immense 
tendency for converging to local optima. Meanwhile, for optimizing 
largescale problems, hill-climbing is not an appropriate selection. In 
order to improve understanding of the proposed hybrid optimization 
algorithm’s steps, the flowchart of HCMVO is designed and can be seen 
in Fig. 16. 

Fig. 17 shows the observed capture factor (which is the absorbed 
energy with respect to the available energy) by each optimization al-
gorithm from iterations 1 to 400. The algorithms use ten search agents in 
their modified codes to find the optimal solutions. While GWO and MFO 
remain roughly constant after iterations 54 and 40, the other three al-
gorithms keep improving the capture factor. In this case, HCMVO and 
MVO worked very well in the optimizing process with a capture factor 
obtained by the former as 0.594 and by the latter as 0.593. MFO almost 
found its highest value before the iteration 50, which means the 
exploration part of the algorithm works out well. Similarly, HCMVO 
does the same. However, it keeps finding the better solution during the 
optimization process until the last iteration, indicating the strong 
exploitation part of the algorithm. GWO reveals a weakness in explo-
ration and exploitation because not only does it evoke the least capture 
factor value, but also the curve remains almost unchanged throughout 
350 iterations. 

Fig. 18 illustrates complex interactions between the five optimiza-
tion parameters and the capture factor for HCMVO (a), MPA (b), and 
MFO (c) algorithms. The first interesting observation is that there is a 
high level of nonlinear relationships among the setting parameters that 
can make a multi-modal search space. The dark blue lines represent the 
best-found configuration throughout the optimisation process. Based on 
both HCMVO (a) and MVO (b), we can infer that the dark blue lines 
concentrate in a specific range, showing the high convergence ability of 
both HCMVO and MVO. However, MFO (c) could not find the exact 
optimal range of the decision variables, and the best-found solutions per 
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generation distribute mostly all around the search space.   
Algorithm 2: Hill Climb Multiverse Optimization 

01: procedure HCMVO 
02: Initialization 
03: Initialize the constraints lbd

1,ubd
1 

04: Sd
1 =

(
Mind

1 + Maxd
1
)/

g▹Compute the step size, g is search resolution 
05: Sol1 = {〈F,B,N,R,H〉} ▹ Initial solution 
06: ( fitness 1) = Eval(Sol1)▹ Evaluate the solution 
07: Main loop 
08: for iter ≤ Maxita= do 
09: Tet = Tet ± St 

10: while t ≤ len(Sol1) do 
11: Tet = Tet + S,▹ Neighborhood search 
12: 

(
fitness titert

)
= Eval(Tet)

(continued on next column)  

(continued )  

Algorithm 2: Hill Climb Multiverse Optimization 

13: t = t + 1 
14: end while 
15: 〈Maxfi , Index xmax〉 = Max( fitness )

16: Solitev =

Tet(Indexmax ) ▹ Select the best feasible solution and update the design 
17: 

St = St −
( iter
Max

St

)

+ 1▹St linearly reduced 

18: end for 
19: return Soliter,Maxf 

20: end procedure  

were utilized to illuminate the optimum values of the design parameters, 
and the best method was chosen to develop a new algorithm that per-
forms both local and global search methods. 

The correlation between hydrodynamic parameters and the capture 
factor of the converter was supported by the results. For any given water 
depth, the capture factor increases as the wave period increases, until a 
certain wave period value (6 s) is reached, after which the capture factor 
gradually decreases. It is expected since the flap cannot oscillate effec-
tively when the wavelength is too short for a certain water depth. 
Conversely, when the wavelength is too long, the capture factor de-
creases. Furthermore, under a constant wave period, increasing the 
water depth does not affect the capture factor. Regarding the sensitivity 
analysis, the study found that increasing the flap bottom elevation 
causes turbulence flow behind the flap and limitation of rotation, which 
leads to less interaction with the incoming waves. Furthermore, while 
keeping the flap bottom elevation constant, increasing the freeboard 
improves the capture factor. Overtopping happens when the freeboard is 
negative and the flap is below the water surface, which has a detrimental 
influence on converter performance. Furthermore, raising the freeboard 
causes the wave impact to become more violent, which increases con-
verter performance. 

Fig. 16. The flowchart of HCMVO Bi-level approach.  

Fig. 17. Convergence curve for GWO, MFO, MVO, WOA, HCMVO optimization 
methods over the course of capture factor. 
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In the last part, we discussed the search process of each algorithm 
and visualized their performance and convergence curves as they try to 
find the best values for decision variables. Among the four selected 
metaheuristic algorithms, the Multi-verse Optimizer proved to be the 
most effective in achieving the best answer in terms of the WEC capture 
factor. However, the MVO needed modifications regarding its escape 
approach from the local optima in order to improve its global search 
capabilities. To overcome these constraints, we presented a fast and 
efficient meta-algorithm (HCMVO) that combines MVO with a Random- 
restart hill-climbing local search. On a higher level, this meta-algorithm 
employed MVO to generate global tracking and present a range of 
possible and appropriate solutions. Taken together, the results demon-
strated that there is a significant degree of nonlinearity among the setup 
parameters that might result in a multimodal search space. Since MVO 
was faced with a stagnation issue or fell into a local optimum, we con-
structed a complete neighborhood search around the best-found solution 
offered by the upper level. In sum, the newly-developed algorithm 
proved to be highly effective for the problem compared to other similar 
optimization methods. The strength of the current findings may 
encourage future investigation on design optimization of wave energy 
converters using developed geometry as well as the novel approach. 
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