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A B S T R A C T   

In recent decades, investing in renewable and eco-friendly energy technologies, such as replacing clean energy 
systems instead of traditional ones and equipment management, is an interesting and practical topic in all 
sectors. This research analyzes the optimization of a hydro plant, wind turbines, and photovoltaic (PV) panels 
with a careful examination of three scenarios in the Hinnoya region, Norway. Three consumption scenar-
ios—including an industrial/domestic load scenario, transportation load, and household load alone—for this 
region are considered. HOMER software is used to simulate and analyze the techno-economic performance of 
solar panels/wind turbines/grid/batteries and converters. The results of this research show that using renewable 
and eco-friendly systems in accordance with the region’s potential leads to a lower cost of electricity generation. 
The COE production is at least 50% less than the normal sales price of the electricity grid. The use of electric grid 
exchanges results in energy modification at night. The potential for the use of onshore wind turbines is more than 
offshore turbines. The results also indicate that using renewable systems in the household field can reduce the 
COE by nearly 70% (0.0296 €/kWh), and in other energy fields (transportation and industrial) can diminish the 
COE by nearly 50% (0.055 €/kWh). Thus, increasing the percentage of employing renewable and eco-friendly 
energy systems leads to reduce greenhouse gas (GHG) emissions (particularly carbon dioxide).   

1. Introduction 

Islands, as remote and isolated places, are in demand for becoming 
self-reliant in terms of energy. Particular attention has been given to this 
subject matter over the past few decades, and an adequate number of 
ongoing studies are seeking to provide effective and practical strategies 
[1,2]. Different solutions have been offered to address self-sufficiency, 
green-energy dependency, and carbon mitigation in remote and iso-
lated locations. Fortunately, renewable energy sources (RESs), such as 
solar, wind, and geothermal, are the remedy to this issue. However, 
employing these eco-clean energies has to be technically, environmen-
tally, and economically sound [3]. 

All different RESs are converted into either electrical or thermal 
energy. Various system arrangements can be devised depending on 
which type of energy is available. In the first case, the foremost intention 
is to supply electricity for lighting, heating, cooling, freshwater, and 
even transportation [4]. However, heat-driven systems can produce 

heating, cooling, and potable water via thermal energy. On the other 
hand, the intermittent nature of RESs (e.g., wind and solar) makes using 
energy storage systems (ESSs) necessary [5]. Hydrogen energy storage, 
as a chemical ESS, is an enabling technology for electricity generation in 
different sectors [6,7]. Burning hydrogen in fuel cell systems also pro-
vides heat to drive other systems for heating, cooling, and freshwater 
production [8]. 

Shahverdian et al. [9] presented 3E analysis in a hybrid system 
including photovoltaic (PV), Electrolyze, and polymer electrolyte 
membrane fuel cells to provide electricity in an off-grid application. 
Their findings show the levelized COE was improved to 0.29 $/kWh, and 
the system’s energy production was increased by 18.32%. 

Technical and economic indicators give a various range of options to 
design and develop different multi-generation systems. Yet, determining 
the most thermodynamically efficient and cost-effective system cannot 
be effortlessly obtained [10]. Multi-objective optimization (MOO) is one 
of the interesting methods to consider energy-exergy efficiency in 
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renewable and eco-friendly energy systems. The effect of the innovation 
dimension on exergy, energy, and environment, plus the economy was 
considered by Sohani et al. [11]. They used the MOO for analyzing the 
annual yield (AYI) and annual CO2 saving (ACDS). Their findings show 
that the annual average exegertic efficiency (AEXEF), AYI, and ACDS 
were respectively enhanced about 5.56%, 28.01%, 28.01% via applying 
the MOO. Mahmoudan et al. [12] indicate the maximum exergy and 
minimum energy price in the proposed system containing geothermal 
and solar with a thermoelectric generator, showing that the exergy ef-
ficiency can reach 35.2% by applying the MOO. 

Launching the smart monitoring system can help increase efficiency 
and reduce energy production costs in the region. Renewable energy 
production systems have been used in recent years in providing energy 
for distant and isolated areas, islands, and so on. The techno-economic 
feasibility study of the hybrid, integrated renewable energy connected 
to the electricity grid has been one of the favorite issues for researchers 
today. These types of feasibility studies are based on different simulators 
to determine the amount of energy requirement and balance [13–16]. 
EnergyPlus and TRNSYS are the most exciting software for designing 
renewable systems and optimizing them in buildings and power plants. 
They are also very useful tools to design net-zero buildings and energy 
systems [17,18]. 

Modeling and numerical simulations have been done to find the best 
performance of wind turbines and PV panels in recent years, so that good 
progress has been made [19–21]. Today, the design of intelligent energy 
systems is essential especially for a city and determining the amount of 
the required panel in terms of the region’s potential. These systems 
reduce energy costs and are helpful for energy optimization and man-
agement [22]. 

The simulation results of artificial intelligence (AI) on a PV/wind/ 
fuel cell/hydrogen storage system demonstrate that particle swarm 
optimization (PSO) is a good algorithm for sizing hydrogen storage 
system than other algorithms such as simulated annealing (SA), tabu 
search (TS), and harmony search (HS). Although PSO has the most 
robustness [23,24], for the system included PV/wind/battery, artificial 
bee swarm optimization (ABSO) is a practical algorithm in comparison 
to PSO, TS, and HS [25]. 

Energy systems can reduce pollution and energy consumption when 
they combine with various renewable resources (e.g., wind, solar, 
geothermal) and energy storage systems (e.g., batteries, hydrogen tanks, 
and the compressed air storage systems). The use of batteries and 
hydrogen tanks can help energy balance during courier and non-courier 
hours [26,27]. The effects of decarbonization in the production process 
were compared in three different scenarios of carbon reduction plus 
static scenario, and the results showed that the houses in the past have a 
high potential to deal with global warming potential, up to 70% 
compared to static scenario [28]. 

Solar PV systems connected to the power grid in various countries 
are investigated, and the simulation results obtained from MATLAB 
show that the connection of the PV power plant to the electricity grid 
can cause grid stability [29]. These studies show that by optimizing the 
purchase and sale of electricity from the power grid, it can be used up to 
64% more than the region’s energy potential, resulting in reducing 35% 
of carbon dioxide content [30]. 

Finding the best solar panels’ installation angle and determining the 
yield coefficient of PV panels in renewable systems is essential. Past 
studies show that increasing reflective conductivity can increase up to 
30% of the panel efficiency [31,32]. The economic analysis of the con-
struction of solar power plants, such as the net present value (NPV) in 
terms of the project’s lifetime, has been considered by a number of re-
searchers [15,33,34], They have examined the COE, and the return on 
investment (ROI) in various scenarios [35], and compared the economic 
indicators with one another, and selected the best scenario in terms of 
energy production and energy prices. Dehghani-Sanij et al. [36–38] 
predicted the potential of using wind energy in Canada by 2040. They 
found a relation between the wind power capacity factor and levelized 

cost of energy (LCOE) based on different forecasting scenarios. They also 
showedthat the most regions of Canada have a highly promising po-
tential to utilize wind energy. 

The ROI for a 5-kW power plant of rooftop in Turkey is about 14 
years, with an internal return rate of almost 2.01 over the project’s 
lifetime [39]. An investigation in Australia indicate that although the 
use of grid/battery/solar panels and converter can reduce 95% of carbon 
dioxide and 90% of the payment costs, using solar PV panels indepen-
dently to supply electricity is not still logical [40]. Results of research in 
Catalonia, Spain, show that roof potential for electricity generation by 
PVs could provide the municipalities 8–30% of residential electricity 
demand, although energy demand of dwellings depends on the charac-
teristics of the buildings [41]. The use of hybrid systems has expanded in 
many European countries, such as Norway and Italy. European countries 
have optimized power-generating systems for the implementation of 
climate change [42,43]. The feasibility of combined wind turbines and 
solar PV panels in each region is carried out based on wind beam and 
wind speed in that region [44–46]. 

Optimizing and analyzing the sensitivity of renewable energy sys-
tems have been done in many papers using MATLAB and HOMER soft-
ware. The sensitivity of the systems and scenarios considered for any 
region can directly indicate the amount of energy production and its 
surplus, in addition to estimating the amount of income and profit from 
energy sales to the electricity grid [47,48]. Although the simulation of 
hybrid systems may be technically justified, it cannot always be justified 
economically; for example, the simulation with MATLAB combines 
wave and PV systems in three coastal points in Iran, showing that energy 
production on the Caspian sea coast reaches 4.83 USD/kWh; thus, this 
system is not cost-effective in Iran [49]. The importance of using a 
renewable energy system instead of a traditional one is undeniable. Most 
researchers believe solar energy is a reliable and accessible source that 
could provide electricity and thermal energy. Investigations on using 
solar collectors in different climates of Iran show that Mediterranean 
climate has the highest thermal efficiency (71.97%), humid continental 
climate has the highest exergy efficiency (22.01%) in compression with 
other climates [50]. The use of renewable hybrid systems to meet the 
energy needs of the areas that are not connected to the power grid is an 
effective approach. The selection of the best equipment and power 
generator in accordance with the capacity of the area plays significant 
role in reducing the COE production—usually in areas that are not 
linked to the grid, such as the islands and forest areas—or the cost of the 
electricity grid development to these areas, but not cost savings [13, 
51–53]. 

According to the reviews conducted in literature, there is a gap in 
renewable energy research to cover a comprehensive economic and 
technical analysis in the grid-connected system with multilateral sensi-
tivity analysis. This research combines several renewable systems (PV, 
wind turbine, hydro-turbine, battery, and power grid) in Hinnoya city, 
Norway. Three different scenarios have been selected due to the various 
loads of the region, and sensitivity analyses in the supply of three sce-
narios (household demand, transportation demand, demand of industry 
and household together) have been done. Given that hydro-turbine is 
the basis of the simulation in each plan, all scenarios have been 
considered the hydro-turbine. In this study, the consumption of this 
region (i.e., Hinnoya, Norway) has been stimulated with the real and 
existing data of the city for the first time. 

Considering the current state of knowledge in this area, a Systematic 
Literature Review (SLR) like procedure was conducted to not only find 
the research gap but also to highlight the potential novelty of the current 
work. In order to do this by exploring the scientific database of Web of 
science through SLR protocol, authors tried to find works related to grid- 
connected systems flexibility and optimization through the following 
query code in WoS platform:  

ALL=((grid-connected) AND (Energy Systems) AND (optimization) AND 
(Flexibility))                                                                                         
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Then, the results were filtered only to research articles not earlier 
than 2019. It showed more than 150 papers within the last 5 years in the 
selected area. Within the normal steps of SLR according to the latest 
standard of PRISMA, using the relevancy check the numbers dropped to 
49 to be considered for a deep analysis. These papers then were sub-
jected to filtration according to the selection criteria (in Fig. 1). The final 
selection of the papers consists of 28 papers for further analyses. Taking 
a deeper look at these papers, it revealed that this topic has been 
increasingly mentioned in the paper where papers in 2023 even now 
(before the end of August) is more than before (Fig. 2). 

In the realm of scholarly exploration, it is of paramount importance 
to delve into the intricacies that underlie the research landscape. In this 
context, the endeavor to illuminate the research gap takes center stage, 
serving as a crucial foundation upon which the edifice of knowledge is 
constructed. Concurrently, directing our gaze towards the novelty 
inherent in a particular scholarly undertaking not only augments the 
intellectual discourse but also serves as a catalyst for intellectual 
advancement. To traverse this intellectual terrain, a comprehensive 
analysis was undertaken, meticulously scrutinizing the final subset of 
research papers. This analytical expedition yielded a tangible outcome, 
manifested in the form of a succinct yet illuminating tableau, designated 
as "Table 1." The contents of this tableau stand as a testament to the 
multifaceted nature of the scholarly realm, encapsulating within its 
confines the essence of research gaps and the vibrant novelty that 
various scholarly contributions bring to the fore. By engaging in this 
analytical pursuit, we aim not only to spotlight the gaps in the current 
tapestry of knowledge but also to underscore the innovative spirit that 
propels researchers towards uncharted domains. Thus, the creation of 
"Table 1" emerges not merely as a static representation but as a dynamic 
embodiment of the scholarly journey, beckoning us to unravel its layers 
and glean insights that extend beyond the surface, thereby enriching our 
understanding of the intellectual pursuit at hand. 

As it is shown in Table 1, the novelty of this research is the exami-
nation of different scenarios (industrial, household, and transportation) 
separately, plus the effect of each consumption scenario on determining 
the capacity and the cost of the renewable system. Separate and inde-
pendent examination of each scenario will reduce the interference of 
peak hours and have an optimal effect on the investment cost. This 

research explicitly examines the importance of each plan by focusing on 
meeting the energy demand in that scenario. This study answers the 
question of which plan imposes a less electrical load on the power grid as 
well as helps the power grid. One of the benefits and innovations of this 
study can be the proposed analysis in each scenario that can have a 
policy for the construction of different power plants in areas with similar 
potential and resources, and it can be predicted that how increasing the 
amount of benefit from renewable systems can reduce energy prices. 

It is worth mentioning that the development of the integrated 
structures for RES is also one important aspect to be considered [82] 
along with the decision making support techno-economic analyses 
[83–86]. 

2. Design and simulation 

Simulation of a renewable system to produce clean energy and 
reduce pollution is of high importance in Norway. In this research, 
Hinnoya city has been selected with the geographical coordinates 
68◦19.4′ N and 15◦ 24.2′ E. The amount of energy demand in this city is 
shown in Fig. 4. The household and industrial consumptions are 
approximately calculated to be 60 kWh/day and 6000 kWh/day, 
respectively, and the amount of transport consumption at the peak hours 

Fig. 1. the workflow of SLR procedure.  

Fig. 2. Average energy load during a day.  
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of consumption (from 9 p.m. to 5 a.m.) is 2000 kW, and the rest is the 
500 kW. 

2.1. Scenarios description 

For simulating the system, the wind turbine, PV panel, batteries, and 
a convertor are combined to help the production of a hydro-turbine for 
household, industry, transportation demands. Accordingly, an eco-
nomic, technical, and environmental analysis is performed using 
HOMER software. 

In this regard, it is important to discuss how search space has been 
defined. The search space in the context of HOMER refers to the range of 
possible values and configurations that the optimization algorithm ex-
plores to find the "best" alternative for a given renewable energy system 
design. In HOMER, the search space is defined by specifying the ranges 
or constraints for various parameters and components of the system. For 
wind Turbine it could include a range of different wind turbine models 
with varying capacities, costs, and lifetimes. These parameters help 
HOMER explore different possibilities of wind turbine configurations to 
find the most cost-effective option. For run-of-river Hydro Turbine, it 
involves different options for capacity, cost, and efficiency, which 
HOMER analyzes to determine the optimal configuration. For photo-
voltaic (PV) Panels it includes different configurations of panel capacity 
and cost. The search space for the battery involves different battery 
types, sizes, and costs. Finally, the search space for the converter in-
cludes different options with varying costs and efficiencies. HOMER 
evaluates these options to determine the most suitable converter for the 
system. 

The basis of all scenarios is shown in Fig. 3. In addition, it should be 
noted that the limitations in HOMER simulation can be pointed to the 
lack of separation of simulation in terms of technical and economic 
studies so that the software optimizes and estimates renewable systems 
according to the lowest cost, while with the application of technical 
indicators in cases of the economic justification is not acceptable. 

According to the data received from NTNU (Norwegian University of 
Science and Technology), the industrial and household energy con-
sumption of the Hinnoya are used for the simulation due to three 

scenarios as follows: 
Scenario 1: Simulations based on household consumption, 
Scenario 2: Simulations based on household and industrial 

consumption, 
Scenario 3: Simulations based on transportation consumption. 

2.1.1. Components of scenarios 
According to scenarios 1, 2, and 3, and studies performed on the 

available initial information, the proposed system for optimizing the 
run-of-river hydropower plants is shown in Fig. 5. This system includes 
solar panels, batteries, a converter, and two types of turbines (onshore 
and offshore). The consumption load has been considered for household, 
industrial, and total forms. 

2.2. Conditions of design 

2.2.1. Resources data of the region 
Figs. 6–8 show the changes in wind speed, river water flow, and solar 

irradiation based on the submitted local data and the downloaded 
meteorological data. As shown in Fig. 4, the amount of radiation in 
January and December is almost zero, and no energy is expected to be 
generated by the solar panels. 

As illustrated in Fig. 7, the area has a good potential for using wind 
turbines. The wind speed in January and December is the maximum, so 
choosing a wind turbine complementing a solar panel does make sense. 

The wind speed is obtained at the height of 10 m of the area [87]. 
Fig. 8 shows the flow rate of the river for different months. As shown 

in this figure, the choice of water turbine is in the category of micro- 
turbine systems, based on the data obtained from NTNU. 

2.2.2. Economic characteristics 
The amount of inflation and discount rates in Norway is assumed to 

be 2.17% and 1%, respectively [88]. 

2.2.2.1. Wind turbine. Two wind turbine models are considered: an 
offshore wind turbine model and an onshore wind turbine model. The 

Table 1 
Chronological analysis of the literature.  

Authors Year Uncertainty consideration System capacity System cost Case Study Region 

Li Z et al. [54] 2019  x x x China 
Shabani M et al. [55] x – x x Sweden 
Shah P, and Mehita B [56]  x x – – 
Allani M Y et al. [57] 2020  x x x Tunisia 
Khdhairi S et at [58] x x – – – 
XiaoWei Z et al. [59] x x x – – 
Kokkonda K and Kulkarni P [60] – x – – – 
Hoseinzadeh S and Astiaso Garcia D [61]  x x x Italy 
Zhou Y and Cao S [62] 2021  x  x Hong Kong 
Remache S et al. [63] – x – – – 
Fei Y et al. [64] – x – – – 
Sayeed F et al. [65]  x x – – 
Che Q et al. [66]  x x – – 
Essayeh C and Morstyn T [67] 2022 – – x x UK 
Dong J et al. [68] – x – – – 
Elsir M et al. [69]  x x – – 
Emara D et al. [70] – x – – – 
Vakilifard N et al. [71] x – x x Australia 
Yu W et al. [72] – x x – – 
Hovsapian R et al. [73] – x – – – 
Guo B et al. [74] 2023 – x – – – 
Peng Y et al. [75] – x – – – 
Ahmadi M et al. [76] – x – x Iran 
Perez R et al. [77] – – x x USA 
Rezende GMD et al. [78] – x – – – 
Magni CA et al. [79] x – x x Italy 
Yang L et al. [80]  x x – – 
Ge X et al. [81]  x – – – 
Current study x x x x Norway  
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specifications of the selected turbines with the economic information are 
shown in Table 2. 

2.2.2.2. Run-of-river hydro turbine. Due to the intensity of streamflow in 
the river, a 5-kW hydro-turbine is considered with the specifications 
shown in Tables 3 and 4. 

2.2.2.3. Photovoltaic (PV) panels. According to the past studies, the cost 
of operating a solar power plant in Norway is equal to 2.79 Euros per 
watt. After accounting for the 26% Federal Investment Tax Credit (ITC) 
and other state and local solar incentives, the net price that needs to pay 
for a solar system can fall by thousands of dollars [89]. The amount of 
cost determined for 1 kW panel with a deduction of 26% ITC is equal to 
Table 5. 

2.2.2.4. Battery. In order to adjust the energy during the day and night 
and the energy balance during high and low consumption hours, a 
battery bank is considered. Table 6 shows the economic information of 
the considered batteries. 

2.2.2.5. Grid. Table 7 shows the assumed price for buying and selling 
energy to the electricity grid. 

2.2.2.6. Converter. A converter is used to convert AC to DC and vice 
versa for the energy stored in the battery as well as the energy produced 
in the solar panels. Table 8 displays the economic information of the 
converter used. 

2.2.3. Sensitivity variables 
A sensitivity analysis is performed in the following sections to 

investigate the critical points and estimate economic indicators. Table 9 
illustrates the sensitivity variable and inputs. 

3. Theory and methodology 

3.1. Energy charge calculation 

HOMER calculates the total annual energy charge by using the 
following equation [90]: 

Cgrid . energy=
∑rates

i

∑12

j
Egrid .purchases.i.jCpower.i −

∑rates

i

∑12

j
Egrid .sales.i.jCsellback.i (1)  

where: 
Egrid-purchases,i,j = The amount of energy purchased from the grid in 

month j during the time that rate i applies [kWh]. 

Fig. 3. Fundamental scenarios considered in this research.  
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cpower,i = The grid power price for rate i [$/kWh]. 
Egrid-sales,i,j = The amount of energy sold to the grid in month j during 

the time that rate i applies [kWh]. 
csellback,i = The sellback rate for rate i [$/kWh]. 
If net metering applies and net generation is calculated monthly, 

HOMER determines the total annual energy charge through the equation 
below [57]: 

Cgrid . energy=
∑rates

i

∑12

j

{
Enetgrid .purchases.i.jCpower.i if Enetgrid .purchases.i.j≥0
Enetgrid .purchases.i.jCsellback.i if Enetgrid .purchases.i.j <0

}

(2)  

where. 
Enet-grid-purchases,i,j = The net grid purchases (grid purchases minus grid 

sales) in month j during the time that rate i applies [kWh]. 
cpower,i = The grid power price for rate i [$/kWh]. 
If net metering applies and net generation is calculated annually, 

HOMER calculates the total annual energy charge by using the following 
equation [57]: 

Cgrid . energy=
∑rates

i

{
Enetgrid .purchases.i.jCpower.i if Enetgrid .purchases.i.j≥0
Enetgrid .purchases.i.jCsellback.i if Enetgrid .purchases.i.j <0

}

(3)  

where. 
Enetgridpurchases,i = The annual net grid purchases (grid purchases 

minus grid sales) during the time that rate i applies [kWh]. 
cpower,i = The grid power price for rate i [$/kWh]. 

3.2. Demand charge 

HOMER calculates the total annual (listed after December) grid de-
mand charge by using the equation below [57]: 

Cgrid . energy=
∑rates

i

∑12

j
Pgrid.peak.i.jCdemand. i (4)  

where. 
Pgrid, peak,i,j = The peak hourly grid demand in month j during the time 

that rate i applies [kWh]. 
cdemand,i = The grid demand rate for rate i [$/kW/month]. 

3.3. Maximum battery discharge power calculation 

In each time step, HOMER calculates the maximum amount of power 

Fig. 4. Average energy load during a day.  

Fig. 5. Schematic plan for simulation.  

S. Hoseinzadeh et al.                                                                                                                                                                                                                           



Renewable and Sustainable Energy Reviews 185 (2023) 113658

7

that the storage bank can discharge. It uses this “maximum discharge 
power” when making decisions such as whether the storage component 
can serve the load on its own. The maximum discharge power varies 
from one-time step to the next according to its state of charge and its 
recent charge and discharge history, as determined by the kinetic stor-
age model. 

As described in the kinetic storage model section of the software 
help, the maximum amount of power that the storage bank can 
discharge over a specific length of time is given by Ref. [57]: 

Pbatt. dmax.kbm =
− kcQmax + kQ1e− kΔt + Qkc(1 − e− kΔt)

1 − e− kΔt + c( − kΔt − 1 + e− kΔt)
(5)  

where: 
Q1 = The available energy [kWh] in the storage component at the 

beginning of the time step. 
Q = The total amount of energy [kWh] in the storage component at 

the beginning of the time step. 
Qmax = The total capacity [kWh] of the storage bank 
c = The storage capacity ratio [unitless]. 
k = The storage rate constant [h-1]. 
Δt = The length of the time step [h]. 

HOMER assumes that the discharging losses occur after the energy 
leaves the two-tank system; hence, the storage bank’s maximum 
discharge power is given by Ref. [57]: 

Pbatt.dmax = ηbatt.dPbatt.dmax.kbm (6)  

where ηbatt,d is the storage discharge efficiency. 

4. Results and discussion 

According to the simulations in HOMER, from one million simula-
tions performed in terms of the sensitivity analysis to find the most 
economical design to supply the energy needs of the region for home, 
household and industrial models and transportation as determined in 
Table 10. The capacity designated in terms of the lowest and the most 
optimal system for each model is selected in the geographic coordinates. 

According to the region’s energy needs in all three models, the 
amount of power generation estimation of each component is displayed 
in Table 11; the systems are connected to the power grid in all three 
simulation models, and if necessary, electricity during courier hours 
automatically supplies its power supply. The amount of power provided 
from electricity in all three models has not exceeded 25%, and the lowest 

Fig. 6. Average solar irradiation and clearness diagrams for each month of the year.  

Fig. 7. The average wind speed for each month of the year.  
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amount of household power supply system alone is less than 1%. 
Table 12 shows the power consumption in different sectors, given 

that simulated systems are connected to the electricity grid in all three 
models (household, household and industrial, and transportation). 
When the power consumption of the region is less than production, it 
sells its surplus to the electricity grid and exchange. This will make the 
energy balance in the region minimize the percentage of shortage. 

The exchanges between simulated systems with electricity grids in 
different months of the year are depicted in Table 13. According to this 
table, the highest sales rate and the lowest purchases of the electricity 
grid are related to the home simulated model, with a purchase ratio of 

less than 0.04%. The highest purchase rate is sold to the household and 
industrial model, accounting for 50%. 

Production costs, production capacity factors based on regional po-
tential, as well as working hours of each constituent, can be seen in 
Table 14. Most of the work hours are related to wind turbines, and the 
lowest cost is related to the water-turbine. 

The amount of energy production and consumption in terms of the 
scenarios determined are shown in Figs. 9, 10, and 11. 

4.1. Scenarios 

The most important part of each design and simulation is the sensi-
tivity analysis. With the sensitivity analysis, the effect of changes in the 
designed system can be considered and also obtained possible results in 
different conditions. In this research, a sensitivity analysis was con-
ducted based on climate change, so the impacts of effective changes in 
solar radiation, wind speed, and river flow rate have been studied. The 
rate of these impacts is considered to be 50% growth and decrease, and 

Fig. 8. Streamflow rate of the river in different months.  

Table 2 
Wind turbines’ economic information.   

Quantity Investment cost € Replacement 
€ 

O&M 
€/y 

Lifetime y 

Offshore wind turbine (1 kW) 0,400,600,800, 
1000,1500 

1500 1500 10 30 

Onshore wind turbine (1 kW) 0,400,600,800, 
1200,1500 

1100 1100 10 30  

Table 3 
Run-of-river hydro-turbine’s economic information.   

Quantity Investment cost € Replacement 
€ 

O&M 
€/y 

Lifetime y 

Hydro turbine (5 kW) 1 6500 2000 120 40  

Table 4 
Run-of-river hydro-turbine’s specifications information.  

Available 
head (m) 

Design flow 
rate (L/s) 

Minimum flow 
ratio (%) 

Maximum flow 
ratio (%) 

Efficiency 
(%) 

20 25 20 150 50  

Table 5 
Economic information for photovoltaic (PV) panels.   

Quantity Investment cost € Replacement 
€ 

O&M 
€/y 

Lifetime y 

Photovoltaic (1 kW) 0,400,800,1200, 
1500,2000 

2000 2000 10 25  
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in cases where the sensitivity of the subject is very high, the amount of 
changes to nearly 100% reduction or increase is considered.  

• Scenario 1: Household and industry 

As is shown in Fig. 12, the sensitivity analysis of the renewable 
system designed for the household and industrial model is distinct, with 
different colors. According to Fig. 12, it can be concluded that if the 
wind speed is less than 4.6 m/s, the use of wind turbines is not afford-
able, and if the solar irradiation is less than the value of 2 kWh/m2.day, 
the use of solar panels are not cost-effective. This conclusion is based on 
the assessment of the cost of implementing a particular energy source 
(wind or solar) is within a justifiable budget taking into account factors 
such as initial installation costs, maintenance expenses, expected energy 
production, and potential returns on investment over the project’s life-
time. Also by checking the benefits gained from utilizing the studied 
energy source in the form of comparing the cost per unit of energy 
generated to the prevailing energy market prices. 

In cases where the solar irradiation is higher than 2.06 kWh/m2.day 
but the wind speed is less than 4.6 m/s, a combination of the PVs/grid/ 
hydro is affordable.  

• Scenario 2: Household 

Fig. 13 shows the sensitivity of the household model. As illustrated in 
this figure, due to the low electrical demand in the domain of household 
as well as the potential of the area, there is no economic justification for 
PV panels because of their high costs, and hydro and wind turbines are 
affordable for this scenario.  

• Scenario 3: Transportation 

In Fig. 14, according to the selected system and the size and power of 
the selected components, it is used to meet the need for electric transport 
systems from wind turbine and hydro. Due to the sensitivity analysis of 
this model, it can be seen that a combination of wind/hydro/battery are 
more valuable than the system compound with solar panels, because the 
peak load of transportation systems is at night, and PV panels are not 
reachable for meet this demand. 

4.2. Economic analysis 

Evaluation of each layout, although it may be technically justified, 
an economic justification is of great importance. An effective research is 

justified both economically and technically. In this section, the cost of 
each model to separation of components of each system is provided. 

The salvage value of a component is directly proportional to its 
remaining life. It is also assumed that the salvage value depends on the 
replacement cost rather than the capital cost [57]. Salvage value is 
calculated by: 

S=Crep
Rrem
RComp

(7) 

Rrem is the remaining life of the component at the end of the project 
lifetime, which is given by: 

Rrem =Rcomp −
(
RProj− Rrep

)
(8) 

Rrep is the replacement cost duration, which is determined by: 

Rrep =Rcomp INT
Rproj
Rcomp

(9)  

where Crep, Rcomp, and Rproj are the replacement cost (€), component 
lifetime (year), and project lifetime (year), respectively. INT is a function 
that returns the integer amount of an actual number. The net present 
cost (NPC) of scenario 1 is shown in Table 15. 

As can be seen in Table 15, small costs related to capital and main-
tenance for each component are formed. In the grid area, as can be seen, 
negative values are written, which represents the high sales of electricity 
costs. The NPC of scenarios 2 and 3 is shown in Tables 16 and 17. 

The summary of the NPC for each scenario in each section is shown in 
Table 18. According to this table, the home supply system model has the 
lowest energy price and the highest efficiency and return on capital. 

Given that the amount of the COE is less than the number of energy 
prices, the benefit of reducing the cost and sales price to the consumer is 
equal to Table 19. 

The "Household Scenario" has the lowest cost of energy at €0.0296/ 
kWh, while the "Household and Industry Scenario" has the highest at 
€0.0598/kWh. The "Transportation Scenario" falls in between with 
€0.0557/kWh. The "Transportation Scenario" stands out as the most 
profitable, generating €240,607/yr in profit from electricity sales, pri-
marily due to the significant amount of electricity sold (4,717,793 kWh/ 
yr). On the other hand, the "Household and Industry Scenario" generates 
€64,334/yr, and the "Household Scenario" generates €1606/yr. All sce-
narios have the same energy price of €0.106/kWh. The "Household 
Scenario" has the highest difference between the COE and EP at €0.077/ 
kWh, indicating a higher potential for profit compared to the other 

Table 6 
Economic information of battery.   

Quantity Investment cost € Replacement 
€ 

O&M 
€/year 

Lifetime year 

Battery (1 kWh) 0,500,1000,1500 550 550 10 15  

Table 7 
Grid power and sell back prices.  

Grid power price (€/kWh) Grid sell back price (€/kWh) 

0.106 0.06  

Table 8 
Economic information of converter.   

Design capacity kW Investment cost € Replacement 
€ 

O&M 
€/year 

Lifetime year 

Converter  0,500,1000,2000 550 550 10 15  

Table 9 
Sensitivity variable and inputs.  

Variables Sensitivity input 

Maximum annual capacity shortage 0 
Wind: Scaled annual average (m/s) 4,4.5,5,5.61,6,6.5,7,7.5 
Solar: Scaled annual average (kWh/m2/Day) 0,0.5,1,1.5,2.06,2.5,3,3.5,4 
River Steam flow: Scaled annual average (L/s) 5,10,14.71,15,20  
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scenarios. the "Transportation Scenario" appears to be the most finan-
cially rewarding due to its higher electricity sales and associated profits. 
However, the "Household Scenario" demonstrates a notable difference 
between the cost of energy and energy price, suggesting potential for 
significant savings. The "Household and Industry Scenario" shows a 
moderate level of profitability and cost, likely due to a combination of 
industrial and residential energy consumption. 

4.3. Environment analysis 

According to Table 20, the results of emission reduction in the pre-
sent study show that each upload increases the percentage of renewable 
energy in energy production is, directly reduced the production of car-
bon dioxide production and reduces the amount of alignment CO2 
emitted. 

The "Household Scenario" stands out as the most environmentally 

Table 10 
Simulated models in three predicted scenarios.  

Type Name Size Unit 

Household & industry Household transportation 

PV flat plate PV 400 400 2000 kW 
Wind turbine #1 Offshore wind turbine 400 200 2000 kW 
Wind turbine #2 Onshore wind turbine 1500 800 6000 kW 
System converter System Converter 1000 500 2000 kW 
Hydroelectric 5 kW 2.45 2.45 2.45 kW  

Table 11 
Estimated production capacity in all three predicted scenarios.  

Component Household & industry Household Transportation 

Production (kWh/yr) Percent Production (kWh/yr) Percent Production (kWh/yr) Percent 

flat plate PV 283,361 7.35 283,361 16.4 1,416,807 8.38 
Offshore wind turbine 572,333 14.8 286,167 16.6 2,861,667 16.9 
Onshore wind turbine 2,146,250 55.7 1,144,667 66.3 8,585,001 50.7 
Hydro 11,132 0.289 11,132 0.645 11,132 0.0658 
Grid Purchases 843,088 21.9 781 0.0453 4,042,207 23.9 
Total 3,856,165 100 1,726,108 100 16,916,814 100  

Table 12 
Estimation of energy consumption in all three predicted scenarios.  

Component Household & Industry Household Transportation 

Consumption (kWh/yr) Percent Consumption (kWh/yr) Percent Consumption (kWh/yr) Percent 

AC Primary Load 2,211,900 57.6 21,900 1.28 8,760,000 52.0 
Grid Sales 1,630,097 42.4 1,690,040 98.7 8,085,974 48.0 
Total 3,841,997 100 21,900 1.28 16,845,974 100  

Table 13 
Annual average energy exchanges with electricity grid in different months in three predicted scenarios.  

Month Household & Industry Household Transportation 

Energy Purchased (kWh) Energy Sold (kWh) Energy Purchased (kWh) Energy Sold (kWh) Energy Purchased (kWh) Energy Sold (kWh) 

January 74,928 226,439 42.9 218,349 199,866 1,225,038 
February 108,714 95,378 176 118,545 282,330 565,505 
March 98,840 105,136 167 153,869 312,865 698,562 
April 88,415 61,367 34.6 104,979 398,998 395,133 
May 59,737 70,954 7.27 103,699 389,340 366,421 
June 43,555 162,752 0 150,461 339,010 694,262 
July 48,266 47,102 0.172 75,411 466,467 231,297 
August 58,386 129,144 5.70 126,369 429,440 557,811 
September 50,135 112,221 9.99 109,212 388,258 482,443 
October 57,472 217,762 75.0 178,810 311,340 972,792 
November 91,567 74,056 72.2 98,245 312,439 399,609 
December 63,073 327,786 190 252,090 211,854 1,497,101 
Annual 843,088 1,630,097 781 1,690,040 4,042,207 8,085,974  

Table 14 
Capacity factors and levelized cost of each component.  

Component Capacity Factor 
% 

Hours of Operation (Hours) Levelized Cost 
€/kWh 

flat plate PV 8.09 4249 0.203 
Offshore wind turbine 16.3 7350 0.0694 
Onshore wind turbine 16.3 7350 0.0527 
Hydro 51.8 70,92 0.0448  
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friendly, emitting the lowest amount of CO2 at 494 kg/yr. In contrast, 
the "Transportation Scenario" emits the highest amount at 2,554,675 kg/ 
yr due to its higher energy consumption and associated emissions. The 
"Household Scenario" also shines in terms of renewable contribution, 
with 99% of its energy generation coming from renewable sources. The 

"Household and Industry Scenario" follows with 78.4%, and the 
"Transportation Scenario" lags with 76.1%. gain, the "Household Sce-
nario" demonstrates its eco-friendliness by emitting only 0.28 g CO2 per 
kWh, while the "Transportation Scenario" emits the highest at 151 g CO2 
per kWh. The "Household and Industry Scenario" falls in between. the 

Fig. 9. Comparison of energy output and consumption for scenario 1 (industrial and household).  

Fig. 10. Comparison of energy output and consumption for scenario 2 (household).  
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"Household Scenario" clearly demonstrates the most environmentally 
responsible approach with minimal CO2 emissions, a high proportion of 
renewable energy, and extremely low CO2 emissions per kWh. The 
"Transportation Scenario" presents the greatest environmental challenge 
due to its higher emissions and lower renewable energy contribution. 
The "Household and Industry Scenario" strikes a balance between these 
factors. 

5. Conclusions 

In this research, the potential for the optimization of the run-of-river 
power plant in the Hinnoya region, Norway, was investigated. The 
simulation conducted by HOMER uses PVs/onshore and offshore wind 
turbines/batteries/convertor/hydroelectric turbine. Based on energy 
consumption scenarios that were selected for household, household with 
industrial, and transportation, three separate simulations were per-
formed, and the results were examined. The main results can be 

concluded as follows:  

• The onshore wind turbines have the highest production capacity. 
However, the most production capacity in PV panels is in June, while 
the most production capacity in wind turbines is in December and 
January.  

• Although the cost of setting up a renewable power plant may be very 
high at first glance for transportation (€14.2 M), it can be noted that 
the production price is 0.055 €/kWh and less than the general price 
in Norway (0.106 €/kWh). As a result, € 400,000 will be returned by 
selling energy every year.  

• Although the lowest cost is for the household scenario (€0.0296/ 
kWh), the load of the region is not high to have benefited from this 
point.  

• The results show that the use of renewable systems in the household 
field could reduce the COE by nearly 70% (0.0296 €/kWh) and in 

Fig. 11. Comparison of energy output and consumption for scenario 3 (transportation).  

Fig. 12. Sensibility analysis of scenario 1 (household and industry).  
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other energy fields (transportation and industrial) diminish the COE 
by nearly 50% (0.055 €/kWh). 

Finally, the key message of this study is that the optimization of a 

run-of-river hydropower system, combined with wind turbines, solar 
panels, and other components, offers a promising approach to meeting 
energy demands in different scenarios (household, household and in-
dustry, and transportation). The study emphasizes the importance of 

Fig. 13. Sensibility analysis of scenario 2 (household).  

Fig. 14. Sensibility analysis of scenario 3 (transportation).  

Table 15 
Net present costs of scenario 1 for industrial and household.  

Name Capital Operating Replacement Salvage Resource Total 

Hydro €6500 €2016 €0.00 -€143.94 €0.00 €8372 
PV €800,000 €67,212 €283,423 -€184,244 €0.00 €966,391 
Grid €0.00 -€141,793 €0.00 €0.00 €0.00 -€141,793 
Offshore Wind Turbine €600,000 €67,212 €0.00 €0.00 €0.00 €667,212 
Onshore Wind Turbine €1.65 M €252,046 €0.00 €0.00 €0.00 €1.90 M 
System Converter €300,000 €0.00 €160,964 €0.00 €0.00 €460,964 
System €3.36 M €246,694 €444,386 -€184,388 €0.00 €3.86 M  

Table 16 
Net present costs of scenario 2 for household.  

Name Capital Operating Replacement Salvage Resource Total 

Hydro €6500 €2016 €0.00 -€143.94 €0.00 €8372 
PV €800,000 €67,212 €283,423 -€184,244 €0.00 €966,391 
Grid €0.00 -€1.70 M €0.00 €0.00 €0.00 -€1.70 M 
Offshore Wind Turbine €300,000 €33,606 €0.00 €0.00 €0.00 €333,606 
Onshore Wind Turbine €880,000 €134,424 €0.00 €0.00 €0.00 €1.01 M 
System Converter €150,000 €0.00 €80,482 €0.00 €0.00 €230,482 
System €2.14 M -€1.47 M €363,905 -€184,388 €0.00 €850,798  

S. Hoseinzadeh et al.                                                                                                                                                                                                                           



Renewable and Sustainable Energy Reviews 185 (2023) 113658

14

integrating multiple renewable energy sources to achieve energy sus-
tainability and reduce reliance on conventional energy sources. Here are 
the implications for different stakeholders. Policymakers can recognize 
the potential of integrated renewable energy systems in diverse sce-
narios. They should consider supporting policies that encourage the 
adoption of such systems to reduce carbon emissions and enhance en-
ergy security. Policies that incentivize the adoption of renewable energy 
technologies, provide financial support, and streamline regulatory pro-
cesses can be instrumental in promoting the widespread implementation 
of these systems. End-users, such as households and industries, can 
benefit from adopting integrated renewable energy systems by reducing 
their energy costs and environmental impact. 

The study suggests that adopting a combination of renewable energy 
sources, such as wind, solar, and hydropower, can help ensure a reliable 
and consistent energy supply while taking advantage of local resources. 
Prosumers (Energy Producers and Consumers) can play an active role in 
producing and consuming renewable energy. By generating surplus 
energy from their integrated systems, they can contribute to the local 
energy grid and earn revenue through selling excess energy. The study 
encourages prosumers to consider the cost-effectiveness of different 

renewable energy technologies and combinations, such as wind tur-
bines, solar panels, and hydropower, to maximize their benefits and 
returns on investment. The study underscores the positive environ-
mental impact of integrating renewable energy sources. By reducing 
carbon emissions and promoting cleaner energy production, integrated 
systems contribute to combating climate change and achieving sus-
tainability goals. Further research and development efforts can focus on 
optimizing the design and performance of integrated renewable energy 
systems. This includes improving energy storage technologies, 
enhancing system efficiency, and developing innovative ways to manage 
energy production and consumption. 

In summary, the study suggests that the integration of multiple 
renewable energy sources, such as wind, solar, and hydropower, can 
provide economically viable and environmentally sustainable solutions 
to meet energy demands in various scenarios. This approach has the 
potential to benefit policymakers, end-users, prosumers, and the envi-
ronment, contributing to a more sustainable energy future. 

At the end it should be noted that the results and methods of this 
study can be generalized to other locations with some considerations 
and adaptations considering resource availability assessment, compo-
nent specifications, energy demand and consumption patterns, eco-
nomic and policy factors as well as environmental consideration for each 
specific region. 
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