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Neural rosettes develop from the self-organization of differentiating human
pluripotent stem cells. This process mimics the emergence of the embryonic
central nervous systemprimordium, i.e., the neural tube, whose formation is under
close investigation as errors during such process result in severe diseases like spina
bifida and anencephaly. While neural tube formation is recognized as an example
of self-organization, we still do not understand the fundamental mechanisms
guiding the process. Here, we discuss the different theoretical frameworks that
have been proposed to explain self-organization in morphogenesis. We show that
an explanation based exclusively on stem cell differentiation cannot describe the
emergence of spatial organization, and an explanation based on patterning
models cannot explain how different groups of cells can collectively migrate
and produce the mechanical transformations required to generate the neural
tube. We conclude that neural rosette development is a relevant experimental 2D
in-vitro model of morphogenesis because it is a multi-scale self-organization
process that involves both cell differentiation and tissue development. Ultimately,
to understand rosette formation, we first need to fully understand the complex
interplay between growth, migration, cytoarchitecture organization, and cell type
evolution.

KEYWORDS

neural tube, neural rosettes, complex system, morphogenesis, multi-agent system,
collective behavior and dynamics, phase transitions

1 Introduction

Stem cell biology and developmental biology can be regarded as two sides of the same
process. The morphogenesis of living tissue can be studied either at the cell differentiation
level or at the organ development level, in analogy to what happens in physics, where matter
can be observed either at the microscopic scale of the atoms or at the macroscopic scale we
experience in everyday life. To understand the relation between the atoms scale and the
material scale, physics has developed a multi-scale approach based on statistical mechanics
(Anderson, 1972). Here, we aim at discussing how such an approach can be used to
understand the relationship between cell and tissue scales, in the special case of neural rosette
formation.
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The term “neural rosette” indicates the arrangement of
elongated neuroepithelial cells in a blossom-like fashion, typically
observed during in vitro differentiation of pluripotent stem cells
(Okabe et al., 1996; Zhang et al., 2001). In particular, the architecture
of the neural rosette recapitulates fundamental aspects of the
development of the neural tube, which constitutes the central
nervous system (CNS) primordium. The latter can be thought of
as a system composed of different tissue types organized in a very
specific order and found to be practically identical in all healthy
individuals. In brief, the neural tube emerges from the neural
ectoderm layer which folds itself and generates this extremely
symmetric cylindrical structure (Detrait et al., 2005). This
morphogenetic process evolves through a series of stages (see
Figure 1A). Each stage in the evolution of the spinal cord is
characterized by a very specific architectonic structure and cell
differentiation program, where minor deviations from these
fundamental structures may result in developmental disorders.
Despite many efforts have been spent to model both aspects of
such process (Townes and Holtfreter, 1955; Antoine et al., 2021;
Karzbrun et al., 2021; Moon and Xiong, 2022), at the current stage,
both stem cell models of differentiation and tissue patterning models
failed to completely explain the mechanics involved in this complex
process because they exclusively focus respectively on cell
differentiation or patterning. In fact, while from a molecular
perspective, cell differentiation is determined by the combination
of stochastic events, cell signaling, and environmental cues that can
be understood at the single-cell level without considering the
complex interactions typical of collective behavior (Yamanaka,
2009); recent discoveries have shown how differentiating
pluripotent stem cells have the potential to self-organize in
functional cortical (Eiraku et al., 2008), retinal (Nakano et al.,
2012), cerebral (Lancaster et al., 2013) and intestinal organoids
(Watson et al., 2014), thus demonstrating a link between tissue

architecture and mechanical interaction with cell differentiation.
Notably, these processes do not seem to be coordinated by specific
leader cells, that are trivially recognizable but appear to be guided
simultaneously by signaling gradients and self-organization that
together guide cell differentiation at the single-cell level.

Generally, we broadly understand how a cell executes the
program encoded in the genetic code, as a form of computer
code or a cooking recipe. In this perspective, proteins are
generated in response to external stimuli which can be chemical
or mechanical according to the information encoded in the gene co-
activation network. Thus, self-organization in tissue development
could be thought of as a distributed optimization problem, in which
the final cytoarchitecture is the desired optimal solution (Hassan
and Jeff, 2020). Unfortunately, until the work on ant colony
optimization by Dorigo and Birattari (2011) showed how
leaderless algorithms inspired by nature can be effective in
solving real-world optimization tasks, distributed leaderless
systems without a master processor were thought to be unable to
converge. In this respect, Dijkstra (Dijkstra, 1974) proved that any
deterministic distributed algorithm, without a master processor, is
not guaranteed to solve a distributed optimization problem in a
finite time. In practice, this work was loosely interpreted to mean
that a leaderless morphological event could not always be able to
complete itself in the desired final state. Nevertheless, (Bistarelli and
Gosti, 2010; Gosti et al., 2011; Gosti, 2013) showed artificial
stochastic multi-agent systems able to find the solution to
collective problems and are guaranteed to find a solution given
sufficient time with a probability equal to one. This allows us to
speculate that neural rosette morphogenesis may be described as a
collective behavior process that is decoded in the cell’s gene co-
expression network as a stochastic distribution program.

In this framework, cell differentiation may be regarded as a form
of collective behavior similar to the behavior we find in condensed

FIGURE 1
Parallel between the principal phases of neurulation and rosette formation. (A) The five phases of neurulation that determine neural tube
morphogenesis (Karzbrun et al., 2021): 1) plate formation, a plate of cells from the ectoderm (light blue cells) became neural ectoderm cells (orange cells);
next, 2) in the thickening phase, such neural plate thickens and then start 3) bending. Cells at the border of the neural plate further differentiate becoming
neural crest progenitors (yellow cells). In a subsequent 4) folding phase, the margins of the neural plate come together. Finally, 5) in the closure
phase, the neural plate completes the folding process and forms the neural tube (red cells). Progenitor crest cells migrate toward other regions of the
embryo. (B) The five fundamental cell morphological changes described by Hříbková et al. (2018) during rosette formation. First, 1) cells form confluent
layers (cell intercalation) and then 2) such cells tend to form a thicker and more dense layer (cell constriction). Next, 3) cells start forming defects (cell
polarization). In the next phase, 4) more cells join the defect (cell elongation) until 5) a lumen is formed in the place of the defect (lumen formation).
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matter physics, where different states of matter are linked with each
other through phase transitions (Jeffrey, 2022). To better
comprehend this analogy and understand how complex matter
physics can help us understand rosette formation, we can
consider, for example, the magnetization of a ferromagnetic
material, where the magnetic dipoles of the atoms on a lattice
interact through pairwise interactions, and their states are
perturbed by thermal noise. These pairwise interactions are
usually modeled into an energy function that is minimized when
the magnetic dipoles are aligned. Above a certain critical
temperature, called Curie temperature, the system is in a
disordered state and the magnetic dipoles are random. When the
temperature is lowered and the system gets close to the critical value,
the information starts propagating and the phase transition starts.
As the temperature continues to lower and the phase transition ends,
the magnetic dipoles in each domain align in a certain direction that
is collectively determined. When magnets are aligned the energy
function is at its minimum. This process is known as symmetry
breaking since the ferromagnetic material loses its initial stochastic
symmetry, due to the initial random orientation of its magnetic
dipoles, and chooses a direction of orientation. To understand
symmetry breaking in ferromagnetic materials, physicists
developed mathematical methods to describe collective decision-
making and behavior. Subsequently, several studies have exploited
the analogy with ferromagnetic systems to model collective behavior
in complex systems (Vicsek and Zafeiris, 2012). The biological
systems that were modeled in this collective behavior framework
are several, ranging from flocks of birds (Ballerini et al., 2008) and
insect swarms (Attanasi et al., 2014), to worms’ (Sugi et al., 2019)
and cells’ (Szabó et al., 2006) populations. These studies usually
formulate an effective energy function that presents as optimal states
the kind of collective behavior experimentally observed. Thus, given
this effective energy function, the collective behavior becomes an
emergent property that is the result of an energy function
minimization. To sum up, if we could model the development of
the different phases of neural rosette formation as a sequence of
collective behavior processes, this would imply that the transition to
progressive stages of tissue development could be modeled as a
sequence of transitions between couples of less-orderly/less-
differentiated stages and more-orderly/more-differentiated stage.

In this light, we believe that rosette formation can be a natural
benchmark for studying self-organizing in morphogenesis. In fact,
first of all, it is a simpler 2D model of neural tube formation, which
we can use to later understand and develop a more complex 3D
mathematical model of neural tube formation. Secondly, it is not
trivially reduced to previous conceptual theoretical frameworks.
More specifically, the advantage of studying 2D neural rosette
formation as opposed to 3D neural tube formation is that neural
rosettes experiments are much more feasible from a biological and
computational point of view allowing us to repeat several
experiments in order to analyze its sensibility to initial conditions
and different control parameters. This allows us to scale up the
number of model parameters and conditions that we can test.
Contrarily, 3D computational models require extensive
computational time even for single simulation runs (Chen and
Brodland, 2008) and 3D biological in vitro models are practically
impossible to replicate several times (Karzbrun et al., 2021). Overall,
the objective of this review will not be to cover the literature on

neural tube morphogenesis, but to review the interdisciplinary
literature related to rosette morphogenesis which discusses the
complex mechanical and chemical processes guiding self-
organization and collective behavior in rosette morphogenesis
and to shows how this paradigm can be used to better
understand neural tube development.

Indeed, we will elaborate on these aspects, discussing neural
rosette formation from a statistical physics point of view. In
particular, we will start briefly presenting the different schools of
thoughts that emerged in the contest of morphogenesis modeling
(see Section 1.1); then we will recapitulate the key elements of rosette
formation and their link with the neurulation process (see Section
1.2) and we introduce the concept of a complex system, explaining
why rosette are an example of a complex process in which cells
manifest a collective behavior (Section 1.3). Then, e will focus on the
various approaches that have been adopted to study such systems.
We will deal with the Stem Cell perspective (Section 2.1), according
to which, cells undergo a progressive cascade of differentiation
events leading to the terminal cells. In Section 2.2, we will
instead face the problem of modeling the spatial organization the
cells assume in the rosette formation, describing the most famous
mathematical models derived to address this issue. Then, in Section
2.3, we will discuss the Dynamical Cell perspective: an
understanding of morphogenesis based solely on cell potency and
lineage will tend to avoid the fact that cells themselves are dynamical
systems that grow, divide, and proliferate. Fundamental
characteristics that any model of neural tube development should
be able to explain from a macroscopic tissue-level perspective are
homeostasis and organogenesis. In Section 3.1, we will introduce the
concept of phase transition and the possible link with neural rosette
formation. Finally, we will discuss what is still missing (Section 4.1)
and what may help making progresses in the field (Section 4.2),
speculating on the possibility to view morphogenesis as a phase
transition process similar to what happens in many other physical
systems (Section 4.3).

1.1 Overview on the morphogenesis
modeling

While the recent availability of quantitative experimental
techniques and increased computational power is bursting the
studies on morphogenesis, first speculations on the processes
behind such phenomenon date back to Aristotle, who introduced
-on a phylosophical level-the epigenetic hypothesis, postulating that
structures develop gradually. This idea was in contrast with the
prevailing preformationism point of view in which structure did not
emerge but development corresponded just to change in size [see
(Mayr, 1998) for a comprehensive discussion]. A significant shift
towards a mechanical and geometrical understanding of
morphogenesis occurred with Galileo Galilei, who observed that
organisms change their shape in response to the loads they bear
(White and Kearney, 2014).

Followed in the late 19th century, by the works of His and Roux,
who played a pivotal role in shifting the focus of developmental
biology from evolution to understanding the underlying
mechanisms of development, exploring two aspects of
development: self-differentiation and dependent-differentiation,
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conducting experiments on embryos (Richardson and Keuck, 2022).
The 20th century witnessed significant discoveries on the
relationship between physical forces and shape generation, under
the influence of D’Arcy Thompson. In fact, while other
contemporary scientists focused on experimental analysis, D’Arcy
Thompson’s investigations were based on a mathematical approach
and the idea that morphogenesis was based on physical forces in
shaping organisms (Wentworth D’Arcy Thompson, 1917).
Although his observations and calculations were purely
hypothetical, they laid the foundation for further scientific
advancements. A decade later, Alan Turing proposed the
reaction-diffusion mechanism (Turing, 1952), able to explain
pattern formation through the interaction of fast-diffusing
inhibitors and slow-diffusing activators, resulting in periodic
patterning through diffusion instability. Turing’s work
demonstrated the feasibility of representing morphogenetic
patterns using simple mathematical rules. However, it took
almost five decades for the proposed mechanism to gain
significant traction in the field.

Lewis Wolpert’s conceptual framework of positional
information in morphogenesis was another important milestone.
Inspired by Hans Driesch’s observations in sea urchin
morphogenesis, positional information proposed that a cell
determines its fate based on its position relative to other parts of
the organism. This position is characterized by the concentration of
a morphogen, which the cell interprets to make fate decisions
(Vargesson, 2019). The advent of digital computers greatly
accelerated research on morphogenesis by enabling
computational modeling. The reaction diffusion mechanism
gained significant interest and was successfully tested using
advanced mathematical models and improved experimental
techniques. Additionally, newer approaches consider mechanical,
electrical, and environmental cues in understanding morphogenesis.
However, these factors are often investigated independently,
highlighting the need for a more integrated approach that
considers the multiscale nature of morphogenesis and the
synergistic effects of diverse signals. Agent-based models have
emerged as an alternative for modeling morphogenesis in
complex and heterogeneous environments. Such models use
autonomous agents that represent various entities, such as
molecules, cells, or organisms. These agents have defined
behaviors and interact with each other and their simulated
environment based on predefined rules. The dynamics of an
agent can encompass a range of actions, and decision-making is
often probability-based (Brodland et al., 2010; Nielsen et al., 2020). A
more detailed description of such different approaches will be given
in the following sections.

1.2 Neural rosette as a model for neurulation

Rosettes are multi-cellular structures characterized by a radial
symmetry that resembles a rose or a blossom (Wippold and Perry,
2006). The cells that form such a structure present an
inhomogeneous spatial organization such that the adhesion
molecules and junctions that hold the cells together are localized
at the center of the rosette where they form the rosette lumen; this is
referred to as apical-basal polarity (Harding et al., 2014). Usually,

rosettes are transient structures that in certain cases recapitulate the
form of the adult organ. They tend to develop from irregularities in
the disposition of cells embedded in the regular patterns formed by
epithelial sheets. In this irregular disposition, a larger than the
average number of cells adhere to each other. These irregular
local patterns resemble topological defects in condensed matter
(Wenzel et al., 2019). Rosettes are observed during the formation
of diverse organ systems (Harding et al., 2014), such as the zebrafish
lateral line primordium (Ma and Raible, 2009), the vertebrate
pancreas (Alethia VillasenorChong et al., 2010), the Drosophila
epithelium (Todd Blankenship et al., 2006), and in the adult
neural stem cell niche (Mirzadeh et al., 2008). Furthermore,
under the proper culture conditions, both human embryonic
stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)
undergo morphogenic changes and form neural rosettes, similar to
the ones described in in vivo systems (Zhang et al., 2001; Elkabetz
et al., 2008; Chen et al., 2012; Karus et al., 2014). In particular, neural
rosette show accumulation of apical ZO-1 and N-cadherin at their
center, which then corresponds to where the lumen is formed
(Elkabetz et al., 2008) (ZO-1 and N-cadherin are respectively a
tight junction-associated protein and a transmembrane protein that
mediates cell–cell adhesion). Furthermore, cells in neural rosette
show nuclear expression of PAX6, a “master control” gene for the
development of different tissues, activating when the cells start to
differentiate in the cells specific to that particular tissue. In neural
rosette cultures, it is considered a marker of primitive neural
ectoderm cells because it is been shown that PAX6-positive cells
can differentiate into any region-specific neural progenitor (Elkabetz
et al., 2008; Zhang X et al., 2010). Consequently, the cells
constituting neural rosette are considered neural progenitor cells.

All the aforementioned features make neural rosettes a widely
used model for studying in vitro the development of the neural tube
[even though, current research points out how neural rosette
formation presents certain specific affinities peculiar to secondary
neurulation as opposed to the primary one (Fedorova et al., 2019)].
In vivo, the morphogenesis of the neural tube, also called
neurulation, starts with the emergence of the neural plate which
folds itself into a singular neuroepithelial tube that spans the entire
rostro/caudal axis of the embryo’s dorsal plane. The neural tube
serves as the primordium of all central nervous system tissues.
Furthermore, this cylindrical polarized structure of cells becomes the
center for the spatial organization of the cells forming the spinal cord
(Knight et al., 2018). During neural tube cytoarchitecture
development, Interkinetic nuclear migration (INM) takes place.
In this process, first observed by Sauer (1935), nuclei migrate
between the apical and basal ends of these cells, allowing for the
proliferation of neural progenitors at the tube’s apical surface while
daughter cells migrate radially towards the basal surface to complete
differentiation (Gilbert, 2000; Lui et al., 2011). It is interesting to
note that INM is observed also in neural rosettes (Ziv et al., 2015). In
vivo, different conditions can cause the incorrect development of the
neural tube, which can either be completely eliminated, fail correct
neural folding, or develop into more than one tube. For example,
N-cadherin disruption destabilizes the polarized cytoarchitecture
inhibiting the development of the central nervous system (Zhang J
et al., 2010). Alternatively, the formation of multiple neural tubes
during development causes congenital abnormalities such as
dipolmyelia and diastematomyelia (Cogliatti, 1986; Testoni et al.,
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2010). Failures in neural folding are among the most common birth
defects, affecting around 1 in 1,000 pregnancies (Wallingford et al.,
2013; Lee and Gleeson, 2020). Therefore, understanding the
mechanisms that guide the self-organization of a single neural
epithelium tube with either an hESC or an hiPSC organotypic
tissue has fundamental implications (Lee et al., 2017; Knight
et al., 2018).

Neural tube morphogenesis follows five phases of neurulation:
neural plate formation, thickening, bending, folding, and closure
(Figure 1A). In the neural plate formation phase, a portion of the
cells of the ectoderm (the outer layer of cells in the developing
embryo) become neural ectoderm cells. In the thickening phase, the
neural plate thickens as the neural ectoderm cells begin to
differentiate and grow. In the bending phase, the neural plate
starts to curve and shape into a tube-like structure. In the folding
stage, themargins of the neural plate come together and begin to fold
inward. Finally, in the closure phase, the neural plate completes the
folding process and fully closes to form the neural tube. The study of
Karzbrun et al. (2021) presented an in vitro experimental 3D model
that recapitulates the self-organization of neural tube
morphogenesis with human iPS cells. This neural tube
morphogenesis model allows us to directly observe the five
phases of neurulation, which is otherwise only observed in non-
primate models (Karzbrun et al., 2021). This model shows that
single-cell proliferation potential is not sufficient to determine the
outcome of neural tube formation, but that the control of the initial
size, cell density, and shape of 2D stem-cell cultures and neighboring
cells is fundamental as well. Karzbrun et al. (2021) study proves that
it is not just the potency of the cell culture that determines self-
organized morphogenesis, but also other collective behavior
properties must be considered. Thus, neural tube folding requires
the production of mechanical forces and the regulation of tissue
mechanical properties. Furthermore, it must interact with the
neighboring tissues and the environment: the extracellular matrix
(ECM) (Rifes and Thorsteinsdóttir, 2012; Zhu et al., 2015; Guillon
et al., 2020; Molè et al., 2020), the extraembryonic substrates
(Münster et al., 2019), and the lumen (Dumortier et al., 2019). In
this context, the development of mechanical models is fundamental
to understanding howmorphogenesis allows the self-organization of
cells in tissues and organs (Moon and Xiong, 2022).

Neural rosettes are an excellent model to study neural tube
morphogenesis because they reproduce the five fundamental
features of neural tubes: 1) radial structure, 2) an evident lumen
structure, 3) gene expression profile (including the characteristic
transcription factor PAX6 and the membrane junction N-cadherin),
4) cytoarchitecture dynamics, 5) potential to develop several cell
lines. Consequently, neural rosettes mimic the development of a
single section of the neural tube perfectly, and for this reason serve as
a 2D model of the 3D neural tube formation process. Furthermore,
Hříbková et al., 2018 identified five fundamental cell morphological
changes (Figure 1B): cell intercalation, cell constriction, cell
polarization, cell elongation, and lumen formation. In the cell
intercalation stage, cells form confluent layers of neighboring
cells adherent to each other. In the constriction stage, cells tend
to form a thicker and dense layer. In the polarization stage, cells tend
to form membrane junctions, which are unevenly localized around
specific points in the cell layer where more cells join each other.
These centers became defects or in other words points in the cell

layer where the cells form an unevenly dense pattern compared to
the rest of the evenly organized cell layer. In the elongation stage,
more cells join the defect. In the lumen formation stage, a lumen is
formed in the place of the defect. With a certain degree of
approximation, these five cell morphological changes recapitulate
the five stages of neurulation, even if they are the result of a state-of-
the-art synthesis and have not yet been substantiated by the
statistical analysis of specific morphological markers on biological
models. Nevertheless, they evince the role of self-organization and
collective behavior because they show how the cells need to
coordinate their movement and shape through deformation and
stiffness to form a rosette, while at the same time determining each
cell’s differentiation state. Indeed, the cells inside the rosette are
PAX6 positive, while the cells outside the rosette do not always
differentiate.

1.3 Complex systems and collective behavior

A complex system is characterized by many individual members
that are connected by relations, and/or interactions. Examples of
complex systems go from human social networks to ant colonies,
from the fractal shape of bronchi and bronchioles in the lung to the
organization of the central and peripheral neural systems. These
systems can be described using networks, in which the links that
connect nodes depict relations and interactions. More importantly,
what characterizes a complex system is that it cannot be fully
described by the characterization of individual parts separately,
but it must be studied as a whole. This is because the response of
every single component is characterized by its state and the influence
of the other parts connected to it (Rutter et al., 2017). Such concept is
at the basis of the complexity theory.

If we want to study a complex system in a classical experimental
framework, we would require to assay all the responses for each
treatment and the configuration of all the components of the system.
Consequently, the experimenter would ideally have to control all the
relations and interactions between the parts. For this reason, in cell
biology, to avoid this problem, the experimenter often assumes that
the system behaves as a homogeneous container of single parts, and
studies the entire system as an idealized collection of these single
parts (Barabási et al., 2011; Dimitrakopoulou et al., 2014). For
example, neural tube formation may be simplified and explained
exclusively as the differentiation of the neuroectoderm cells that
form the neural plate. But this approach would disregard the
mechanical interactions that are required for the neural plate to
fold in a neural tube. This implies as well that we would disregard the
role that mechanical interactions and chemical signaling have on
single-cell genetic expression, and we would have to reintroduce this
in the model. Indeed, as discussed in the previous section, to develop
the neural tube, the ectoderm cells must collectively coordinate their
transcriptomic state change to become neural-ectoderm cells.
Furthermore, these differentiating cells mechanically change their
surrounding environment to organize themselves spatially in the
neural tube.

Neural rosettes are a good example of a complex system because
they can be easily represented as a network in which the nodes are
cells, and the edges represent the pairwise interactions between cells
that are either mechanical or chemical. Mechanical interactions are
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mediated through the elastic/dissipative interactions between each
other and the substrate that are the result of the cell’s spacial
organization and cytoarchitecture. Chemical interactions are
established by (but not limited to) soluble proteins that may
either diffuse in the media or be allowed by membrane junctions
connecting pairs of cells. In rosettes, it is observed that only the cells
in the rosette and in the large clusters express PAX6, while the other
cell in the same culture with the same differentiation factors do not
express PAX6. This points to the fact that cell differentiation is not
only guided by molecular differentiation factors but is as well the
result of mechanical forces, and direct molecular pairwise
interaction (Hříbková et al., 2018) that determines an emergent
collective behavior.

2 Current perspectives

Here, we will discuss more in details the different perspectives
from which morphogenesis can be addressed from a statistical
physics point of view. In particular, we will describe stem cell
differentiation, and the models developed to study tissue
organization. Finally, we will discuss models that represent cells
as dynamical systems subject to biological noise.

2.1 The stem cell scale perspective

Stem cell models of differentiation and tissue patterning try to
explain development by studying the same process at two different
scales. Stem cell models focus on the changes at the cell level and

tissue patterning models focus on the changes that are present at the
tissue level. At the cell level, stem cells are the fundamental
progenitor cells that generate all the cells that form the adult
organs, and can self-replicate. When a tissue is injured, stem cells
produce cells apt to form the new tissue. Each different type of stem
cell is characterized by the organs or tissues their progeny are going
to form, e.g., skeletal muscle stem cells produce skeletal muscle. Each
stem cell is associated with a lineage tree formed of all the cell types
that are part of its progeny in vivo (see Figure 2). The branches that
form the stem cell lineage select different cell fates and produce the
different types of cells that form the adult organ. In this picture,
development is a one-way process in which cells gradually lose the
potential to generate different types of cells and become more
specialized cells. In general, stem cells have to balance the tasks
of generating new cells and maintaining genetic integrity, because
excessive cell replication may lead to a greater probability of DNA
replication errors. To achieve this aim, stem cells proliferate slowly
and generate new stem cells and progenitor cells. The latter
proliferate frequently, and generate further progenitor cells and
terminal cells. These progenitor cells have the fundamental role
of expanding the size of the stem cell progeny, thus allowing stem
cells to be in a relatively small number compared to terminal cells.
Since progenitor cells divide more often than stem cells, stem cells
can be protected in stem cell niches, and do not risk accumulating
dangerous mutations caused by frequent divisions. Terminal cells
are fully differentiated cells that usually characterize the tissue and
perform specific functions. Thus, they cease to divide. In this
framework, we expect cells to become more specific as they
differentiate and do not change their specialization as it is
acquired: we would expect neural ectoderm cells to differentiate

FIGURE 2
Sketch of the differentiation progression of the cells involved in neurulation. Starting from Ectoderm Stem cells, neural ectoderm and epithelial stem
cells emerge. Neural ectoderm stem cells further differentiate in the progenitors of neural and neural crest cells. While neural crest cells will in turn
differentiate into several different mature cells, neural progenitors end up producing astrocytes, oligodendrocytes, and neurons. As differentiation
proceeds, cells progressively lose differentiation potential and renewal ability.
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in respectively neural tube cells and neural crest cells and that neural
tube cells do not change their fate to neural crest cells or revert to
neural ectoderm cells. The gradual loss of potency is what is
observed in most cases with some important exceptions that
show the limits of this framework.

In fact, Gurdon’s experiments on Xenopus laevis (Gurdon et al.,
1958), the birth of cloned sheep (Wilmut et al., 1997), and finally
induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka,
2006) prove that cells can be de-differentiated artificially and
brought back to a pluripotent state. Furthermore, current
research data on cell reprogramming and trans-differentiation is
challenging the concept that cell fate determination is a
deterministic unchangeable choice. In particular, (Antoine
et al., 2021) discusses how neural crest cells appear to undergo
a natural in vivo reprogramming event that allows their progeny
to differentiate into a lineage with characteristics analogous to
epiblast stem cells. Indeed, the reprogramming of the neural crest
lineage is responsible for the formation of the majority of facial
mesenchyme (Antoine et al., 2021). Nevertheless, the concept of
gradual loss of potency in differentiation is still the general
conceptual framework (Yamanaka, 2009). The stem cell
lineage perspective has been very successful in explaining
systems like the blood and skin for two different reasons
respectively. In the first case, blood is an amorphous liquid,
thus it does not have a proper spatial organization.
Meanwhile, in the second case, skin is specially organized only
in depth (i.e., going from epiderm to derm) and it is basically
homogeneous in the transverse dimensions. Indeed, skin
organization along the depth dimension is the result of its
cells’ differentiation history. The stem cells form the deepest
layer (the basal layer) and the terminal cells are at the more
external layer with all the progenitors in the central layers, which
constantly replace the terminal cells that are shed.

Taking these observations into consideration, it is important to
point out that the stem cell lineage perspective forgets the role of
spatial organization, size, single-cell transcription errors,
partitioning errors, and chemical/mechanical signals.
Consequently, without the introduction of stochasticity and
mechanical and chemical signaling feedback between the
different tissue and cell types, it is difficult to conceptualize how
a cell can be pushed to re-program itself. For these reasons, the stem
cell lineage perspective does not allow us to fully understand the
relationship between cell differentiation and tissue spatial
organization in the spinal cord, and other organs characterized
by the spatial organization of different cell types.

2.2 The spatial organization perspective

Looking at morphogenesis from the point of view of tissues, one
observes tissue cells undergoing spatial reorganizations that give rise
to the formation of patterns. Numerous theories have been put
forward with the goal to unravel the mechanism by which initially
equivalent cells in a developing tissue assume complex forms and
functions, i.e., patterns [for dedicated reviews see, for example,
(Roth, 2011; Landge et al., 2020)]. Few of them are as universal
as the reaction-diffusion (RD) model proposed in 1952 by Alan
Turing (Turing, 1952). His model assumes that cells are capable of

sensing and producing morphogens and that their position in space
is fixed. In particular, the spatio-temporal dynamics of two
morphogens is described by:

dA

dt
� DA∇

2A + RA A, I( ) and dI

dt
� DI∇

2I + RI A, I( ) (1)

where A(x, t) and I(x, t) represent the concentrations of the two
morphogens, DA and DI the diffusion coefficients, and RA (resp. RI)
is a function describing the reaction that takes place between species
A and I (see the sketch in Figure 3A).

The simplest and most well-known example of an RD system is
the activator-inhibitor system (Gierer and Meinhardt, 1972),
consisting of two diffusible components that interact through
specific reactions. Turing’s two-component system has linear
reaction terms, while successive works, like that of Meinhardt
and Gierer (Gierer and Meinhardt, 1972), proposed a model with
biochemically more realistic nonlinear reaction: RA � ( A2

(1+kAA2) +
A0)/I + μAA and RI = A2 − μII. In this model, activator A promotes
its own synthesis and that of inhibitor I, which in turn inhibits the
activator and itself. Interestingly, this system can self-organize from
an initially uniform distribution to give rise to stationary periodic
patterns of activator and inhibitor concentrations. Such patterns
with a characteristic periodicity or wavelength are termed Turing
patterns.

Another example is given by the Gray-Scott choice for the
reaction terms. In fact, setting RA = I · A2 − (f + k)A and
RI = −I · A2 + f(1 − I), the Gray-Scott system models a chemical
reaction of the form: I + 2A → 3A, where the morphogen I is
consumed, while A is produced. To maintain the reaction, a feeding
rate and killing rate are introduced with the parameters f and k,
respectively. Note that the removal of I can also be described by
another chemical reaction that turns I into an inert product via the
rate k.

Despite the specific form of the reaction terms, the RD model
shows how given two different morphogens we can obtain standing
waves forming a stable periodic pattern (see Figures 3B, C for some
examples), having peculiar properties. In particular, such a system is
able to present truly self-organized patterns in the absence of initial
asymmetries, thereby generating positional information. Moreover,
many different patterns are formed by simply varying the reaction
and diffusion parameters (see Figures 3B, C), which could in
principle account for the structural and morphogenetic diversity
of life forms. Finally, RD patterns are responsive to external
perturbations and can regenerate after perturbations (Landge
et al., 2020). Fundamental improvements in genetic engineering
and computer science showed how this simple paradigm could
reproduce some patterns observed in nature as in the case of
leopard-coat or sea shell (Kondo and Miura, 2010), however, it
remains unclear how commonly the principles of RD systems are
actually realized in living systems. Moreover, tissue patterning
disregards the importance of cell migration and differentiation.
In particular, the massive collective cell migration that allows the
neural tube to fold itself is completely unexplained.

Meanwhile, the early mechanical sorting experiments done by
Townes and Holtfreter (1955) shows how not only chemical signals
but also mechanical interaction can produce patterning in live tissue.
In Townes and Holtfreter’s cell sorting experiments, cells dissociated
by amphibian embryos were mixed in a homogeneous aggregate. If
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these cells are put in culture, they can autonomously rearrange
themselves in structural arrangements that mirror the in vivo
organization. Krens and Heisenberg (2011) explains how this
sorting process is analogous to how immiscible liquids develop a
surface tension and sort themselves in distinct regions. Townes and
Holtfreter proposed that mechanical cell sorting can explain the
folding of the neural ectoderm in neural tube formation.
Unfortunately, its limit is that this model is unable to explain cell
differentiation. It only explains sorting once the cells are already
differentiated, and the mechanical forces required for the important
cell dislocations in space. Both tissue patterning and mechanical cell
sorting have a role in spinal cord development, but by themselves,
they are unable to describe the mechanics behind this process.

2.3 The cell as a dynamical system (plus
noise) perspective

As we discussed in Section 2.1, an understanding of
morphogenesis based solely on cell potency and lineage will tend
to avoid the fact that cells themselves are dynamic systems that grow,
divide, and proliferate. Fundamental characteristics that any model
of neural tube development should be able to explain from a
macroscopic tissue-level perspective are homeostasis and
organogenesis. Homeostasis is the ability of an organ to keep its
size and shape even after perturbations, while organogenesis is the
process of the development of tissue with a distinctive spatial
configuration. Contrary to what we observe in a homeostatic
tissue, in a generic steady-state culture configuration in which the

cells’ nutrition is constant and cell mortality is low, homogeneous
cell populations grow exponentially as each cell doubles with given
doubling times (Van Heerden et al., 2017; Enrico Bena et al., 2021).
La Porta et al. (2012) showed howMarkovian branching models can
be used to model the growth of such populations. Given a certain
stem cell and its differentiation lineage, a Markovian branching
model exhibits three different steady-state configurations (La Porta
et al., 2012). Under certain conditions, we get linear growth or
exponential growth, and under the proper balance between the
death rate and division rate, it gives rise to a population that grows
up to a fixed size. However, those state are not a stable under
perturbations and the model does not capture homeostasis since it is
unable to correct the population size after cell death or damage,
i.e., if the cell population suffers a wound and loses an important part
of its stem cell population it cannot regenerate the lost population.
These observations imply that cells must have a mechanism that
allows them to collectively tune their growth rate and their death
rate. Hannezo et al. (2014) show how contact inhibition and
mechanical stresses in the epithelial sheet influence tissue
homeostasis. These considerations point out how an explanation
of tissue development based only on stem cell differentiation omits a
description of how cells organize themselves mechanically and in
space.

Furthermore, without going into the specifics of the cell cycle, we
usually assume that there is an initial mother cell that divides into
two daughter cells thus it must duplicate its genetic material and
cellular components. A mother cell may divide its internal
components either symmetrically, or asymmetrically depending
on respectively if the daughters are identical to the mother, or if

FIGURE 3
Turing reaction-diffusion models. (A) Schematic representation of a simple Activator-Inhibitor circuit, which can be represented by the set of Eq. 1
with RA= I · A2 − (f+ k)A and RI= −I · A2 + f(1− I). Differences in the diffusion of the two competingmolecules create patterns that depend on the specific set
of parameters. (B) Patters obtained solving Eq. 1 with different sets of parameters: f = 0.02430, k = 0.05174; f = 0.028, k = 0.056; f = 0.03, k = 0.06; f =
0.00713, k = 0.04651; (C) Time evolution of the “cell-dividing” pattern (f = 0.028, k = 0.062) starting from five random seeds.
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the two daughter cells differ in size, cellular components, and/or
differentiation potential. The way cells divide their components
depends on the particular types of the cells’ components. In general,
there are three cases: First, compounds like the DNA must be
divided exactly, and errors in the duplication and partitioning are
the cause of important genetic disorders, such as trisomy 21 (Soltani
et al., 2016). Second, components that are present in large numbers
may be uniformly segregated stochastically with small relative
fluctuations. Third, RNAs, proteins, and organelles are present in
numbers low enough that errors in the segregation of individual
copies may cause large fluctuations in cell division. Moreover, the
presence of large fluctuations or even biases in the partitioning of
some compounds can produce a systematic difference in the
daughters, which fosters cell differentiation (Shlyakhtina et al.,
2019). Furthermore, a cell must restore the correct balance of
compounds to ensure that cell progeny does not change too
much after several divisions. Given these considerations, it is
surprising to notice that as much as partitioning noise appears to
take part in several cell division processes, cell populations are
characterized by homeostasis that tends to contrast with noise
(Rué and Arias, 2015; Taheri-Araghi et al., 2015).

Consequently, we are led to ask ourselves if partitioning noise
has an evolutionary advantage and is for this reason selected. Recent
observation suggests that asymmetrical partitioning plays an
important role in cell-to-cell variability, cell fate determination,
cellular aging, and rejuvenation (Huang et al., 2017; Ouellet and
Barral, 2012; Raser and O’Shea, 2005). Indeed, (Tobias et al., 2017)
found that biased binomial segregation helps bacterial populations
to face antibiotic treatments, suggesting partitioning as a drug
resistance enhancer. For instance, (Katajisto et al., 2015) have
shown that mammalian epithelial stem-like immortalized cells
partition mitochondria asymmetrically. Tripathi et al. (2020) use
a computational model to show that partitioning is one of the main
noise sources behind cancer cell plasticity and they use it to model
epithelial-mesenchymal transition (EMT). In their model,
partitioning noise increases the heterogeneity of the tumor
environment and changes its ability to resist treatment (Tripathi
et al., 2020). In this respect, several theoretical and experimental
works have shown that in populations of bacteria or cancer cells
facing environmental changes, variability increases the probability
that some individuals may survive the stress produced by a sudden
change in the environment, e.g., the one produced by antibiotics or
cancer treatments (Thattai and van Oudenaarden, 2004; Edo and
Leibler, 2005; Lu et al., 2007; Castrillo and Oliver, 2011; De Martino
et al., 2019; Miotto and Monacelli, 2020). Similarly, mitochondria
and endosomes are known to exhibit asymmetrical partitioning in
yeast (Boldogh et al., 2001; Rohn et al., 2014; Zhou et al., 2014;
Knoblach and Rachubinski, 2015; Chang and Marshall, 2017; Ruan
et al., 2017), in asymmetrically dividing cells, like mammalian
epithelial stem-like immortalized cells (Dalton and Carroll, 2013),
and in symmetrically dividing Jurkat cancer T cells (Peruzzi et al.,
2021). This asymmetrical mitochondria partitioning enables cells to
protect themselves from aging because it protects the cell progeny
from accumulating misfolded proteins engulfed in the mitochondria
(Zhou et al., 2014; Katajisto et al., 2015; Ruan et al., 2017; Pernice
et al., 2018).

Partitioning errors are not the only source of stochasticity that
appear to challenge the homeostasis and morphogenesis of living

tissue. There are at least two other sources of randomness (Soltani
et al., 2016). First, we have to consider the error and the stochasticity
of gene transcription and the rate at which cells reconstitute their pool
of sub-components. Second, the last source of error concerns the
timing between cells’ division. Given these observations, if observed
singularly, a cell is already a complex system. Kauffman (1969) was
probably the first to propose that the state of gene expression of a cell
is a complex system, postulating that the excitation/inhibition of every
single gene is the result of the mutual excitation/inhibition interaction
with the state of other genes. These processes may be described by the
gene regulatory network (GRN). In this framework, the mutual
interaction between genes forms a network. Several works modeled
this process with Boolean networks (Kauffman, 1969; Saadatpour and
Albert, 2013; Dunn et al., 2014) but there is certainly no reason to
restrict ourselves to a model of this kind instead of considering a more
descriptive approach that includes the cells’ proteomics and
metabolomics (Tosenberger et al., 2017), or another abstract
approach that uses Hopfield recurrent neural network (Ryan et al.,
2017). In more complex GRNs, there are transcription factors (TFs)
that activate and inhibit the transcription of target genes. In turn,
target genes produce other TFs or proteins that regulate cell
metabolism (Shen-Orr et al., 2002; Mangan and Alon, 2003; Milo
et al., 2002). Both logical and continuousmethods based onODEs and
information theory were used to model GRNs and capture their
stochastic nature (Guy and Shamir, 2008; Tkačik et al., 2008; Tkačik
and Bialek, 2016; Monti et al., 2022).

Semrau and Oudenaarden, (2015) and Dunn et al., 2014 show
how, in response to the state of their gene activation network,
pluripotent cells differentiate into progenitor and terminal cells
by gradually changing the abundance of their RNA and protein
compounds. Given these conditions, researchers started modeling
cells as dynamic complex systems in a quasi-stable state (Kauffman,
1969; Saadatpour and Albert, 2013; Dunn et al., 2014; Ryan et al.,
2017; Tosenberger et al., 2017). In this mathematical model, cell
differentiation and plasticity is the result of perturbations of the cell
gene co-expression network that bring the cell from a quasi-stable
state into a new one associated with a different cell type (Furusawa
and Kaneko, 2012; Miotto et al., 2019). These models may be
thought of as a mathematical complex system formulation of the
Waddington epigenetic landscape (Waddington, 1957). Indeed,
Waddington’s epigenetic landscape is often used as a
representation of the relationship between gene network and cell
fate (see Figures 4A, B), where fate transitions occur in a stochastic
manner and cell signaling modulates the probability of the transition
events (Moris et al., 2016).

Note that even if most models assume cell fate decisions to be
coordinated through the regulatory interactions between genes,
differentiation is not only the effect of transcriptional changes.
There are many signals coming from ligand-receptor interactions,
cell-cell contacts. These signals converge not only to gene expression,
but also epigenetic events and splicingmay present additional levels of
complexity. Nevertheless, simple network motifs such as the bistable
switch (see Figure 4C) can be modeled, and phase planes can be
drawn, which identify the stable and metastable points of the system.
In this framework, “potential” values for each potential state of the
system can be calculated. If a time-dependent parameter of the
network is introduced, the dynamic response of the system can be
examined. Such parameter changes represent biological situations in
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which cellular signaling inputs alter the network and affect fate
decisions. At critical parameter values, the topology of the system
can change, for instance by converting a monostable system with one
stable point into a bistable one with two stable and one metastable
point. Interestingly, one may speculate that depending on the local
topology of such complex landscape and the strength of the
perturbation signals, the differentiation process could be also
reversed, where differentiated cells types are pushed backward in
the hierarchical differentiation process.

Indeed, combining the outcomes of small motifs inmore complex
interaction networks can give a dynamic landscape highly reminiscent
of Waddington’s idea of the epigenetic landscape. Interestingly, the
critical parameter can represent chemical stimuli coming from the
environment, but so chemical/mechanical interactions occur between
the population of cells. Thus a generalization of the Waddington
landscape could be proposed bymerging the gene interaction-induced
differentiation of single cells with the tissue development, where the
various phases of themorphogenesis can be reached also thanks to the
presence of cell-cell interactions, as depicted in Figure 4D.

3 Self-organization and collective
behavior

3.1 Emergent behavior and active matter

A population composed of several interacting members exhibits
an emergent behavior when its members, spontaneously coordinate

their behavior producing a global behavior as if the population is
become a coherent whole (Prigogine and Nicolis, 1985). In this
respect, an emergent collective behavior may evolve even when the
single population members neither encode nor predict the
population behavior, and for this reason, the collective behavior
is solely the result of the population (Vicsek and Zafeiris, 2012). For
example, consider the following cases, water evaporation (or any
other phase transition) depends on population properties, e.g.,
temperature, and pressure, which do not apply to a single water
molecule, but describe statistically the dynamic interaction among
molecules; the foraging of ant-colonies depends on pheromone
signaling between few nearby individuals (Dorigo and Birattari,
2011); the coherent movement of bird flocks depends on simple
interactions among the neighboring birds (Ballerini et al., 2008).
Finally, as described in Turing’s reaction-diffusion model, pattern
formation, can be modeled as the result of emergent behavior
(Turing, 1952). Cell rearrangements at high densities show
features remarkably similar to dynamical heterogeneity in glasses,
as shown by Angelini et al. (2010). However, unlike colloidal glasses,
cells are self-propelled objects and autonomous motion is a key
ingredient that cannot be in general neglected in modeling.

Active matter provides a powerful framework for rationalizing
emerging properties in collections of self-propulsive agents
interacting in diverse ways (Cates, 2012; Vicsek and Zafeiris,
2012; Marchetti et al., 2013; Cavagna and Giardina, 2014;
Bechinger et al., 2016). For instance, signaling interactions
promoting local alignment brings to collective polar order, as in
the case of the celebrated Vicsek model (Vicsek et al., 1995).

FIGURE 4
Single cell differentiation vs. collective cell differentiation (A) Schematic representation of the Waddington lanscape (Waddington, 1957): a cell,
represented as a cobble, starts at the top of a landscape and rolls down via a series of branching points that represent decision events. The shape of the
landscape is given by the activity of the underlining cell gene network, where genes can turn on (green) and off (red) during the differentiation time. (B)
Neural cell differentiation in terms ofWaddington landscape. As the cell differentiates, its “differentiation potential” decreases and new valleys can be
reached. (C) Representation of a bistable molecular circuit in the absence and presence of an external input that allows for tuning of the bistability. The
landscape that such small motifs are able to originate suggest a linkwith theWaddington landscape. In particular, an external parameter dependent on the
differentiation time can change the shape of the “potential”. (D) Generalization of the Waddington landscape to the case of neurulation, where
mechanical interactions between cells cooperate with genetic inputs to facilitate the differentiation process and in turn the neurulation.
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Minimal mechanical interactions are very effective for gaining
insight into different collective phenomena ranging from
bacterial ratchet motors up to activity-driven phase separation
(Di Leonardo et al., 2010; Cates and Tailleur, 2015). The current
active matter perspective of cell population proposes that, in healthy
tissue, cells take a spatial configuration that is the result of a
dynamical process. Szabó et al. (2006) discuss a variant of the
particle-based Visek model, and show how keratocyte cell motion
is characterized by a density-dependent phase transition. As the
number of cells per area increases the cells go from a disordered
gaseous-like movement to an ordered collective migration. Particle-
based models are quite effective in modeling a variety of collective
behaviors in dense materials (Paoluzzi et al., 2022a; Paoluzzi et al.,
2022b). However, in some situations of practical interest, as in the
case of a confluent monolayer where cells are so packed to fill the
entire space available, cell shape with its fluctuations is an ingredient
that cannot be left away.

Cell shape can be incorporated in different ways as discussed, for
instance, in the works of Trepat and Sahai (2018); Camley and
Rappel (2017); Alert and Trepat (2020). In the case of Vertex and
Voronoi models each cell is represented by a polygon resulting from
the Voronoi tessellation of the cell centers. It has been shown in
models, and tested against experiments, that the vertex model of
biological tissue undergoing jamming and unjamming transitions
has a single control parameter which is the typical cell shape (Bi
et al., 2014; Bi et al., 2015; Park et al., 2015; Malinverno et al., 2017).

Once cell motion is incorporated, the model develops a phase
diagram where tissue solidification is accompanied by a dynamical
slowing down as in the case of supercooled liquid (Bi et al., 2016).
Alignment interactions drive collective motion not only in the fluid
phase, as experimentally observed by Malinverno et al. (2017), but
also a peculiar migratory pattern in the solid phase (Giavazzi et al.,
2018). Early studies (Henkes et al., 2011) considered alignment
interactions that do not depend on cell shape. In (Paoluzzi et al.,
2021) some of us explored the impact of continuous feedback
between cell displacement and cell motion showing that it deeply
impacts the structural properties in confluent monolayers. Even in
absence of self-propulsion, the interplay between random motion
and shape fluctuations can develop a variety of glassy dynamics
(Sussman et al., 2018; Li et al., 2021). Although biological systems
are far from equilibrium, altogether these works indicate that
collective migration, as well as spatial organization, can be
described by the use of an effective energy functional whose
minimization allows us to determine the optimal configuration of
the system. Moreover, it shows that the fundamental microscopic
measurable variables are four, i.e., the cells’ size, shape, major axis,
and velocity. Up to now, this research line focuses mostly on cell
models in which cells do not differentiate. However, recent studies
have pointed out the importance of considering cells of different
mechanical properties (Li et al., 2019). This kind of differentiation
plays an important role in tumorigenesis and metastasis invasion
(Fuhs et al., 2022). Moreover, glassy dynamics is strongly linked with
geometrical frustration and, under this perspective, particle-based
models that implement a polydisperse mixture of active particles
might help in understanding the role of cell-size differentiation in
collective rearrangements (Paoluzzi et al., 2022b).

Neural tube formation belongs to a larger class of
morphogenetic events called invagination, e.g., Drosophila

gastrulation, primitive streak (Alt et al., 2017). Several vertex
models were proposed to model the evolution of a 2D section,
which demonstrated the role of apical constriction and polarized cell
shapes (Odell et al., 1981; Rauzi et al., 2015; Štorgel et al., 2016). In
this context, (Štorgel et al., 2016) offers a phase diagrame description
that allows us to understand how changes in visco/elastic properties
change the stationary emergent organization of the tissue. Inoue
et al. (2016), instead, introduced a 3D vertex model of neurulation
showing that closure is obtained by the interplay of cell elongation in
concert with apical constriction with the additional fundamental
role of migration of the “deep” cells underlying the neural plate.
Furthermore, the finite element models described by Chen and
Brodland (2008); Brodland et al. (2010) demonstrate the specific
kinds of strains and stress that are necessary to reproduce
neurulation. In parallel, some models offered descriptions of
neural plate folding as a 2D elastic sheet with implicit apical/
basal polarity (Hannezo et al., 2014).

The recent polarity models, described in Nissen et al. (2018);
Nielsen et al. (2020) which are strongly connected with Szeliski and
Tonnesen (1992), are able to capture the coordinated role of apical/
basal polarity alignment and mechanical interaction. These models
effectively balance between realistic detail and synthesis in modeling
3D neural tube morphogenesis. We refer the reader to the review of
Wyczalkowski et al. (2012) for a further detailed account of 3D
model of neurulation. Unfortunately, these models do not try to
understand the collective decision-making process that involves
simultaneously single-cell differentiation and cell shape and
strain control. Without the collective coordination of these
processes neurulation main not correctly terminate. This is
particularly evident in neural rosette formation because not all
the cells in the culture are able to effectively self-coordinate and
form neural rosette patterns and some of the cells that do not take
part in the formation of rosette patterns are cells that systematically
fail differentiation.

Just a few system biology approaches try to integrate gene
expression network models with spatial organization models
(Tosenberger et al., 2017). These models use a very sophisticated
and detailed model that combines the genomic and proteomic
networks, and for this reason, it is very descriptive but it is not
synthetic in the characterization of the fundamental nature of the
interaction between cells and does not describe the mechanical and
elastic interaction among the cells. Contrarily, a synthetic model of
cell type determination should not focus on the full cells’ gene
expression, but on the relational mechanism that forces interacting
cells to take the same fate or to push each other onto a different path.

3.2 Emergent behavior and phase transitions

As an example, of an emergent collective behavior, consider, for
example, a complex system characterized by two states, D and O,
each state characterized by a certain degree of order or organization,
such that O is the more ordered state and D is the less ordered state.
In statistical physics, a phase transition is a transition from the
system state D to the state O. The order of the system is measured
through the order parameter, which is a mathematically defined
quantity, that quantifies the degree of order of the system. The order
parameter is derived from the observation and characterization of
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fundamental variables describing the emergent collective behavior
(Parisi, 1988). Such that the less-ordered state D will have a lower
value of the order parameter if compared to the more-ordered state
O. In general, in the transition from a less ordered phase to a more
ordered state, the system losses the broadness and homogeneity of
behaviors adopted by the single population members, and is forced
to select an ordered state in which all members behave more
coherently. Thus, an order parameter is usually a statistical
measure of the observed behaviors inside the population which
describes the broadness of homogeneity in the population. In
statistical physics, the Ising model and its various generalization
has been developed to account for such processes in magnetic
materials. Indeed, one can consider a system composed of
elements that assume two different states. In the original model,
those elements were magnets either oriented in the ‘up’ state or in
the “down” one, but in subsequent generalizations, those elements
were as different as cells and amino acids of protein sequences. The
Ising model describes the probability of finding a system of those
magnets in certain orientations (see Figure 5A), assuming that such
probability depends on two parameters, i.e., an external field (h) that

tends to orient the magnets in a certain direction and a local
interaction term (J) that link the orientation of each magnet with
those of its surrounding magnets. In mathematical terms, the
probability of the Ising model is

P σ{ }( ) � exp −βH( )
Z

andH � h∑
i

σ i + J∑
i

∑
j,|i−j|�1

σ iσj (2)

where σ is the magnets orientation, by convention represented as ±
1; β is the inverse of the temperature and Z a normalization factor.

Such a model exhibits peculiar features upon varying the
temperature. In fact, if one looks at a typical equilibrium
configuration at high temperature (top-right panel in Figure 5B),
we found a noisy configuration, with up and down cells randomly
distributed in space. Lowering the temperature, clusters of cells with
the same orientation start appearing. Interestingly, in finite-sized
systems, the average dimension of such clusters has a maximum for
a certain critical temperature. Such temperature marks a phase
transition of the second order between ordered and disordered
phases. Varying the external field parameter, h instead modifies

FIGURE 5
Phase transitions and the generalized Ising model. (A) Schematic representation of the two-state Ising model on a 2D lattice. Red arrows represent
the “up” state, while blue ones the “down” orientation. (B) Correlation length of the “up” state as a function of the scaled temperature. The dotted vertical
linemarks the critical temperature. Colormaps above the plot depict, from left to right, a sub-critical, critical, and over-critical configuration, respectively.
(C)Magnetization of the “up” state as a function on the external field, h. Curve colors range fromblue to dark red as the scaled temperature increases.
Colormaps above the plot depict, from left to right, configurations obtained with h = −5, 0, and 5, respectively. (D) Example of an application of a
generalized Ising model to the description of the non-equilibrium steady state of a prey-predator model (Miotto and Monacelli, 2018; Miotto and
Monacelli, 2021). Normalized entropy as a function of the predator motility obtained neglecting interactions (Shannon-Fano) or considering near-
neighbor correlations (Max-Ent). Snapshots are taken from the system steady-state distribution while tuning the predator mobility from 0.47 (left) to 0.90
(right). Preys are depicted in pink, predators in orange and empty sites are colored in green.
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the magnetization of the system, as one can see from Figure 5C.
Besides its relevance for solid state physics, the Isingmodel is playing
a main role in the area of complex systems as the Hamiltonian
(i.e., the energy function) that fully characterize the general Ising or
Potts model is the maximum entropy solution for the probability
distribution of a system for which densities and correlations are
measurable (Miotto and Monacelli, 2021).

Over the past decade, many works employed MaxEnt to analyze
different biological problems, ranging from the study of neural
populations to the determination of macromolecular structures,
to the inference of regulatory networks, and collective behavior
in large animal groups (Schneidman et al., 2006; Martin et al., 2009;
Cavagna and Giardina, 2014; Santolini et al., 2014). In addition, also
the behavior of prey-predator systems has been shown to be well
reproduced by a three-state Potts Hamiltonian (Miotto and
Monacelli, 2018), where predator motility tuned out to be an
order parameter for such systems (see Figure 5D).

Along this line, if one considers how epithelial cells align their
velocity, we find that as predicted in Szabó et al. particle-based Visek
model (Szabó et al., 2006), there are two main regimes. Cells are
found in a disordered state D, at low density and seldom touch each
other, where they move randomly and select their direction
homogeneously at random. Contrarily, in an ordered state O,
cells are found at high density and form a confluent layer, in this
condition cells move all together selecting collectively an emergent
direction.

In this case, (Szabó et al., 2006), the order parameter is the
alignment which is defined as the average of the cells’ velocity vector.
This is a good order parameter because it is a statistical measure that
characterizes the level at which the population moves in an orderly
direction. In state D, cells move in all directions homogeneously,
thus for the central theorem, the alignment for a group of cells tends
to zero as the size of the group increases. In state O, cells move in a
selected direction with a fixed velocity, thus the alignment is equal to
the displacement vector of the cell population. Averages of
characteristic measurable quantities of the system are often good
order parameters because tend to zero when the measurable
quantity gives noisy values homogeneously spread over all
possible outcomes, and tend to a value greater than zero when
the observed population members’ behaviors converge to a certain
degree of uniformity or organization.

Phase transitions are observed in several physical and biological
systems and share several features. One of the main characteristics of
a phase transition is an abrupt change of the order parameter, in
response to a gradual modification of one of the fundamental system
parameters, such as density, or pressure. In Szabó et al. (2006), the
phase transition is the result of the different cell density levels.
Another general characteristic is that as the order parameter
increases the system is forced to a specific order state among the
different available ordered states. In Figure 6, for δ < δc the cell
population is found in a single minimum which represents the
disordered state, for δ > δc the cell population is forced to choose an
ordered configuration among the possible configurations available,
Figure 6 presents two minima one for each possible population
configuration. At a macroscopic level, this process determines the
ability of a system composed of many members to take a collective
decision, acting as an individual which determines its behavior. In
the cell sheet case, (Szabó et al., 2006), the cells select a single

direction of motion among several, which is then followed by all
cells. The emergent selection of a uniform configuration, among
several possible configurations is often referred to as spontaneous
symmetry breaking.

4 Discussion

In the previous sections, we explored the main theoretical
frameworks that have evolved to explain morphogenesis. Now,
we will focus on what is still missing (Section 4.1) and what may
help making further progresses Section 4.2), possibly viewing
morphogenesis as a phase transition process (see Section 4.3).

4.1 Current research gap

We start discussing the explanatory power and the limits of the
cited frameworks. In particular, we began with themolecular biology
framework, and then we gradually explored the diffusion models
and cell sorting explanatory frameworks. Finally, we entered the
current model connected to soft matter, collective behavior, and
finite element models.

The molecular biology description of cell differentiation is very
effective at capturing the transcriptional and translational
mechanisms that regulate stem cell function (Saba et al., 2021).
More precisely, molecular biology models can account for the role of
genes in activating differentiation at the proper developmental time
point. Gene activity is characterized by signaling pathways and
transcriptional regulators that work together to form a dynamically
complex system capable of responding to external stimuli and active
lineage fate determination (Rauch and Mandrup, 2021).
Unfortunately, molecular biology models are limited by their
ability to account for the physical processes required for self-
organization in morphogenesis because they do not incorporate
the mechanical and spacial constraints that guide tissue
development (Collinet and Lecuit, 2021). In practice, these
models do not give us an explanation of the rosette pattern
formation, but only an explanation of the cell differentiation in
neural progenitors inside the rosette. From another point of view,
diffusion models are very effective in producing a large variety of
patterns but their experimental validation has been limited.
Furthermore, while diffusion models help us understand the
formation of stable morphogen patterns they do not help us
understand the processes of cell migration and mechanical
sensing that have been observed in morphogenesis. In analogy,
cell sorting allows us to understand migration and the organization
of specific cell types in different tissue but it lack the ability to explain
the differentiation changes that are present at the single-cell level.
Thus, these models do not allow understanding the causal
relationship between cell fate determination and tissue pattern
development. Considering the more current counterpart, finite-
element and agent-based models of morphogenesis allow us to
understand the mechanical conditions required for pattern
formation, but do not explain how these mechanical conditions
are determined through supposedly a self-organizing system based
on the interaction between mechanical signaling and the cell
transcriptional and translational mechanisms. Collective behavior
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and active matter models give us a powerful framework to
understand self-organization but at the moment there have been
limited applications for neurulation and neural rosette formation,
and these applications disregarded the relation between cell
differentiation, and pattern formation.

4.2 Potential developments in the field

In this review, we evaluated the evidence showing how neural
rosettes are a good testing ground for studying morphogenesis. 3D
simulation models are paramount to understanding the
fundamental mechanical interactions among the cells required for
correct neural tube closure. Unfortunately, these models are
computationally expensive, as even a single run may require
powerful computers and extensive computational time.
Consequently, it is hard to understand the global mechanical
properties of the system that are required to study the stability
under perturbations, and the zoology of potential stable and meta-
stable states that may lead the system out of its proper healthy state
into dysfunction or disease (Collinet and Lecuit, 2021).

For this reason, a simplified model, potentially a 2Dmodel would
be very helpful for the study of the full global analysis that is required
to understand the landscape that characterizes the evolution of the
neural tube. To this aim, neural rosettes morphogenesis is the ideal
biological model because it incorporates the fundamental neural tube
morphogenetic transformations, and it is, at the same time, realistic to
assume that it can be modeled with a multi-agent system that
incorporates self-organization and collective single-cell fate
determination. Furthermore, it incorporates the fundamental
neural tube morphogenetic transformations ranging from specific
molecular biology processes to similar mechanical and shape
modifications. Finally, it is naturally a 2D model.

A computationalmodel of neural rosettemorphogenesis would allow
us to develop phase diagrams and to understand the system parameters
that allow the system to self-organize transiting from a disordered state to
a more ordered state. This model will guide the design of experimental
conditions that can demonstrate the validity of the models first on 2D
neural rosettes and then in 3D neural tube formation experiments.

4.3 Tissue development as a sequence of
phase transitions

Regardless of the specific model used to describe a cell, considering
a cell as a complex system, we expect that given a certain external
environment, the cell will tend to be in a specific macroscopic state or
phase (Furusawa and Kaneko, 2012). Furthermore, given that the cell is
a complex system, we find that the cell state is characterized by a
multidimensional vector and that when a cell is found in a certain
differentiation state this multidimensional vector will travel along a
certain attractor cycle, such that for each cell type there will correspond
a specific dynamic attractor in the gene expression space. The cell
attractor will characterize a trajectory that is stable in time and robust to
transcription errors and other sources of noise. Nevertheless, this
attractor may be perturbed when the cell is exposed to external
signals such as chemical signals (e.g., soluble factors or membrane
junctions), or mechanical interactions. These external signals mediate
the interaction between the cells and the surrounding environment.
Thus, since a cell population is composed of several cells each
characterized by a certain single-cell attractor state, which interacts
through mechanical and chemical signals, we can consider the tissue
formed by this population as a complex system composed of smaller
complex systems. Thus, the formation of tissue requires the
coordination of the single-cell transcriptomic states. Specifically, in
the case of spatially organized tissue, as for the neural tube, it requires
the cells’ transcriptomic states to be coordinated according to the
mutual position among the cells, and to the global positional
information of the organism (Gregor et al., 2007). Thus, in this
prospective, tissue morphogenesis may emerge from the interplay
between two interacting dynamical systems characterized by
different scales: the genetic expression dynamics, and the tissue self-
organization dynamics. Given this perspective, we find that
development is usually characterized either as a sequence of
differentiation processes at the single-cell level or as morphogenetic
events that generate different tissue, this paper suggests that these two
frameworks describe the same process at two different scales, and that
these scales can be coherently studied as a sequence of self-organization
events that can be described as phase transitions, using the methods
developed in statistical physics.

FIGURE 6
Symmetry breaking diagram. For δ > δc the ball falls in a single valley where the states are disordered and point homogeneously in all directions. For
δ < δc the ball has to fall in one of two valleys selecting a specific order, the selection of one of these valleys is called symmetry breaking.
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5 Conclusion

Understanding neural tube formation is of fundamental
important because errors in neural tube formation are the cause of
major developmental disorders. In this contest, neural rosettes can be
used as a 2D model to study the 3D self-organization of the
neurolation process. Here, we discussed how neural rosette cannot
be separately described either as a cell differentiation process, or as a
patterning process, but a complex system perspective that merges
these different perspectives is required. Cells that form rosettes change
their gene network activation state as shown by the expression of
PAX6, ZO-1, and N-cadherin, while cells outside the rosettes do not
always express such markers. Although we have several information
about gene activation and differentiation, and we are able to model
several aspects of pattern formation, we still lack a coherent theoretical
framework to study these two aspects together in a single multi-scale
phenomenon. We argue that active matter and collective behavior
modelsmay be the best candidates for this task, as the physics of phase
transition may allows us to connect our understanding of cell
differentiation with the emergent self-organization of tissue. In
fact, active matter and collective behavior give us a way to connect
the stochastic decision process at the single-cell level with the global
tissue-level mechanical transformations. To do this, we should
develop a model that captures the stochasticity at the single-cell
level, together with a sufficient description of the chemical signal
and mechanical cues, necessary to describe the single-cell fate
determination. The single-cell fate determination must then be
linked to the consequent single-cell stress and strain that drive the
mechanical transitions into the emergent pattern (Hannezo et al.,
2014). In this framework, one of the questions would whether it is cell
fate determination that guides single-cell mechanical changes or if
single-cell mechanical changes guide cell fate. Possibly, it may be a
feedback loop. These questions can be extensively explored in rosette
formation because they can be naturally modeled in 2D without
making limiting assumptions, and because modeling hypothesis and
observation can be readily tested on in vitro experiments. In Eric F.
Wieschaus’s words, we would like to understand “[. . .] how genetic
activity is translated into the physical properties that govern
mechanics, or govern movement or change in shape. [. . .] We
want to understand it the way an engineer understands how you
build a bridge, a self-building bridge.” (Kavli Institute for Theoretical
Physics, 2018). The fact that tissue emerges from the self-organization
of cell population has several inherent benefits, the system is robust to
small single-cell errors and genetic mutations, furthermore, the

genetic code that encodes the information required for the
production of the morphogenetic events is not required to specify
the complete description of the dynamic evolution of each cell in the
population, as an engineer would need to plan the construction of a
bridge (rephrasingWeischaus words), but it has to encode an effective
Lagrangian that guides the single cell decision making. In such a way
that it would allow the cell to adapt to the surrounding environment
and self-organize collectively in the desired structure.
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