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1 Introduction

Dynamic behavior analysis of the nonlinear aeroelastic system is one of the inter-
esting topics among researchers that have been studied in recent years. Nonlinear
airfoil instability and behavior analysis in subsonic flow are one of the main parts in
this field. Aeroelastic systems are characterized by complex nonlinear phenomena
due to structural oscillations coupled with the fluid dynamic. The coexistence of
phenomena, such as limit cycle oscillation and chaotic vibrations induced by the
fluid, can lead the dynamic systems to instability such as flutter which can decrease
the system performance, as well as the damage of the structure itself.

Historically, the main approach to analyze the dynamic instability of nonlinear
aeroelastic systems has been developed by Theodorsen [1] in the frequency domain.
His theory aimed to model the aerodynamic loads on an airfoil when the wake
releasing is considered as a memory effect on the global fluid-structure interaction
dynamic. Wagner proposed a time-domain analysis where the memory effects are
represented by convolution Volterra integrals [2]. Both these traditional models are
linear, but, in many cases, the dynamic equations of an airfoil became nonlinear
due to the presence of nonlinear elements (dampers, stiffness) or for the instabilities
generated from the fluid-structure interaction. The nonlinear aerodynamic model
in the time domain can be solved by numerical techniques or analytical methods.
In the first case, the solutions such as the finite difference method, Runge–Kutta,
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and cyclic method were employed to solve differential equations of a nonlinear
system. Moreover, analytical and semi-analytical solutions including describing
function technique were used to analyze the instability of control surfaces of a
wing with nonlinear stiffness [3]. In the last decade, different methods have been
used to investigate nonlinear dynamic systems [4, 5], some, based on perturbation
method and stochastic approach [6], have been developed to analyze nonlinear
aeroelastic systems such as perturbation incremental or transformation point method
and homotropy method [7, 8].

In the literature, several authors have provided extensive reviews about nonlinear
control methods for the minimization of oscillations of elastic wings and aircraft;
moreover, in recent years, many control strategies for flutter avoidance have been
developed. Partial feedback linearization methodology was also applied to the
design of nonlinear controllers for the nonlinear aeroelastic system [9]. The state-
dependent Riccati equation (SDRE) method was developed for nonlinear control
problems and used to design suboptimal control laws of nonlinear aeroelastic
systems considering both quasi-steady [10] and unsteady aerodynamics. Recently,
an output feedback and an adaptive decoupled fuzzy sliding-mode control laws
have been implemented for suppressing flutter and reducing the vibrational level
in the subcritical flight speed range [11]. Moreover, based on the tensor-product
model transformation and the parallel distributed compensation, a control law for
the prototypical aeroelastic wing section was designed and presented in [12].

This work aims to develop a novel variational optimal control strategy to control
the aerodynamic behavior of an aerofoil which presents a memory effect from
wake production. Integral memory terms, representing, in this case, the release
of wake, are normally not included in variational control algorithms. From the
control point of view, the Volterra models are solved through direct methods,
discretizing the equations, and then the optimal problem is solved through nonlinear
programming [11]. The proposed optimal control, called Proportional-Nth-order-
Integral control, PI(N), fills this gap and it belongs to the category of Variational
Feedback Controls (VFCs) [13–18]. The solution of the optimal problem is provided
through a particular solution of Riccati’s equation including the memory terms
generated by the past system evolution [19, 20]. The structure of the control law
shows how the optimal solution is related to the kernel function order, that is, of the
Volterra integral typology.

Finally, the analytical solution PI(N) is tested on a prototypical wing and the
numerical results show how is possible to reach the best performance of the
proposed controller in comparison with the classical Linear Quadratic Regulator
(LQR) method.

2 Mathematical Model of Wagner’s Controlled Wing

Theodorsen’s theory is widely used to achieve the mathematical model of the
aerodynamic problem [1]. It provides the generalized unsteady aerodynamic forces
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Fig. 1 Theodorsen’s airfoil section geometry

due to an arbitrary motion of the airfoil, which generates a vortex wake. The
time-domain counterpart of the Theodorsen’s theory, formulated by Wagner [2],
is considered in this work to formulate an optimal control law which includes
Volterra’s memory effects.

The engineering control application of a two-degree-of-freedom airfoil is here
investigated, where the pitch degree of freedom is actively controlled.

The sketch in Fig. 1 shows the geometry of the typical Theodorsen airfoil section
where the x-axis is chord-wise axis (positive towards the trailing edge) and E is the
center of rotation. The airfoil is a simple two degree-of-freedom system, elastically
constrained by a pair of springs, kl and kt, oscillating in plunge and pitch. The
actuation force, u, is meant here as dimensionless torque applied on the pitch
rotation degree-of-freedom β. By using standard notations, the nondimensional
plunge deflection at the elastic center is denoted by w,while β represents the pitch
motion. The elastic center, E, is located at a distanceOE = ahc/2 from the mid-chord
(ah is the dimensionless distance, considered with respect to the half-cord length,
c/2, between the center of the foil O, and the elastic axis), while the mass center,
G, is located at a distance EG = xαc/2. With these assumptions, the aeroelastic
equations of the typical wing are:

{
ẅ + xαβ̈ + Ω2w = −p (w, β)

xα

r2α
ẅ + β̈ + β = r (w, β) + u

(1)

where the overdot denotes differentiation with respect to a dimensionless time
τ = ωαt; � = ωw/ωα is the heave stiffness, being ωw and ωα the uncoupled

natural frequencies of heave and pitch modes; rα =
√
4Iβ/mc2is the dimensionless

radius of gyration about the elastic axis and m, Iβ , c are the mass, the moment of
inertia per unit length with respect to the elastic center, and the wing chord. For
an incompressible two-dimensional flow, Wagner defines the aerodynamic loads
as the sum of two contributions [2]: (i) a linear composition of degree-of-freedom
which represents the added mass, damping, and stiffness due to the fluid-structure
interaction and (ii) a convolution term including the memory effects defined as
follows:
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p (w, β) = 1

μ

(
ẅ − ahβ̈ + Uβ̇

)+ 2U

μ

t∫
−∞

KW (t − τ) ˙̃w3/4 (τ ) dτ

r (w, β) = 1

μr2α

[
ah

(
ẅ − ahβ̈

)− 1

2
U (1 − ah) β̇ − 1

8
β̈

]

+U (1 + 2ah)

μr2α

t∫
−∞

KW (t − τ) ˙̃w3/4 (τ ) dτ

(2)

where p and r are the lift and pitching moment, respectively, μ = πρc2/4m is
the mass ratio, and U = 2V/cωα is the dimensionless inflow velocity and V is
the inflow velocity, oriented along the x-axis. The time-dependent known function
∼
w3/4 (τ ) = ẇ (τ )−

(
1
2 − ah

)
β̇ (τ )+Uβ (τ) andKW (t − τ) = ∑N

k=1 αke
−βk(t−τ)

are the downwash and the Wagner function, respectively. Using a standard notation

in control theory, by defining a new state vector x = [
w, β, ẇ, β̇

]T
, the system can

be arranged in its matrix notation:

ẋ = Ax + K(t) ∗ x + Bu (3)

where the following definitions are used:

A =
[

02×2 I2×2
− M−1Ω −M−1C

]
; M =

⎡
⎣ 1 + 1

μ xα − ah
μ

xα

r2α
− ah

μr2α
1 + a2h

μr2α
+ 1

8μr2α

⎤
⎦ ; C =

[
0 U

μ

0 U(1−ah)

2μr2α

]

K(t) =
[

02×2 02×2
− M−1Φ(t) 02×2

]
; B =

⎡
⎢⎣ 02×1

8μr2α (ah − μxα) /ε

8μr2α (μ + 1) /ε

⎤
⎥⎦

Ω =
[

Ω2 0
0 1

]
;Φ(t) =

⎡
⎣ 2U

μ K̈w
2U
μ

[(
ah − 1

2

)
K̈w + UK̇w

]
− (1+2ah)U

μr2α
K̈w − (1+2ah)U

μr2α

[(
ah − 1

2

)
K̈w + UK̇w

]
⎤
⎦

ε = 8a2
h
μ + 16ahμxα + 8r2αμ ( μ + 1) − 8μ2x2α + μ + 1

(4)

and I is indicating the identity matrix. The term expressed by the operator ∗ indicates
the convolution integral or Volterra integral between the element i-row j-column of
K matrix and the state x.

Kij ∗ xi =
∫ t

0
Kij (t − τ) xi (τ ) dτ (5)

This work aims to find an optimal control that can minimize a given objective
function J under the constraint hypotheses of the differential system (3). Usually,
the Pontryagin problem is not easily solved except through numerical approaches
based on the discretization of the equations making use of direct control methods
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such as single-multiple shooting or collocation methods. In this case, the open-loop
control solution is founded by the solution of a nonlinear programming system,
which requires high computational efforts and therefore cannot be used for real-time
applications. Here, the authors propose an indirect and analytical solution of the
Pontryagin problem for Volterra equations, which can be used in feedback, making
the algorithm suitable for real-time applications. The objective function is defined
as the classical quadratic form in terms of both the state x and the control u, and the
constraint expressed by the integral differential equation of first species Volterra:

min J = min

{
T∫
0

1
2x

T Qx + 1
2Ru2 + λT (ẋ − Ax − K ∗ x − Bu) dt

}

i.c. x(0) = x0

(6)

Equation (6) represents a typical optimal problem in which the integral differ-
ential constraint is considered using the Lagrange multiplier λ. The matrix Q and
the coefficient R are generally gains of the objective function or also called penalty
parameters suitably selected to best tune the optimal control solution.

3 Theory of the Proportional Integrative N-Order PI(N)
Control

The proposed optimal control theory of the Volterra Eq. (3) is here presented in
a scalar formulation without loss of generality for more clarification. Therefore,
starting with the minimizing of the following cost function:

min J = min

{∫ T

0

1

2
qx + 1

2
ru2 + λ (ẋ − ax − k ∗ x − bu) dt

}
(7)

and doing the δ variations and imposing δJ = 0, a set of differential equations in x
and λ is found (see Ref. [16] for more details):

⎧⎨
⎩

ẋ = ax + bu + ∫∞
0 k (t − τ) x (τ ) dτ

λ̇ = qx − aλ − ∫∞
0 k (τ − t) λ (τ ) dτ

λ(T ) = 0, u = b
r
λ

(8)

The first integral of (8) is the convolutional term k ∗ x; instead, the second integral
is associated to the δ-variation of k ∗ x in the x variable that is a nontrivial problem.
Both can be derived under the kernel causality proprieties k(t − τ ) = 0 for t < 0
and τ > t (see Ref. [16] for more details). The transversality condition of Eq. (8),
λ(T) = 0, makes the problem difficult to solve, and only an open loop control
solution is naturally stated, precluding the chance of a direct feedback control.
As it happens for physical systems described by differential equations, the infinite
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time-horizon presents the chance of a direct feedback control passing through some
assumptions. The proposed method is based on the use of a specific exponential
kernel function, which may well represent most convolutional memory phenomena
or hysteresis models:

k(t) =
N∑

k=1

αke
−βkt (9)

where αk and βk are general coefficients of the exponential series. Now, eliminating
u through the third of Eq. (8) and considering the Eq. (9), one can easily obtain

{
ẋ = ax + λb2

r
+ ∫∞

0

∑N
k=1 αke

−βkt x (τ ) dτ

λ̇ = qx − aλ − ∫∞
0

∑N
k=1 αke

−βktλ (τ ) dτ
(10)

Thanks to the special form of k, the two integral terms of (10) can be easily
Laplace-transformed L {} with variable s:

(sX(s) − x0) = (a − dN−1)X(s)

+
N∑

j=1

(
adN−jX(s) + pN−jX(s) + b2

r
dN−jΛ(s) + x0dN−j

−dN−1−jX(s)
)
s−j + b2

r
Λ(s)

(sΛ(s) − λ0) = −
(
a + d̃N−1

)
Λ(s)

+
N∑

j=1

(
qd̃N−jX(s) + p̃N−jΛ(s) − ad̃N−jΛ(s) + λ0d̃N−j

−d̃N−1−jΛ(s)
)

s−j + qX(s)

(11)

where dj, d̃j ,pj , p̃j are general coefficients. Now Laplace antitransforming
L−1 {} and reducing the integral-differential equation to a set of first order, the
Eq. (11) can be reduced to an LTI system with the state vector q = [ξ , η]T ,
ξ = [ξ1, . . . , ξN + 1]T , η = [η1, . . . , ηN + 1]T where ξ1 = L−1 {X(s)} and
η1 = L−1 {�(s)}; the following variables ξ k, ηk present integrals of state and
lambda up to the k-order and matrix H = [HξξHξη;HηξHηη] ∈ R

(2N + 2) x (2N + 2):

q̇ = Hq (12)
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Its solution can be expressed in function of its 2N + 2 eigenvectors ψk θk
and eigenvalues p = [p1, . . . pk, . . . , p2N + 2]. Arranging the eigenvalues pk with
R-positive and Y-negative real part, Eq. (12) can be written as follows:

q =
[

ξ

η

]
=

Y∑
k=1

c
{−}
k

[
ψ

{−}
k

θ
{−}
k

]
ep

{−}
k t +

R∑
k=1

c
{+}
k

[
ψ

{+}
k

θ
{+}
k

]
ep

{+}
k t (13)

where Y + R = 2N + 2 and the superscript {+} identify the set of values ψk, θk,
ck referred to the positive real parts Re {pk} ≥ 0 and vice versa the superscript {−}
is referred to the set of Re {pk} < 0. The ck are the unknown coefficients found by
imposing the boundary conditions. The system (13) can be solved assuming R ≥ Y
or the number of eigenvalues pk with negative real part are more than the others.
The solution can be found by imposingc{+}

k = 0 to satisfy the boundary condition
lim

T →∞λ(T ) = 0 and its derivatives, that is, lim
T →∞η

(T ) = 0. By selecting N + 1

equations with p
{−}
k , from Eq. (13), one obtains:

η =
[
θ

{−}
1 , . . . , θ

{−}
N+1

] [
ψ

{−}
1 , . . . ,ψ

{−}
N+1

]−1
ξ = Pξ (14)

Finally, from Eq. (8), since u = b
r
λ, extracting from η the last subvector

ηN + 1 = λ, the optimal feedback control variable u can be found as follows:

u = − P1,1x +
∑N

i=1
P1,i+1

∫
. . .

∫
︸ ︷︷ ︸

i

(
d̂ ix + p̂iu

)
dt . . . dt︸ ︷︷ ︸

i

+
∑N

i=1
x0dN−i

t i−1

(j − 1)!

(15)

with d̂ i , p̂i , P1, j are general coefficients. The structure of Eq. (15) shows the explicit
optimal control solution of Volterra’s differential equations here called PI(N). The
form of u is mainly related to the structure of the kernel k(t), because it presents
a combination of state integral of order equal to the number of the k exponential
terms. The explicit control solution has been obtained not only by satisfying the
transversality condition stated in (8), but also imposing the same condition for its

higher derivatives lim
T →∞

diλ(T )

dti
= 0. Moreover, the control solution is also strictly

related to the state initial condition x0.
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4 Results and Discussion

In this section, the numerical results are discussed. The proposed PI(N) controller is
here developed to control the airfoil motion of Eq. (3) by minimizing the release
of vortex wake. The novel algorithm is compared with the benchmarking LQR
method, in terms of cost function 1/2( xTQx + Ru2). The benchmarking LQR
method has been developed for the model in analysis by disregarding convolutive
memory effects that cannot be included in the method K(t) ∗ x = 0. Moreover,
both controllers, LQR and PI(N), have been applied to the real Volterra wing
model. Table 1 below shows the geometric and dynamic adimensional parameters
considered as input for the numerical simulations.

Results in Fig. 2 show the behavior of heave (a) and pitch wing (b) motion,
when the PIN and LQR controllers are, respectively, acting on the system. For both
degree-of-freedom the novel PIN algorithm presents a faster attitude to reach the rest
condition, that is, the minimization of memory wake effect, compared to the LQR,
which is around 20% of the maximum reached value of the pitch degree-of-freedom.
Particularly, the LQR solution presents discontinuity in the heave evolution possibly
caused by the presence of memory effects generated by the kernel function. Indeed
these effects, which take place during the first seconds of the simulation, are not
taken into account in the LQR algorithm.

Also, the control in Fig. 3a underlying a lower effort for the PI(N) controller
and in Fig. 3b the cost functions for both methods are compared. The PIN solution
presents a lower value of the cost function J than the LQR, confirming a better
behavior of the proposed control both in terms of minimization of memory wake
effects and cost function itself. This result is due to the fact that the LQR method is
not taking into account the memory effects differently from PIN whose behavior is
favored by this feature.

Table 1 Dimensionless parameters (see [21] for more details)

Description Parameters Value

Dimensionless distance OE ah 0.2
Dimensionless mass μ 26.18
Dimensionless radius of gyration rα 4.8
Dimensionless distance GE xα 0.2
Frequency � 0.55
Dimensionless inflow velocity U 2
Kernel function KW 1 − 0.165e−0.0009Ut − 0.335e−0.006Ut

Control gain Q; R diag(5e4; 250; 500; 40); 0.2
Initial displacement w(0), β(0), ẇ(0), β̇(0) [10, 0, 0, 0]
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a) b)

Fig. 2 Heave (a) and pitch (b) motion: PIN vs LQR

a) b)

Fig. 3 Control law (a) and cost function (b) PI(N) vs LQR

5 Conclusions

This work aims to develop a novel optimal control strategy for Volterra models,
based on the variational optimal control theory, which normally is applied only
to differential equations. In this paper, the proposed algorithm is applied to the
control of the aerodynamic behavior of an airfoil which presents a memory effect
from wake production. The optimal control, called Proportional-Nth-order-Integral
control, PI(N), is here proposed as the indirect solution of the Pontryagin theory
applied to the Volterra equation of motions. The analytical control solution has an
integral form of order equal to the order of the kernel function series expansion
for modelling the wake vortex. Numerical results show the better performances of
the proposed PI(N) controller compared with the classic LQR method in terms of
reaching rest conditions and minimizing the cost function value.
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