
Neural Networks 164 (2023) 606–616

c
C
(
t
l
t
s

a
t
l
p
i
m
s
i

i
l

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2021 Special Issue

Continual learningwith invertible generativemodels
Jary Pomponi ∗, Simone Scardapane, Aurelio Uncini
Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Italy

a r t i c l e i n f o

Article history:
Available online 19 May 2023

Keywords:
Machine learning
Continual learning
Normalizing flow
Catastrophic forgetting

a b s t r a c t

Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while
being trained on new tasks. Common techniques to handle CF include regularization of the weights
(using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly
re-trained on past data. Generative models have also been applied for the latter, in order to have
endless sources of data. In this paper, we propose a novel method that combines the strengths of
regularization and generative-based rehearsal approaches. Our generative model consists of a normal-
izing flow (NF), a probabilistic and invertible neural network, trained on the internal embeddings of the
network. By keeping a single NF throughout the training process, we show that our memory overhead
remains constant. In addition, exploiting the invertibility of the NF, we propose a simple approach to
regularize the network’s embeddings with respect to past tasks. We show that our method performs
favorably with respect to state-of-the-art approaches in the literature, with bounded computational
power and memory overheads.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major open problems in deep learning is the so-
alled catastrophic forgetting (CF) (French, 1999; McCloskey &
ohen, 1989; Roger, 1990). It is the tendency of a neural network
NN) to forget past learned information when training on new
asks. This problem is intrinsically connected with the continual
earning (CL) property of a NN, which is the ability of a NN
o learn consecutive information without forgetting previously
tored knowledge.
Overcoming, or mitigating, CF is a key step in order to achieve
more general artificial intelligence; a system should be able

o learn a sequence of tasks and remember them, following the
ifelong learning paradigm (Thrun & Mitchell, 1995). This is a key
roblem because real world tasks continually evolve and, often,
t is not possible to train a NN from scratch. Without efficient
ethods to overcome CF, online training in a lifelong learning
cenario is not possible. Recently, there has been a resurgence of
nterest in this area due to its importance.

One of the first attempts to mitigate CF consisted in stor-
ng past examples and replaying them into the model while
earning new information (Robins, 1995). These rehearsal meth-
ods have been improved over the years, with more complex
memory systems and hybrid approaches emerging. In particular,
many pseudo-rehearsal methods have been proposed, in which
the external memory is replaced with a generative model, capable

∗ Corresponding author.
E-mail address: jary.pomponi@uniroma1.it (J. Pomponi).
ttps://doi.org/10.1016/j.neunet.2023.05.020
893-6080/© 2023 Elsevier Ltd. All rights reserved.
of generating endless samples from the past. Pseudo-rehearsal
algorithms, however, require generative models that are both
easy to train (in order to provide high-quality data) and simple
to condition on the task (in order to avoid having one generative
model for each task). Both of these conditions are extremely
challenging in practice.

To overcome (or complement) these limitations, many reg-
ularization methods have been studied over the last years, in
which additional loss terms are used to mitigate CF. In elastic
weight consolidation (EWC, Kirkpatrick et al. (2017)), for exam-
ple, past weights are used to regularize the training process, by
slowing down the modification of important weights, where the
importance is quantified based on a Fisher information criterion.
Alternative regularization strategies are achieved by acting on the
previous outputs (Li & Hoiem, 2017) or gradients (Lopez-Paz &
Ranzato, 2017). Recently, it was also shown that state-of-the-art
performance can be achieved by acting on the internal embed-
dings (i.e., the activations before the classification layer) (Pom-
poni, Scardapane, Lomonaco, & Uncini, 2020). A more complete
overview of CL methods is provided later on in Section 2, or
in Parisi, Kemker, Part, Kanan, and Wermter (2019).

In this paper, we propose a novel CL method aiming to com-
bine the benefits of pseudo-rehearsal and regularization strate-
gies. Our algorithm can be summarized in three points:

1. Similarly to pseudo-rehearsal, we store information on past
tasks by training an auxiliary generative model. Instead
of training it on the input space, however, we train it
to generate samples from the internal embeddings of the
network, simultaneously with the main classifier.

https://doi.org/10.1016/j.neunet.2023.05.020
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.05.020&domain=pdf
mailto:jary.pomponi@uniroma1.it
https://doi.org/10.1016/j.neunet.2023.05.020

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

p
t

M

2. We use a normalizing flow (NF, Papamakarios, Nalisnick,
Rezende, Mohamed, and Lakshminarayanan (2019)) as gen-
erative model. NFs are invertible networks that can per-
form sampling and density estimation in both directions.
In this way, the NF can be trained efficiently, with no need
for additional components such as in generative adversarial
networks.

3. Finally, we use the sampled embeddings from the trained
NF to perform regularization with respect to the past tasks
(see Fig. 4 later on).

We claim that (i) training the generative model in the em-
beddings’ space is significantly easier (both in its design and
in its optimization) compared to the input space, and (ii) that
regularization makes better use of past information stored in
the generative model, compared to simply augmenting the mini-
batch with new data (similarly to Pomponi et al. (2020)). In
our experimental evaluation, we validate these two claims, and
we show that our method performs favorably (or better) than
several state-of-the-art approaches, while requiring significantly
less memory and computational overhead. We make our code
publicly-available.1

2. Related works

The methods for overcoming CF can be categorized, in line
with Parisi et al. (2019) and Maltoni and Lomonaco (2019), in
three broad groups. We underline that the boundaries are not
always defined, with many methods, including ours, exploiting
two or more of these strategies.

• Architectural Strategies: methods that use specific archi-
tectures, layers, activation functions and/or weights freez-
ing/pruning, and eventually grow the architecture when
needed (e.g., Pomponi, Scardapane, and Uncini (2021), Rusu
et al. (2016)). For example, Hard Attention on Task
(HAT, Serra, Suris, Miron, and Karatzoglou (2018)) uses
an attention mechanism in order to route the informa-
tion/gradient flow in the NN and preserve the weights
associated to past tasks.

• Rehearsal strategies: in this case, past examples are stored
and later replayed in the current mini-batches to consolidate
the network. In order to avoid having to explicitly store
past examples, which requires a growing memory, pseudo-
rehearsal algorithms (Robins, 1995) craft them on the fly,
most notably exploiting generative models (Shin, Lee, Kim,
& Kim, 2017). Rehearsal approaches are not just the ones
that use saved images to replay them while training, but any
approach that uses saved images to fight CF; e.g. the saved
images can also be used to regularize the internal state of
the model, as proposed in Pomponi et al. (2020) or Zhu,
Zhang, Wang, Yin, and Liu (2021).

• Regularization techniques: in this case, popularized by
elastic weight consolidation (EWC, Kirkpatrick et al. (2017)),
the loss function on the current task is extended with a
regularization penalty to selectively consolidate past infor-
mation or slow the training on new tasks. Broadly speaking,
regularization methods are easy to implement, but they
require carefully selecting what information is regularized,
and how.

The method we propose in this paper is at the boundary of
seudo-rehearsal and regularization strategies, so we focus on
hese two classes below.

1 https://github.com/jaryP/Continual-Learning-with-Invertible-Generative-
odels
607
Learning Without Forgetting (LWF, Li and Hoiem (2017)) is
one of the earliest regularization methods. It attempts to allevi-
ate CF by stabilizing the output layer using knowledge distilla-
tion. Other well-known regularization methods are EWC, which
applies a soft structural regularization computed between the
weights’ importance relative to the past tasks and the current
weights, and Synaptic Intelligence (SI, Zenke, Poole, and Ganguli
(2017)), a modification of EWC, which uses the difference be-
tween the current weights and their trajectory calculated during
the training. Other methods include Gradient Episodic Memory
(GEM, Lopez-Paz and Ranzato (2017)), Averaged-GEM (Chaudhry,
Ranzato, Rohrbach & Elhoseiny, 2019a), and the recently pro-
posed Embedding Regularization (ER, Pomponi et al. (2020)).

In GEM, the external memory is populated with past examples
that are used to regularize the direction of the current gradients,
in order to move the weights in a region of the space in which all
the tasks are satisfied. This method is capable of improving past
scores, but it requires solving a complex minimization problem at
every step, which does not scale well with the number of tasks. ER
is a regularization technique in which the external memory con-
tains past examples and their associated embeddings, extracted
at the end of the training process on the associated task. The
memory is used to impose a penalty to constrain the current
embeddings to lie in the vicinity of the past ones. This method is
extremely fast and requires little memory. The approach we pro-
pose in this paper follows the philosophy of ER to act at the level
of the embeddings, instead of single weights or outputs. Another
novel and interesting approach is proposed in Ebrahimi, Meier,
Calandra, Darrell, and Rohrbach (2020), in which the authors
use an Adversarial Continual Learning (ACL) approach: it aims
to alleviate CF by learning a disjoint latent space representation
composed of a task-specific latent space for each task and a
task-invariant feature space for all tasks.

A more challenging set of methods are pseudo-rehearsal ones.
In Shin et al. (2017), the authors proposed a method which con-
sists of two modules: a deep generative model and a task solver.
In this way, samples from past tasks can be generated using the
generative model and interleaved with information from the new
tasks; the solver is used to predict the label associated to the
generated images in order to regularize the network. In Kang,
Cheol-Ho, and Byoung-Tak (2020) a similar approach, but based
on a Variational Autoencoder (VAE), is proposed: it consists of a
VAE and an external NN, which learns to replicate the distribution
of the embeddings associated to a task; this external NN can be
used to generate images associated to past tasks and reduce CF.
Pseudo-rehearsal methods based on VAE are evaluated mostly on
datasets of relatively low complexity, due to the limit of those
generative models to create photo-realistic images, but, on the
other hand, are easier to train if compared to GANs (Zhao, Song,
& Ermon, 2017a, 2017b) . Whether these generative approaches
can scale up to more complex domains is still an open problem.

The method we propose here can be considered a pseudo-
rehearsal one, but we focus on a more recent class of generative
models (Kingma & Dhariwal, 2018), and we apply them at the
level of embeddings instead of in the input space; this should
give us the ability to create realistic-samples while having an
easy to train generative model . We note that in the literature
on generative models, a number of authors have considered sim-
ilar combinations of autoencoders with a generative model on
their latent space. In Rezende and Mohamed (2015), the authors
applied a NF to learn a VAE prior. This idea has been further
studied in Kingma et al. (2016), where the authors proposed
a new NF which scales well for high-dimensional embedding
spaces. Similar to our proposal, in Guo et al. (2019) the authors
proposed a model that uses an adversarial generative model in

the embedding space to generate high-resolution images.

https://github.com/jaryP/Continual-Learning-with-Invertible-Generative-Models
https://github.com/jaryP/Continual-Learning-with-Invertible-Generative-Models

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

t
a
w
l
H
p
h
i
s

m
e

3

t
s
o
t
a
s

3

i
c
w
m

b
p
t
i
c
f
C
d

w
u
d
d
n
t
w
c
t
m
e
p
a

a
I

Table 1
Basic notation used in the paper.

x Input image
yt Label w.r.t. the task t
yd Label w.r.t. all tasks
St (·) Classification head for task t
E(·) Encoder
Ec (·) Classification encoder, defined as Ec = fc ◦ E
Er (·) Reconstruction encoder, defined as Er = fr ◦ E
D(·) Decoder
pu(u) Prior for the NF

A relatively new and emerging area of study researches how
o mitigate CF when the tasks’ boundaries are not known. In this
rea we highlight (Aljundi, Kelchtermans, & Tuytelaars, 2019), in
hich the authors proposed a task free approach to continual

earning, using a regularization-based memory. In Zeno, Golan,
offer, and Soudry (2018), a task agnostic Bayesian method was
roposed, demonstrating the ability of probabilistic models to
andle ambiguous task boundaries. Finally, Rao et al. (2019) has
ntroduced the novel idea of unsupervised learning in a lifelong
cenario.
Many other methods exist; for a complete review of existing

ethods see De Lange et al. (2021), Masana et al. (2022), Parisi
t al. (2019).

. Proposed method

In this section, we describe our proposed PRER method. Sec-
ion 3.1 provides some motivation for the method. Section 3.2 de-
cribes the general CL setting we consider. Section 3.3 overviews
ur method and the way we perform the training. Then, Sec-
ions 3.4 and 3.5 go in-depth into the regularization and gener-
tive components, respectively. To help reading, we summarize
ome common notation in Table 1.

.1. Motivation

In a sense, rehearsal methods are close to optimal, because
n the limit of a very large memory they recover a standard
lassification approach, in which the model is trained on the
hole dataset . On the other hand, these methods require a
emory that, usually, grows linearly with the number of tasks.
Pseudo-rehearsal methods try to overcome these limitations

y substituting the memory with a generative model and doing
arameter sharing on the generative model, which is incremen-
ally trained on all the tasks and constrained to remember the
nformation about the tasks encountered so far. However, this
reates a new set of challenges: (i) the CF problem is removed
rom the NN, but the generative model itself potentially suffers
F; (ii) doing parameter sharing on real-world images can be
ifficult.
The aim of this paper is to propose a generative approach

hich does not work directly on the input, and that can be
sed to regularize the model instead of simply augmenting the
ataset. The key idea of the proposed Pseudo-Rehearsal Embed-
ing Regularization (PRER) is to use a generative model to sample
ew embeddings associated to past tasks, and to use a decoder
o reconstruct the associated images. To regularize the network,
e (i) reconstruct the images associated to the embeddings, (ii)
alculate the embeddings given by the current network; (iii) force
he old and the new embeddings to be as close as possible (by
oving the current one in the direction of the past ones). In our
xperimental section, we show that the generative model is not
rone to CF, while the encoder is easily regularized using the
bove-mentioned process.
608
3.2. Problem formulation

The following formulation of the CL scenario is similar to the
one proposed in Lopez-Paz and Ranzato (2017). We receive a
sequence of tasks t = 1, . . . ,M , each one composed by a set of
triples {(xi, t, yti)}

S
i=1 ∈ X × N+

× Y , where xi is a sample, t is
an integer identifying the current task, and yti is the label of xi
w.r.t. the current task t . Within this formulation, the tasks never
intersect, and a new task is collected only when the current one is
over. The input and the labels can belong to any domain, although
most benchmarks in the CL literature have considered the image
domain in a classification setting (Parisi et al., 2019).

In this paper we focus on a CL scenario in which each task
has its own classifier, meaning that only a portion of the NN, that
we call the encoder E, is shared. There is no class overlap among
different tasks, and accuracy is computed separately for each one.
This is done by creating a leaf branch for each task, called head,
which classifies images associated to that task. Mathematically,
we have a model f (x, t) = St (E(x)), where z = E(x) is the encoder
nd St (z) a task-specific classifier. We call z the embedding of x.
n a naive setting, when we receive a new task t , we minimize
a task-specific loss starting from the current encoder E and a
randomly-initialized St :

Lt
c =

1
S

S∑
i=1

L(f (xi, t), yti) , (1)

where L is a suitable loss (e.g., cross-entropy). CF appears when-
ever training on the current task t degrades the performances on
previous tasks 1, . . . , t−1.

3.3. Components of PRER

For PRER, we augment the encoder E and classifier heads
described in Section 3.2 with two additional modules:

1. Decoder: a decoder D is trained to approximately invert
the encoder E (i.e., D(E(x)) ≈ x), by minimizing the mean
squared error (MSE) between the original images and the
embeddings. We refer to the combination of encoder and
decoder as the autoencoder part of the model (see Fig. 1).

2. Generative model: a generative model, implemented as
an NF (formally described in Section 3.5), is trained to
approximate the distribution pt (z) of embeddings up to the
current task t .

Empirically, we found that sharing the entire encoder E for
the classification heads and the decoder results in slightly re-
duced performance. Inspired by recent works on contrastive
learning (Grill et al., 2020), we solve this by projecting the output
of E using two separate projection heads fc and fr , resulting in a
classification encoder Ec = fc ◦ E, and a reconstruction encoder
Er = fr ◦ E, where only the backbone encoder E is shared. The
classifier for task t is then defined as St ◦Ec (for a task-dependent
St), while the autoencoder is defined as D ◦ Er .

Given a new task, the training process is divided into three
phases described below. We found that splitting the training
into three separate processes (instead of joint training) helps the
stability and improves the results since each block works with the
others already optimized.

(1) Classifier training: In the first stage, the current task-specific
head St , as well as the encoder Ec , are trained to solve the current
task t by minimizing a modified version of Eq. (1), in which the
encoder is the one which uses the projection head associated to
the classification:

Lt
c =

1
S

S∑
L(St (Ec(xi)), yti) . (2)
i=1

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

i

e
d

Fig. 1. The autoencoder training process. The images are projected into a subspace called embedding space and reconstructed to match as much as possible the
input images.
Fig. 2. The NF training process. The generative model is trained to transform the embeddings into a vector which contains only values that match the base distribution
pu(u), called prior.
o
W

(2) Autoencoder training: When the training process of the
classifier head is over, we train the decoder D and the projection
function fr to minimize the reconstruction error on the current
task. In this step, we keep the encoder fixed to minimize CF. As
loss function we use the MSE between the real images and the
reconstructed ones:

Lt
ae(x) =

1
S

S∑
i=1

∥xi − D(Er (xi))∥2 (3)

The training process of the autoencoder is visually shown in
Fig. 1. The decoder function can also be conditioned to guide the
reconstruction of the embeddings. Denote by yd a label defined
on the union of all possible classes (e.g., if task 1 has 2 classes
and task 2 has 3 classes, yd is defined over 5 possible classes).
We guide the decoder by providing yd as input together with x,
.e., x̃ = D(Er (x, yd)).

(3) Generative model training: In the last stage we train the gen-
rative model to learn the underlying distribution of the embed-
ings generated by Er (·). The generative model and the training

procedure are described in detail in Section 3.5, and shown in
Fig. 2. We underline that we use a single generative model, so
that the memory footprint is constant and the model is capable
of generating embeddings from all the tasks ≤ t , which will be
reconstructed by the decoder trained in the previous step. After
training the generative model on task t we have a distribution
pt (z), which is capable of generating embeddings from each task
encountered so far. The generative model can also be conditioned,
to force the sampling of an embedding associated to a specific
class yd.

3.4. Regularization

When training on a task which is not the first one, we need
to regularize the network to avoid CF. In the proposed method,
we use the NF to sample embeddings from the previous tasks,
which we use in two ways: (i) we augment the dataset while

training the decoder and the NF (steps 2 and 3 before); (ii) we

609
add a regularization term to force the encoder to maintain these
embeddings while training on the new task, similarly to Pomponi
et al. (2020), in step 1.

To do so, at the beginning of a new task t > 1, we sample a set
f images, by combining the generative model and the decoder.
e denote this set of N tuples as M<t :

M<t = {(x̂i, ẑi)}Ni=1 . (4)

For each tuple i, we first sample an embedding zi ∼ pt−1(z)
from the NF. We then store in M<t the reconstructed image
x̂i = D(zi) and the current embedding ẑi = Ec(x̂i). Once we
have generated the synthetic dataset M<t , we use it to regularize
the training as described below. This sampling process is visually
shown in Fig. 3. Note that it is not necessary to generate an entire
set of synthetic images M<t prior to the training, because the
synthetic images can be generated on-the-fly. However, we found
no practical benefit in doing so, and pre-storing an entire set is
more computationally efficient.

While training the autoencoder and the NF on a new task, we
overwrite a portion of each mini-batch with some past samples
from the memory. In this way, the decoder and the NF do not
suffer CF, because they are trained each time on all the tasks seen
so far. Regarding the regularization of the classifier, we apply the
same technique proposed in ER (Pomponi et al., 2020). Consider
a generic image x and its embedding z produced by Ec(x), the
regularization term is calculated as:

R(z, x) = d(z, Ec(x)) , (5)

where d is a suitable distance function. We augment the classifi-
cation loss in (2) with the regularization term as:

L̃t
c =

1
S

S∑
i=1

L(St (Ec(xi)), yti)

+
β

|Ms|

∑
(x̂,ẑ)∈M<t

d(ẑ, Ec(x̂)) .
(6)

where β is a parameter that regulates the importance of the
regularization term. This ensures that the embeddings used for

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

t
t
u
t
V
h
p
b
d
t
e

R
i
T
d
(
s

‘

Fig. 3. The image shows how the external memory is generated. In the first step, the NF takes a vector drawn from the prior pu(u) and generates the associated
embedding vector, used to reconstruct the image x. Then, the image is added to the memory, along with the features extracted from Ec (x).
Fig. 4. Here, the regularization process is displayed. The reconstructed images
are used to calculate the current embedding vectors, and the results are used
to calculate the regularization term. For further explanations see Section 3.4.

classifying the images do not change during the training. This step
is applied only while training the classifier, and it is summarized
in Fig. 4. Practically, at each iteration of training we sample a
mini-batch from the dataset and an independent mini-batch from
the memory.

3.5. Normalizing flows

To complete the specification of our PRER method, we need
o describe a specific generative model to estimate samples from
he embedding space. While most generative methods could be
sed here, we have found NFs to be particularly effective for
he task. Introduced in Tabak and Turner (2012), Tabak and
anden-Eijnden (2010), and popularized by Rezende and Mo-
amed (2015) and Dinh, Krueger, and Bengio (2014), NFs are
robabilistic models describing the transformation of a proba-
ility distribution into a more complex one using a sequence of
ifferentiable, invertible mapping functions. Depending on the
ype, a NF is capable of efficiently performing sampling or density
stimation in either direction (Papamakarios et al., 2019).
Let u ∼ pu(u) be a real d-dimensional distribution which

is easy to sample from, and T a transformation T : Rd
→

d. The key requirements for T to be a NF are: (1) T must be
nvertible, with an inverse denoted by T−1, and (2) both T and
−1 must be differentiable. We can obtain samples from pz(z) by
rawing samples from the easier pu(u) and then computing T (u)
forward mapping). Alternatively, we can ‘normalize’ a known
ample z ∼ pz(z) by applying the inverse transformation T−1(z)
(inverse mapping).2 Additionally, we can evaluate the likelihood

2 As mentioned in Papamakarios et al. (2019), the terms ‘‘forward’’ and
‘inverse’’ are simply a convention.
610
of a known sample z as:

pz(z) = pu(u)
⏐⏐⏐det JT (T−1(x))

⏐⏐⏐−1
, (7)

where JT−1 ∈ Rd×d is the Jacobian matrix of all partial derivatives
of T−1. The prior distribution pu(u) is generally chosen as an
Isotropic Normal distribution. T is instead obtained by composing
multiple simpler, invertible transformations T1, . . ., TL, resulting
in T = TL ◦ TL−1 ◦ · · · ◦ T1. The arbitrarily complex density z can
be constructed from a prior distribution by composing several
simple maps and then applying Eq. (7).

As stated before, a NF can perform both sampling and density
estimation in both directions. Depending on the specific NF, not
all of these operations are necessarily easy to compute (Papa-
makarios et al., 2019). This is due to the fact that to achieve them
simultaneously, the model needs both a simple forward mapping,
a simple inverse mapping, and the Jacobians have to be easy to
compute. In general, this is not always possible, mostly due to
a computational trade-off. Hence, a NF model needs to be built
depending on the application.

In our case, we need efficient density estimation and sampling
in the inverse mapping (for training), but only efficient sampling
in the forward direction (see Figs. 2 and 4). We use a setup similar
to Dinh, Sohl-Dickstein, and Bengio (2016), Kingma and Dhariwal
(2018), whose layers we briefly summarize below. Denote by
uj+1 = Tj(uj) the generic jth block of the NF. We build the overall
NF by interleaving three types of invertible transformations.

(1) Coupling Layer and Affine transformation: Proposed in Dinh
et al. (2014, 2016), a coupling layer consists in a powerful re-
versible transformation, where the forward and the inverse map-
pings are computationally efficient. Here, we use the version
presented in Kingma and Dhariwal (2018). Consider a generic

split of the input vector uj =

[
a
b

]
. A coupling layer is defined

as:

t = f tθ (a)
log s = f sθ (a)
cb = exp(log s) ⊙ b + t
uj+1 = concat(a, cb)

where f tθ (·) and f sθ (·) are generic transformations implemented
via a NN, and ⊙ is the element-wise multiplication. The log det
of a coupling layer is simply

∑
i log si. The main advantage of a

coupling layer is that the functions f tθ (·) and f sθ (·) do not have to be
invertible. The main advantage is also a disadvantage, since, due
to the simplicity of the affine transformation, a NF implemented
with this technique needs multiple layers and blocks in order to
have enough expressive power to transform any input into p (u).
u

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

I
w
g

(

t
u

(
a
i
e
c

u

I
a

n our case the NF is applied on the embedding space, and we
ill see that the required number of layers necessary to achieve
ood results is small.

2) Random Permutation: since only a portion of the input is
modified in each block, it is required to randomly permute the
output of a block in order to modify a new set of parameters in
the following block, i.e., Tj(u) = Pu, where P is a fixed permuta-
ion matrix. Clearly, T−1

j (u) = PTu, and the transformation has a
nitary determinant.

3) Invertible Batch Norm: As in Dinh et al. (2016), we also
pply batch normalization, but on the input of the coupling layer
nstead of the output. It acts as a linear re-scaling of each param-
ter, thus it can be easily inverted and included in the Jacobian
omputation. The scaling is done in the following way:

j+1 =
u − µ

(
√

σ2 + ϵ)
and the parameters are iteratively estimated as:

µ = mµ + (1 − m)µb

σ = mσ + (1 − m)σb

where m ∈ [0, 1] is the momentum, while µb and σb are,
respectively, the mean and the standard deviation of the current
mini-batch. On the first batch, the parameters are initialized as
µ = µb and σ = σb, and they are updated with each new batch
during the training. The log det is computed as:(∏

(σ2
+ ϵ)

)−0.5

with ϵ > 0 a parameter to avoid zero multiplication.
Note that, in our case, the NF can be conditioned on yd. To

implement this, we condition the first coupling layer by passing
the class yd as an additional argument to f tθ (·) and f sθ (·). The idea
is similar to what is done in Winkler, Worrall, Hoogeboom, and
Welling (2019). Practically, the conditioning is done by building a
one-hot vector with respect to the maximum number of separate
classes we presume to observe.

Furthermore, we implement a multi-scale architecture as ex-
plained in Dinh et al. (2016), Kingma and Dhariwal (2018). The
NF is partitioned in several levels, each one composed by multiple
blocks of permutation, coupling layer and batch norm, and at the
end of each level the output is split into two equal chunks: the
parameters in the first chunk are sent directly to the output, while
the other chunk flows into the next level for further processing
(if another level is present). This architecture improves the con-
vergence and the stability, and it results in a smaller number of
parameters.

Many other ways of building a NF exist; for an in-depth
review of the NF literature we refer to Papamakarios et al. (2019)
and Kobyzev, Prince, and Brubaker (2020).

4. Experiments

4.1. Datasets and metrics

To evaluate the proposed method, we consider three different
datasets: MNIST, SVHN (Netzer et al., 2011), and CIFAR10-100
(Krizhevsky, 2009). We evaluate the methods under the previ-
ously described multi-head CL scenario; to do so, being C the
classes of a dataset, these are grouped in M sets, each one making
up a task containing cm ∈ N+ classes, with cm > 1, giving: M =

⌈
C
cm

⌉ (with this formulation each task contains the same number
of classes, with the exception of the last one if C mod cm ̸= 0).
n particular, we split the labels by grouping the original ones in
n incremental way. For all the datasets, with the exception of
611
CIFAR100, we set cm = 2, generating 5 tasks. Regarding CIFAR100,
we set cm = 10, creating 10 tasks.

To evaluate the efficiency and to compare the methods
two metrics from Díaz-Rodríguez, Lomonaco, Filliat, and Maltoni
(2018) have been used. All these metrics are calculated on a
matrix R ∈ RM×M , where M is the number of tasks, and each
entry Rij is the test accuracy on task j when the training on task
i is completed. The chosen metrics are summarized below.

Accuracy: it is the average accuracy obtained on the test set of
each task, after the training on the last task is over, and it is
calculated as:

Accuracy =
1
M

M∑
j=1

RMj.

This metric aims to show the final average accuracy obtained
by the final model, and does not takes into consideration the
evolution of the scores.

Backward Transfer (BWT): it measures how much information
from the old tasks is remembered during the training on a newer
one. It is calculated as:

BWT =

∑M
i=2

∑i−1
j=1(Rij − Rjj)

1
2M(M − 1)

.

This metric can be greater than zero, meaning that not only the
model is remembering everything about past tasks, but it also
improves past scores. In our scenario, this phenomenon is rare,
since heads associated with past tasks are no longer trained. This
metric is also calculated when the training on all the tasks is over.

We use these metrics because they embed all the important
aspects of the CL problem: the ability of an approach to mitigate
CF and to classify correctly the past tasks, but also the capability
to train the model on the current one. They are both important
because a model with high accuracy and low BWT is a model not
capable of alleviating CF; on the other hand, low accuracy and
high BWT tells us that the constraints applied to the model are
too restrictive, blocking the training of the current task.

4.2. Baselines

We compare our method to the Naive approach – training on
all the tasks sequentially without mitigating the CF problem –
and to three established or related rehearsal and regularization
approaches: Replay (Chaudhry et al., 2019) , EWC (Kirkpatrick
et al., 2017), GEM (Lopez-Paz & Ranzato, 2017), GFR-IL (Liu et al.,
2020), ER (Pomponi et al., 2020), and Supermask in Superposition
(SupSup) (Wortsman et al., 2020) . As an additional baseline, we
used our proposal to generate images to regularize the model us-
ing the replay approach; this method is called PRER-R. Regarding
SupSup, being an architectural approach that freezes the weights
of the model, it has no BWT.

Concerning ER, we used a slightly modified version of the
original algorithm to align it to our scenario. In the original paper,
the memory is filled with past images, and during the regulariza-
tion step only a subset of these images is used to calculate the
regularization parameter; in this paper, to align ER to the other
rehearsal methods, all the images saved in the external memory
are used. This is a small modification that improves slightly the
result presented in the original paper.

For each method, we searched for the best hyper-parameters,
which are exposed in Section 4.4.1.

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

B
s
p
a
s
p
t
P

Table 2
Average percentage on 5 runs, and the associated standard deviation, for BTW and Accuracy. All the results are calculated on the test sets. Best results within
standard deviation are reported in bold.

MNIST SVHN CIFAR10 CIFAR100

BWT Accuracy BWT Accuracy BWT Accuracy BWT Accuracy

Naive −3.81±1.40 96.94±2.76 −4.80±0.61 94.12±1.01 −14.60±1.01 77.43±0.99 −31.70±1.21 35.40±1.46
EWC (Kirkpatrick et al., 2017) −0.28±0.17 99.64±0.14 −0.60±0.29 95.34±0.81 −2.21±0.29 80.88±0.81 −20.32±0.98 45.67±1.12
Replay (Chaudhry et al., 2019) −3.81±1.40 91.09±2.76 −4.80±0.61 94.12±1.01 −17.54±2.10 85.14±0.99 −20.85±1.12 49.47±1.78
GEM (Lopez-Paz & Ranzato, 2017) −0.13±0.01 99.77±0.02 −0.90±0.12 96.77±0.51 −3.54±0.09 86.81±0.20 −25.40±0.98 40.77±2.15
ER (Pomponi et al., 2020) −0.11±0.02 99.78±0.02 −0.38±0.07 96.54±0.09 −2.86±0.46 87.44±0.36 −8.28±0.76 51.35±1.06
GFR-IL (Liu et al., 2020) −0.10±0.01 99.72±0.02 −0.39±0.08 96.02±0.11 −2.64±0.32 86.35±0.36 −8.96±0.81 50.12±0.68
SupSup (Wortsman et al., 2020) – 98.39±0.15 – 74.25±0.85 – 69.98±0.07 – 44.08±2.13
PRER-R −0.12±0.06 99.73±0.01 −0.50±0.07 96.45±0.42 −8.71±0.12 84.07±0.18 −9.42±0.57 50.31±0.78
PRER −0.11±0.05 99.41±0.01 −0.38±0.03 97.51±0.21 −2.24±0.09 88.25±0.12 −7.93±0.72 53.02±1.02
4.3. Models and training

We trained all the models using Adam as optimizer (Kingma &
a, 2014), with the learning rate equal to 0.001. To avoid injecting
ome past information into the training of the current task, the
arameters of the optimizer are restored after each task. We
lso trained the autoencoder and the NF of PRER with the same
etting. The training process for the encoder Ec(·) and the heads
roceeds for a fixed number of epochs, and at the end of the
raining, the best model is saved and used for future tasks. For
RER we train Er (·) and the NF until the respective losses stop

improving for 5 consecutive epochs.
For MNIST, the network is composed of 2 convolutive layers

followed by a fully connected linear layer which outputs a vector
of size 100. For CIFAR10 and SVHN we use the same settings,
but with 4 convolutive layers and the resulting final embedding,
which size is 200. Each head classifier is composed of 3 fully
connected layers with a dropout function between consecutive
layers, with drop probability set to 20%. In every network, we
used ReLU as an activation function.

We experimented with different sizes for the external mem-
ories of ER, GEM, Replay , and PRER, and for the latter, we
also tested different ways of conditioning the generation of the
embeddings. From the preliminary experiments, exposed in Sec-
tion 4.5, we take the best model and we average the score over 5
experiments. In each of the 5 experiments, we split the dataset
randomly (balanced split based on labels, with proportion 80%
train and 20% test set) and we change the initialization of the
weights. A seed is assigned to each experiment, corresponding
to the number of the experiment itself, to guarantee the same
starting point for all the methods.

4.4. Results

In this section, we expose the main results in terms of scores.
In Table 2 we summarize the results concerning the accuracy and
BTW on the datasets exposed before. First of all, we notice that
in this multi-head scenario, the accuracy of the Naive method is
only partially affected by the CF phenomenon, and some accuracy
from the past tasks is preserved, depending on the difficulty of the
dataset. The BTW values, however, are always significantly worse,
highlighting the need for evaluating each method along multiple
metrics.

Looking at EWC, we can see that it performs slightly bet-
ter than the Naive approach. We observe that the scores are
good for the first tasks, then, because the regularization penalty
slows down the changing of the weights, the accuracy is neg-
atively affected. With the growing complexity of the dataset
this phenomenon becomes more visible: the accuracy is low but
the remembering is aligned with the results obtained by better
methods.
612
The others baseline methods perform better than EWC. As
expected, ER is the best baseline method, as also reported in the
original paper.

The method we propose, PRER, achieves better or comparable
results on all the benchmarks. Being based on ER, it is expected
that the results are at least comparable to the ones achieved by
ER. In our case, since we use a generative model instead of a
fixed memory, the regularization process works better, leading
to higher accuracy and lower forgetting.

The results exposed are the ones obtained with the best hyper-
parameters found doing a grid search, based on the results re-
ported in the original papers. As we will see, when it is taken
into account also the memory required by the method, PRER is
the one which achieves the best results even with low memory
usage.

4.4.1. Hyperparameters
To compare the size of the memories we approximate its

dimension by counting the number of digits saved (the quantity
of floats).

For ER, GEM, and Replay we have one main parameter:
the number of images to save in the external memory. The
best results for ER and Replay are achieved by setting the
memory to 200 for all the datasets, resulting, approximately, in
676K parameters for MNIST and 3272K parameters for SVHN
and CIFAR10. For GEM we set the number of saved images per
task to 2000, which approximately results in a memory of 5760K
parameters for MNIST and 30720K parameters for CIFAR10 and
SVHN. EWC has no memory to compare, and the only parameter
is the importance of the past tasks (the value which weights the
regularization penalty in the loss function), which is set to 103 for
each experiment.

PRER has many parameters and most of them are related to
the generative model and its topology. As exposed before, our NF
is composed of L layers, and each one is made up of a number of
blocks Bl; each block is composed of a permutation of the input,
followed by a coupling layer and a batch norm layer to stabilize
the training. The remaining parameters are the distance function
d(·, ·), set to cosine distance in all experiments, and the regular-
ization parameter β , fixed to 1. As we will see, the dimension of
the NF necessary to achieve good scores is contained. In fact, the
best results are obtained using 1-3 levels, with 5-10 blocks for
each level. In the end, the coupling layers take as input a vector
of size n and project it into a vector of size 2n, before projecting
it to the same input dimension n. The NFs which achieved the
scores presented above have 250K parameters for MNIST and
500K for CIFAR10 and SVHN. Another architectural choice related
to PRER is whether to condition or not the generation of the
images; the results exposed are achieved when only the decoder
is conditioned. In Section 4.5.2 the different ways to condition the
models are exposed in detail.

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

o
m
w
p

Fig. 5. The images show how the dimension of the external memory affects the final results. For GEM and ER the parameters of the memory is the number of floats
saved in memory, which is composed by images for GEM, with the addition of the embeddings vectors for ER. The memory required by PRER is the total number
of trainable weights required by the encoder and the generative model.
4.5. Additional results

4.5.1. Memory comparison
In this section, we study how the dimension of external mem-

ry influences the results. In order to compare the required
emory, which we approximate as the number of floats saved,
e need to define some quantities: N is the number of trainable
arameters of the encoder and the decoder, M is the number of

tasks, IM is the dimension of an image, EM is the dimension of
the embeddings vector extracted by Ec(·), and S is the number
of samples saved in the external memory. Using these values, we
can calculate the size of a memory, which depends on the method
used, as follows:

• GEM-Replay: these methods save images from past tasks,
so we have that the memory size depends on the number
of saved images, and it is given by the following formula:
M × S × IM .

• ER: this method, similarly to GEM, requires storing past
images along with the embeddings vectors associated with
613
them, extracted by the encoder Ec(·). The final memory
dimension is calculated as M × S × (IM + EM).

• PRER: it requires storing the decoder, along with the NF.
The best way to count the number of parameters, which
corresponds to the number of trainable parameters of the
models, is empirical.

It is clear that the required memory depends mostly on the
dimension of the images, with the addition of the embeddings
size for ER. The memory required by our method depends on
how deep and wide the NF is, in combination with the size of the
embedding vectors, which is the input of our generative model.
Also, we do not include EWC in the overall memory comparisons,
since it does not use external memory.

Fig. 5 shows the results obtained on MNIST and CIFAR10 while
varying the memory budget. We decided different interesting
values and managed to build the methods in order to match,
approximately, the memory size with the budget (e.g. to reach
250K parameters using GEM on MNIST, whose images have size
1 × 28 × 28, we need to save ≈ 63 images per task). We can

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

g

t
N
c
I
t
a
b
p
c

t

b
c
f
g
c
f
s
m
f

c

w

i
a

D

Table 3
The table shows the results obtained using PRER while varying which network
is conditioned and how it is done. Both of the networks, the decoder and the
NF, can be conditioned using the categorical vector, one-hot, associated with a
class.
Autoencoder Normalizing flow Dataset Results

BWT Accuracy

Conditioned Conditioned MNIST −0.34 99.66
CIFAR10 −4.66 87.22

Conditioned – MNIST −0.07 99.84
CIFAR10 −2.74 88.33

– Conditioned MNIST −0.07 99.80
CIFAR10 −4.78 86.63

– – MNIST −0.24 99.70
CIFAR10 −4.09 87.28

see that GEM and Replay are the methods which suffer more
from the memory dimension since a lot of images are required to
estimate correctly the direction of the gradients (the best results
are obtained with 2000 images for each task). Comparing ER with
our proposal shows that both converge to the same score, but
PRER requires less memory to reach it. This phenomenon is more
evident when looking at the results obtained on CIFAR10.

4.5.2. Conditioning techniques
In our experiments we tried different approaches to force the

enerative process to create images associated to a specific class.
In PRER we have two different networks that can be condi-

ioned using a one-hot vector associated to a given label: the
F and the decoder. The key idea is that the models should be
apable of generating meaningful embeddings, and thus images.
t is not important if the models are or not conditioned, since in
his scenario the labels are not used to regularize the training
nd will not be used after the generation. The key idea is that,
y conditioning the generation of the images, we can keep a
roportionality between the classes in the generated images, by
hoosing which one to generate.
Having two additional networks, we have four possible condi-

ioning approaches:

• Both the networks are conditioned: in this case we do not
rely on a single network to reconstruct the images but the
NF is capable of recreating the important features associated
to a class, and the decoder to reconstruct those features,
helped by the class.

• Only the NF is conditioned: in this case the NF, being condi-
tioned, should focus more on the features which are related
to the class.

• Only the decoder is conditioned: this case is the inverse of
the one exposed before.

• Neither the decoder nor the NF are conditioned: this ap-
proach is possible because in a multi-head scenario the label
is not needed to regularize the training.

In Table 3 are shown the results associated with all the com-
inations exposed. We see that the cases in which the NF is
onditioned give, in general, worse results. This happens because
orcing the NF to learn the embeddings features associated to a
iven class leads it to place more mass on the features that the NF
an relate to those classes, without taking into account that others
eatures in the embeddings vector can be useful too. In this way,
ome features useful for classifying correctly the images could be
issing, and also the reconstruction of the images can be worse

or the same reason.
The best model is the one in which only the reconstruction is
onditioned. In this way the decoder, in order to minimize the

614
reconstruction loss, forces the creation of embeddings that are
more separable, and the NF is free to learn the distribution of the
embeddings. For the same reason, the scenario in which both of
the networks are conditioned leads to the worst results: being
both conditioned, a mismatch between the important features
selected by the decoder and the NF can arise.

4.5.3. Quality of the generation
In this section we want to study the quality of the generated

embeddings. Our regularization method does not requires that
the generated images are realistic, but only that they contain
all the information that can be useful to extract the embed-
dings vector used to regularize the training. For these reasons
we evaluate the generation’s quality by calculating how much
the generated embeddings space is close to the real one and
howmuch the generated embeddings vectors are preserved when
reconstructing the images.

In the first case, taken all the images with a given label yd,
e calculate all the embeddings associated to the images Er (x),

producing the set eyd . Then, we sample the same number of em-
beddings from the NF, by conditioning the reconstruction to yd,
producing the set of synthetic embeddings es (if the model is not
conditioned, we classify the sampled embeddings using a Random
Forest trained on eyd). Given these two sets, the coverage metric
s the Hausdorff distance between the real and the generated set,
t the end of the task t:

t (e, es) = max
{
sup
x∈e

inf
y∈es

d(x, y), sup
y∈es

inf
x∈e

d(x, y)
}

(8)

where d(·, ·) is the Euclidean distance. We calculate this distance
for each class yd encountered up to the task t , then we average
the results.

For evaluating how much information is preserved from the
generation to the regularization, we sample N tuples {(x̂i, ẑi)}Ni=0
from the NF model trained on task t , as exposed in Section 3.4,
and calculate the quality as:

Qt =
1
N

N∑
i=1

s(Ec(x̂i), ẑi) (9)

where the similarity metric d(·, ·) is the inverse of distance used
during the regularization process (cosine similarity in our case).

First of all, we want to show visually the coverage of the em-
beddings sets on MNIST. Fig. 6 contains 4 columns, one for each
conditioning technique, divided in the real embeddings space, top
row, and the generated one, bottom row. It is interesting to see
that the conditioning technique used changes not only the final
scores, but also the final embedding space, because the generated
embeddings vectors are also used to regularize the network; so,
in base of the learned space by the NF, during the training the em-
beddings are moved towards a space in which the regularization
distance is minimized. In fact, the best model, second column, is
the one that has the most extended embeddings space, while the
others tend to collapse the classes all together.

Table 4 shows the results obtained on MNIST and are related
to the ones obtained in the ablation experiments exposed in Sec-
tion 4.5.2. We can see that not always the conditioning technique
which achieves good scores is the one which produces the best
quality score Q, while the sets coverage remains ones of the best
during all the training. The others results confirm what has been
said before: the first model is the one which has more distance
between the real embeddings set and the generated one due to
the non-alignment of the embeddings, and, in general, the models
in which the NF is conditioned are the ones which give worst
results in terms of set coverage.

These results show that the quality of the generation can be
related to the final scores, but should not be the only metric to

guide the choice of the model to use in the final experiments.

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

d
o
a
t
r
w
t
t
a
t
c
p
f
t
w
t
a
t

D

c
t

D

Fig. 6. The images show the embeddings spaces (using t-SNE (Maaten & Hinton, 2008)) after the training on all the tasks from MNIST. The first row contains the
embeddings produced by the autoencoders, while the second one the ones sampled from the generative models. Each column correspond to a different conditioning
technique, respectively: (1) both of the networks are conditioned, (2) only the decoder is conditioned, (3) only the NF is conditioned, and (4) neither the decoder
nor the NF are conditioned. We can notice that the generative model is capable of reproducing the embedding space produced by the autoencoder with high fidelity.
Best viewed in color.
Table 4
The table shows the quality results obtained on MNIST using PRER, while varying the conditioning technique.
We used two quality measures: the first one is D, which indicates how good is the coverage of the generated
embeddings with respect to the real one produced by the encoder Ec (·), the second one, Q, measures how
much information from the generated embeddings is preserved when reconstructing the associated images.
Autoencoder NF Dt Q5

t = 1 t = 2 t = 3 t = 4 t = 5

Conditioned Conditioned 5.30 10.67 21.32 38.61 47.02 99.53
Conditioned – 6.02 13.46 24.24 31.47 38.91 99.25
– Conditioned 6.13 10.30 21.04 35.77 40.49 99.32
– – 4.27 10.11 17.66 28.31 34.41 99.44
C

C

D

D

D

D

E

F

G

G

5. Conclusion

In this paper, we introduced PRER (Pseudo-Rehearsal Embed-
ing Regularization), a pseudo-rehearsal method that, by working
n the embedding space, is able to generate past embeddings
nd use them to protect past information while learning new
asks. This approach is a different point of view on the pseudo-
ehearsal methods, which usually work on the input space. By
orking on a lower complexity space, the required dimension of
he generative model is reduced. Once combined with a decoder,
he generative model can be used to generate images associ-
ted with past tasks and to constrain the model by regularizing
he embeddings’ deviation. We believe that this set of methods
an be further investigated, leading to a different view of the
seudo-rehearsal approaches, which, right now, are feasible only
or low-complexity datasets. We leave an investigation on how
he PRER method scales to more complex datasets for future
ork. Moreover, it is worth investigating how to extend PRER
o work on class incremental scenarios (by, for example, creating
n external memory associated with past tasks, that can be used
o regularize the generative approach of the method) .

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability
No data was used for the research described in the article.

615
Acknowledgments

We acknowledge financial support from PNRR MUR project
PE0000013-FAIR.

References

Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning.
In 2019 IEEE/CVF conference on computer vision and pattern recognition (pp.
11246–11255).

haudhry, A., Ranzato, M., Rohrbach, M., & Elhoseiny, M. (2019a). Effi-
cient lifelong learning with A-GEM. In International conference on learning
representations.

haudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H.,
et al. (2019). On tiny episodic memories in continual learning. arXiv preprint
arXiv:1902.10486.

e Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., et al. (2021).
A continual learning survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3366–3385.

íaz-Rodríguez, N., Lomonaco, V., Filliat, D., & Maltoni, D. (2018). Don’t forget,
there is more than forgetting: new metrics for continual learning. arXiv
preprint arXiv:1810.13166.

inh, L., Krueger, D., & Bengio, Y. (2014). NICE: Non-linear independent
components estimation. arXiv preprint arXiv:1410.8516.

inh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real
NVP. arXiv preprint arXiv:1605.08803.

brahimi, S., Meier, F., Calandra, R., Darrell, T., & Rohrbach, M. (2020). Adversarial
continual learning. arXiv preprint arXiv:2003.09553.

rench, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences, 3(4), 128–135.

rill, J.-B., et al. (2020). Bootstrap your own latent-a new approach to self-
supervised learning. Advances in Neural Information Processing Systems,
33.

uo, Y., Chen, Q., Chen, J., Wu, Q., Shi, Q., & Tan, M. (2019). Auto-embedding
generative adversarial networks for high resolution image synthesis. IEEE
Transactions on Multimedia, 21(11), 2726–2737.

http://refhub.elsevier.com/S0893-6080(23)00264-2/sb1
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb1
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb1
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb1
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb1
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb2
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb2
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb2
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb2
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb2
http://arxiv.org/abs/1902.10486
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb4
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb4
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb4
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb4
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb4
http://arxiv.org/abs/1810.13166
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/2003.09553
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb9
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb9
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb9
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb10
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb10
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb10
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb10
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb10
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb11
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb11
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb11
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb11
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb11

J. Pomponi, S. Scardapane and A. Uncini Neural Networks 164 (2023) 606–616

K

K

K

K

K

R

S

S

T

T

W

W

Z

Z

Z

Z

Z

ang, W., Cheol-Ho, H., & Byoung-Tak, Z. (2020). Discriminative variational
autoencoder for continual learning with generative replay.

ingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

ingma, D., & Dhariwal, P. (2018). Glow: Generative flow with invertible
1x1 convolutions. In Advances in neural information processing systems (pp.
10215–10224). Curran Associates, Inc..

ingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. In
Advances in neural information processing systems (pp. 4743–4751).

irkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A., et al.
(2017). Overcoming catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 114(13), 3521–3526.

Kobyzev, I., Prince, S., & Brubaker, M. A. (2020). Normalizing flows: an intro-
duction and review of current methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(12), 2935–2947.
Liu, X., Wu, C., Menta, M., Herranz, L., Raducanu, B., Bagdanov, A. D., et al. (2020).

Generative feature replay for class-incremental learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition workshops (pp.
226–227).

Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for contin-
ual learning. In Advances in neural information processing systems (pp.
6467–6476).

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov), 2579–2605.

Maltoni, D., & Lomonaco, V. (2019). Continuous learning in single-incremental-
task scenarios. Neural Networks, 116, 56–73.

Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A. D., & van de Wei-
jer, J. (2022). Class-incremental learning: survey and performance evaluation
on image classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist
networks: The sequential learning problem. In G. Bower (Ed.), vol. 24,
Psychology of learning and motivation (pp. 109–165). Academic Press.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In Advances in
neural information processing systems (NIPS).

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshmi-
narayanan, B. (2019). Normalizing flows for probabilistic modeling and
inference. arXiv preprint arXiv:1912.02762.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual
lifelong learning with neural networks: A review. Neural Networks, 113,
54–71.

Pomponi, J., Scardapane, S., Lomonaco, V., & Uncini, A. (2020). Efficient continual
learning in neural networks with embedding regularization. Neurocomputing,
397, 139–148.
616
Pomponi, J., Scardapane, S., & Uncini, A. (2021). Structured Ensembles: An
approach to reduce the memory footprint of ensemble methods. Neural
Networks, 144, 407–418.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y., & Hadsell, R. (2019). Continual
unsupervised representation learning. In Advances in neural information
processing systems (pp. 7645–7655). Curran Associates, Inc..

Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows.
In F. Bach, & D. Blei (Eds.), Proceedings of Machine Learning Research: 37,
Proceedings of the 32nd international conference on machine learning (pp.
1530–1538). PMLR.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal.
Connection Science, 7(2), 123–146.

Roger, R. (1990). Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychological Review, 97 2,
285–308.

usu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., et al. (2016). Progressive neural networks. arXiv preprint
arXiv:1606.04671.

erra, J., Suris, D., Miron, M., & Karatzoglou, A. (2018). Overcoming catastrophic
forgetting with hard attention to the task. In J. Dy, & A. Krause (Eds.),
80, Proceedings of the 35th international conference on machine learning (pp.
4548–4557). PMLR.

hin, H., Lee, J., Kim, J., & Kim, J. (2017). Continual learning with deep generative
replay. In Advances in neural information processing systems (pp. 2990–2999).
Curran Associates, Inc..

abak, E. G., & Turner, C. V. (2012). A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66(2), 145–164.

Tabak, E. G., & Vanden-Eijnden, E. (2010). Density estimation by dual ascent of
the log-likelihood. Communications in Mathematical Sciences, 8(1), 217–233.

hrun, S., & Mitchell, T. (1995). Lifelong robot learning. Robotics and Autonomous
Systems, 15(1), 25–46.

inkler, C., Worrall, D., Hoogeboom, E., & Welling, M. (2019). Learning
likelihoods with conditional normalizing flows. arXiv preprint arXiv:1912.
00042.

ortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J.,
et al. (2020). Supermasks in superposition. Advances in Neural Information
Processing Systems, 33, 15173–15184.

enke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic
intelligence. 70, In Proceedings of the 34th international conference on machine
learning (pp. 3987–3995). JMLR. org.

eno, C., Golan, I., Hoffer, E., & Soudry, D. (2018). Task agnostic continual learning
using online variational Bayes. arXiv preprint arXiv:1803.10123.

hao, S., Song, J., & Ermon, S. (2017a). Infovae: Information maximizing
variational autoencoders. arXiv preprint arXiv:1706.02262.

hao, S., Song, J., & Ermon, S. (2017b). Towards deeper understanding of
variational autoencoding models. arXiv preprint arXiv:1702.08658.

hu, F., Zhang, X.-Y., Wang, C., Yin, F., & Liu, C.-L. (2021). Prototype augmentation
and self-supervision for incremental learning. In Proceedings of the IEEE/CVf
conference on computer vision and pattern recognition (pp. 5871–5880).

http://refhub.elsevier.com/S0893-6080(23)00264-2/sb12
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb12
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb12
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb14
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb14
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb14
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb14
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb14
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb15
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb15
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb15
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb15
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb15
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb16
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb16
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb16
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb16
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb16
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb17
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb17
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb17
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb17
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb17
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb18
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb19
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb19
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb19
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb20
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb21
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb21
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb21
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb21
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb21
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb22
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb22
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb22
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb23
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb23
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb23
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb24
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb25
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb25
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb25
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb25
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb25
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb26
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb26
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb26
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb26
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb26
http://arxiv.org/abs/1912.02762
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb28
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb28
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb28
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb28
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb28
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb29
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb29
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb29
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb29
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb29
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb30
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb30
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb30
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb30
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb30
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb31
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb31
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb31
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb31
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb31
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb32
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb33
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb33
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb33
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb34
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb34
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb34
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb34
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb34
http://arxiv.org/abs/1606.04671
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb36
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb37
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb37
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb37
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb37
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb37
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb38
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb38
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb38
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb39
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb39
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb39
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb40
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb40
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb40
http://arxiv.org/abs/1912.00042
http://arxiv.org/abs/1912.00042
http://arxiv.org/abs/1912.00042
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb42
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb42
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb42
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb42
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb42
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb43
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb43
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb43
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb43
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb43
http://arxiv.org/abs/1803.10123
http://arxiv.org/abs/1706.02262
http://arxiv.org/abs/1702.08658
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb47
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb47
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb47
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb47
http://refhub.elsevier.com/S0893-6080(23)00264-2/sb47

	Continual learning with invertible generative models
	Introduction
	Related Works
	Proposed method
	Motivation
	Problem formulation
	Components of PRER
	Regularization
	Normalizing Flows

	Experiments
	Datasets and metrics
	Baselines
	Models and training
	Results
	Hyperparameters

	Additional results
	Memory comparison
	Conditioning techniques
	Quality of the generation

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

