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Background: Disorders of Consciousness (DoC) are clinical conditions

following a severe acquired brain injury (ABI) characterized by absent or

reduced awareness, known as coma, Vegetative State (VS)/Unresponsive

Wakefulness Syndrome (VS/UWS), and Minimally Conscious State (MCS).

Misdiagnosis rate between VS/UWS and MCS is attested around 40% due

to the clinical and behavioral fluctuations of the patients during bedside

consciousness assessments. Given the large body of evidence that some

patients with DoC possess “covert” awareness, revealed by neuroimaging

and neurophysiological techniques, they are candidates for intervention with

brain-computer interfaces (BCIs).

Objectives: The aims of the present work are (i) to describe the characteristics

of BCI systems based on electroencephalography (EEG) performed on

DoC patients, in terms of control signals adopted to control the system,

characteristics of the paradigm implemented, classification algorithms and

applications (ii) to evaluate the performance of DoC patients with BCI.

Methods: The search was conducted on Pubmed, Web of Science, Scopus

and Google Scholar. The PRISMA guidelines were followed in order to collect

papers published in english, testing a BCI and including at least one DoC

patient.

Results: Among the 527 papers identified with the first run of the search, 27

papers were included in the systematic review. Characteristics of the sample

of participants, behavioral assessment, control signals employed to control

the BCI, the classification algorithms, the characteristics of the paradigm,

the applications and performance of BCI were the data extracted from the

study. Control signals employed to operate the BCI were: P300 (N = 19),
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P300 and Steady-State Visual Evoked Potentials (SSVEP; hybrid system, N = 4),

sensorimotor rhythms (SMRs;N= 5) and brain rhythms elicited by an emotional

task (N = 1), while assessment, communication, prognosis, and rehabilitation

were the possible applications of BCI in DoC patients.

Conclusion: Despite the BCI is a promising tool in the management of

DoC patients, supporting diagnosis and prognosis evaluation, results are

still preliminary, and no definitive conclusions may be drawn; even though

neurophysiological methods, such as BCI, are more sensitive to covert

cognition, it is suggested to adopt a multimodal approach and a repeated

assessment strategy.

KEYWORDS

brain-computer interface (BCI), disorders of consciousness (DoC), EEG, minimally

conscious state (MCS), vegetative state (VS), cognitive motor dissociation,

Unresponsive Wakefulness Syndrome (UWS), P300

Introduction

Following a severe acquired brain injury (ABI), some

patients can show clinical conditions characterized by

absent or reduced awareness, known as Vegetative State

(VS)/Unresponsive Wakefulness Syndrome (UWS; Laureys

et al., 2010), and Minimally Conscious State (MCS), respectively

(Bernat, 2006; Laureys et al., 2010). These conditions, along with

coma, are known as Disorders of Consciousness (DoC), defined

as “prolonged” when a DoC lasts more than 28 days (Giacino

et al., 2018; Kondziella et al., 2020).

The comatose state is an acute condition (4 weeks or less) in

which a patient lacks both awareness and wakefulness (Bernat,

2006). Coma is typically characterized by the presence of closed

eyes with no responsiveness to any kind of stimulation (Bernat,

2006). VS, more recently named UWS (Laureys et al., 2010),

is a condition that follows coma, when the patient recovers

the vigilance or alertness (eyes opening), but not the awareness

of self and surroundings. The patient, in fact, is unable to

interact with the environment, in spite of the eyes opening and

the recovery of some sleeping-wake cycle (Formisano et al.,

2021). Specifically, VS/UWS patients usually demonstrate the

following reflexive behaviors: auditory startle response (i.e., a

blink, eyelid flutter or any other body startle response, following

a loud stimulus), visual startle response (i.e., a blink or eyelid

flutter in response to a visual threat presented close to the

subject eye), abnormal posturing or withdrawal in response

to a nociceptive stimulation, oral reflexive movements (e.g.,

chewing movements), localization to a sound (i.e., head and/or

eyes orient toward the location of the stimulus) (Giacino et al.,

2004).

The MCS may follow either coma or VS/UWS as a transient

or permanent condition (Beaumont and Kenealy, 2005). It is a

condition of severe consciousness alteration in which a minimal

but not constant awareness of self and surroundings is present

(ability to visually fixate and pursuit, to smile or cry, to localize

the painful stimulation, to reach and grasp objects, to follow

simple orders in an inconstant and fluctuating way, to verbalize

in a sporadic way, to show non-reflexive behaviors) (Giacino

et al., 2002, 2004). Indeed, a patient must produce evidence

of purposeful and cognitively mediated behavior in a formal

clinical assessment to be considered aware. These behaviors are

reproducible or long enough to be distinguished from reflexive

behaviors (Giacino et al., 2002).

A critical diagnostic marker in DoC is whether or not

a patient can follow commands. In fact, while purposeful

behavior is considered sufficient to denote awareness of one’s

external environment, command following indicates, beyond

reasonable doubt, that the patient is conscious (Fernández-

Espejo and Owen, 2013; Owen, 2013; Gosseries et al., 2014).

Command following is a more complex behavior than a non-

reflex purposeful movement, since it is intended as the ability

to volitionally modulate the behavior in order to produce

a coherent response to a request. An example of command

following could be the request to look or try to reach one

of two objects presented to the patient (from the Coma

Recovery Scale – Revised, CRS-R; Giacino et al., 2004). To

better distinguish clinical features within the neurobehavioral

spectrum (Bruno et al., 2011), the MCS was subsequently

divided into two sub-categories: MCS – and MCS + (Bruno

et al., 2011, 2012). MCS – patients do not demonstrate

evidence of command following; they only show minimal

levels of behavioral interaction, characterized by non-reflexive

movements: orientation to noxious stimulation, visual pursuit in

response to moving stimuli, appropriate movements in response

to relevant environmental stimuli (Bruno et al., 2011, 2012).

MCS + patients show the ability to follow commands (Bruno

et al., 2011, 2012).
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Recovery of consciousness or MCS emergence (EMCS) is

defined by a behavioral state where the recovery of functional

communication or functional object use has been achieved,

based on clinical criteria (Giacino et al., 2002; Royal College

of Physicians, 2020). Functional locked-in syndrome (fLIS) has

been reported as a possible recovery phase from DoC, since the

attempts of eye-coded communication shown by the patient are

considered as first signs of interaction with the environment,

during recovery from VS/UWS orMCS (Formisano et al., 2013).

Classical LIS is not a DoC but may be mistaken for one (Childs

et al., 1993), and different studies on “covert cognition” or

“covert awareness” (Owen et al., 2006; Monti et al., 2010; Bardin

et al., 2011; Cruse et al., 2011; Schnakers et al., 2022), revealed

that the rate of misdiagnosis of LIS as VS/UWS is actually

between 5 and 15% (Vogel et al., 2013; Naci et al., 2017). In

the same way, the misdiagnosis rate of persons in MCS as being

VS/UWS has been reported to be as high as 43% (Childs et al.,

1993; Andrews et al., 1996; Schnakers et al., 2009; van Erp

et al., 2015; Wade, 2018), due to the difficulty of performing

bedside consciousness assessments of patients with prolonged

DoC (Wade, 2018).

The development and use of the CRS-R, assessing the

patient’s level of consciousness through his/her auditory,

visual, motor, oromotor, communication and arousal function

(Schnakers et al., 2009) has greatly reduced the rate of clinical

misdiagnosis of prolonged DoC (Giacino et al., 2004) and it

is considered the gold standard clinical tool (Kondziella et al.,

2020). However, a single standard CRS-R behavioral evaluation

still leads to a non-zero rate of misdiagnosis, due to the influence

of patients’ awakening or consciousness fluctuations, movement

defects, aphasia (Formisano et al., 2019c), and other problems

(Kotchoubey et al., 2014; Cortese et al., 2015). Different studies

revealed that repeated behavioral scale evaluations (Wannez

et al., 2017), caregiver involvement (Formisano et al., 2019a)

and personalized item selection (Stenberg et al., 2018; Sun et al.,

2018) of the neurobehavioral-assessment instruments to assess

the patient’s level of consciousness may improve the reliability

of diagnosis.

Functional magnetic resonance (fMRI) (Bardin et al.,

2011; Guldenmund et al., 2012; Kondziella et al., 2016)

and neurophysiological (e.g., electroencephalography; EEG)

paradigms (Cruse et al., 2011, 201; Kotchoubey et al., 2013) using

the mental imagery paradigm [i.e., the simulation or re-creation

of perceptual experience, across sensory modalities (Kosslyn

et al., 2001; Pearson, 2007); e.g., imagine to play tennis or to

navigate within your home (Owen et al., 2006; Monti et al.,

2010), imagine to open/close the hand (Cruse et al., 2011)] as

a channel of communication, are also considered techniques

which hopefully could assist in reducing the misdiagnosis rate of

patients with DoC (Childs et al., 1993). In fact, these approaches

have been used to determine if an unresponsive patient

can be “covertly” conscious and can volitionally modulate

his/her brain activity, providing evidence of his/her ability to

follow commands, a condition defined as “cognitive motor

dissociation” (CMD; Schiff, 2015; Schnakers, 2020). Covert

awareness is characterized by a dissociation between the inability

or extremely limited ability to move, but a preserved cognitive

functioning, expressed as a reliable command-following ability

detected with neuroimaging or neurophysiological measures.

On the contrary, overt awareness is the expression of awareness

with overt behavioral responses to external stimuli (Fernández-

Espejo and Owen, 2013; Curley et al., 2018). Although it is

probably a minor population in terms of numbers, Stender et al.

(2014b) espoused that this group of patients, that are functioning

in a borderline area between awareness and unconsciousness,

represented an important clinical, ethical and societal challenge.

In part, this challenge was due to the need to identify covert

consciousness in order to facilitate appropriate care and not to

create a scenario where such patients would be neglected by

caregivers and relatives who assumed there was no conscious

awareness present (Kondziella et al., 2016; Sergent et al., 2017).

A Brain-Computer Interface (BCI) is a system that

translates brain activity into artificial output, thus modifying

the interaction of the central nervous system with the rest of

the body or with the external environment (Wolpaw et al.,

2020). A BCI may solve different functions (replaces, restores,

enhances, supplements, or improves the natural outputs of the

brain; Wolpaw et al., 2020) and it has been used with different

applications in severely disabled people, such as communication

and control (Riccio et al., 2011, 2015, 2022; Schettini et al.,

2015), motor and cognitive rehabilitation (Pichiorri et al., 2018;

Pichiorri and Mattia, 2020). A BCI has different components:

input (i.e., acquisition of brain signals from the user), output

(i.e., commands delivered to the system), components that

translate input into output (i.e., the signal processing) and

a protocol that guides the BCI operation and defines the

onset/offset and timing of stimulation, the kind of stimulation

necessary to elicit specific brain signals and the feedback

delivered to the user. Specifically, the signal processing is

a two-step procedure: first signal features, that encode the

user’s message, are extracted and then an algorithm translates

these features into device command orders that carry out

the user’s intent (i.e., classification procedure; Wolpaw et al.,

2002).

A BCI can be intended as an active or a passive system. The

active BCIs require an active modulation of user’s brain activity

through an engagement in a specific task (e.g., to count the rare

stimuli or own name, to imagine a movement). The passive BCI

can passively decode mental, emotional, and cognitive states

from the neurophysiological signals of the user. These systems

do not require any active modulation of user’s brain activity or

engagement in a specific task, as in the active BCI (Zander et al.,

2009; Han et al., 2022; Sciaraffa et al., 2022). Finally, the BCI also

includes hybrid systems (h-BCI), which integrate two different

brain signals to produce its output or which combine a BCI

output with a muscle-based one (Choi et al., 2017).
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Given the large body of evidence that some patients with

DoC possess “covert” awareness (Owen et al., 2006; Boly

et al., 2007; Monti et al., 2010; Bardin et al., 2011; Fernández-

Espejo and Owen, 2013; Stender et al., 2014a; Schnakers et al.,

2022), they are candidates for intervention with BCI. The first

attempt to establish an alternative communication channel with

DoC patients, independent from motor behaviors and overt

consciousness, was made by Monti et al. (2010). Based on

previous results fromOwen et al. (2006), they proposed amental

imagery fMRI paradigm to assess the ability of command-

following in 54 patients with DoC. They found that 5 patients

(2 VS/UWS) could intentionally control their mental activity.

Furthermore, one MCS patient was tested for communication

with this paradigm: the 2 mental imagery tasks were coupled

with the “yes” and “no” answers and he managed to answer 5 out

of 6 autobiographical questions with this method. The presence

of distinct neural activations in response to two different mental

imagery tasks, comparable to the healthy controls, allowed to

infer that the patients decided to cooperate with the experiment,

and this could be interpreted as a clear act of intention, reflecting

awareness of themselves and their surroundings (Owen et al.,

2006).

In this regard, BCI development for patients with DoC can

fulfill important clinical diagnostic functions, such as cognitive

assessment and awareness detection, supporting the behavioral

diagnosis (Gibson et al., 2016; Annen et al., 2020a). In a

rehabilitation context, BCI methods reflecting the preservation

of at least minimal consciousness can identify a purposeful

external behavior or ability to covertly follow commands (i.e.,

the ability to execute a mental imagery task or an active counting

task in order to control a BCI), helping clinicians and researchers

to focus their efforts on training the patient to employ

this purposeful behavior for functional communication, with

potential diagnostic benefits and significant ethical implications

(Formisano and Zasler, 2020).

The brain signals usually adopted with DoC patients to

implement a BCI are: the P300, both alone and in combination

with the Steady State Visual Evoked Potentials (SSVEPs),

resulting in a h-BCI, the sensorimotor rhythms (SMRs) and

other modulations related to the power spectrum. Some

differences have been observed in the amplitude and latency of

the P300 between DoC patients and healthy subjects and among

different DoC diagnosis. Indeed, it is possible to observe a larger

P300 amplitude in healthy controls with respect to DoC patients

and a larger P300 amplitude in MCS patients with respect to the

VS/UW patients, especially when comparing active vs. passive

tasks (Schnakers et al., 2008; Risetti et al., 2013). However, the

P300 amplitude is not always sufficient to discriminate among

different DoC diagnosis (Real et al., 2016). Furthermore, DoC

patients frequently had a delayed P300 latency with respect to

healthy controls (Perrin et al., 2006; Sergent et al., 2017). Since

VS/UWS patients should not be able to modulate their real

or imagined behavior, SMRs should not be present in these

patients in response to amotor command; however some studies

found that some VS/UWS patients were able to modulate their

SMRs (Formaggio et al., 2020). It should be possible to observe

a modulation in the SMRs in MCS patients in response to a

command requiring real or imagined movements (Owen et al.,

2006; Monti et al., 2010; Cruse et al., 2011). Finally, the spectral

power is characterized by typical modulations related to the

continuum of consciousness (Formisano et al., 2011). Indeed, it

seems that a diagnosis of DoC is associated with a decrease in

the activity of the high frequency bands (alpha and beta bands)

and with an increase in the low frequency bands (delta and theta

bands) with respect to healthy subjects (Lechinger et al., 2013;

Stefan et al., 2018).

We conducted a systematic review to evaluate the current

state of BCI research with DoC patients. Althoughmany reviews

have been published about BCI and DoC, these are mainly

narrative and non-systematic overviews about the advances in

the field of the neurophysiology of DoC, including the BCI

as one of the neurophysiological tools available to support the

assessment of consciousness (Kübler and Kotchoubey, 2007;

Kübler, 2009; Chatelle et al., 2012; Naci et al., 2012;Mikołajewska

and Mikołajewski, 2014; Luauté et al., 2015; Gibson et al., 2016;

Li et al., 2016; Annen et al., 2020a; Comanducci et al., 2020;

He et al., 2022; Xu et al., 2022). Therefore, the present work

is specifically focused on studies testing a BCI on a sample of

participants including at least one DoC patient. We considered

EEG-based systems, due to their portability, affordability, safety

and ease of use; these characteristics make the EEG the most

suitable instrument to measure brain activity in DoC patients,

whose physical and medical conditions may prevent from

other measurements such as fMRI (Formisano et al., 2019b).

We aimed at: (i) describing the characteristics of the EEG-

based BCI systems developed for DoC patients, in terms of

control signals adopted to operate the system, characteristics

of the paradigm, classification algorithms and applications; (ii)

evaluate the performance of DoC patients with a BCI.

Methods

The present systematic review followed the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

guidelines (PRISMA; Page et al., 2021) to search and extract

eligible studies.

Search

We adapted the search strategy using the Population,

Intervention, Comparison, Outcome (PICO) framework

without specifying the type of “Comparison”. We considered

DoC as target “Population”, BCI as the “Intervention” and the

BCI performance as the “Outcome”. The main review question
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was: Which are the characteristics and applications of BCI in

DoC patients, and which is the performance of DoC patients with

a BCI?

The search and selection of papers were performed through

the following databases: PubMed, Scopus, Web of Science

and Google Scholar. The relevant papers were collected using

the following keywords: {[brain-computer interface] AND

[(disorders of consciousness) OR (minimally conscious state)

OR (vegetative state) OR (unresponsive wakefulness syndrome)

OR (coma) OR (cognitive motor dissociation)]}. The results

obtained from each database were exported to a web-based

bibliographic management software (i.e., Mendeley; https://

www.mendeley.com. Last access: 30th of September 2022) to

merge all research results and remove duplicates.

Eligibility criteria

Studies were considered eligible if they met the following

inclusion criteria: (i) enrollment of at least one patient with DoC,

meaning a comatose patient, a patient in VS/UWS or inMCS; (ii)

testing an EEG-based BCI system (intended as a system with a

classification procedure); (iii) studies published in international

peer-review journals; (iv) research articles; (v) studies published

in English. Articles were excluded if they met the following

exclusion criteria: (i) studies enrolling only patients with LIS

or in EMCS; (ii) abstracts, reviews, editorials, letters, notes,

and conference papers reporting preliminary results successively

presented in a journal article.

Screening

After the deletion of duplicate papers, articles were first

screened by reading titles and abstracts, so that all articles not

matching the aim of the review and the inclusion/exclusion

criteria were excluded. The full text of all the papers included

after the first screening was read and assessed for eligibility

according to the inclusion/exclusion aforementioned criteria.

Data extraction

According to the aims of the review, the following data

were extracted from each selected article and reported in

Supplementary Table 1: (i) information about the sample of

participants involved in each study in terms of number of

healthy and DoC participants, diagnosis of DoC participants

and behavioral scale adopted to define it; (ii) BCI application

(i.e., assessment, communication, prognosis and rehabilitation);

(iii) BCI control signals; (iv) number and position of the EEG

channels; (v) classification algorithm used; (vi) characteristics

of the paradigm: information about the tasks (i.e., oddball,

motor imagery, motor action) and the timing and number of

stimuli delivered; (vii) BCI performance, summarizing the main

results of each study, providing information in terms of patients

that controlled the BCI and the definition of the chance level,

when available.

Results

Search

The first run of the search identified a total of 527 results

(Scopus: 220 results; Web of Science: 113 results; PubMed: 53

results; Google Scholar: 141). After the automated deletion of

duplicates, 363 results were identified. The first screening by title

and abstract identified 39 papers and after the full-text reading,

27 articles were included in the final database (see Figure 1;

PRISMA flow diagram). After the full-text reading, articles were

excluded because:

• they were conference papers reporting preliminary results

successively presented in a journal article (N = 6);

• no BCI was tested (N = 3);

• no DoC patients were included in the paper (N = 1);

• they were no research papers (e.g., tutorial articles; N = 2).

Articles included were published from September 2013 to

August 2022.

Characteristics of included studies

The Supplementary Table 1 summarizes all the

characteristics extracted from the studies, which are extensively

described in the following sections.

Sample of participants and behavioral
assessment

The total number of patients with DoC included in the

studies was 390 (considering 26 out of the total 27 studies): 4

patients were in coma, 195 were VS/UWS patients and 186 were

MCS patients. The number varied from aminimum of 4 patients

(Coyle et al., 2015) to a maximum of 78 DoC patients (Pan

et al., 2020), with an average (±standard deviation, SD) of 15

(±14.5) DoC patients for paper (not considering LIS and EMCS

patients included in the papers). Four studies had a sample of

participants including 20 or more patients (Xiao et al., 2016;

Annen et al., 2020b; Murovec et al., 2020; Pan et al., 2020). The

total number of patients and the average do not include data

from Eliseyev et al. (2021). They did not specify the diagnosis

of the DoC patients involved in the paper, but they divided the

sample (n= 18) into conscious/unconscious (n= 14/4) patients

according to the Command Following Score (CFS; Claassen
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FIGURE 1

PRISMA flow diagram of the selected studies.

et al., 2016, 2019). Furthermore, Guger et al. (2017) did not

specify the diagnosis of the DoC patients. Therefore, the amount

of VS/UWS and MCS patients previously mentioned does not

consider data from these two studies. Twenty-three studies

(85.2%) included both patients with a diagnosis of VS/UWS and

MCS. Pokorny et al. (2013) and Coyle et al. (2015) described

only patients with MCS; Guger et al. (2018) and Spataro et al.

(2018) included only patients in VS/UWS. Twenty-one (77.8%)

studies included a control group of healthy subjects (no control

group: Coyle et al., 2015; Guger et al., 2017, 2018; Wang et al.,

2017; Annen et al., 2018; Spataro et al., 2022). Furthermore,

11 (40.7%) studies also included LIS and EMCS patients (see

Supplementary Table 1).

In 25 studies (92.6%) the diagnosis of the participants

was established with the CRS-R (Giacino et al., 2004). One

study (Eliseyev et al., 2021) administered the CFS to classify

patients into conscious and unconscious, which assesses the

ability of patients to follow a verbal command with a motor

response. Finally, one study (Guger et al., 2017) did not

specify the behavioral scale adopted to define the diagnosis (see

Supplementary Table 1).

Control signals and EEG channels

Four control signals were identified to control the BCI (see

Supplementary Table 1; Table 1):

• P300 (N = 19; 70.4%). The P300 is an Even-Related

potential (ERP) component which is generated when a

salient or a rare stimulus is presented; it is independent

from the sensory modality selected to deliver the

stimulation (Polich, 2007);

• hybrid control signals (h-BCI; N = 4, 14.8%). In all

the papers included in the present review, the h-BCI is

intended as a system integrating two different brain signals

to produce an output. Especially, the signals integrated in

these studies were the aforementioned P300 and SSVEPs.

The SSVEP is a periodic response evoked by a visual

periodic stimulation (Norcia et al., 2015);

• SMRs (N = 5, 18.5%). SMRs refer to oscillations in the

mu (8–12Hz) and beta bands (13–30Hz), associated to

real or imagined movements; especially, movements or

preparation to movement are associated to a decrease in

mu and beta rhythms (event-related desynchronization;
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TABLE 1 The table presents the number of studies which employed a specific control signal for each application (within each cell).

P300 ERP h-BCI (P300, SSVEP) SMRs Power spectra Total “Applications” n (%)

Assessment 19 3 4 1 26 (96.3%)

Communication 6 1 2 – 7 (25.9%)

Prognosis 1 1 – – 2 (7.4%)

Rehabilitation 1 – – – 1 (3.7%)

Total “Control signals” n (%) 19 (70.4%) 4 (14.8%) 5 (18.5%) 1 (3.7%)

The final row “Total control signals” reports the number (and percentage with respect to the total number of studies included) of studies employing each control signals. The final column

“Total Applications” reports the number (and percentage with respect to the total number of studies included) of studies testing each application. Due to an overlap of different control

signals and applications within some papers, the two totals reported do not correspond to the sum of the cells of the table.

ERD), while relaxation is associated to increase in the same

rhythms (event-related synchronization; ERS) (Wolpaw

et al., 2002);

• brain rhythms elicited by an emotional task (i.e., power

spectrum;N = 1, 3.7%). This paper refers to spectral power

changes induced by emotional stimuli and specifically

considers the differential entropy as a feature (Huang et al.,

2021a).

The specificity of some paradigms produced other ERP

components, apart from the P300, which were considered

relevant in the analysis. Specifically:

• In Xiao et al. (2018b) two additional relevant ERP

components were considered: the N170 and the motion-

onset VEP. The N170 is a face-sensitive potential

and the motion-onset VEP is a potential composed

of 3 components (P100, N200, P200) sensitive to

the presentation of visual moving stimuli. These

potentials were coherent with the Graphical User

Interface which was based on the presentation of

moving faces;

• In Xie et al. (2018) two additional relevant ERP

components were considered: the N400 and the Late

Positive Component (LPC). Different results about these

two components are reported, since they were not found

in all the DoC patients and they did not manage to

differentiate among VS/UWS and MCS patients (see Wutzl

et al., 2021 for a review). These two components are

related to the semantic processing, since the paradigm

required the participant to discriminate between stimuli

semantically congruent/incongruent;

• In Xiao et al. (2016, 2022), the Mismatch Negativity

(MMN) was considered in addition to the P300. The

MMN is a negative component generated in response

to the violation of a rule. The MMN in DoC patients

has been associated with different results; it is able to

distinguish between healthy and DoC patients, but not

between different DoC diagnosis (see Wutzl et al., 2021 for

a review).

The number of channels varied from 3 to 32: from 8 to 32

channels were used for both the P300-based and sensorimotor-

based BCIs, from 9 to 30 channels were acquired for the hybrid

BCI and 32 channels were acquired for the brain rhythms elicited

by emotional tasks (see Supplementary Table 1).

Applications

Four BCI-applications were identified (see

Supplementary Table 1; Table 1):

• Assessment of consciousness (N = 26; 96.3%): the studies

investigated the ability of command following, by means

of different kind of active tasks: counting the occurrence

of a target stimulus in a classical oddball paradigm,

processing numerical information, recognizing emotions,

and accomplishing a task from the CRS-R, transposed in

a BCI customized interface. Six studies aimed at evaluating

the ability of patients to accomplish tasks from the CRS-

R with a BCI. The items transposed in a BCI interface

were the following: the visual fixation item (Xiao et al.,

2018a), the visual pursuit item (Xiao et al., 2018b), the

object recognition item (Wang et al., 2019), the auditory

startle item (Xiao et al., 2016), the sound localization item

(Xiao et al., 2022) and the communication item (Wang

et al., 2017). All these studies implemented a BCI relying

on the P300.

• Communication (N = 7; 25.9%): the studies implemented

BCI interfaces to support communication.

• Prognosis (N = 2; 7.4%): the studies evaluated the relation

between the BCI performance and the clinical outcome

(Spataro et al., 2018; Pan et al., 2020).

• Rehabilitation (N = 1; 3.7%): a single study (Murovec

et al., 2020) that evaluated the effects of a training with a

P300-based vibrotactile BCI on the level of consciousness.

Classification algorithms

Regarding the classification algorithms, the Support Vector

Machine (SVM) classifier is the most frequent algorithm applied
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to classify EEG features (N = 14 papers; 51.9%), followed

by the Linear Discriminant Analysis (LDA; N = 9, 33.3%).

Two studies used the Stepwise Linear Discriminant Analysis

(SWLDA; Lulé et al., 2013; Pokorny et al., 2013), Eliseyev

et al. (2021) applied the Recursive Exponentially Weighted

N-way Partial Least Squares (REW-NPLS) and Xiao et al.

(2016) proposed a new “peak detection algorithm”. Finally,

Höller et al. (2013) compared different classification methods

to investigate the most appropriate ones for DoC patients.

Specifically, they compared the DADF (discriminant analysis

with diagonal quadratic function), the knn (k-nearest neighbor)

and the SVM (see Supplementary Table 1).

Paradigms

The typology of tasks proposed is recurrent according to

the EEG control signal considered (see Figure 2 for a general

pipeline). The most frequent task is the oddball (N = 23;

85.2%) to elicit the P300. The oddball paradigm consists in the

presentation of a series of at least two kinds of stimuli, a target

(rare) one and a non-target (frequent) one; the presentation

of the target stimulus elicits the P300. It was employed in

various forms of sensory stimulation: vibrotactile (29.6%), visual

(22.2%), auditory (22.2%), and audiovisual (25.9%). Vibrotactile

active oddball was the most frequent (N = 8) sensory modality

adopted to deliver the stimulation, and it was based on sequences

of 2 or 3 stimuli. Visual and auditory oddballs were present in 6

studies each, always in active mode, except for 1 study that used

a passive mode (Xiao et al., 2016). The active mode consisted

in the active engagement of the subject in the task proposed;

the participant was asked to attend and mentally count the

occurrence of a target stimulus (in the oddball paradigm) or to

perform a (mental) motor task. In the case of the passive mode,

the participant was exposed to the stimulation without specific

instructions. The auditory oddball was presented as a sequence

of 2 stimuli (a standard one vs. a deviant one) in all the studies

except for one (Lulé et al., 2013), which proposed a sequence of

4 stimuli. The visual modality was also employed in the h-BCI

and consisted of 2 stimuli simultaneously flickering and flashing,

which elicited both the P300 and the SSVEPs. Two single studies

(Xiao et al., 2018a,b) proposed a visual-only P300-based BCI,

presenting 4 images. Audiovisual oddball is used in 7 studies. In

all the studies except for Pan et al. (2018), who used emotional

videoclips as audiovisual stimuli in an oddball paradigm, the

audiovisual stimulation consisted in the presentation of a visual

oddball interface with a simultaneous auditory stimulus which

can be congruent or not with the visual stimulus. The studies

testing visual and audiovisual BCIs differed in terms of the kind

of stimuli presented in the interface, that the subject had to

attend (e.g., numbers, photos, etc.; see Supplementary Table 1).

SMRs were elicited by motor action (MA) and motor

imagery tasks (MI). The motor action task characterized 1

study (3.7%), in which the participant was asked to open/close

the right hand (Eliseyev et al., 2021). Motor imagery tasks

were used in 4 works (14.8%): 3 of them (Höller et al.,

2013; Guger et al., 2017; Chatelle et al., 2018) asked the

participants to imagine opening/closing the hand; Coyle et al.

(2015) asked participants to imagine moving the hand or the

foot toe. Finally, one study (Huang et al., 2021a), developed

a passive emotion recognition paradigm to elicit specific

brain rhythms.

The column “Stimulation” in Supplementary Table 1 reports

further information about the number of stimuli delivered and

the timing of the stimulation for each paradigm.

BCI performance

In this section, we reported the main results of the

studies included, in terms of number of DoC patients

obtaining a significant classification accuracy (i.e.,

classification accuracy statistically above the chance level).

Pokorny et al. (2013), who tested an auditory P300-

based BCI, was the only study that did not obtain any

significant result.

Regarding the group of studies testing a P300-based BCI

for CRS assessment, all of them, showed a proportion (range:

30.8–78.6%) of patients reaching a significant classification

accuracy, indicative of the ability to accomplish a specific CRS

task, even if they did not show the corresponding behavioral

response in the CRS-based assessment. Xiao et al. (2018a)

found that 3 (2 MCS, 1 LIS) out of 4 patients (30.8%) who

had a classification accuracy above the chance level, showed a

coherent behavioral response to the corresponding CRS-R item

(i.e., visual fixation), while the remaining VS/UWS patients did

not show a behavioral visual fixation. However, in 2 patients

(1 MCS, 1 EMCS; 15.4%) a dissociation was found between

a consistent response to the behavioral assessment and the

absence of the corresponding response to the BCI assessment.

In a successive study, Xiao et al. (2018b) found that 11 of the

14 patients tested (78.6%) showed “visual pursuit” in the BCI

assessment: 4 patients (2 MCS, 1 EMCS, 1 LIS) were classified

as responsive by both BCI and CRS-R assessment, while 7

(4 VS/UWS, 3 MCS) patients showed visual pursuit only in

the BCI assessment. However, the visual pursuit was observed

behaviorally in 5 (3 VS/UWS, 2 MCS) of these 7 patients in the

2-month follow-up CRS-R assessment. In Wang et al. (2019),

6 of the 13 patients tested (2 VS/UWS, 3 MCS, 1 LIS; 46.2%)

obtained a classification accuracy above the chance level in the

“object recognition” item without showing a coherent score in

the behavioral CRS-R; furthermore, 3 of them showed object

recognition at the follow-up CRS-R 2 months later. Xiao et al.

(2016) detected the auditory startle response with a BCI in a

passive mode in 14 (9 VS/UWS, 4 MCS, 1 EMCS; 73.7%) of

the 19 patients tested; three of them, diagnosed as VS/UWS,

did not show such response in the behavioral assessment. In

a successive study, Xiao et al. (2022) investigated the “sound
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FIGURE 2

General representation of a BCI paradigm. The figure illustrates a general pipeline of a BCI paradigm which could be adapted to each study

included in the review. First, an instruction about the task is presented. After the instruction, the task starts and the stimulation is delivered. The

possible tasks are: the oddball task, the motor imagery/motor action task or the emotional task. The oddball task is used both in the P300-based

BCI and in the h-BCI; it could be presented in di�erent sensory modalities (visual, audiovisual, vibrotactile and auditory for the P300-only BCI;

visual or audiovisual for the h-BCI). A di�erent number of trial repetitions can be delivered according to the specificity of each paradigm. After

the stimuli presentation, the stimulation is interrupted, and the system delivers feedback about the appropriateness of the user’s response. A

period of rest usually follows the feedback. See Supplementary Table 1 for further information about the timing of the stimulation, the number

of trial necessary to each paradigm, the number of stimuli adopted in the interface/stimulation protocol.

localization” item. They found that 11 patients (5 VS/UWS, 6

MCS; 61.1%) had a significant classification accuracy in the BCI

assessment: 4 MCS patients reached the score corresponding

to the “sound localization” item in the CRS-based assessment,

while 7 patients did not reach the sound localization score

in the behavioral assessment. Finally, in Wang et al. (2017),

8 of the 13 patients tested (4 VS/UWS, 4 MCS; 61.5%) had

a significant classification accuracy: one MCS patient was

responsive to both the CRS-R and BCI assessment, while 7

patients who achieved a significant classification accuracy in the

BCI assessment, did not reach the corresponding CRS-R score

in the communication subscale.

A series of studies (N = 8) used vibrotactile, with 2 or 3

stimuli, and binary auditory paradigms to assess the presence of

consciousness, with the final aim to use the vibrotactile BCI to

test communication (i.e., “mindBEAGLE”; Allison et al., 2017).

Spataro et al. (2018) reported that only 3 out of 12 VS/UWS

patients tested (25%) obtained a significant classification

accuracy in the vibrotactile paradigms. They found a correlation

between the classification accuracy and the 6-months follow-

up CRS-R score; the same correlation was not found with the

CRS-R score at the moment of the experiment. Thus, they

concluded that performance in these paradigms might be a

clinical marker of recovery. Spataro et al. (2022) also conducted a

study to investigate the efficiency of the vibrotactile BCI to detect

command following with respect to the CRS-R, across multiple

sessions. They found that the BCI could detect command

following before the CRS-R in 7 out of the 16 patients tested.

Furthermore, 4 behaviorally unresponsive patients showed

neurophysiological signs of command following. Guger et al.

(2018) tested 12 VS/UWS patients and found that 7 (58.3%)

and 5 (41.7%) patients had a discriminable brain response

to target stimuli in the vibrotactile paradigm with 2 and 3

stimuli, respectively. Furthermore, 2 VS/UWS patients, who

obtained a classification accuracy above 70% in the vibrotactile

paradigm with 3 stimuli, were tested for communication: the

first one answered correctly to 4/5 questions and the second one

answered correctly to 6/10 questions and 7/10 questions, in 2

separate sessions. Annen et al. (2018) reported that only one

MCS of 12 patients involved reached a classification accuracy

above 70% in the vibrotactile paradigm with 2 stimuli; he

was subsequently tested with the vibrotactile paradigm with 3

stimuli. Even if he obtained a classification accuracy of 70%

during the assessment, he did not manage to use the BCI for

functional communication, since he answered correctly to 1 out

of 6 autobiographical questions. Murovec et al. (2020) found

that the classification accuracy with a vibrotactile BCI, based

on 3 stimuli, was above the chance level in 10 out of 20 DoC

patients (50%; 11 VS/UWS, 9 MCS) in the first session of a

repeated assessment, whereas every patient reached a significant

classification accuracy in his best run. Furthermore, they found

a significant difference between the CRS-R score before and after
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the training in all the patients. Chatelle et al. (2018) found that 3

out of 9 acute DoC patients tested (33.3%; 2 coma, 1 VS/UWS)

reached a significant classification accuracy in the auditory BCI

assessment, whereas 2 DoC patients (22.2%; 1 VS/UWS, 1 MCS)

and 1 LIS achieved a classification accuracy above the chance

level in the vibrotactile paradigm. Furthermore, they tested the

LIS patient for communication, since he obtained a classification

accuracy above 60% during the assessment; he managed to

answer correctly one out of 2 questions. They also tested a

MI-based BCI, but none of the patients obtained a significant

classification accuracy. Annen et al. (2020b) pointed out that

about a quarter of the patients tested showed a response to the

stimulation only to one of the two paradigms proposed (binary

auditory oddball, binary vibrotactile oddball), demonstrating the

importance of a multimodal assessment. Finally, Guger et al.

(2017) found that 7 out of the 8 patients tested (5 DoC, 3 LIS)

reached a significant classification accuracy higher than 80%

with a least one of the paradigms tested (auditory or vibrotactile,

MI). Furthermore, they tested the communication and they

found that 3 patients (1 DoC, 2 LIS) were able to efficiently

communicate with the vibrotactile BCI and only 1 LIS patient

managed to use the MI-based BCI for communication; these

patients managed to answer at least 4 out of the 5 questions

proposed during the communication session.

Within this group of studies testing a P300-based BCI, it

is possible to include the following studies that implemented

different oddball paradigms with respect to the previously

described ones. Lulé et al. (2013) tested 18 patients with an

auditory 4-choice P300-based BCI and they found that only

one MCS patient and one LIS patient reached a significant

classification accuracy. The MCS patient did not show any

sign of command following at the CRS-R assessment. However,

only the LIS patient reached a significant communication rate

(60%). Two studies (Wang et al., 2015; Xie et al., 2018) tested

audiovisual BCIs based on the ability to process numerical

information. They found a significant classification accuracy in

5 out (71.4%; 1 VS/UWS, 4 MCS) of 7 patients tested (Wang

et al., 2015) and in 3 out of 8 patients tested (1 VS/UWS, 2 MCS;

37.5%) (Xie et al., 2018).

Pan et al. (2018) and Huang et al. (2021a) developed a visual

BCI aiming at testing emotion recognition as a way to assess

consciousness, the first one based on the P300 and the second

one based on the power spectrum. Pan et al. (2018) found that

3 of the 8 patients tested (37.5%; 1 VS/UWS, 2 MCS) obtained

a significant online accuracy and in 2 patients (1 VS/UWS, 1

MCS) this result was also confirmed by a significant accuracy

in the offline spectral analysis. Huang et al. (2021a) found that

3 (2 MCS, 1 EMCS; 37.5%) out of 8 patients tested obtained an

online accuracy significantly higher than the chance level.

A group of studies (N = 4) tested h-BCIs based on the

combination of the P300 and the SSVEPs. Among these studies,

Pan et al. (2014) found that 5 of the 8 patients tested (2 VS/UWS,

2MCS, 1 LIS; 62.5%) reached a significant classification accuracy

in the first run and 3 (1 VS/UWS, 1 MCS; 1 LIS) out of

these 5 patients reached a significant classification accuracy

also in the second and third run. In a successive study, the

authors (Pan et al., 2020) implemented 3 paradigms based on

different stimuli: a visual photograph paradigm, a visual number

paradigm and an audiovisual number paradigm. They aimed

at investigating the presence of cognitive motor dissociation

(CMD) and if BCI performance could be a discriminant marker

for prognosis evaluation by comparing CRS-R scores between

the moment of the BCI sessions and 3 months later. According

to their BCI performance, patients were divided into CMD and

potential non-CMD. Results showed that 44% of the 78 patients

involved (45 VS/UWS, 33 MCS) could be defined as patients

with CMD, since they had a significant BCI accuracy in at

least one paradigm. They also found a significant correlation

between BCI accuracies and the clinical outcome: statistically,

the CMD patients had a better outcome than potential non-

CMD patients. Li et al. (2015) proposed 3 tasks of mental

arithmetic to assess awareness. Five of the 11 patients enrolled

(2 VS/UWS, 2 MCS, 1 EMCS; 45.5%) reached a significant

classification accuracy both in a task of number recognition

and number comparison and 3 out of 5 patients (1 VS/UWS,

1 MCS, 1 EMCS) reached a significant classification accuracy

also in a mental calculation task. Finally, Huang et al. (2021b)

implemented a hybrid asynchronous BCI as a communication

channel and 3MCS patients out of 7 DoC patients tested (42.9%)

gained accuracies higher than the chance level.

Eventually, with respect to the studies testing a BCI based

on sensorimotor rhythms, Höller et al. (2013) proposed a motor

imagery task to examine a set of 20 features and 3 classification

methods (DADF, knn, SVM), with the aim to identify which

resulted in the best accuracy in healthy subjects and then

to transpose results on DoC patients. The study involved 22

healthy subjects and 14 patients with DoC (9 VS/UWS, 5 MCS).

Coherences showed the best reliability among healthy subjects

and VS/UWS and MCS groups, although feature extraction and

classification in patients don’t provide a validation ground for

results. Results from Coyle et al. (2015) suggested that a MI-

based BCI systems can complement awareness assessment tests

(4MCS patients tested). Finally, Eliseyev et al. (2021), who tested

BCI based on a motor action paradigm, obtained significant

results only in 5 of the 14 conscious patients tested, while none

of the 4 unconscious patients reached a significant accuracy.

Discussion

Patients and behavioral assessment

The aim of the present work was to systematically review

the literature about BCI in the field of DoC, in order to

describe the characteristics and applications of the EEG-based

BCI systems developed for DoCs and the performance of BCI
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in DoC patients. We identified 27 studies published from 2013

to 2022, that reported about BCI systems in patients with DoC.

The studies included a total of 390 patients with DoC, most

frequently including both patients in VS/UWS and patients in

MCS (85.2%). A total of 4 patients in coma, 195 patients in

VS/UWS and 186 patients in MCS were involved (min: 4; max:

78). The number of patients included in the studies was highly

variable, as showed by the standard deviation of ±14.5 patients

with an average of 15 patients. The high variability is mainly due

to the presence of a small sample size in most of the studies;

only 2 studies had a sample of participants including more

than 30 patients (Annen et al., 2020b; Pan et al., 2020) and 2

studies had a sample of 20 subjects (Xiao et al., 2016; Murovec

et al., 2020). The presence of such a small sample size in BCI

research in the DoC field, may be due to several factors, such

as the precarity of DoC patients’ medical condition and the

presence of comorbidities (Pistoia et al., 2015; Estraneo et al.,

2018), which influence the possibility to include patients in a

research protocol and to complete the experimentation. The

issues deriving from a small sample size, as for instance the high

variability of results, lead us to underline the need for further

research including larger samples of patients. In the 92.6% of the

studies the diagnosis of the participants was defined based on the

CRS-R, confirming a coherence in the instrument used for the

behavioral assessment. However, most of the studies performed

such assessment only one time (mostly at the beginning of

the inclusion process) or they did not specify if the diagnosis

was based on more than one behavioral assessment. This is

a relevant aspect, since it was previously demonstrated the

need of performing at least five assessments in each patient

with disorder of consciousness to reduce misdiagnosis (Wannez

et al., 2017). However, seven studies clarified that they based the

assessment process on a repeated CRS-R assessment, following

the guidelines from Wannez et al. (2017) (Annen et al., 2018,

2020b; Guger et al., 2018; Spataro et al., 2018; Xiao et al., 2018a;

Xie et al., 2018). The importance of following the gold standard

guidelines in the behavioral assessment is essential to guarantee

a correct interpretation and comparison of results with the BCI.

Control signals

In the majority of the studies included, the EEG-based BCIs

were based on the P300, both alone (70.4%) and in combination

with the SSVEPs, resulting in a hybrid control (14.8%). These

data show that the P300-based BCIs are the most investigated in

the field of DoC and the oddball paradigm is the most frequent

task adopted, as one of the paradigms traditionally used to elicit

the P300.

Furthermore, the P300 was elicited by paradigms built in

different sensory modalities: vibrotactile (29.6%), visual (22.2%),

auditory (22.2%), and audiovisual (25.9%). The audiovisual

modality is one of the most frequently adopted; this may be

explained with the need of a multisensorial approach in this

target population, since the variety of lesions characterizing

DoC patients may compromise different sensory pathways and

cerebral networks (Annen et al., 2020a). Annen et al. (2020b),

who specifically addressed the issue of a multimodal assessment,

found that about a quarter of the patients had a significant

response to one sensory modality only, supporting the necessity

of a system taking advantage of different sensory channels. A

similar result was previously reported in Schreuder et al. (2013),

who found a dissociation in the performance of a severe brain

injured patient between the auditory and the visual modes of

a P300-based BCI. Indeed, it is mandatory to disambiguate

if the lack of results is due to the absence of consciousness

or to the disruption of a specific sensory pathway. The need

for a multisensorial approach may also account for the similar

percentage of BCIs in the different sensory modalities: there is

not a prevalent sensory channel employed among the different

studies included. It is crucial to adapt the system to the

characteristics of the patient.

Only the 18.5% of the studies used a SMR-based BCI and

one study proposed a BCI employing the power spectrum as

control feature, underlining the need for further investigation

in these areas. SMR-based BCIs obtained more variable results;

indeed, Coyle et al. (2015) stated the role of BCI in supporting

the diagnosis, and Eliseyev et al. (2021) found some significant

results in 5 of the 18 patients tested, even if they mainly obtained

these results on conscious patients, without further specifying

the diagnosis of the patients. On the contrary, Höller et al.

(2013) and Chatelle et al. (2018) could not find significant

results with a SMR-based BCI. Regarding the power spectrum as

control feature, the authors (Huang et al., 2021a) obtained some

interesting results, since 37.5% of the patients showed the ability

to correctly recognize emotions, which can be interpreted as an

expression of consciousness.

Applications of BCI

The most widespread application of BCI is the assessment of

consciousness (96.3%). Indeed, the high misdiagnosis rate with

behavioral assessment scales draws attention on the importance

of alternative methods to detect covert consciousness (Wade,

2018). The studies from Owen et al. (2006) and Monti et al.

(2010), focused on the detection of covert consciousness in

behaviorally unresponsive patients with neuroimaging methods,

opened the way to several studies using both fMRI and EEG

paradigms with this aim [i.e., command following, mental

imagery and oddball paradigms (Schnakers et al., 2015b;

Kondziella et al., 2016; Schnakers, 2020)]. Moreover, the

assessment of consciousness is considered a mandatory issue to

address, before implementing any other BCI application (e.g.,

communication) with DoC patients. The characteristic of BCI

to directly measure brain activity while carrying out a task,
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without relying on muscles or peripheral nerves, makes it a

promising tool in supporting the diagnosis of DoC patients.

With this aim, six studies transposed different CRS-R items

in a BCI interface. Due to the importance of visual items in

the differential diagnosis between VS/UWS and MCS (Wannez

et al., 2018), they are the most frequently addressed in the above-

mentioned studies: visual fixation and visual pursuit allow to

differentiate between VS/UWS andMCS- and object recognition

discriminates between the MCS– and MCS+. Visual fixation

has a high prognostic value, but its high variability among DoC

patients and during the same day makes it one of the main

factors contributing to the high misdiagnosis rate (Candelieri

et al., 2011; Cortese et al., 2015). Moreover, the evaluation of

visual abilities is highly influenced by the subjectivity of the

examiner, and this may lead to misinterpretations (Majerus

et al., 2005). In all the studies that proposed a “BCI-based

CRS assessment”, a varying proportion of patients (range:

30.8–78.6%) reached a classification accuracy above the chance

level in the BCI assessment, while they did not reach the

corresponding score in the CRS-R assessment. These promising

results eventually support the contribution of the BCI in

disambiguating confounding behavioral responses, by directly

measuring brain activity. However, one study (Xiao et al., 2018a)

also revealed that 2 patients who were able to perform visual

fixation in the CRS-R assessment did not reach a significant

classification accuracy in the BCI assessment, thus drawing

attention to the importance of being careful when interpreting

negative BCI results in this population of patients, considering

the possibility for the BCI of failing in detecting signs of

consciousness. All these studies, except for Wang et al. (2017),

validated the systems on healthy subjects; furthermore, they

found that part of the patients had a consistent response to both

the BCI and the CRS assessment, contributing to validate the

reliability of the BCI.

The study ofMurovec et al. (2020) addressed the importance

of a BCI-based repeated assessment procedure for DoC

patients. A significant classification accuracy with a P300-based

vibrotactile BCI was reached by only 10 out of 20 DoC patients

during the first session, and by all the patients during their

best run. This issue was already recognized with respect to the

behavioral assessment of consciousness (Wannez et al., 2017).

Indeed, a single BCI session may be affected by fluctuations in

responsiveness (Piarulli et al., 2016), which may prevent patients

from accomplishing the active task necessary to operate the BCI.

Furthermore, the authors also investigated any possible training-

effect with the BCI on the level of consciousness (i.e., CRS-R

score). Even if a significant difference between the CRS-R score

pre- and post-training was found, the absence of a control group

prevented from drawing definitive conclusions regarding the

BCI for rehabilitation purposes in DoC patients and highlights

the need for further investigations.

Two studies aimed at investigating the correlation between

BCI performance and the clinical outcome at 3 (Pan et al.,

2020) and 6 months (Spataro et al., 2018), both finding

a significant correlation between the presence of significant

classification accuracy and a better prognosis with respect to

patients who did not reach a classification accuracy above

the chance level. Despite still preliminary, these results are

highly promising since the evaluation of the prognosis, together

with the assessment of consciousness, is an essential issue to

address. Indeed, information about diagnosis and prognosis

have a fundamental role in decisions about life sustaining

therapies and in the economic management of the patients

(Giacino et al., 2018). The BCI can provide a support to a more

precise evaluation.

Regarding the possibility to use the BCI as an alternative

communication channel, results are still preliminary. BCIs

for communication mainly relied on the P300, both alone

and in combination with another brain signal (i.e., hybrid

control). A single study aimed at testing a MI-based BCI for

communication, but none of the patients reached a classification

accuracy sufficient for communication during the assessment

phase (Chatelle et al., 2018). Among the other 6 studies testing

communication, some significative results may be found in

Wang et al. (2017) and Guger et al. (2018). In the first one,

2 VS/UWS patients managed to use the vibrotactile P300-

based BCI to answer some personal questions. In the second

one, the 61.5% of the patients reached a classification accuracy

above the chance level during the communication assessment

with an audiovisual P300-based BCI, indicative of the ability

to use the BCI for communication purposes. An encouraging

result can also be found in Huang et al. (2021b), in which

42.9% of the patients had a classification accuracy sufficient for

communication. Annen et al. (2018) and Chatelle et al. (2018),

who tested a vibrotactile P300-based BCI for communication,

did not obtain consistent results, since none of the patients

tested reached a satisfying and functional communication

rate. Furthermore, Chatelle et al. (2018) tested the BCI for

communication only on a LIS patient, since none of DoC

patients had an accuracy rate sufficient for communication

during the assessment phase. A similar pattern of results can be

found in Lulé et al. (2013): only one LIS patient, and none of

the DoC patients, reached a classification accuracy suitable for

communication (60%) with an auditory P300-based BCI.

Classification algorithms

With respect to the classification algorithms, we did not find

a systematic correspondence between applications and specific

classification algorithms, since the different algorithms are used

indiscriminately across different applications. The SVM and

LDA are the most common classifiers adopted in brain disorder

research, because they are fast, easy to implement, and furnish

interpretable results, managing to find a compromise between

good classification performance and moderate complexity of
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the solution (Mechelli and Viera, 2019). Specifically, the LDA

is mainly applied in studies using the mindBEAGLE, which

is a commercial BCI consisting in an integrated system with

tools for stimulus presentation and data recordings and analysis.

The high frequency of SVM-based classifiers among the studies

included in this review, may be due to some advantages

that it can provide. Indeed, its performance is well balanced

both in re-substitution and generalization, it allows to reduce

overfitting and to eventually approach non-linearly separable

classes. However, new approaches, such as the random forest

and eXtreme Gradient Boosting algorithms (Paul et al., 2018),

are becoming more widespread and they could be more efficient

from a methodological perspective (Mechelli and Viera, 2019).

Furthermore, some recent studies (Lee et al., 2022) adopted

deep-learning approaches to classify the level of consciousness.

A next step could be the integration of knowledge from the deep-

learning field in the BCI domain, when managing DoC patients.

Limits

Despite being very promising, these results are highly

variegated, and many aspects may contribute to this variability.

Indeed, many factors may affect the performance with the

BCI and restrict its application in this target population;

therefore, absence of results cannot be interpreted as absence

of consciousness. Most DoC patients lack oculomotor control,

which reduces the feasibility of visual information in BCI

applications (Kalmar and Giacino, 2005), and they may face

severe cognitive deficits, such as aphasia (Schnakers et al.,

2015a; Formisano et al., 2019c), which compromises the ability

to control a BCI. Furthermore, as previously underlined,

fluctuations in responsiveness may affect BCI performance.

Therefore, an active task, usually required when implementing a

BCI, could be an advantage but also a limitation. Responsiveness

to an active task is a stronger and more reliable index of

consciousness: a positive response to an active task may be

considered as the ability of command following. On the other

hand, requiring patients to accomplish an active task, may lead

to the same issues of a behavioral assessment. Indeed, an active

task requires the ability to comprehend the instructions and

to consequently perform it (e.g., to count the rare stimulus, to

imagine the handmovement); comprehension problems derived

from aphasia may prevent from the proper use of a BCI. These

issues preclude from discriminating whether the absence of

consistent results is due to the lack of awareness or to cognitive

deficits that prevent from accomplishing the task properly.

Another aspect to consider is a well-known phenomenon in

the BCI field, the “BCI illiteracy” (Blankertz et al., 2010), which

refers to the inability of some potential users to control a BCI

(about 15–30%; Thompson, 2019). This phenomenon has been

observed across different brain signals adopted to control a BCI

(e.g., P300, SMRs). However, with respect to DoC patients, it is

difficult to disambiguate if a lack of results may be explained in

terms of BCI illiteracy or in terms of lack of consciousness.

Another problem when interpreting results from BCI is

related to a lack of standardization of terms and tools of analysis

in the BCI field, which may prevent the generalization and

comparison of results among studies. Indeed, while there is

agreement on the necessity of a standardization among the

BCI community, it is still difficult to achieve this goal. The

possibility to share and merge datasets from different research

groups would allowmore powerful statistical results (Singh et al.,

2021). This is particularly relevant when the target population

is represented by patients with DoC: effects in these patients

may be very small due to all the factors previously mentioned.

Therefore, standardizing and merging data from different

studies may help in drawing more definitive conclusions. A

key point in this sense is the lack of standardization with

respect to the chance level calculation. Indeed, it is appropriate

to calculate an adjusted chance level, considering the number

of trials and subjects; however, the majority of the studies

used a theoretical chance level, which does not consider the

real distribution of the data. Noirhomme et al. (2014) tested

the hypothesis that a permutation test, adjusted on the real

distribution of data, is more appropriate than a binomial test

in the definition of the chance level significance. This issue

may lead to a misinterpretation in the significance of the BCI

accuracies, contributing to create difficulties in the comparison

of different results.

Conclusions and recommendations for
future implementation

In conclusion, despite still preliminary, almost all the studies

reported positive results in a proportion of DoC patients, thus

validating the importance and feasibility of BCI with these

potential users. BCIs have the advantage to directly measure

brain activity, thus overcoming problems related to behavioral

assessment, and the subjectivity of the examiner. This could help

in detecting patients with covert consciousness and promote

functional communication. Although is necessary to face several

limitations, some important key points can be inferred from this

review, which should be accounted for future implementation of

a BCI for DoC patients:

• The P300 is the most frequent brain signal employed

to develop a BCI. The P300 has two main advantages,

especially with respect to DoC patients: it requires a short

calibration period, and it could be elicited in different

sensory modalities, which is a fundamental aspect with this

target population.

• As already suggested, it is necessary to implement a

BCI application for diagnostic purposes before any other
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application (Annen et al., 2020a). Indeed, it is mandatory to

assess the level of responsiveness, necessary to accomplish

more complex tasks. A passive BCI could be a promising

instrument in this sense (Han et al., 2022).

• Amultimodal assessment (i.e., the combination of different

sensory modalities) is encouraged in patients with DoC,

also when implementing a BCI-based assessment; many

studies proposed a h-BCI or BCI based of multiple sensory

modalities (e.g., audiovisual BCIs). Furthermore, it would

be recommended to adapt the BCI to the characteristics of

the specific user, in order to employ the most appropriate

sensory channel with respect to the patient’s brain lesions.

• A repeated assessment could lead to better results. As

for the behavioral assessment, also BCI assessment may

be influenced by fluctuations in responsiveness, especially

when patients are required to accomplish an active task.
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