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ABSTRACT 

Background. Mixed-effects models are the current standard for the analysis of behavioral 

studies in psycholinguistics and related fields, given their ability to simultaneously model 

crossed random effects for subjects and items. However, they are hardly applied in 

neuroimaging and psychophysiology, where the use of mass univariate analyses in 

combination with permutation testing would be too computationally demanding to be 

practicable with mixed models.  

New method. Here, we propose and validate an analytical strategy that enables the use of 

linear mixed models (LMM) with crossed random intercepts in mass univariate analyses of 

EEG data (lmeEEG). It avoids the unfeasible computational costs that would arise from 

massive permutation testing with LMM using a simple solution: removing random-effects 

contributions from EEG data and performing mass univariate linear analysis and 

permutations on the obtained marginal EEG. 

Results. lmeEEG showed excellent performance properties in terms of power and false 

positive rate. 

Comparison with existing methods. lmeEEG overcomes the computational costs of 

standard available approaches (our method was indeed more than 300 times faster).  

Conclusions. lmeEEG allows researchers to use mixed models with EEG mass univariate 

analyses. Thanks to the possibility offered by the method described here, we anticipate that 

LMM will become increasingly important in neuroscience. Data and codes are available at 

osf.io/kw87a. The codes and a tutorial are also available at github.com/antovis86/lmeEEG. 

 

Keywords:  EEG; linear mixed-effects models; TFCE; mass-univariate testing; crossed 

random effects; Psycholinguistics 
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1. Introduction 

Mixed-effects models are crucial to appropriately analyze data from experimental designs 

including both subjects and items as crossed random effects  (Baayen et al., 2008; DeBruine 

& Barr, 2021). However, their use is limited in neuroimaging and electrophysiological data 

analyses, also due to computational time constraints. Here, we introduce an analytical 

strategy for performing mass univariate linear mixed-effects model analyses of EEG data 

(lmeEEG), such as event-related brain potentials. 

Consider, as an example of a design with crossed random effects, a psycholinguistic study 

in which participants are asked to judge a linguistic property of a set of words. When 

analyzing psychological experiments, researchers take into account inter-individual 

variability (or random error) to draw general conclusions that are valid beyond the selected 

sample (this aspect is implicit in the majority of repeated-measures statistical models). It is 

noteworthy that linguistic stimuli are also sampled from the population of all words. As 

participants are treated as random variables to generalize results to their population, the 

same logic applies to items (Barr, 2017; Clark, 1973). Indeed, researchers are usually not 

interested in experimental effects that are valid only for the selected set of stimuli used in the 

specific study (words in this example). Hence, inter-item variability must be considered to 

generalize results to the population of words from which the experimental items are drawn. 

Although modeling by-item variability has mainly attracted the attention of psycholinguistics, 

doing this is mandatory whenever a researcher analyzes data from an experimental study 

(e.g., memory or emotion studies) in which stimuli are drawn from a larger population in any 

field (Barr, 2017).      

Given their ability to simultaneously model crossed random effects, mixed models are the 

current standard for behavioral studies in psycholinguistics and related fields (DeBruine & 

Barr, 2021), but they are less common in neuroimaging and psychophysiology. Focusing on 

electroencephalography (EEG) or magnetoencephalography (MEG), in recent years the field 

has moved from traditional approaches that analyze selected channels and timepoints to 

mass univariate approaches, in which the whole Channel(Sensor) ⨉ Timepoint data space is 

tested (Groppe et al., 2011; Woolrich et al., 2009). However, the use of mass univariate 

analyses in combination with resampling methods (i.e., permutation testing and 

bootstrapping) to control for the Family-Wise Error Rate (FWER) (Pernet et al., 2015) is 

overly computationally demanding to be practicable with mixed models (Fields & Kuperberg, 

2020; Nielson & Sederberg, 2017). Indeed, linear mixed models (LMM) are estimated using 

(restricted) maximum likelihood ((RE)ML) methods, which require too much time to be 

performed millions of times. This is probably one of the reasons why the available toolboxes 
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for mass univariate analysis of M-EEG data (e.g., LIMO EEG: Pernet et al., 2011; SPM: 

Kiebel & Friston, 2004; Unfold: Ehinger & Dimigen, 2019; Kherad-Pajouh & Renaud, 2015; 

Frossard, 2019; Frossard & Renaud, 2021) include only statistical tests that can be 

reconducted to linear models (LM), which rely on ordinary least squares (OLS) solutions 

(considerably faster than (RE)ML estimations). These toolboxes perform random coefficient 

analysis (also called two-step linear regression, multilevel linear model, or hierarchical 

general linear model; Lorch & Myers, 1990), in which fixed effects coefficients are first 

estimated within each participant and then tested at the group level. Although these models 

deal with inter-individual variability, they cannot simultaneously model crossed random 

effects. It follows that they are not appropriate for the analysis of experimental designs in 

which stimuli are a sample drawn from a larger population of items (Bürki et al., 2018). 

Here, we propose a solution to the unfeasible computational costs derived from the use of 

permutation methods with LMM. Unlike other approaches that reduce the dimensionality of 

the analyzed EEG datasets before performing LMM (Nielson & Sederberg, 2017), thus 

preventing the possibility to fully exploit the entire spatio-temporal information in EEG data, 

our approach (lmeEEG) enables the use of mixed models with mass univariate analyses. 

lmeEEG complements other mass univariate modeling techniques by providing a method for 

analyzing experimental designs with crossed random effects. In the following, we first 

describe our method in detail. Secondly, we present a validation of lmeEEG using a 

simulated experiment. Lastly, we present its application to a real EEG dataset. 

 

2. Description of lmeEEG 

To introduce lmeEEG, we will describe its application to a simplified experiment. Three 

participants s1, s2, and s3 perform a semantic decision task (i.e., judging whether a word is 

abstract or concrete) on four words that belong to the experimental conditions concrete (w1 

and w2) and abstract (w3 and w4). Analyses are performed on EEG data collected from 19 

channels at 110 timepoints time-locked to word onset. 

lmeEEG consists of the following steps (Fig. 1): 

1. Conduct mixed models on each channel/timepoint combination. For each EEG 

channel ch and event-locked timepoint t, a linear mixed-effects model (LMM) is 

conducted on trial-wise EEG responses concatenated across participants (EEGch,t in 

Eq.1). The LMM can be summarized as follows: 

 EEGch,t = X𝛽 + Zu + 𝜀 (1) 
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In (1), X represents the fixed-effects design matrix, which includes in the present 

example a column of ones for the intercept and a column representing the experimental 

factor contrast. The X matrix is multiplied by the population coefficients β, here consisting 

of β0 for the intercept and β1 for the contrast of abstract words compared to concrete 

words. Continuing with (1), Z represents the random-effects design matrix. In the 

proposed example, Z is composed of two grouping variables, a three-column variable for 

participants and a four-column variable for words, which are multiplied by the coefficients 

u, which indicate the value that must be added to the population intercept for each 

participant and each item. Finally, 𝜀 represents the residual. A remark needs to be made 

on the specification of the random-effects structure. In the example, we used a minimal 

structure, allowing only intercepts to vary across participants and words. Different 

approaches have been proposed for the random-effects specifications (Barr et al., 2013; 

Bates, Kliegl, et al., 2015; Matuschek et al., 2017), but it is important here to note that it 

is hard to assess and manage convergence and singularity issues with massive testing; 

and random-effects parameters are more difficult to estimate and their number rapidly 

increases as model complexity slightly increases, thus leading to important 

computational costs. In any case, here, we limit the validation of our method to models 

without random slopes. 

2. Perform mass univariate linear regressions on “marginal” EEG data. Random-

effects contributions are removed from EEG data: 

 mEEGch,t = EEG – Zu = X𝛽 + 𝜀 (2) 

As expressed in (2), what we call marginal EEG (mEEG) can be reconstructed by 

removing the fitted random values Zu from the data (which is equivalent to adding 

conditional residuals to trial-wise marginal fitted values). It follows that mEEG can be 

explained using a (multiple) linear regression model (LM), since we can assume the 

independence of observations. In the next sections, we will show that the results from (2) 

are equivalent to fixed-effects results in (1). A single LM is conducted on each 

channel/timepoint pair. In this way, we obtain a channel-by-timepoint map of the 

observed t-values (t-mapOBS) for each fixed effect. In the proposed example, we obtain a 

19×110 t-map for the abstract vs. concrete contrast.  

3. Perform permutation testing and apply threshold-free cluster enhancement 

(TFCE). TFCE (Mensen & Khatami, 2013; Smith & Nichols, 2009) is used to assess the 

significance of t-mapsOBS. First, the design matrix X is permuted thousands of times (e.g., 

at least 2000 to properly estimate the critical statistics with an alpha level of .05). At each 

iteration, the permuted X is used for the mass linear regressions as in step 2. Notably, 
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LM are solved using OLS, which is much faster than the RE(ML) method used for LMM, 

and hence feasible for performing permutation testing in the whole data space (just this 

simplified example requires 4,180,000 tests). For each effect of interest, TFCE is applied 

to the corresponding t-mapOBS and to the t-maps obtained from each permutation (t-

mapsPERM). The maximum TFCE values from t-mapsPERM (maxTFCE) are then extracted 

to build the empirical distribution of maxTFCE values under H0, which is used to evaluate 

the statistical significance of t-mapsOBS. Attention should be paid to two aspects. First, 

the use of permutation testing is important not only for multiple comparison corrections. It 

also allows us to overcome the difference between LMM and LM estimations. The fixed-

effects t values are computed as 𝛽 divided by their standard errors (SEs). As shown in 

Section 3.3, 𝛽 values are the same between LM and LMM testing. Conversely, since the 

covariance matrix of fixed-effects coefficients is derived differently in LM as compared to 

LMM (Bates, Mächler, et al., 2015), SEs differ between LM and LMM, although they are 

correlated to ~1. It follows that the t values are correlated to ~1 between LMM and LM, 

but they differ in value. This aspect is not an issue, since significance is evaluated not 

based on the absolute t value, but based on the empirical distribution of maxTFCE 

values under H0.  
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Figure 1 | Illustration of the analytical steps in lmeEEG. In step 1 (top), a linear mixed model (LMM) is 

massively conducted at each channel and timepoint combination on epoched EEG data vectors comprising all 

trials from all subjects. The LMM design matrix is composed of a fixed-effects part (X) and a random-effects part 

(Z). In step 2 (middle), marginal EEG data (mEEG) vectors for each channel/timepoint pair are obtained by 

removing random effects contributions estimated in step 1. Mass univariate linear regression models (LM) - 
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composed of only X - are conducted on mEEG and a map of t values (t-mapOBS) is obtained for each predictor of 

interest (one predictor in the example). In step 3 (bottom), X is permutated and used for the mass LM. Then, 

threshold-free cluster enhancement (TFCE) is applied on the t-maps obtained from each permutation (t-

mapsPERM) and the maxTFCE values of each permutation used to build an empirical distribution of the maxTFCE 

values under H0. The empirical distribution of the maxTFCE values is used to assess the statistical significance of 

the TFCE values of t-mapOBS. 

 

3. Validation 

To validate our analytical strategy, we first assessed its performance characteristics on a 

univariate simulated dataset (like a behavioral dataset) in terms of power and false positive 

rate (FPR). Then we applied lmeEEG to a simulated EEG dataset. In the latter case, validity 

was assessed in terms of equivalence between the lmeEEG results and the results obtained 

from the highly computationally expensive LMM permutation testing.  

The analyses were carried out using MATLAB R2022b on a DELL Precision 7920 Tower, 

Processor Intel Xeon Gold 5220R (24 cores up to 2.20 GHz), 64 GB RAM, OS Windows 10. 

The simulated dataset and MATLAB scripts to perform lmeEEG are available at 

osf.io/kw87a. 

 

3.1. Validation on the simulated univariate datasets 

We simulated 2000 datasets from a design with crossed random factors of subjects and 

items. The design structure is summarized in the following statistical model: 

 y ~ 1 + A ⨉ B + (1|Subject) + (1|Item) (3) 

Concerning the fixed effects, A and B were two factors, each including two levels coded as -

0.5 and 0.5 (i.e., effects coding). The A effect had a mean of 0 and a standard deviation (SD) 

of 1 (i.e., Cohen’s d = 0), that is, a null effect. The B effect had a mean of 0.0695 and SD of 

1 (Cohen’s d = 0.07). The interaction between A and B had a mean of 0.05405 and SD of 1 

(Cohen’s d = 0.054). Random intercepts for subjects (N = 50) and random intercepts for 

items (N = 50) had a SD of 0.2, which correspond to a variance partitioning coefficient (VPC) 

of .2857. Residual errors had a SD of 0.3, which correspond to a VPC of .4286. Each 

combination of A and B had three repetition within items and subjects. Therefore, each 

simulated dataset included 30000 observations.  

The lmeEEG procedure was applied on each dataset: (1) a mixed model specified as in 

Equation 3 was conducted; (2) estimated random-effects contributions were removed (see 

Supplementary Information S1 for the distribution properties of marginal data) and a simple 
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linear regression (i.e. OLS) was conducted on marginal data; (3) permutation testing (without 

TFCE, since the datasets were univariate) was performed to assess significance of fixed 

effects. Since the A effect was null, the percentage of significant A effects across simulation 

gave us an estimation of the FPR (alpha level = .05). Specifically the FPR for A was .045, 

that is, practically equivalent to the alpha level used, for all the methods. Conversely, the 

percentage of significant effects for B and the interaction between A and B gave us an 

estimation of power (alpha level = .05). The power of B was ~1 compared to the .95 power 

predicted by the Westfall’s approach (Westfall et al., 2014). The power of the AB interaction 

was .813 for the permutation test, .828 for the mixed model, and .829 for the OLS on 

marginal data, compared to the .80 power predicted by the Westfall’s approach (Westfall et 

al., 2014). To ensure the robustness of the results, this analysis was repeated on simulated 

datasets with different variance and in a dataset violating the assumption of normality (see 

Supplementary Information S2 for the analysis description and the results). Overall, lmeEEG 

showed excellent performance properties.  

 

3.2. Simulation of EEG data 

Event-related EEG datasets were simulated using the MATLAB-based toolbox SEREEGA 

(Krol et al., 2018). Epoched data included a P3 potential with different intercepts for subjects 

(N = 30) and items (N = 10) embedded in noise. Moreover, the P3 of both datasets was 

modulated differently according to two experimental conditions (i.e., a two-level experimental 

factor: A vs. B). In detail, for each subject, item, and experimental condition, we simulated 50 

epochs of 1100 ms (100 ms of pre-stimulus) at 100 Hz. Each epoch consisted of the sum of 

the activity of 19 simulated EEG sources spread across the brain and projected onto a 

standard 19-channel montage. Of the 19 simulated components, 18 were a mixture of white 

and brown noise (amplitude of each type of noise = 2 µV) with random source locations. The 

last component was a P3a, whose configuration was taken from the P3a template in 

SEREEGA. For each grouping factor (i.e., subjects and items), random intercepts were 

sampled from a normal distribution with 0 µV mean and SD equal to 0.2 times the amplitude 

of P3a and added to the amplitude of P3a. Concerning the experimental factor, 0.2 µV were 

added to the amplitude of P3 in the epochs belonging to the experimental condition B. 

 

3.3. Validation analyses for simulated EEG data 

To validate lmeEEG, we first applied our method as described above. The LMM of Equation 

1 was specified as the following Wilkinson-notation formula: 
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 EEGch,t ~ 1 + Condition + (1|Subject) + (1|Item) (4) 

where the fixed-effects part of the model corresponds to 1 for the intercept and Condition is 

the two-level factor of interest. The random-effects part specifies random intercepts for 

subjects and items. Next, the mEEG data are reconstructed by adding conditional residuals 

to the trial-wise marginal fitted values. Finally, mEEG was used to perform steps 2 and 3 

described above. In step 3, the design matrix vector was permuted within each subject and 

item 500 times, and the ept_mex_TFCE2D function from the ept_TFCE toolbox 

(github.com/Mensen/ept_TFCE-matlab; Mensen & Khatami, 2013) was used to perform 

TFCE. 

To validate lmeEEG, step 3 was also performed using LMM on the original EEG dataset. 

Specifically, the design matrix vector was permuted 500 times (the permuted Condition 

vector in each permutation was the same between analyses with EEG and mEEG datasets) 

and the EEG data were explained in each permutation using Equation 3. We limited the 

number of permutations to 500 (along with simulating a dataset with a small number of 

channels and time points per epoch) because performing permutation testing with LMM is 

too computationally expensive (we propose lmeEEG to overcome this limitation) and here 

we are only interested in demonstrating that the use of our strategy is closely equivalent to 

performing LMM permutations. The results of both the LMM and LM permutation tests were 

compared in terms of correlations between t-mapsOBS and between t-mapsPERMS, as well as 

in terms of equivalence between the empirical TFCE distribution under H0. Finally, lmeEEG 

performance was assessed using three measures previously used to validate the TFCE 

approach for EEG (Mensen & Khatami, 2013), namely, sensitivity/power, precision, and the 

Matthews correlation coefficient (MCC) (Baldi et al., 2000; Matthews, 1975), along with the 

false positive rate (FPR) (see Supplementary Information S3 for details). 

We are assuming that permutation tests with LMM could be considered as the gold 

standard, given the absence of compelling reasons to cast doubt on it. In fact, the cluster-

based correction operates on statistics, which should not depend on the specific statistical 

method used to generate them (it is a correction for multiple comparisons, not an NHST 

method). However, given the lack of existing literature on this particular topic, we evaluated 

the performance of TFCE using LMM, which we present in the Supplementary Information 

S3. 
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3.4. Validation results of simulated EEG data 

As anticipated above, the fitted 𝛽 coefficients were identical when estimated using LMM on 

EEG data and LM on mEEG data. This aspect was crucial to validate our method. The 

results showed that both t-mapsOBS and t-mapsPERMS had a correlation of ~1 between the 

LMM and LM tests (r > 0.99) because, as explained above, the standard errors differed 

between the two analytical methods, although they were correlated to ~1. Importantly, 

however, all the dichotomous decisions based on null hypothesis significance testing (i.e., 

significant vs. non-significant effects) were the same between the two methods, meaning 

that there were neither Type 1 nor Type 2 errors. Furthermore, the equivalence of 𝛽 

coefficients (i.e., raw effect sizes) between the two methods prevents the possibility of either 

Type S (sign) or Type M (magnitude) errors (Gelman & Carlin, 2014), ensuring an accurate 

estimation of experimental effects.  

The p-value maps obtained from the two procedures were almost identical. Indeed, 98.71% 

of the p-values were identical and 1.1% of the p-values differed by one position in the 

empirical TFCE distributions obtained under H0 (the maximum difference was of two 

positions). This negligible difference in p-values, which represents the price of a substantial 

decrease in computation costs, can nevertheless be reduced by increasing the number of 

permutations and thus the granularity of the TFCE distributions under H0.  

Finally, lmeEEG showed a power of .848, a precision of .858, an FPR of .020, and an MCC 

of .833. Compared to uncorrected, Bonferroni, and FDR corrections, lmeEEG had the best 

overall performance (see Supplementary Information). 

The estimation of LM models for the permutation test (step 3) had a median duration of 0.79 

ms (interquartile range IQR = 0.55 ms), while the LMM estimations had a median duration of 

256.39 ms (IQR = 49.00 ms). Consequently, our permutation strategy was more than 300 

times faster than LMM permutations. 

 

4. Application to a real EEG dataset 

In this section, we apply lmeEEG to a real EEG dataset collected during a psycholinguistic 

experiment with a stimuli-within-condition design (Westfall et al., 2014). Fifty-eight students 

performed a semantic decision task. Participants were asked to decide whether a word 

presented in the center of the screen denoted an abstract or a concrete concept. The 

experimental stimuli consisted of 176 Italian words derived from Italian affective norms 

(Montefinese et al., 2014). During the task, the EEG signal was recorded at a sampling rate 

of 500 Hz from 58 scalp electrodes mounted on an elastic cap according to the 10–10 
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International System. Participants’ EEG datasets were preprocessed using an ICA-based 

pipeline described in Visalli et al. (2021). Clean epochs (from -100 to 1000 ms at 100 Hz) 

time-locked to word onset were merged across participants. The dimensions of the final EEG 

dataset were 58 channels ⨉ 111 timepoints ⨉ 10072 epochs. The LMM was specified as:     

  EEGch,t ~ 1 + Concreteness + (1|Subject) + (1|Word)                       (5) 

The lmeEEG results are presented in Figure 2. The main finding was a less pronounced 

N400 event-related potential (ERP) for the abstract compared to concrete words at fronto-

central scalp electrodes (Huang & Federmeier, 2015). As in our simulation, the t-mapsOBS 

correlation between LM and LMM was >.99.  

 

 

Figure 2 | lmeEEG results on the real EEG dataset. (a) Raster diagram showing significant effects elicited by 

the concreteness predictor. Rectangles in warm and cold colors indicate significantly modulated 
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channel/timepoint pairs. The color bar indicates the t values. Gray rectangles indicate electrodes/timepoints for 

which no significant modulations were observed. (b) Trace-plot depicting the beta values estimated in lmeEEG 

step 2. Specifically, the intercept (blue line) represents the estimated EEG responses in the “concrete” condition. 

The β1 (red line) represents the value to add to the intercept to obtain the estimated EEG responses to abstract 

words (yellow line). The displayed beta values are averaged across FCz and the eight surrounding electrodes. (c) 

Topoplot showing the t values (same color scale as the raster diagram) averaged in the indicated time window. 

 

5. Conclusion 

In the present work, we proposed and validated an analytical strategy (lmeEEG) that allows 

researchers to use mixed models with mass univariate analyses. Essentially, it avoids the 

unfeasible computational costs that would arise from massive permutation testing with LMM 

using a simple solution: removing random-effects contributions from EEG data and 

performing mass univariate LM analysis and permutations on the obtained marginal EEG. 

Analyses on simulated data showed that the estimated experimental effects and the relative 

statistical inferences yielded by lmeEEG were equivalent to those obtained by mass 

univariate analyses with LMM permutations, but almost 250 times faster.  

To avoid misinterpretations, the advantages of lmeEEG do not concern accuracy when 

compared to existing methods for the mass univariate analysis of EEG data (Pernet et al., 

2011;  Kiebel & Friston, 2004; Ehinger & Dimigen, 2019; Kherad-Pajouh & Renaud, 2015; 

Frossard, 2019; Frossard & Renaud, 2021). As mentioned in the introduction, they are 

valuable tools in situations where random coefficient analyses are appropriate. However, 

they are unable to simultaneously model crossed random effects. Such scenarios require 

LMM analyses. Unfortunately, LMM analyses are excessively time-consuming for application 

in mass univariate analysis with permutation testing. Consequently, this challenge has led 

researchers to either improperly overlook item variability or to use LMM for EEG analyses by 

performing an (a priori) selection of the data to be tested (thereby avoiding permutations for 

multiple comparison correction) or some dimensionality reduction procedure (Nielson & 

Sederberg, 2017). In the present study, we have demonstrated that lmeEEG is a valid, 

straightforward, and feasible method for conducting LMM across the entire Channel ⨉ 

Timepoint data space. Indeed, the speed advantage offered by lmeEEG overcomes the 

time-related obstacles associated with employing LMM in a mass analysis approach. 

In presenting lmeEEG, we focused on simple ERP studies with one experimental factor and 

crossed random intercepts for subjects and items. However, our method can be easily 

applied to a wide variety of experimental studies with more complex fixed structures. 

Concerning the type of dataset, it can be used for the analysis of even larger EEG data, 

such as time-frequency data or source-reconstructed ERP, MEG data, or even pupillometry 
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(Montefinese et al., 2018) and eye movement data (Lao et al., 2017). It can also account for 

designs with “nested” random effects, such as in multi-site neuroimaging studies.  

A main drawback of lmeEEG is that it is limited to LMM without random slopes since it 

requires the permutation of the fixed-effects design matrix (X), but we cannot be sure that 

random slopes are completely independent of fixed effects. To date, we are not aware of any 

solution to overcome this issue to apply our approach to random-slope statistical designs. 

Nonetheless, researchers interested in controlling for inflation of type I error due to the use 

of random-intercept-only models might apply our method to identify clusters on which to 

focus the analysis by performing LMM with random slopes. Overall, although not exhaustive, 

lmeEEG represents a better solution than completely ignoring item variability.  

Mixed models are the gold standard for behavioral data analysis in psycholinguistics, where 

experimental designs always include crossed random variables. Mixed models have several 

advantages besides modeling crossed random effects, such as, increased power, managing 

unbalanced datasets or incomplete designs, considering trial-, subject-, and item-related 

covariates and nested dependencies between data (Baayen et al., 2008). Despite these 

advantages, mixed models are not yet a common practice in neuroimaging and 

psychophysiology. Thanks to the possibility offered by the method described in this work, we 

anticipate that LMM will become increasingly important in neuroscience. 
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Data and code availability: Simulation data and codes are available at the Open Science 

Framework: osf.io/kw87a. Codes and a tutorial for lmeEEG are also available at 

github.com/antovis86/lmeEEG. 
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