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Abstract
The migration from Industry 4.0 to Industry 5.0 is becoming more relevant nowadays, with a consequent increase in interest
in the operators’ wellness in their working environment. In modern industry, there are different activities that require the
flexibility of human operators in performing different tasks, while some others can be performed by collaborative robots
(cobots), which promote a fair division of the tasks among the resources in industrial applications. Initially, these robots were
used to increase productivity, in particular in assembly systems; currently, new goals have been introduced, such as reducing
operator’s fatigue, so that he/she can be more effective in the tasks that require his/her flexibility. For this purpose, a model
that aims to realize a multi-objective optimization for task allocation is here proposed. It includes makespan minimization, but
also the operator’s energy expenditure and average mental workload reduction. The first objective is to reach the required high
productivity standards, while the latter is to realize a human-centered workplace, as required by the Industry 5.0 paradigms.
A method for average mental workload evaluation in the entire assembly process and a new constraint, related to resources’
idleness, are here suggested, together with the evaluation of the methodology in a real case study. The results show that it is
possible to combine all these elements finding a procedure to define the optimal task allocation that improves the performance
of the systems, both for efficiency and for workers’ well-being.

Keywords Human-centered design · Multi-objective task allocation · Cobot systems · Human factors ·
Human-robot collaboration · Industry 5.0

1 Introduction

Collaborative robots (cobots) are one of the technologies
introduced in the last decade. They are having an interesting
diffusion [1] due to the unique advantages they can provide.
Among the benefits, this new type of robot can offer a combi-
nation between productivity, typical of automatic machines,
and flexibility, typical of manual systems [2], that is very
useful in assembly systems. Collaborative assembly systems
may be helpful in improving production, thanks to their abil-
ity to adjust to a new design or to new volume of products
[3]. In fact, they are not specialized for a single product vari-
ant, like traditional robots, but they can be easily adapted to
different product characteristics. Moreover, cobots can work
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directly with human operators, without fences, sharing space
and time with the workers, thus avoiding the introduction of
additional safety measures, typical of industrial robots.

More recently, a further goal has been introduced,which is
related to thewellness of the operators. This is in linewith the
current migration, from Industry 4.0 to Industry 5.0, which
aims to propose a human-centered design of the workspace
[4]. Industry 5.0 builds upon Industry 4.0 and emphasizes
the importance of research and innovation in driving a transi-
tion to a sustainable, human-centered, and resilient industry.
Rather than focusing solely on creating value for sharehold-
ers, Industry 5.0 aims to create benefits for all stakeholders
involved. This approach recognizes the potential of new tech-
nologies to bring prosperity beyond just job creation and
economic growth, prioritizing the well-being of workers in
the production process [5]. For this purpose, different human
factors, such as ergonomic level, mental workload, skills, and
capabilities, should be considered in the design of awork cell,
with the evaluation of their influence, as well as of the cobot
one, on the system productivity [6].
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The integration, in the same workspace, of these two dif-
ferent resources can influence the performance of the human
operator, due to the fact that his/her perception of the cobot
is reflected in his/her work [7]. In fact, the perception the
operator has of the cobot can have a high impact, as stated
by [8], in which more than half of the implementation made
failed, from the point of view of integration and flexibility,
due to the lack of consideration of the human factors [9].

In order to link together the aforementioned fields, i.e.,
productivity, flexibility, and human factors, a correct task
allocation could be developed, with the aim to achieve all the
results simultaneously. It is important to properly assign the
tasks to the resources, i.e., a human operator and a cobot, in
order to improve the collaboration, thereby reducing the idle
times but alsomaking the operator as comfortable as possible
[10].

To achieve this result, a multi-objective task allocation
for collaborative assembly systems is here proposed. The
objective functions consider makespan (i.e., the total time
required to complete all the tasks), for productivity, and the
operator’s energy expenditure and average mental workload,
as human factors, both included in the perspective of creating
a human-centered workplace.

The here proposed task allocation offers a new approach to
evaluate the average mental workload of the entire assembly
process. In fact, it is typically evaluated on the individual
task, and it is not considered how the level achieved affects
the subsequent tasks.

Moreover, the task allocation provides a balance between
the three objectives above mentioned, although it is more
likely it limits the operator’s fatigue, both physical and
mental. Since this may be too restrictive for makespan min-
imization, a constraint on the idle times of the resource, i.e.,
waiting times, is also introduced. Thereby, it promotes the
saturation of the resources resulting in an improvement in
productivity. In particular, it is possible to find which level of
resources saturation is the optimal one to have an increment
of productivity keeping the variation of the operator’s effort
small. Of course, it is possible to choose the solution that best
fits the needs.

Since cobot systems are still evolving, also safety has been
taken into account, considering, for this reason, robots that
have already integrated the safety requirements imposed by
[11]. This allows not reduce the flexibility of the systems,
avoiding the introduction of any additional device. The res-
olution of this task assignment problem can have a high
practical implication on industrial systems.

The novelty of the proposed method is the integration
of the traditional aspects of productivity with the aspects
concerning the well-being of the operator, proposing also a
practical method, through the definition of new objectives
and constraints, to reach the required result.

The paper is organized as follows: Section2 describes the
state of the art for multi-objective task allocation for collabo-
rative assembly systems; Section3 is for the description of the
objectives and for the problem statement; Section4 presents
a real case study with the proposed solution obtained through
the application of the Pareto Frontier. From this, the analysis
of the values of the objective functions is carried out with
the introduction of the saturation constraint to enhance the
solution, and, finally, Section5 draws the conclusion of this
work.

2 Literature review

Multi-objective optimization has huge importance in a lot of
applications, especially due to the always-increasing neces-
sity of reaching different goals at the same time [12]. In his
work, the author underlined the difference between single
and multi-objective analysis with a discussion of the main
principles of the second one. Initially, the proposed solutions
for multi-objective problems were the result of the transfor-
mation of themultiple objectives into a single one, because of
the absence of proper solving techniques. On the other side,
the introduction of getting Pareto optimal solutions allows for
finding a set of optimums. Often some trade-offs are shown
in order to make a better choice of the analyzed variables
based on the results that have to be obtained.

Starting from this, different multi-objective algorithms
have been developed to evaluate various problems, for exam-
ple, task allocation in assembly lines. The state of the art on
this topic is summarized in Table 1, which has been ordered
according to the relevance of the studies, i.e., the number
of citations per year (citations from Scopus, 28 December
2022).

One solution to minimize cycle time and operation alter-
nations was proposed by [21], where a multi-objective
algorithmwas presented to support the collaboration between
the operators with the aim of sharing their knowledge. In
their work, the authors showed that, by placing less experi-
enced operators alongside more experienced counterparts,
resources were allocated more efficiently, resulting in an
overall improvement in productivity.

Accordingly, Battini et al. [16] provided a multi-objective
model based on energy expenditure in assembly line balanc-
ing problem (ALBP).With four different objective functions,
whichwere time and energy smoothness and time and energy
mini-max station quantity, they defined the optimal Pareto
Frontier for both ergonomics and energy requirements.

In order to achieve a similar result, i.e., theminimization of
cycle time, in [27] an assembly line balancing problem type
2 (ALBP-2) with the introduction of the minimization of the
work-loading smoothness index as the second objective was

123



The International Journal of Advanced Manufacturing Technology

Ta
bl
e
1

St
at
e
of

th
e
ar
tf
or

m
ul
ti-
ob

je
ct
iv
e
ta
sk

al
lo
ca
tio

n
in

co
lla

bo
ra
tiv

e
ro
bo

ta
ss
em

bl
y
sy
st
em

s

R
E
FE

R
E
N
C
E

A
U
T
H
O
R
S

C
IT
E
/Y

E
A
R

C
IT
E

Y
E
A
R

O
B
JE

C
T
IV

E
S

M
A
K
E
SP

A
N

E
R
G
O
N
O
M
IC
S

M
E
N
TA

L
W
O
R
K
L
O
A
D

E
N
E
R
G
Y

TA
SK

S
D
IV

IS
IO

N
T
O
TA

L
C
O
ST

E
FF

IC
IE
N
C
Y

T
Y
PE

O
F

TA
SK

S

[1
3]

L
iu

et
al

36
.0

18
0

20
18

X

[1
4]

R
an
z
et
al

23
.0

69
20
20

X
X

[1
5]

Pe
ar
ce

et
al

12
.6

63
20
18

X
X

X

[1
6]

B
at
tin

ie
ta
l

12
.3

86
20
16

X
X

X

[1
7]

T
sa
ro
uc
hi

et
al

11
.8

71
20
17

X
X

[1
8]

W
ec
ke
nb
or
g
et
al

11
.0

33
20
19

X

[1
9]

L
ie
ta
l

7.
5

15
20
21

X
X

[2
0]

C
ol
im

et
al

7.
0

21
20
20

X
X

[2
1]

Ta
ng

et
al

4.
0

4
20
22

X
X

[2
2]

Su
em

its
u
et
al

3.
3

23
20
16

X

[2
3]

C
il
et
al

2.
3

16
20
16

X
X

[2
4]

B
os
ch
et
ti
et
al

2.
0

4
20
21

X
X

[2
5]

G
ao

et
al

1.
0

2
20
21

X
X

[2
6]

Z
ai
di

et
al

0.
5

1
20
21

X

[2
7]

X
u
et
al

0.
4

3
20
16

X
X

[2
8]

C
un
ha

et
al

0.
0

0
20
21

X
X

[2
9]

G
al
in

et
al

0.
0

0
20

22
X

[3
0]

L
ia
u
et
al

0.
0

0
20
22

X
X

X
X

[3
1]

L
iu

et
al

0.
0

0
20
22

X
X

X

[3
2]

L
ie
ta
l

0.
0

0
20
21

X

O
ur
s

T
hi
s
pa
pe
r

–
–

20
23

X
X

X
X

X
X

X

123



The International Journal of Advanced Manufacturing Technology

Ta
bl
e
1

co
nt
in
ue
d

R
O
B
O
T

M
E
T
H
O
D

C
O
L
L
A
B
O
R
A
T
IO

N
L
A
Y
O
U
T

SA
FE

T
Y

FR
A
M
E
W
O
R
K

G
E
N
E
T
IC

A
L
G
O
R
IT
H
M

H
E
U
R
IS
T
IC

X
X

X X

X X X

X
X

X
X

X
X

X

X
X

X
X

X

X
X X

X
X

X
X

X

X

X

X
X

X

123



The International Journal of Advanced Manufacturing Technology

proposed. The solutionwas obtained through a particle swam
optimization algorithm (PSO) based on a back algorithm
(BA) for the task allocation, considering tasks precedence
and tasks placement as constraints.

Amulti-objective optimizationwas presented also by [26],
where, with a genetic algorithm (GA), Zaidi et al. proposed
a multi-robot work cell. Working robots are of great use in
assembly tasks in flexible manufacturing systems (FMSs);
through the proposed solution, these smart systemswere able
to decide their trajectory individually.

Similarly, Suemitsu et al. [22] proposed a multi-objective
layout design for multi-robot cellular manufacturing sys-
tems. In their optimization, the authors considered both the
components position and the tasks scheduling, with the use
of a genetic algorithm.

Moreover, multi-robot systems integrated into assembly
stations were studied by [23], in which the robotic balancing
assembly problem (R-ALBP) was investigated. They con-
sidered the optimal tasks assignment to related workstations
and the allocation of robots in them, including also the cost
of the capital to be invested.

Assignment problem and pick&place sequence were ana-
lyzed by [25] in order to optimize printed-circuit board
assembly. The authors proposed a hierarchicalmulti-objective
heuristic algorithm that allowed to obtain the complete and
optimal solution in real-time.

Since this paper aims to propose a multi-objective task
allocation for a collaborative robot work cell, it is useful to
evaluate which solutions have been proposed so far for the
integration of cobots. Starting from the robotic assembly line
balancing problem (R-ALBP), different solutions that inte-
grated collaborative robots can be found [33]. However, just
a few of the solutions for the collaborative assembly line
balancing problem (C-ALBP) are reported, since this paper
focuses on the definition of a multi-objective task allocation
method, more than on the resolution of the classical line bal-
ancing problem.

A new approach for collaborative task allocation can be
found in [24]. The authors proposed a solution for the C-
ALBP with the aim of minimizing the makespan. They
focused on the definition of different indexes, i.e., collab-
oration, makespan, and parallelism parameters, in order to
establish the importance of the process and product designs
in collaborative systems.

Another solution for the collaborative assembly line prob-
lem was proposed by [18], where the authors used cobots in
ALBP to determine a cost-efficient solution in assigning the
resources (operators and cobots) to the stations, considering
also ergonomics aspects. Their main result was the definition
of a mathematical model for the problem that also demon-
strated that collaborative robots are an inexpensive option for
manual manufacturing.

Focusing on cycle times, a solution to optimize the bal-
ancing was offered by [32], in which the authors, through
the definition of two algorithms, evaluated how to correctly
assign the resources in a U-shaped line. They compared dif-
ferent types of cobots and they showed that, with the correct
choice of them, it is possible both to reduce cycle times but
also costs.

A multi-objective approach for the optimization of the
efficiency and the cost of a collaborative cell was proposed
by [19], where the authors proposed a bird optimization
algorithm to obtain the Pareto Frontier. Their optimization
included the evaluation of different cobots, based on the pur-
chase costs, and the optimal solution was chosen through the
definition of a new population selection that was updated on
the basis of the fast non-dominated sorting approach, with a
restart algorithm to find the solution in the Pareto Frontier.

A trade-off between productivity, physical workload, and
the mental workload was studied by [31] in order to integrate
a cobot in a manual workplace. A theoretical framework
using the O*NET content model was realized to evaluate
which tasks could be substituted by the robot. The authors
found that the cobot introduction might not be always useful
unless the correct trade-off was considered.

Galin et al. [29] primarily focused on enhancing effi-
ciency in human-robot collaboration (HRC) by utilizing
group control methods and algorithms to create a diverse
team consisting of both cobots and human operators. The
study established guiding principles for effectively assigning
tasks in a collective setting, aimed at optimizing the perfor-
mance of the team.

A balance between safety requirements, ergonomics, and
productivity in collaborative systems was suggested by
Cunha et al. [28], which presented a realization of human-
robot task allocation to enhance work conditions and, at
the same time, to maximize the collaboration between the
resources. The authors came to the definition of a collabo-
rative workstation based on ergonomic criteria that allowed
to improve production thanks to the reduction of ergonomic
risks.

A list of requirements to create a collaborative worksta-
tion was suggested by [20], in which also the division of
tasks for each resource was specified. This separation was
done considering ergonomic criteria, and in particular Mus-
culoskeletal disorders (MSDs), an acknowledged occupation
problem. Their framework suggested the use of question-
naires and observations to identify the characteristics of the
workstation while through a multi-method approach, they
pointed out the most critical risk factors.

Musculoskeletal disorders are discussed also by [30],
where the authors proposed to switch from a manual assem-
bly aystem to a collaborative one with the introduction of
two robots. First of all, an analysis of the characteristics of
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the tasks was carried out to understand which resource best
suited each task; secondly, a genetic algorithm was applied
to minimize the assembly time, the use of a less capable
resource, and also the ergonomic hazard.

The reported literature analysis shows that different
approaches have been studied so far for task allocation in
collaborative robot assembly systems. However, very few of
them proposed multi-objective optimization including pro-
ductivity and human factors. Then this paper aims to propose
a multi-objective optimization model that includes produc-
tivity but also physical fatigue and mental workload. This
would represent the first attempt of focusing more on the
operator’s wellness in collaborative systems, going towards
the realization of a human-centered design.

3 Multi-objective task allocation

In this section, the three objectives of the proposed task allo-
cationmethod are explained: themakespan in Section3.1, the
energy expenditure in Section3.2, and the mental workload
in Section3.3. Furthermore, Section3.4 is for the formula-
tion of the collaborative task allocation problem due to the
presence of the two resources: a human operator and a col-
laborative robot.

3.1 Makespan

In a production system, the makespan is the total time
required to complete all the tasks that have to be performed
[34]. Themakespan has a direct impact on the systemproduc-
tivity; its reduction implies an increment of pieces produced
or assembled. Makespan is the basis of all scheduling prob-
lems [35]; in fact, its minimization allows companies to be
more competitive in themarket, requiring less time to provide
their products.

The makespan is included as an objective function in
this work through the variable ms, to guarantee the system
throughput.

3.2 Energy expenditure

Since the current trend is to place the operator’s wellness at
the center of the design of the workplace, also referring to
the proposal of Industry 5.0 concepts, the second objective
function considered is the operator’s energy expenditure.

Energy expenditure was first studied by Garg et al. [36],
who proposed a new approach to evaluate the metabolic rate
for manual jobs and walking movements. Their approach
considered different human aspects, such as age, body
weight, gender, height, and weight of the loads. Moreover, it
is based on the decomposition of the total energy requirement
into two parts: the energy required to maintain the posture

and the energy required to perform the job. An application
of this study for picking activities was made by [37].

The importance of the estimation of energy expenditure
is based on the fact that it can be used as a parameter to eval-
uate the ergonomic risks [38–40] since it includes duration,
level, and repetitiveness of body works that are all metrics to
rate the stress caused by physical jobs [41]. Moreover, it is
linked to heart rate, heart-rate variability, skin temperature,
electromyographic activity, and jerk metrics.

Energy consumption is also linked to the discomfort that
can lead tomusculoskeletal disorders (MSDs) [42],which are
still an occupation problem; indeed, for this reason, fatigue
is also included in the NIOSH index [43].

The energy expenditure estimation is here considered as
done by [38], where it was measured for each task that had to
be performed: e jk is the energy needed by the resource k to
complete the task j , while E is the variable of the objective
function.

3.3 Mental workload

The mental workload (MW) is another human factor that
should be considered in the realization of a human-centered
workplace [6]. Mental workload is defined as the combina-
tion of all the aspects (both cognitive and emotional) that are
related to the complexity of the tasks, limited resources, and
feelings during work. Mental dimension can be influenced
by different factors, such as stressors, preconditions, percep-
tions, and affective state [44]. As for the ergonomic risk, also
a high mental workload can influence both the productivity
and the quality of work, affecting operators’ mood [45].

The current increase in the demand and the complexity of
the mix of products has led to the development of an index,
called CLAM (cognitive load assessment for manufacturing)
[46], in order to help the designer in the assignment of the
tasks to operators, keeping a reasonable level ofmental stress.

This index considers different aspects:

• saturation, that is for the balance of the tasks, i.e., it indi-
cates how much of the time is occupied by performing
tasks;

• variant flora, that is defined starting from a product or
process variation from the standard;

• level of difficulty, that is an estimation of the effort
required to complete a task;

• production awareness, that is an indication of how much
attention is required;

• difficulty of tool use, including both the actual use com-
plexity and the accessibility to the tools;

• number of tools;
• mapping, referring to the disposition of tools and items
in the workstation;
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• parts identification, that is based on the approach used to
identify the parts to pick;

• information cost, that means how much burdensome is
the use of the given information;

• quality of instruction, that is based on the visibility of the
instructions;

• poke-a-yoke, that considers how many degrees of free-
dom are included that can cause errors.

Through the combination of these different factors, the
CLAM index can be evaluated allowing an estimation of the
mental workload for each task: mw jk is the level of mental
workload reached by the resource k to perform each task j ,
while MW is the variable of the objective function.

In Table 2 the ranges of theCLAM indexwith their respec-
tive meanings are shown.

3.4 Problem statement

3.4.1 Assumptions

The definition of the model starts from the resolution of a
task allocation problem, leading to the assignment of tasks
to different resources. The following assumptions are made:

• the system realizes a product by performing J operations
of the given product process, in a single-model station.
This model could be a VAM (virtual average model);

• each task is performed by only one resource at a time;
• the assembly station includes two resources: one human
operator and one cobot, i.e., K = 2 (k = 1 for the oper-
ator, k = 2 for the cobot);

• the collaborative resources share workplace and work
time;

• no particular background is required to the operator, nor
social or technical background, level of education, etc.;

• there are no technological constraints since the cobot is
equipped to perform all the tasks.

The proposed method aims to offer a solution of a multi-
objective task allocation through the use of the Pareto
Frontier, which offers a set of non-dominated points [47].
Moreover, considering the Utopia Point, in which all the
objectives have minimum values [48], the solution that will

Table 2 CLAM intervals for
MW estimation

Interval Level of MW

> 3.2 High

2.5–3.2 Moderate

1.7–2.5 Low

1 - 1.7 Very Low

be proposed will be the one that has the minimum Euclidean
distance from it. This means that the chosen solution mini-
mizes Eq. 1, where the values of the objective functions are
normalized through thedifferencebetween themaximumand
the minimum values, where the latter are the values obtained
with their correspondent single-objective optimization (ms∗,
E∗, MW ∗ are the anchor points [49]).

dut =
√(

ms − ms∗
msmax − ms∗

)2

+
(

E − E∗
Emax − E∗

)2

+
(

MW − MW ∗
MWmax − MW ∗

)2

(1)

All the objectives have equal importance, since these are all
goals of Industry 5.0, as already described.

3.4.2 Model description

The output of the model consists of the assignment of the
tasks to the operator and to the cobot, minimizing the three
introduced objective functions. Then, the optimization vari-
able x jk is defined as follows:

x jk =
{
1 if the task j is performed by the resource k
0 otherwise

(2)

Makespan, Eq. 3, is evaluated with the traditional formu-
lation, [50]:

min ms = min

(
max

J∑
j=1

(G jk + Pjk)

)
(3)

where G jk represents the time in which task j performed by
the resource k starts, and Pjk is the time required to complete
task j (always performed by resource k).

The operator’s energy expenditure, Eq. 4, is evaluated as
the sum of e jk , that is the energy required to perform each
task j assigned to the human operator [36].

min E = min

( J∑
j=1

e jk · x jk
)

k = 1 (OP) (4)

The energy requirement of each task is evaluated as described
in Section3.2.

It is possible to evaluate the averagementalworkloadMW
as inEq. 5 that is theweighted average of thementalworkload
of each task,mw jk , on the time of execution of it, Pjk , for all
the tasks assigned to the operator. This choice has been made
starting from the definition of the average mental workload,
defined by [51], in order to consider the effect that time has
on it. This approach can be useful since tasks that have the
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same mw jk but are performed for different time durations
can have a different effect on the mental workload.

min MW = min

(∑J
j=1mw jk · Pjk · x jk

ms

)
k = 1 (OP)

(5)

The mental workload of each task is evaluated as described
in Section3.3 considering the ineffective workload as level
zero.

3.4.3 Constraints

The three objective functions are subjected to:

T∑
t=0

K∑
k=1

x jk = 1 ∀ j (6)

x jk ∈ {0, 1} ∀ j, k (7)

xpk · T ≤ x jk · T ∀ j,∀p ∈ Ep (8)

xpk · T ≥ x jk · T ∀ j,∀p ∈ L p (9)
J∑

j=1

x jk ≥ 1 ∀k (10)

Ik
ms

· 100 ≤ Imax ∀k (11)

Eq. 6 is for the occurrence constraint that along with the inte-
grality constraint, Eq. 7, guarantees that, for each temporal
instant, each task is performed by only one resource, and one
resource can execute only one task.

Equations 8-9, derived fromPatterson andAlbrachtmodel
[52], are for precedence constraints, meaning that no task
can be assigned, to one resource or to the other, before its
predecessors.

The level of imposed precedence can be evaluated through
the parallelism index [24], here recalled, that evaluates the
number of tasks that can not be executed in parallel with the
task j , for all tasks:

p% = 1 −
∑J

j=1
n j
J−1

J
(12)

where n j is the sum of the predecessors and successors of
the task j .

Equation 10 is necessary to guarantee that the assumptions
made inSection3.4.1 are respected, i.e., both the operator and

the cobot need to have at least one task assigned in order to
consider the assembly station composed by more than one
resource. Otherwise, the solutions will include also the cases
in which all the tasks are assigned only to one resource.

In this model, another constraint about idle times is intro-
duced, for considering the time in which one resource waits
for the completion of a task performed by the other resource
before it can start to execute the next task assigned to it. Equa-
tion 11, that can be called saturation constraint, imposes that
the ratio between the total idle times for each resource, Ik , and
the makespanms has to be less than a fixed value, Imax. This
is introduced to promote in the solution the parallelization of
tasks and the collaboration, or, even better, the cooperation
[53], among the two resources.

3.4.4 Indexes

In order to better evaluate the results of the proposedmethod,
different indexes, related to the process characteristics, are
evaluated. These indexes are important, both from the per-
spective of the human-center design [2, 6] and from the
perspective of system efficiency [7, 12].

• makespan index m%:

m% = ms

min{ms}dut,min

(13)

that is the ratio between themakespan of each other points
of the Pareto set and the makespan of the one that has
minimum distance from the Utopia Point.

• energy index e%:

e% = E

min{E}dut,min

(14)

that is the ratio between the energy expenditure of each
other points of the Pareto set and the energy of the one
that has minimum distance from the Utopia Point.

• mental workload index mw%:

mw% = MW

min{MW }dut,min

(15)

that is the ratio between the mental workload of each
other points of the Pareto set and the mental workload of
the one that has the minimum distance from the Utopia
Point.

Fig. 1 Tasks precedence
diagram
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• collaboration index c%:

c% = Tcoll
ms

(16)

that is the ratio between the shared time Tcoll , i.e., the
time in which both the resources are both performing a
task, and the makespan [54].

4 Case study

In this section, the proposed multi-objective task allocation
model is applied to the assembly process of a self-priming
pump. This is made of a preassembly phase, a painting task,
and a finishing phase, including cover refinement, quality,
and packaging. The analysis is here focused on the preassem-
bly in which most of the entire assembly is realized.

The assembly process is composed of J = 27 tasks, whose
precedence diagram is shown in Fig. 1.

For this application, the parallelism index, Eq. 12, is p% =
25.6%. Moreover, the operator’s task times and task energy
expenditures are derived from [38]. In particular, the times are
derived with the chronometric method developed by Bedaux
[55], which is based on the principle of breaking down a
task into smaller, more manageable task components and
assigning a predetermined score to each component, based
on its level of difficulty. These scores are then added up to
determine the score required to complete the task. The cobot
is a KUKA LBR iiwa 14 R820, which task times are derived
from [2], in which experimental tests showed that typically,
a cobot takes twice as long to complete compared to tasks
performed by human operators. Its energy expenditure and
mental workload are obviously imposed equal to zero.

Table 3 contains, for each task, the operator’s execution
times Pop, the cobot execution times Pc, the operator’s energy
expenditures e j1, and the operator’smentalworkloadsmw j1.

4.1 Single human resource

The first analysis carried out is the evaluation of the val-
ues of the objective functions for a system that has only the
human operator as resource, whit all the tasks assigned to
him/her. These are reported in Table 4, where it is possible
to see that the makespan ms is equal to 10.77 min, while the
energy expenditure E assumes the value of 33.97 kcal, and
the average mental workload is equal to MW = 1.70.

Starting from this result, in the following, we investigate
how the introduction of a collaborative robot in the work area
can improve theworking sustainability of the operator, in line
with the principles of Industry 5.0.

Table 3 Input tasks times, energy expenditures, and mental workloads

Task Pop [min] Pc [min] eop [kcal] mwop

1 0.4 0.8 1.4 1.8

2 0.37 0.74 1.62 2.3

3 0.44 0.88 1.92 2.5

4 0.44 0.88 1.48 1.8

5 0.4 0.8 1.23 1.2

6 0.42 0.84 1.44 1.8

7 0.6 1.2 1.6 2.2

8 0.64 1.28 1.95 2.8

9 0.44 0.88 1.29 1.2

10 0.4 0.8 1.31 1.3

11 0.08 0.16 0.18 0.5

12 0.4 0.8 1.3 1.6

13 0.44 0.88 1.36 1.6

14 0.39 0.78 1.19 1.2

15 0.44 0.88 1.48 1.8

16 0.39 0.78 1.95 2.5

17 0.6 1.2 1.6 1.5

18 0.42 0.84 1.26 2.6

19 0.44 0.88 1.38 2.1

20 0.59 1.18 1.57 1.5

21 0.15 0.3 0.67 3.4

22 0.15 0.3 0.3 1.4

23 0.35 0.7 0.66 1.3

24 0.73 1.46 1.35 0.4

25 0.18 0.36 0.36 2

26 0.08 0.16 0.92 0.4

27 0.39 0.78 1.2 0.5

4.2 Optimal solutions through Pareto Frontier

The first analysis concerned the single objective optimiza-
tion of the three objective functions, without the saturation
constraint, in order to have the whole solutions set; i.e.,
Imax = 100%. The results are shown in Table 5, reporting
the value of the single objective optimization (single O.F.),
i.e.,ms∗, E∗, and MW ∗, with the correspondent task alloca-
tion. Each row reports the value of the optimized objective
(bold values), with also the values of the other two objective
functions calculated with that specific task sequence and the
saturation level of the resources.

As can be seen, there is no balancing in the assignment of
the tasks to the resources and the minimization of a single

Table 4 Values of objective
functions for single human
operator resource

ms [min] E [kcal] MW

10.77 33.97 1.70
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Table 5 Values of the objective functions for single objective optimization

Single O.F ms [min] E [kcal] MW OP C SOP [%] SC [%]
ms∗ 9.96 26.32 1.49 [1,3,4,5,6,7,8,17,18, [2,16,9,10,11,12] 87.25 41.76

19,20,13,14,15,21,22

23,24,25,26,27]

E∗ 21.38 0.18 0.0019 [11] [1,2,3,4,5,6,7,8,9,10,16, 0 100

12,13,14,15,17,18,19,

20,21,22,23,24,25,26,27]

MW ∗ 21.46 0.92 0.0015 [26] [1,2,3,4,5,6,7,8,9,10,11,12, 0 100

13,14,15,16,17,18,19,

20,21,22,23,24,25,27]

objective function leads to a deep worsening of the other two
objectives. Moreover, these scenarios are not realistic, and
they can not be applied in an industrial application. Then a
multi-objective optimization is preferable.

The application of the proposed multi-objective optimiza-
tion approach has led to the Pareto Frontier shown in Fig. 2.
In the figure, makespan is on x-axis, energy expenditure is
on y-axis, and average mental workload is on z-axis.

The computer used to solve the model is a DELL-
ALIENWARE R11, with Intel Core i7–10700KF CPU
3.80GHz and 32 GB of RAM; the algorithm used to solve
the optimization is “gamultiobj” in MATLAB (Mathworks)
environment. This is a genetic algorithm based on the evolu-
tionary multi-objective optimization (EMO), [56] and it has
required about 19.3h for the result.

The total set of points consists of 251 points: the configu-
ration that offers theminimumdistance from theUtopia point
is circled in red in Fig. 2, and reported in Table 6, together
with the corresponding task allocation.

Figure 3 shows the overall timeshare, with the tasks and
their execution times. The orange bar is for the operator (OP),
the green bar is for the cobot (C) tasks with the green bar,
and the blue bar (collab) shows the amount of established
collaboration.

Comparing the results reported in the two Tables 5 and
6, it is possible to see that with the multi-objective opti-
mization the makespan increases by 39% with respect to the
single makespan optimization, while the energy expenditure
and the average mental workload decrease, respectively, by
54% and 40%, still considering ms optimization. Compared
to the energy expenditure single minimization, the multi-
objective optimization allows a decrease in the makespan by
35%, while the energy expenditure increases by 6600%, and
the average mental workload increases by 22600%. As far as
the comparison with the mental workload single minimiza-
tion is concerned, the multi-objective optimization leads to a
decrease of the makespan by about 55%, while energy grows
by 1212% and mental workload increases by 32600%. As it

can be seen in the tasks assignment of Table 6, these heavy
increases in energy expenditure andmental workload are due
to the fact that themulti-objective solution assignsmore tasks
to the operator, anyhow proposing a more balanced solution.

Subsequently, the indexes presented in Section3.4.4 are
here analyzed. The trend of the makespan index m%, based
on the distance from Utopia point, is reported in Fig. 4a.

Since the point that hasminimumdistance from theUtopia
one is quite in the middle of the Pareto Frontier, as it is pos-
sible to see from Fig. 2, this index has a double trend as the
distance increases. However, its slope of growth (blue line in
Fig. 4a), moving away from utopia, is greater than the one of
decrease (orange line in Fig. 4a).

This is also confirmed by the double trend of the energy
expenditure index, e%, and by the mental workload index,
mw%, represented in Fig. 4b and c respectively. As for m%,
their slope is higher in case of increase (orange lines) than in
case of decrease (blue lines). It is important to underline that
in correspondence with an increase in the makespan there is
a decrease in energy expenditure and mental workload and
vice versa. Then, the trends of the three indexes are related,

Fig. 2 Pareto solutions sets with Imax = 100%
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i.e., the rate of growth of ms is related to the rate of decrease
of E and of MW and conversely.

The collaboration index c% is shown in Fig. 4d. It presents
the same trend of the energy expenditure and mental work-
load indexes since it is related to the makespan. In fact, it
increases with the decrement of ms since, in order to have a
smaller makespan, it is necessary to increase the tasks par-
allelization, resulting in an increment of the collaboration
time.

4.3 Sensitivity analysis

This section is for the analysis of the objective functions by
varying the maximum percentage of idle times, i.e., chang-
ing Imax (Eq. 11). This is strictly linked to the resources’
saturation, as follows:

Sk = 1 − Ik
ms

∀k (17)

Here, it is advisable to introduce the saturation constraint,
Eq. 11, since themulti-objective solution, obtained as the one
that has minimum distance from the Utopia point, tends to
assign more tasks to the cobot, as it is possible to see from
Fig. 3, in order to reduce the energy and the mental workload
values. This solution assigned 18 tasks to the cobot and only
9 to the operator, with a low amount of collaboration equal to
the 23.27% ofms. The solution promotes the operator’s idle-
ness, despite the makespan: the operator’s saturation SOP , in
fact, is 31.92%, while cobot saturation SC is 91.35%. By fix-
ing a stricter idle time limit, it is possible to better saturate
both resources, obviously keeping the heaviest tasks assigned
to the cobot.

Table 7 reports how the objective functions change by
increasing the saturation of both resources. In particular, it
shows the level of Imax imposed, the makespan ms, and its
difference�ms with respect to the valueobtainedwith Imax =
100%. Similarly, E and �E are for the operator’s energy
expenditure, while MW and �MW are for his/her average
mental workload. The values reported are until Imax = 36%
since for smaller values there are no solutions in the Pareto
set, because of the level of precedence imposed.

The decrement of Imax has an opposite influence on ms
with respect to E and toMW , as shown in Figs. 5a, 6a, 7a: the
first objective decreases of about 20% from Imax = 100% to
Imax = 36%, while the second one increases of 69% and the
third one of 140%. These trends are reported, respectively,
in Figs. 5b, 6b, 7b.

Figure 8a and b show the level of saturation of the operator
and of the cobot. For the operator, there is a maximum incre-
ment of 32.82%, while for the cobot a maximum decrement
of 26.61%.

From this analysis, it is possible to conclude that both
the energy and the mental workload are widely affected by
the increase of the saturation of the resources, while the
makespan presents a smaller variation, although opposed.

4.3.1 Choice of the saturation level

Since the energy expenditure and the mental workload
present opposed trends with respect to the makespan, it is
interesting to evaluate until which value of Imax it is actually
convenient to increasingly saturate the resources. Here, con-
venience ismeant as finding the range inwhich there is a high
makespan decrease while keeping the energy and the mental
workload increments small. In order to find this interval, the
following procedure can be followed: after the evaluation of
the solutions obtained with different levels of the imposed
saturation constraint, the values that the objective functions
assume are analyzed, always considering the best solution
as the one that has the minimum distance from the Utopia
point. Later, the difference between the values obtained with
Imax = 100% and the ones just obtained is analyzed, get-
ting the �(s) shown in Table 7. These differences represent
how significant the changes are in the corresponding objec-
tive functions. In order to achieve the best task allocation,
it is required to increase a lot �ms while keeping small (in
absolute values) the others: in this way in correspondence
with a remarkable decrease of the makespan, there are low
increments of the energy expenditure and of the averagemen-
tal workload. For this purpose, the ratios between the before
explained �(s) are evaluated. In particular, the ratios ana-
lyzed are reported in (18) and (19), where the absolute values
of�E and of�MW are taken for better understanding, while
Figs. 9 and 10 show their trends as a function of themaximum
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Fig. 3 Task allocation and collaboration
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Table 6 Objective functions values and task allocation of the proposed solution

ms [min] E [kcal] MW OP C SOP [%] SC [%]
13.88 12.07 0.49 [1,5,17,7,8,20,11,14,24] [2,3,4,16,6,18,19,9,10,12,13,15,21,22,23,25,26,27] 31.92 91.35

idle times percentage (excluding the ratios equal to zero).

�ms

|�E | (18)

�ms

|�MW | (19)

From the data, it is possible to notice that the optimal
range in which the makespan decreases remarkably with a
small increment of energy is with Imax between 45% and
50%, while before and after this interval a big variation of
the makespan is associated to a big variation of the energy.
For the mental workload, the range is exactly the same.

Thanks to the interpolations (with an R2 � 90%), it is
possible to find two curves that have a maximum in cor-
respondence of I ∗

max � 46% (Fig. 9) and of I ∗
max � 47%

(Fig. 10), with which the ratios obtained are:

�ms

|�E | � 0.37 [min /kcal]

�ms

|�MW | � 3.15 [min]

It is important to underline that in these points, we have
the maximum makespan decrease with the minimum energy
and mental workload increments.

The value of the Pareto Frontier that is the nearest to
these maxima corresponds to �ms = 1.84 min, to �E =
−6.04 kcal, and to �MW = −0.65 that means that the
makespan obtained is ms = 12.04 min and the energy
expenditure is E = 18.11 kcal, with also an average mental
workload limited and equal to MW = 1.59 that is in the
“very low” range of Table 2. The corresponding task alloca-
tion is shown in Fig. 11, where the saturation of the operator
is SOP = 53.57% and the cobot one is SC = 71.76%.
Therefore, this solution also promotes collaboration, which
increases by about 2%, leading, as demonstrated before, to a
decrease in the time required to complete the process.

Basically, it can be concluded that, aiming at reducing
makespan and contemporary ensuring that the effort required
by the operator is not too demanding, this range can be con-
sidered as the optimal one. Moreover, between these values
of Imax, the levels of both the energy expenditure and the
average mental workload are acceptable.

5 Conclusions

The principles introduced by Industry 5.0 are nowadays lead-
ing to the current trends in the design of workplaces, putting
the attention on operators’ needs, but also including the need
for standards of flexibility and productivity highlighted by
Industry 4.0. In this direction, the proposed work fits in the
very current trend related to the human-centered design of
workplaces, which is one of the principles of Industry 5.0. In
particular, Industry 5.0 builds upon Industry 4.0 and empha-
sizes the importance of research and innovation in driving
a transition to a sustainable, human-centered, and resilient
industry. This approach recognizes the potential of new tech-
nologies, such as collaborative robots, to bring prosperity
beyond just job creation and economic growth, prioritizing
the well-being of workers in the production process [5].

However, up to now, the contributions related to the
solution of task allocation problemsmainly focus on the con-
sideration of only one human factor or on the balancing of
more human factors, but not in collaborative cells, resulting
that multi-objective approaches, to realize a human-centered
design including cobot systems, do not exist.

As a result of this gap, a new method for multi-objective
task allocation problems for collaborative assembly systems
is here presented, with the aim to minimize three objec-
tive functions, i.e., makespan for productivity, operator’s
energy expenditure, and average mental workload for well-
ness. Unlike makespan and energy expenditure, for which
how to evaluate them in an entire assembly process is well
established [34, 37], for the mental workload such an assess-
ment is still under development. Therefore, the first novelty
of this work is the proposal to evaluate it overall and not task
by task.

The second novelty deals with the introduction of a con-
straint that promotes the saturation of the resources, called
saturation constraint. This is needed since the proposed for-
mulation has the tendency to assignmore tasks to the cobot, in
order to minimize the operator’s effort, but with a worsening
of the makespan. By varying the maximum level of the idle
times of the resources, it is possible to obtain a better balance
of tasks division, naturally continuing to assign the burden-
some ones for energy and mental workload to the cobot.

The application of the model to a real case study, through
the evaluation of the Pareto Frontier and the proposal of the
best solution as the one that has minimum distance from the
Utopia Point, has led to the analysis of the above-mentioned
saturation of the resources and of its impact on the outcome
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Fig. 4 Indexes trends with
Imax = 100%

Table 7 Values of objective
functions and resources
saturation for different levels of
idle times

Imax [%] ms [min] �ms [min] E [kcal] �E [kcal] MW �MW Sop [%] Sc [%]

100 13.88 0 12.07 0 0.94 0 31.92 91.35

95 13.88 0 12.07 0 0.94 0 31.92 91.35

90 13.88 0 12.07 0 0.94 0 31.92 91.35

85 13.88 0 12.07 0 0.94 0 31.92 91.35

80 13.88 0 12.07 0 0.94 0 31.92 91.35

75 13.88 0 12.07 0 0.94 0 31.92 91.35

70 13.88 0 12.07 0 0.94 0 31.92 91.35

65 13.44 0.44 13.65 −1.58 0.99 −0.05 36.41 84.23

60 13 0.88 14.5 −2.43 1.29 −0.35 40.45 84.62

55 12.55 1.33 16.12 −4.05 1.31 −0.37 45.9 79.84

50 12.17 1.71 16.99 −4.92 1.52 −0.58 50.12 76.65

45 12 1.88 18.44 −6.37 1.66 −0.72 55.58 68.33

40 11.52 2.36 19.18 −7.11 1.93 −0.99 60.33 66.32

39 11.29 2.59 19.62 −7.55 1.96 −1.02 61.82 67.14

38 11.19 2.69 20.45 −8.38 2.01 −1.07 63.27 65.95

38 11.19 2.69 20.45 −8.38 2.01 −1.07 63.27 65.95

36 11.09 2.79 20.41 −8.34 2.25 −1.31 64.74 64.74
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Fig. 5 ms and �ms trends for
different levels of idle times

Fig. 6 E and �E trends for
different levels of idle times

Fig. 7 MW and �MW trends
for different levels of idle times
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Fig. 8 Resources saturation
trends for different levels of idle
times

of the model. The third novelty here presented is related
to the actual level of idleness that has to be imposed; it is
here suggested to consider the one that offers the maximum
decrease of the makespan, keeping the lowest increase of
energy expenditure and mental workload, with respect to the
solution without the saturation constraint. In this way, it is
possible to have the best trade-off between the objective func-
tions, while also promoting a reduction of idle times.

Considered as a whole, the proposed methodology rep-
resents an interesting contribution to the field of study and
design of human-centered collaborative systems. By priori-
tizing the well-being of workers and creating a positive work
environment that supports employee satisfaction and reten-
tion, companies can enjoy a range of benefits that go beyond
simple efficiency improvement.

Among the others, there are two important questions that
we want to propose as possible future developments. These
are related to the introduction of stochastic values for the
objective functions which have been for now considered
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Fig. 9 �ms|�E | trend as function of Imax

deterministic, and the application of this model with a
dynamic perspective. For the first point, this variability can be
introduced to better reflect the fact that the amounts of time,
energy expenditures, andmental workload are not always the
same, even in the same activities. Moreover, this extension
would be useful also to consider the differences amongwork-
ers and how these can impact the productivity of the system
[57]. For the second one, this model can be the starting point
to define the assignment of tasks also in real-time, consider-
ing the operators’ needs, and their changes over time, during
the execution of the tasks and/or at different moments of the
day. Real collaboration is an evolving relationship, and thus
a task allocation decision, that will be developed online and
dynamically, is the next step that will be pursued.

Moreover, more case studies could be analyzed in order to
consolidate the method, derive guidelines and insights from
their results, and better compare the provided advantages
in the field, including the definition of which are the best
potential application settings.

35 40 45 50 55 60 65 70

I
max

 [%]

0

0.5

1

1.5

2

2.5

3

3.5

m
s/|

M
W

| [
m

in
]

I
max
*

Fig. 10 �ms|�MW | trend as function of Imax

123



The International Journal of Advanced Manufacturing Technology

0 2 4 6 8 10 12

Time [min]

Collab

C

OP

1

2 3

4

5

6 7

8

9 1011

12 13

14 15

16

17

18 19

20

2122

23 24 25

26

27

Fig. 11 Task allocation and collaboration with I ∗
max

Nomenclature

j Task index j = 1, ..., J
J Number of tasks
k Resource index k = 1, ..., K
K Number of resources

ms Makespan [min]
e jk Energy expenditure of task j for resource

k [kcal]
E Operator’s energy expenditure [kcal]

mw jk Mental workload of task j for resource k
MW Operator’s average mental workload
ms∗ Single objective makespan [min]
E∗ Single objective energy expenditure [kcal]

MW ∗ Single objective average mental workload
msmax Maximum makespan [min]
Emax Maximum energy expenditure [kcal]

MWmax Maximum average mental workload
dut Distance from Utopia Point
x jk Task allocation decision variable [binary]
G jk Start time of task j for resource k [min]
Pjk Time of task j for resource k [min]

t Temporal instant [s]
T Temporal horizon [s]
Ep Set of predecessors of task p
L p Set of successors of task p
Ik Idle times of the resource k [min]
p% Parallelism index
n j Sum of the predecessors and successors of

the task j
Imax Maximum percentage of idle times [%]
m% Makespan index

e% Energy index
mw% Mental workload index

c% Collaboration index
Tcoll Collaboration time [s]
Sk Saturation of resource k [%]

msImax=100% Makespan with Imax = 100% [min]
EImax=100% Energy expenditure with max = 100%

[kcal]
MWImax=100% Average mental workload with Imax =

100%
�ms Difference between msImax=100% and ms

[min]
�E Difference between EImax=100% and E

[kcal]
�MW Difference between MWImax=100% and

MW
I ∗
max Optimalmaximumpercentage of idle times

[%]
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