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Abstract

Protein intrinsic disorder (ID) is a complex and context-dependent phenomenon that

covers a continuum between fully disordered states and folded states with long

dynamic regions. The lack of a ground truth that fits all ID flavors and the potential

for order-to-disorder transitions depending on specific conditions makes ID predic-

tion challenging. The CAID2 challenge aimed to evaluate the performance of differ-

ent prediction methods across different benchmarks, leveraging the annotation

provided by the DisProt database, which stores the coordinates of ID regions when

there is experimental evidence in the literature. The CAID2 challenge demonstrated

varying performance of different prediction methods across different benchmarks,

highlighting the need for continued development of more versatile and efficient pre-

diction software. Depending on the application, researchers may need to balance

performance with execution time when selecting a predictor. Methods based on

AlphaFold2 seem to be good ID predictors but they are better at detecting absence

of order rather than ID regions as defined in DisProt. The CAID2 predictors can be

freely used through the CAID Prediction Portal, and CAID has been integrated into

OpenEBench, which will become the official platform for running future CAID

challenges.
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1 | INTRODUCTION

Intrinsically disordered proteins (IDPs) and regions (IDRs) display

highly dynamic behavior by randomly sampling a vast array of confor-

mations. This characteristic distinguishes them from protein switches,

which, in response to a well-defined set of signals or stimuli, alternate

between a limited number of conformations.1

Studying IDPs is challenging because experiments can only cap-

ture the average behavior of an ensemble.2 For instance, NMR

experiments provide conformational constraints but lack a description

of the time dimension.3 Additionally, some IDPs exhibit context-

dependent behavior, displaying disorder under specific conditions

such as the presence of a binding partner, changes in pH, etc.4

Predicting IDRs is problematic because protein dynamics cannot

be described by a limited set of fixed conformations. The Critical

Assessment of Protein Intrinsic Disorder Prediction (CAID)5 focuses

on analyzing the simpler problem of identifying positions within the

protein sequence that have a propensity for being intrinsically
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disordered. In CAID, predictors are asked to provide a probability for

each position, which can be turned into a binary prediction problem

by applying a probability cutoff.

Over the years, numerous methods have been developed, varying

based on implementation, training data, and purpose.6 Some methods

predict disordered regions derived from missing residues in X-ray

experiments, while others attempt to capture context-dependent

behavior (ID flavors), such as binding sites within IDRs. CAID not only

assesses the accuracy of these methods but also evaluates their per-

formance in terms of execution time and usability.

In this work we describe the results of the second round of CAID.

The assessment includes an evaluation of the accuracy in predicting

disorder and binding sites as well as a comparison of the execution

time. The reference set is provided by the DisProt database7 and

includes a set of proteins for which disorder annotations were not

previously available.

2 | MATERIALS AND METHODS

2.1 | Reference

There are various experimental techniques available to study the

structural properties of proteins and ID within, each with its own

biases and limitations. For instance, X-ray experiments tend to detect

shorter IDRs because longer IDRs may be excised during construct

preparation or hinder crystallization. On the other hand, circular

dichroism can detect the absence of fixed structure of the whole pro-

tein, but lack residue resolution, applicable to full proteins. Therefore,

IDRs should be confirmed by multiple lines of independent and

diverse experimental evidence to increase their reliability. The DisProt

database was chosen as the reference for structural disorder as in the

first round of CAID because it contains a large number of manually

curated disorder annotations at the protein level, with most residues

annotated by more than one experiment. DisProt defines IDRs as

regions of at least 10 residues that are likely to be associated with a

biological function and excludes short loops connecting secondary

structure elements. It also includes protein–protein interaction inter-

faces within disordered regions as a separate dataset, defined as

“Binding” in CAID.

CAID benchmark proteins were obtained by calculating the delta

between the public and private versions of the DisProt database as of

November 20, 2022. Figure 1 panel A, shows how the reference data-

sets have been generated. Ideally, DisProt annotations would be com-

plete, meaning that all disordered or binding regions present under

physiological conditions would be annotated for each protein. In this

scenario, all residues not annotated as disordered would be consid-

ered structured (negatives), while disordered residues would be con-

sidered positives. However, since not all IDRs are currently included

in DisProt, the “Disorder-PDB” dataset was created, which only

includes negatives among PDB Observed residues. This dataset is

more conservative but considered more reliable as it excludes uncer-

tain residues without any structural or disorder annotation.

Additionally, since the availability of structural information in the

Protein Data Bank (PDB) database8 we excluded missing residues

annotations in the default disorder benchmarking, “Disorder-NOX”
dataset from here on. Indeed, missing residues are the type of ground

truth data mainly used to train disorder prediction methods. Figure 1,

panel B displays a Venn diagram of the number of proteins for the

Disorder-NOX, Disorder-PDB, and Binding datasets.

In CAID2 we added a new category “Linker” which includes

40 proteins. Linkers are defined in DisProt as unstructured regions,

providing separation and permitting movement between adjacent

functional regions, for example, structured domains or disordered

motifs. In contrast to CAID1, for the Binding dataset we considered

only proteins with at least one binding region.

The total number of positive residues is 31 315 (19.5%), 37 072

(28.3%), 8209 (12.2%), and 2023 (5.4%) for the Disorder-NOX,

Disorder-PDB, Binding, and Linkers datasets, respectively (Figure 1,

panel D).

When missing residues are excluded, as in the Disorder-NOX, the

number of target proteins decreases, but the average number of posi-

tive residues per protein is higher (Figure 1, panel F). This is due to

the larger size of disorder regions detected by experimental tech-

niques other than X-ray.

On the other hand, the Disorder-PDB dataset has a slightly higher

relative disorder content (Figure 1, panel G). This can be attributed to

most of the PDB constructs being fragments. Probably a large fraction

of excluded positions, which are the negatives in Disorder-NOX, are

bona fide disorder regions corresponding to missing annotations in

DisProt.

Figure 1, panel E provides the fraction of residues covered by

each experimental technique in the entire protein set. Circular dichro-

ism covers approximately 80% of disordered residues, followed by

“author statements,” which refers to annotations where the authors

mention a disordered region citing other works or because the disor-

der state is a well-established piece of knowledge.

The ID targets in CAID come from a diverse range of organisms,

with the majority from eukaryotes, followed by bacteria and viruses

and bacteria, and zero archaea (Figure 1, panel C). The target proteins

are different from both those in the previous DisProt release and PDB

construct sequences (PDB SEQRES field), with mean local sequence

identity of 22.8% and 31.6%, respectively, when aligned with the

Smith–Waterman algorithm (data not shown).

2.2 | Containers and predictions

In the CAID2 challenge, we collected a total of 46 different software

programs and containerized (explained below) them for standardiza-

tion of input and output data. Some of these software programs gen-

erated multiple outputs, resulting in a total of 71 different predictor

“flavors,” corresponding to the different variations of the predictor.

The containerization of the softwares was done using Singularity

(https://sylabs.io) containers to standardize the input and output data

and ensure reproducible results. By containerizing the software, we
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F IGURE 1 CAID2 dataset statistics. (A) The benchmarking dataset. (B) A Venn diagram of proteins in the benchmarking datasets. (D) The
distribution of proteins across the three primary domains of life for the whole set of proteins. (D) Residue classification; the fraction of positive
residues is reported at the top of the bars. (E) The fraction of disordered residues covered by specific experimental evidence. It is important to
note that the same region can be identified by multiple experiments, and only the top 15 experimental methods are reported. The distribution of
positive and negative classes at the protein level at the level of residues (F) and as percentage normalized by protein length (G).
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eliminated the need for manual installation on each machine and

ensured that the software runs consistently across different machines.

Additionally, containerizing the predictors enabled us to package all

the necessary software and dependencies together, making it easier

to deploy and update the predictors. Before and after executing the

predictor, scripts were run to standardize the input and output of

the container, creating an interface with the predictor software. The

predictor received a FASTA file with multiple sequences as input, and

generated one or multiple outputs per sequence while recording the

execution time for each.

To execute all the 46 different predictor softwares of the CAID2

challenge, we utilized a cluster and tuned each software program's usage

of RAM and CPU cores. Different software programs have different

needs in terms of RAM and CPU, so we evaluated the capabilities of

each software in using multiple CPUs and the maximum amount of RAM

it used during execution. For each predictor, we set a maximum runtime

of 4 h per protein sequence and limited the number of CPU cores to an

upper limit of 24 and the amount of RAM to an upper limit of 47GB.

The protocol implemented for managing predictions in the CAID2

challenge is identical to that employed in the CAID1 challenge.

2.3 | AlphaFold disorder and binding prediction

To establish a comparison baseline, we also incorporated the

AlphaFold-disorder package,9 which utilizes AlphaFold2 predicted struc-

tures publicly available in databases10,11 to infer predictions for disorder

and binding. Unlike using the sequence, the AlphaFold-disorder method

takes the protein structure predicted by AlphaFold2 as input. The struc-

ture was obtained directly from the AlphaFold Protein Structure Data-

base (AlphaFoldDB)11 by searching the UniProtKB12 accession number.

However, if the protein sequence is not present in UniProtKB, no struc-

ture can be downloaded, thus the prediction is unavailable.

There are three types of AlphaFold-disorder predictions:

(i) AlphaFold-pLDDT, which is the 1 � pLDDT score, (ii) AlphaFold-

rsa, which predicts the relative solvent accessibility (RSA)13 over a

local window centered on the residue to be predicted, and

(iii) AlphaFold-binding, which identifies regions with high RSA

and pLDDT. The specific formula used for AlphaFold-disorder predic-

tions is outlined in reference 9.

2.4 | Evaluation

For each residue in the input sequence, the predictors produce a set

of pairs consisting of a score and a state. These scores are expressed

as decimal numbers, while the states are binary labels that anticipate

whether the residue is structured or disordered. If the scores are not

available, the states are utilized as scores. In situations where the

states are absent, they are computed by applying a threshold to

the scores. The default threshold is established by the states; if the

method's authors do not specify a threshold, a value of 0.5 is used.

This guarantees that the default threshold approximations are accu-

rate for any score distribution. To provide 1000 possible thresholds,

the prediction scores are rounded to the third decimal place. In

CAID1, Fmax and AUC were the primary evaluation criteria utilized,

where Fmax denotes the highest point on the precision–recall curve

and AUC represents the area under the receiver operating character-

istic (ROC) curve. In CAID2, we reported the average precision score

(APS), which is calculated as the arithmetic mean of the precision

values along the precision–recall curve. APS is proportional to the

area under the precision–recall curve, and compared to Fmax, it better

captures a method's ability to prioritize disordered regions. In order to

guide the interpretation of the results each method is accompanied by

the fraction of predicted targets (coverage). Indeed some methods

crashed unexpectedly or did not provide an output in a reasonable

time (see Section 2.2).

In the Shuffled dataset baseline, the reference is randomized at

the dataset level, whereas the Random predictor is a completely ran-

dom method that does not utilize any prior information.

2.5 | Execution time

The execution times of the predictors were recorded for each input

sequence, and to minimize overhead, the start time was set after con-

tainer initialization and just before executing the predictor software.

This was achieved by incorporating a custom script into the container

that managed input and output data, recorded execution times, and

executed the prediction software.

For certain predictors, additional precomputed inputs such as

PSI-BLAST14 search results against UniRef90,15 HHblits,16 or SPI-

DER217 were required along with the input sequence in FASTA for-

mat. To save time, we precomputed these inputs for all sequences

and provided them as input to the predictors that needed them. The

time taken to generate these inputs was also recorded and added to

the total processing time for a sequence when necessary.

Regarding the execution times of AlphaFold-disorder, as we did

not run AlphaFold2 ourselves but used structures from the Alpha-

FoldDB (alphafold.ebi.ac.uk),11 hence we do not have complete infor-

mation on the execution time for this method. However, for a fair

comparison in Figure 4, we executed AlphaFold218 locally on a CPU-

based machine (without using GPUs) to predict the structure of a

1000-residue long sequence while recording the execution time.

These structures were then used to run the AlphaFold-disorder pack-

age, and its runtime was added to the total.

3 | RESULTS AND DISCUSSION

Similar to the first round, the second round of CAID was organized

with participants submitting their implemented prediction software to

the assessors, who ran the packages and generated predictions for a

set of proteins where disorder annotations were not previously avail-

able. However, in CAID2, software methods were encapsulated into

standardized software containers.

The task of an ID predictor is to assign a score to each residue for

its propensity to be intrinsically disordered at any stage of the
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protein's life, given a protein sequence. Another class of predictors is

trained to identify binding sites within IDRs. We present an evaluation

of the accuracy of prediction methods and a comparison between the

accuracy and software runtimes, which directly impact their suitability

for large-scale analyses.

Interactive figures with the curves for all methods are available at

URL: https://caid.idpcentral.org/challenge#Benchmarking.

A brief description of the majority of methods present in this

assessment can be found at the following URL: https://caid.

idpcentral.org/overview.

3.1 | Disorder prediction performance

Precision–recall and ROC curves of top methods for all three bench-

marks are shown in Figure 2. The legend reflects the ranking based on

average precision score (APS) for the precision–recall, and the area

under the ROC (AUC) for the ROC curves. In all plots is also reported

the coverage for each method, indicating the fraction of targets for

which an output was generated. We also evaluated the performance

considering the subset of proteins predicted by all methods (not

shown) but the ranking did not change.

Precision–recall curves provide insight into how the precision cor-

relates with the recall. Methods where the prediction monotonically

decreases with an increase of the recall, indicate that the prediction

score well correlates with the precision, that is, high scoring sites are

more likely to be disordered in the reference.

In the Disorder-NOX benchmark, there is a distinction between

methods that exhibit a steep precision–recall curve and methods that

maintain a constant, usually lower, precision, in particular at low recall

(Figure 2, panel A). This phenomenon is also evident, albeit less promi-

nently, when comparing ROC curves (Figure 2, panel B), particularly

with regard to the true positive rate in the region where the false pos-

itive rate is low. Methods with a high precision at low recall, are the

F IGURE 2 Disorder prediction evaluation for the 10 top-ranking methods. Left (A, C), precision–recall curves. Right (B, D), receiver operating
characteristic (ROC) curves. The evaluation is reported for the Disorder-NOX (panels A and B, n = 210) and Disorder-PDB (panels C and D,
n = 348) reference sets. In the legend “C” represents the coverage, that is, the fraction of predicted proteins. The points highlighted in panels A
and C represent the Fmax.
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top-ranking when considering the AUC and have a higher APS, where

the APS provides a good approximation of the area under the

precision–recall curve.

As already noted in CAID1, the precision–recall and ROC curves

and method's ranking were substantially different when predictors

were tested on the Disorder-PDB dataset (Figure 2, panels C and D),

which does not contain uncertain residues, as opposed to the Disor-

der dataset. This reference pertains to an application that aims to pre-

dict disordered protein fragments by using examples in the PDB,

which is distinct from the prediction of functional IDRs that involves

assessing their biophysical characteristics.

When the precision is constant in the precision–recall curve, it

indicates there is a high fraction of false positives even when the pre-

diction score is high. This can be explained by the fact that methods

poorly discriminate disordered regions, despite capturing most of

them when decreasing the prediction score threshold, or by the fact

that disorder annotation in DisProt is incomplete and part of the false

positives are simply mislabeled as negatives in the reference. On the

other end, methods that perform particularly well at low recall could

overfit DisProt features.

Both AlphaFold-disorder methods, which are based on pLDDT

and RSA, perform particularly well in the Disorder-PDB benchmark

(Figure 2, panels C and D), but less well in the Disorder-NOX

(Figure 2, panels A and B) and they are not in the top 10 when consid-

ering APS. It seems that neither the original AlphaFold2 prediction

score (pLDDT), nor the RSA values derived from the predicted struc-

ture, are not able to correctly prioritize disordered positions as

defined in the Disorder-NOX reference.

Other methods behave exactly the opposite. For example, Dispre-

dict3, which has the best AUC in Disorder-NOX, performs poorly in

the Disorder-PDB benchmark, with a 5% lower AUC compared with

the best method. Notably, none of the methods perform well on both

references indicating they represent slightly different problems and

methods are not designed to be generic.

F IGURE 3 Binding and linker prediction evaluation for the 10 top-ranking methods. Left (A, C), precision–recall curves. Right (B, D), receiver
operating characteristic (ROC) curves. The evaluation is reported for the Binding (panels A and B, n = 78) and Linker (panels C and D, n = 40)
reference sets. In the legend “C” represents the coverage, that is, the fraction of predicted proteins. The points highlighted in panels A and C
represent the Fmax.
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The definition of the Disorder-PDB dataset coincides with the

definition of the DisProt-PDB dataset in CAID1, therefore, it is possi-

ble to make a direct comparison. For example, considering those

methods that were evaluated in both CAID editions and with 100%

coverage, such as AUCpreD,19 we noted an improvement of 3% and

1.8% in terms of Fmax and AUC, respectively (Figure 2, panels C

F IGURE 4 The AUC (area under the receiver operating characteristic [ROC] curve) and prediction time in seconds calculated for a sequence
of 1000 residues length are compared in panels A, B, and C for the Disorder-NOX, Disorder-PDB, and Binding reference sets, respectively. The
predictors are considered as a single package, without differentiation between flavors. For these panels, in the legend is reported the AUC (A) and
the time. The displayed AUC represents the best result obtained for each reference set. Panel D provides the execution time (in seconds) of the
predictor software in relation to the sequence length.
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and D). This indicates that in CAID2 the reference is closer to predic-

tions compared with CAID1.

Considerations about methods performance in relation to the

type of input and execution time are provided in Section 2.5.

3.2 | Prediction of disordered binding sites and
linker regions

In addition to the evaluation of binding sites within IDRs, in CAID2

we included the assessment of the prediction of linkers, that is, disor-

dered regions connecting two structured domains. A growing number

of methods are designed to predict nucleic acid binding (DNA, RNA,

or both), a dedicated nucleic acid binding benchmark would have

included only nine proteins, so we decided to include all of them in

the general binding assessment. Since the limited number of methods

designed to predict linker regions, we considered all disorder predic-

tors for the Linker assessment.

In contrast to CAID1, we built the binding reference considering

only proteins with at least one binding region, therefore, it is difficult

to make a fair comparison with CAID1. Despite the higher class imbal-

ance compared to the disorder references, in CAID2 the binding sites

cover the 12.2% of the residues, where it was 6.3% in CAID1. In gen-

eral, methods seem to perform better both in terms of Fmax and AUC,

but as observed for disorder prediction, the method's ranking for the

two metrics is substantially different (Figure 3, panels A and B). Nota-

bly, AlphaFold-binding, which prioritizes regions with high structural

propensity (pLDDT) and high relative solvent accessibility (RSA), has

the best Fmax and a good APS but falls in the 13th position when con-

sidering AUC. Three methods, MoRFchibi-web20 and DeepDRPBind-

protein, seem to better capture the reference definition. They are in

the top three in terms of both APS and AUC, but also have a better

true positive rate at low false positive rate and reach higher precision

when the prediction score is high.

Linkers are likely to carry specific structural features, being char-

acterized by an extreme extended conformation compared to other

IDRs and some methods, for example, APOD,21 have been developed

to specifically detect linker regions. The performance of disorder pre-

dictors over the Linker dataset is reported in Figure 3, panels C and

D. The linker dataset is even smaller and more unbalanced than the

binding reference. Despite the poor performance, all methods have an

AUC well above random, indicating linker regions encompass some

properties learned by the predictors.

3.3 | Software evaluation

The speed of a predictor is an important factor, particularly when ana-

lyzing large-scale genomic data. A predictor that can quickly and accu-

rately identify IDRs in a genome-scale dataset can greatly facilitate

the analysis of protein function and regulation. The quality of IDR pre-

diction can be evaluated in various ways depending on the specific

application. The fraction of disorder is an important metric when the

goal is to understand the overall complexity of an organism or to iden-

tify proteins with a high degree of disorder. On the other hand, the

exact position of the IDR in the sequence is crucial for applications

such as protein structure prediction or drug design.

The execution times of disorder predictors (Figure 4, panels A and

B) have very different scales and are inversely proportional to their

performance, with the best methods requiring more computational

time. However, the AUC gain is marginal compared to the magnitude

of computation required to improve the performance. As an example,

ESpritz22 achieves an AUC that is approximately 3% lower than the

top-performing method, but it only takes a fraction of the computa-

tion time, with two orders of magnitude less required. For Binding

methods there is not such a relationship between the execution time

and the quality of the prediction (Figure 4, panel C).

Figure 4 panel D, shows the execution time in relation to the

sequence length. The collected data points were fitted using a polyno-

mial function of degree five through a simple linear regression method

to generate trendlines. These statistics explain well the limitations and

the computational complexity of the various methods.

4 | CONCLUSIONS

ID is a complex phenomenon that covers a continuum between fully

disordered states and folded states with long dynamic regions. There-

fore, it is difficult to define a ground truth that fits all ID aspects,

moreover ID can be context dependent and proteins can undergo

order-to-disorder transitions depending on specific conditions, for

example, binding a partner molecule.

Disorder prediction was previously assessed in CASP, but this

was abandoned due to the lack of good reference data. Specifically,

from CASP5 to CASP10 disorder was defined from missing residues

in X-ray experiments which are usually short and represent only a por-

tion of the non-resolvable structure.23–28 To overcome this problem,

in CAID we leverage the annotation provided by the DisProt database

which stores the position of IDRs along the protein sequence when

there is experimental evidence in the literature. DisProt is manually

curated and spans more than 50 biochemical methods which provide

orthogonal measures to X-ray data. In addition, DisProt annotates

binding sites inside IDRs and flags those IDRs connecting two struc-

tured domains as linkers.

ID prediction was evaluated in two different ways. The first

assessment hypothesizes DisProt annotations are complete and

everything not annotated as IDR is negative. In the second scenario

the fraction of negative residues not observed in PDB structures are

excluded. For binding regions the problem of missing annotations is

even more relevant. In CAID2 for the binding and linker benchmarks

we considered only proteins with at least one annotated binding or

linker region, respectively.

None of the methods performed well on both the Disorder-NOX

and Disorder-PDB references, indicating that they represent slightly

different problems and methods are not designed to be generic. The

AUC and the APS give the same ranking while considering the same

8 CONTE ET AL.
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reference, instead when considering the Fmax on Disorder-NOX nota-

bly SPOT-Disorder229 and AlphaFold-rsa stand out. The two methods

probably suffer a poor prioritization of the DisProt regions but there

exists an optimal cutoff that maximizes the trade-off between preci-

sion and recall over other methods. Methods with top AUC in

Disorder-NOX have been likely trained on DisProt data, whereas

other methods are instructed to predict absence of order, that is,

learning the PDB complement.

Comparing the results of CAID1 and CAID2 in the Disorder-PDB,

there is an overall improvement in performance. Since some methods

are the same, the improvement can be explained by differences in

references.

Methods in general seem to perform better in terms of Fmax and

AUC for binding site prediction. MoRFchibi-web20 and DeepDRPBind-

protein seem to capture the reference definition better, as they are in the

top-three in terms of both APS and AUC.

Despite the poor performance of disorder predictors on the

Linker dataset, all methods have an AUC well above random, indicat-

ing that linker regions encompass some properties learned by the

predictors.

Depending on the application, researchers may need to balance

performance with execution time when selecting a predictor. The exe-

cution times of disorder predictors are inversely proportional to their

performance. However, the AUC gain is marginal compared to the

magnitude of computation required to improve the performance. For

Binding methods, there is no such relationship between the execution

time and the quality of the prediction. For example, ESpritz22 achieves

an AUC that is approximately 3% lower than the top-performing

method but requires significantly less computation time.

In summary, the CAID2 challenge demonstrates the varying per-

formance of different prediction methods across different bench-

marks and highlights the need for continued development of more

versatile and efficient prediction software.

Most of the CAID2 predictors can be freely used through the

CAID Prediction Portal available at https://caid.idpcentral.org/.

Finally, CAID has been integrated into OpenEBench (https://

openebench.bsc.es/) which will become the official platform for run-

ning future CAID challenges.
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