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A B S T R A C T

The increasing complexity and amount of data available in modern applications strongly demand Trustworthy
Learning algorithms that can be fed directly with complex and large graphs data. In fact, on one hand,
machine learning models must meet high technical standards (e.g., high accuracy with limited computational
requirements), but, at the same time, they must be sure not to discriminate against subgroups of the population
(e.g., based on gender or ethnicity). Graph Neural Networks (GNNs) are currently the most effective solution
to meet the technical requirements, even if it has been demonstrated that they inherit and amplify the biases
contained in the data as a reflection of societal inequities. In fact, when dealing with graph data, these biases
can be hidden not only in the node attributes but also in the connections between entities. Several Fair GNNs
have been proposed in the literature, with uNIfying Fairness and stabiliTY (NIFTY) (Agarwal et al., 2021)
being one of the most effective. In this paper, we will empower NIFTY’s fairness with two new strategies. The
first one is a Biased Edge Dropout, namely, we drop graph edges to balance homophilous and heterophilous
sensitive connections, mitigating the bias induced by subgroup node cardinality. The second one is Attributes
Preprocessing, which is the process of learning a fair transformation of the original node attributes. The
effectiveness of our proposal will be tested on a series of datasets with increasingly challenging scenarios.
These scenarios will deal with different levels of knowledge about the entire graph, i.e., how many portions
of the graph are known and which sub-portion is labelled at the training and forward phases.
1. Introduction

Nowadays, applications capable of learning from data have led
to breakthroughs thanks to their practical ability to solve complex
real-world problems impacting research and society at large. Modern
learning algorithms are able to extract actionable information directly
from complex structured data (such as graphs) and outperform humans
in a wide range of decision-making scenarios, ranging from healthcare
to education and cybersecurity [1–4]. These breakthroughs are mainly
motivated by three reasons. The first is the increasing digitalization
and datafication of all aspects of people’s daily lives [5,6], with the
consequent growth in data availability. The second one is the increas-
ing availability of computing power and hardware accelerators that
allowed the experimentation of models previously computationally im-
practical [7]. The last one is the discovery of new learning schemes that
allow for more accurate and efficient learning models that can be ap-
plied directly to complex data [8–10]. In particular, these new methods
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relieved data scientists from the challenging and time-consuming prob-
lem of designing suitable vector-based data representations required by
classical learning techniques [8,11].

Graphs, i.e., data structures that can represent patterns highlighting
relationships between entities, are a direct and intuitive solution to
describe complex information and, for this reason, are often used to
naturally express the domain of interest in many modern applications,
e.g., gene–protein interaction networks in bioinformatics, molecules in
chemistry, social networks in social science, and many others [7,12,13].
The main problem of dealing with structured data is to compute a
sound and meaningful representation for graph nodes that is invariant
to the graph representation and also incorporates structural information
relevant to the prediction task. There are two main types of tasks: (i)
Predictions Over Graphs, where each example is composed of a whole
graph and the learning tasks are predictions of graph properties; (ii)
Predictions Over Nodes, where the dataset is composed of one or more
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large graphs, and each example is a node of a graph. In this paper,
we focus on task (ii). In particular, many node classification tasks are
defined in the semi-supervised setting, where the graph consists of both
labelled and unlabelled nodes. In a semi-supervised setting, it is also
important to distinguish between the transductive approach, where the
model can perform prediction only on unlabelled graph nodes that have
already been observed at training time, and the inductive approach,
where the model can perform prediction for previously unobserved
nodes. The development of ML techniques able to directly process
structured data has gained more and more attention since the first
developments, such as Recursive Neural Networks [14,15] proposed in
the second half of the ’90s. In the 2000s, kernel methods for structured
data [16] became the dominant approach to dealing with such kinds
of data. In the last few years, following the success of deep neural
networks in many application domains, there has been a burst of
interest in developing deep learning models for graph domains char-
acterized by remarkable technical achievements [17–25] empowering
the applicability of such techniques to a broad variety of real-world
problems.

Nevertheless, the achievements in the field of ML for structured
data, or more naturally of ML in general, are accompanied by an
increase in concerns where scholars try to explore the social and
moral implications of this widespread adoption of Artificial Intelligence
(AI) [26–28].

The definition of ethical concepts and behaviours dates back to
earlier philosophers, but relating them to technological progress, es-
pecially to autonomous decision-making, is still an open challenge
[29,30]. Early studies tried to divide the field of robot and AI ethics
into mainly two branches [30]. The first one is questioning how robots
and AI should be applied in order to minimize the ethical harms
that can arise from poor design or misuse. In particular, it focuses
on developing ethical principles and good practices for adopting new
emerging technologies [31–33], such as is the case for ML. The second
branch concerns how robots and AI can act ethically by learning
moral behaviours. This second direction spans different fields, such as
philosophy and engineering, where the research questions mix both
moral requirements (such as the search for appropriate ethical values)
and practical needs (such as the definition of new learning algorithms).
This second research trend is often referred to as machine ethics [30].
Despite not being new to the general public thanks to scientific fiction
of the calibre of Asimov’s Laws of Robotics, which dates back to
1950, the research on machine ethics is still rather young. The earliest
works, published less than 20 years ago, aimed at finding appropriate
definitions for ethical governance, accountability, and agency, where,
up to today, no general consensus has been reached yet [29,30]. In
one of the earliest influential works, Moore [34] defines four cate-
gories of ethical agents, which distinguish themselves on the possibility
of reasoning about ethics and the capability of avoiding unethical
outcomes. Different posterior works spawned from this categorization
and, in particular, some influential studies proposed some evaluation
strategies for estimating the morality of autonomous systems, such as
the Comparative Moral Turing Test [35] or Ethical Turing Test [36],
where the machine decisions are assessed by ethicists or compared to
the ones taken by humans actors.

Breaking from the fairly theoretical definitions of early publications,
the latest works found in the literature of machine ethics observed how
technical metrics like accuracy and computational requirements are not
enough to characterize well a learning machine [37–40]. In fact, the
data exploited for training these systems are naturally biased since they
reflect past and present societal inequities that may even be amplified
by the learning machines themselves [41]. As a result, these algorithms
can strongly influence people’s lives, and, eventually, the societal and
ethical issues related to their use cannot be ignored and need to
be explicitly addressed [42–46]. Therefore, the design of trustworthy
learning algorithms that we, as humans, can trust is nowadays be-
coming essential [11]. Specifically, they must consider human-related
2

metrics like fairness, robustness, privacy, and explainability [37].
In this paper, we will focus on building fair models, namely, models
able to not discriminate against subgroups of the population (e.g., based
on gender or ethnicity) [47]. In this context, a learning system needs
to optimize possibly raw but measurable metrics of Fairness [47–49]
along with the technical ones. These roughly fall under two main fam-
ilies [47–51]: statistical/group and individual. Group fairness aims at
treating different subgroups in the population equally, while individual
fairness aims at giving similar predictions to similar individuals. Among
the group fairness definitions, Demographic Parity [52] and Equal
Opportunity [53] are probably the most exploited in a supervised learn-
ing scenario. Counterfactual Fairness [54] is instead the most known
and leveraged individual fairness definition. Once the fairness defini-
tion has been set, the problem of mitigating the bias can be tackled
through three main approaches: pre-, in-, and post-processing tech-
niques
[47,55]. The first approach tries to mitigate the bias present in the
data by directly modifying them (thus, learning a fair representation),
avoiding the need for changes in the training algorithms or for adjust-
ments in the model predictions. The second approach injects fairness
constraints into the training algorithms in order to select models that
optimize both technical and fairness metrics. Finally, the last one is
able to make a previously trained complex model fairer by mitigating
the bias by acting directly on the predictions of such a model.

However, the standard bias mitigation techniques listed above are
hardly applicable to learning from structured, and specifically graph,
data [56]. Graph data entities and their relations are non-i.i.d., calling
for the challenge of defining fairness mitigation strategies able to
encompass this problem (e.g., mitigating discrimination propagation
across nodes and edges of a graph) [57]. Nonetheless, the problem of
learning from graphs is typically addressed by extracting a hidden rep-
resentation, formally known as embedding, from which many fairness
metrics can be easily evaluated. Deep Graph Networks (DGNs) proved
to be a very effective solution in this context by iteratively propa-
gating information across the graphs such that each node aggregates
incoming messages from its neighbours and updates its representa-
tion [11,58,59]. Among DGN models, Graph Convolutional Networks
(GCNs) gained popularity due to their simplicity, usability, and effec-
tiveness [60]. In GCNs, nodes exploit the contextual information of
their neighbourhood computed in the previous layers by using shared
(hence convolutional) filters. Intuitively, stacking more layers allows a
node to explore larger portions of the surrounding graph [61]. On the
one hand, the embeddings extracted by GCNs are universal, in the sense
that they can be leveraged by classical linear or non-linear shallow
models, while, on the other, standard fairness techniques can help us
extract less discriminatory graph representations [62–64]. One naive
way of building fair GCNs is to employ post-processing techniques that,
by definition, can be applied to any learned model [53,65]. Another
naive way is to exploit in-processing techniques [66] and techniques
that learn a fair representation [62–64,67,68] since, in these cases, the
idea is simply to constrain the optimization objective by imposing fair
models and/or representations. Classical pre-processing techniques in-
stead cannot be naively applied to graphs: in fact, being able to modify
(i.e., pre-process) the topology and the node attributes of the original
graph without impacting accuracy is a challenging task [69,70]. In-
deed, within the context of learning from graphs, Fairness mitigation
strategies can be furtherly grouped into two families [69,71]. The first
family tries to preprocess directly and debias the original graphs by
balancing known graph properties between protected and unprotected
groups and, thus, is task agnostic. Several works [72–74] proposed to
promote group fairness by rebalancing specific paths in the input net-
work. Specifically, they aim at balancing the nodes’ appearance rates
across different population subgroups in random walks. Similarly, other
works achieved fair rebalancing through node sampling [68,75] or
generation [76], where deep models, such as GCNs, are trained either
on sub-portions or on augmented versions of the original graph with

balanced populations. Another line of work acts directly on rewiring the
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networks’ edges, thus, mitigating a possible biased topology. Following
this direction, FairDrop [77] directly samples the edges for increas-
ing communities heterophily concerning the sensitive attributes, while
other works [78–80] leverage on concepts from information theory for
optimizing the adjacency matrix (which depicts all the graph connec-
tions) and mitigating unfair information flows. The second family of
fairness mitigation strategies in learning from graphs extracts fair and
task-specific embeddings by acting directly on the learning procedure.
The majority of works in this family define a regularized/constrained
optimization problem that aims at improving group [64,67,70,81–83]
or individual [84–86] fairness definitions. In particular, NIFTY [85]
enforces a regularized loss function where any difference between the
observed node embeddings and the counterfactual ones is penalized.
Posing a similar problem, numerous other proposals [87–91] stem from
the field of Generative Adversarial Networks [92], where the objective
is posed as a contrasting optimization between a generator, which
extracts graph embeddings decoupled from the sensitive information,
and a discriminator, which tries to predict the sensitive attributes based
on the generator output. In this second family of fairness mitigation
strategies, a final line of works aims at projecting the graph embed-
dings into hyperplanes that are directly orthogonal to the direction
of sensitive attributes [67,93], thus effectively removing any linear
dependency from the extracted representations to the sensitive features.

In this study, we will build upon the work of NIFTY [85] for
graph node labelling empowering it by introducing two strategies to
improve the fairness of the solution while minimally impacting the final
accuracy of the model. In particular, we consider the GCN exploited
in NIFTY, which measures both technical (accuracy and Area Under
the Receiver Operating Characteristic) and fairness metrics. We will
leverage Demographic Parity, Equal Opportunity, and Counterfactual
Fairness for what concerns the latter. The two strategies proposed to im-
prove these metrics in NIFTY focus on both perturbing node attributes
and modifying the graph topology. More specifically, the former is Fair
Attributes Preprocessing, namely, we learn a fair transformation of the
original node attributes inspired by the work of Zemel et al. [62],
while the latter is Biased Edges Dropout, namely, we drop graph
edges to balance homophilous and heterophilous sensitive connections
mitigating the bias induced by subgroups node cardinality, inspired by
the work of Spinelli et al. [77]. The effectiveness of our proposal will
be tested on a series of datasets with increasingly challenging scenarios.
These scenarios will deal with different levels of knowledge about the
entire graph, i.e., how many portions of the graph are known and
what sub-portion is labelled at the training and forward phases. In
particular, in the first scenario, we assume the knowledge of a sub-
graph of an unknown graph where just some nodes are labelled at
the training phase. Eventually, we would like to estimate the labels of
the unlabelled nodes during the test phase. In the second scenario,
we assume that, during the training phase, all the nodes of the sub-
graph are labelled and, during the test phase, a new single node whose
label needs to be estimated is added to the graph.1 In the third and
last scenario, all the nodes of the sub-graph are again labelled at the
training phase, but during the test phase, a new sub-graph coming from
the same unknown graph needs to be fully labelled. Results on six
different datasets, i.e., German [94], Credit [95], Bail [96], Pokec [97],
Facebook [98], and Google Plus [98], will support our proposal with
empirical evidences.

The rest of the paper is organized as follows. Section 2 reports some
preliminaries necessary to understand our work and recalls the work
of NIFTY [85]. Section 3 describes our proposal in detail, along with
the two new fair mitigation strategies to include in NIFTY. Section 4
presents the results when applying our proposal to multiple datasets
in a series of increasingly challenging scenarios. Finally, Section 5
concludes the paper.

1 The slightly more general case of adding more than one node is not
xplored since it falls in between the second and the third scenarios, depending
n the edges connecting the new nodes with the ones available during training.
3

2. Preliminaries

Let us consider a graph  = ( ∪  ∪  , , 𝑋, 𝒔,), where
 = {𝑣1,… , 𝑣𝑛} denotes the set vertices (or nodes) of the graph
for which the label is known via  = {(𝑣1, 𝑦𝑣1 ),… , (𝑣𝑛, 𝑦𝑣𝑛 )},  =
{𝑣1,… , 𝑣𝑚} the set of unlabelled nodes of  and  = {𝑣1,… , 𝑣𝑡} the
set of test nodes, i.e. nodes for which we are interested in computing
a prediction,  ⊆  ×  is the set of edges, 𝑋 ∈ R𝑔×𝑑 is the
matrix of the 𝑑 non-sensitive node attributes associated to the 𝑔 nodes,
and 𝒔 ∈ {0, 1}𝑛 is the vector of the binary-valued sensitive attributes
associated to the 𝑛 nodes.2 Let 𝑡𝑟𝑎𝑖𝑛 be the subgraph of  that insists
only on the nodes considered during training, i.e., 𝑡𝑟𝑎𝑖𝑛 = ( ∪
 , ∪ , 𝑋∪ , 𝒔∪ ,𝐷), where ∪ is the set of edges insisting
on a node in  or  while 𝑋∪ and 𝒔∪ contain all the attributes
and sensitive attributes of the considered nodes, respectively. In this
work, we deal with the problem of binary classification of the nodes
in a (possibly disconnected) large graph. Our goal is to learn a model
𝑓 , based on  and  , able to classify a node 𝑣 in  , that can be
either  =  ,  ⊂  or a completely disjoint set of nodes from
 . The model’s predictions will be based on the node’s features and
topology, i.e., 𝑦̂𝑣 = 𝑓 (𝑣,). We define 𝐴 ∈ R(𝑛+𝑚)×(𝑛+𝑚) as the adjacency
matrix of 𝑡𝑟𝑎𝑖𝑛 with elements 𝑎𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐷∪𝑈 and 𝑎𝑖𝑗 = 0
otherwise. Note that for undirected graphs (i.e., graphs where all the
edges are bidirectional), 𝐴 is symmetric. We also consider 𝐴̇ = 𝐴 + 𝐼
where 𝐼 the identity matrix and 𝐴̄ ∈ R(𝑛+𝑚)×(𝑛+𝑚) as the diagonal
egree matrix, where 𝑎̄𝑖,𝑖 =

∑𝑛+𝑚
𝑗=1 𝑎̇𝑖,𝑗 . The accuracy of this classification

process will be measured according to two different metrics: percentage
of accuracy (ACC) and Area Under the Receiver Operating Charac-
teristic curve (AUROC) [99]. Moreover, we want this classification
process to be fair [47]. In this work, as fairness metrics, we opt for
the Difference of Demographic (or Statistical) Parity (DDP) [64] and
the Difference of Equal Opportunity (DEO) on both positively (DEO+)
and negatively (DEO−) labelled nodes [100], and the Counterfactual
Fairness (CF) [54].

As we already mentioned in Section 1, in order to build our
model, we will leverage the graph representation induced by GCNs
[15,18,19,61,101–107]. The GCN exploited in our setting is the one
proposed by Kipf et al. [61], whose embeddings are defined as 𝐻 =
𝐴̄− 1

2 𝐴̇𝐴̄− 1
2 𝑍𝛩ℎ ∈ R𝑛×𝑟 where 𝑍 ∈ R𝑛×𝑑 are the inputs and 𝛩ℎ ∈ R𝑑×𝑟

are its learnable parameters. Note that 𝑍 could possibly include the
sensitive attribute among its features, namely 𝑍 = [𝑋, (𝐬)], depending
on the local legislation [108]. We will build upon the work of
NIFTY [85] for graph node labelling. NIFTY aims to learn a fair and
stable node representation leveraging on a particular network structure,
the Siamese framework [109], which maximizes the similarity between
the representations learned with the initially labelled nodes of 
and the one learned on a perturbed version of the same nodes. The
perturbation is designed to enforce fairness and stability by slightly
modifying the nodes according to the following strategies:

• 𝒙̃𝑖 = 𝒙𝑖 + 𝒃◦𝑁(0, 𝑝𝜎 ), where ◦ is the Hadamard (element-wise)
product, 𝒃 ∈ {0, 1}𝑑 is a random masking vector drawn from
a Bernoulli distribution of parameter 𝑝𝑏, and 𝑁(0, 𝑝𝜎 ) ∈ R𝑑 is
sampled from a Gaussian distribution of parameter 𝑝𝜎 , namely
the non-sensitive features can be perturbed with a small Gaussian
noise. This perturbation should enforce stability;

• dropping a connection between two nodes (𝑣𝑖, 𝑣𝑗 ) randomly cho-
sen with probability 𝑝𝑑 , i.e., we create another adjacency matrix
𝐴̃ that is similar to 𝐴̃ but some ones are randomly set to 0 with
probability 𝑝𝑑 . This perturbation should enforce stability;

• flipping the sensitive attributes, i.e., 𝑠𝑖 = ¬𝑠𝑖 ∀𝑖 ∈ {1,… , 𝑛 + 𝑚},
inspired by the principle behind Counterfactual Fairness [54],
namely the representation of the node should not change if the

2 The extension to multiple subgroups is outside the scope of this work.
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value of its sensitive attribute changes. This perturbation should
enforce fairness. We are aware that some legislations do not allow
the explicit use of possible sensitive features [110] or that in some
datasets the sensitive feature may not be available. In this work,
however, we built upon NIFTY which requires that the sensitive
attribute is present among the features fed to the network both at
training and test time. Otherwise, this augmented version of the
training dataset could not be computed.

hen, the Siamese network learns to minimize the discrepancy between
he representations of the original nodes in  and the ones of a

perturbed version of the same nodes according to the following criteria.
Let 𝒉𝑖 ∈ R𝑟 be the node representation extracted from the original
node 𝑣𝑖 with 𝑖 ∈ {1,… , 𝑛} and 𝒉̃𝑖 ∈ R𝑟 be the one extracted from the
perturbed version of the same node. Let 𝑡 ∶ R𝑟 → R𝑟 be a predictor
function that maps the representation of the original data in the one of
the corresponding perturbed version and vice versa, i.e., 𝑡(𝒉𝑖) = 𝒉𝑖𝛩𝑡

and 𝑡(𝒉̃𝑖) = 𝒉̃𝑖𝛩𝑡 by means of 𝛩𝑡 ∈ R𝑟×𝑟 being trainable parameters.
Finally, let 𝜙 ∶ R𝑟 × R𝑟 → R be the Cosine Distance and let 𝜔 the stop-
grad operator, which treats the representation of nodes as constant.
Then NIFTY learns a representation able to minimize the following loss:

𝐿𝑠 =
1

2(𝑛 + 𝑚)

𝑛+𝑚
∑

𝑖=1

[

𝜙(𝑡(𝒉𝑖), 𝜔(𝒉̃𝑖)) + 𝜙(𝑡(𝒉̃𝑖), 𝜔(𝒉𝑖))
]

. (1)

We redirect any interested reader to the original proposal [85] for the
theoretical analysis. Apart from learning a representation, in this work,
we also want the classifier to be able to learn how to label the nodes of
the graph, i.e., 𝑓 (𝑣𝑖,𝑡𝑟𝑎𝑖𝑛) = 𝒉𝑖𝜽𝑓 where 𝜽𝑓 ∈ R𝑟 are learnable param-
eters. For this reason, NIFTY adds to the loss the Binary Cross-Entropy
between real and predicted target 𝐿𝑐 , obtaining the following total loss

(1 − 𝜆)𝐿𝑐 + 𝜆𝐿𝑠, (2)

where 𝜆 is the regularization coefficient that controls the trade-off
between 𝐿𝑐 (accuracy) and 𝐿𝑠 (stability and fairness). NIFTY trains
𝛩ℎ, 𝛩𝑡,𝜽𝑓 , namely all the learnable parameters, using the ADAM op-
timizer [111] with a learning rate 𝑝𝑙, weight decay 𝑝𝑤, and 𝑝𝑒 epochs.

3. Our proposal

In this work, we empower NIFTY, according to the fairness metrics
(DDP, DEO+, and DEO−), using a twofold strategy, i.e., Fair Attributes
Preprocessing (Section 3.1) and Biased Edge Dropout (Section 3.2),
while minimally impacting the final performance, according to the
accuracy metrics (ACC and AUROC).

3.1. Fair attributes preprocessing

The first strategy focuses on the concept of Learning Fair Represen-
tation introduced by Zemel et al. [62]. The main idea of the approach
is to learn a fair representation rather than simply learning a fair
model [62,112,113]. In this work, we will leverage this idea to improve
further the NIFTY fairness by preprocessing the node attribute into their
unbiased version. In other words, we will try to learn first a way to
preprocess the same node attributes into a slightly modified version
which is, from one side, as close as possible to the original one and,
from the other side, as fair as possible. For this purpose a single fully
connected hidden layered autoencoder [112,114–116] is adopted such
that

[𝒛̇1,… , 𝒛̇𝑛+𝑚]𝑇 = ReLU([𝒛1,… , 𝒛𝑛+𝑚]𝑇𝑊𝑒)𝑊𝑑 , (3)

where 𝑊𝑒 ∈ R𝑑×𝑟ℎ and 𝑊𝑑 ∈ R𝑟ℎ×𝑑 are the encoder and decoder
weights. These weights are trained using ADAM [111] with learning
rate 𝑝𝑙 minimizing the following loss function

𝜆𝐿 + (1 − 𝜆)𝐿 , (4)
4

𝑟 𝑓
where 𝜆 is the regularization coefficient that controls the trade-off
between the accuracy of the reconstruction measured with the Means
Square Error (usually called MSE) [117] (𝐿𝑟) and the fairness of the
hidden representation (ReLU([𝒛1,… , 𝒛𝑛+𝑚]𝑇𝑊𝑒)) measured according to
the metric of fairness that we want to minimize (DDP, DEO+, and DEO−

of the representation) adopting the approach proposed by [64,113]. In
particular, for DDP, we have that 𝐿𝑓 can be expressed as

‖

‖

‖

Ê𝑣∈∪ |𝑠𝑣=0ReLU(𝒛𝑇𝑣𝑊𝑒) − Ê𝑢∈∪ |𝑠𝑢=1ReLU(𝒛𝑇𝑢 𝑊𝑒)
‖

‖

‖

2
, (5)

namely, the average representation for a node with 𝑠 = 0 (e.g., male)
must be similar to the one with 𝑠 = 1 (e.g., female), which is the first
order convex and differentiable approximation of the DDP [113]. Note
that Ê represents the empirical average computed over the subset of
nodes indicated by the subscript. For what concerns the DEO⋄ with
⋄ ∈ {±} we have that 𝐿𝑓 can be expressed as

‖

‖

‖

Ê𝑣∈|𝑠𝑣=0,𝑦𝑣=⋄1ReLU(𝒛𝑇𝑣𝑊𝑒) − Ê𝑢∈|𝑠𝑢=1,𝑦𝑢=⋄1ReLU(𝒛𝑇𝑢 𝑊𝑒)
‖

‖

‖

2
, (6)

namely, similarly to the DDP case, the average representation for a
node with 𝑠 = 0 (e.g., male) labelled with 𝑦 = ⋄1 must be similar to the
one with 𝑠 = 1 (e.g., female) labelled with the same 𝑦 = ⋄1, which is the
first order convex and differentiable approximation of the DEO⋄ [113].
Note that the DDP 𝐿𝑓 exploits all the data, even the unlabelled ones,
while the DEO⋄ 𝐿𝑓 exploits only the labelled data.

In order to reduce the impact on the computational requirements of
this addition in NIFTY, we do not attach this autoencoder directly to
the end-to-end training of all parameters (𝛩ℎ, 𝛩𝑡, 𝜽𝑓 , 𝑊𝑒, and 𝑊𝑑). We
train them separately by minimizing the losses defined in Eqs. (2) and
(4).

3.2. Biased edge dropout

The second strategy focuses on slightly, but substantially, modifying
the NIFTY edge dropout strategy recalled in Section 2. Specifically, the
strategy of NIFTY does not take into account the sensitive attribute of
the nodes involved in the dropped edge since dropout, for NIFTY, was
a perturbation strategy focused on enforcing stability. In this work,
we argue that dropout can also be used to enforce fairness. For this
purpose, we try to mitigate the discrimination resulting from a biased
topology when we drop the graph edges. More formally, we designed
a dropout strategy which enforces the resulting perturbed graph to
have a desired homophily rate (i.e., edges that connect nodes with
the same values of the sensitive attributes). This idea takes inspiration
from several studies [77–80] which show that accurately rewiring
the graph edges can effectively lead to trained models with better
fairness properties. In particular, we implemented a variation of the
FairDrop algorithm [77]. FairDrop concentrates on mitigating the bias
introduced by the principle of homophily, which describes the situation
where individuals are more likely to interact with their equals. In
social networks, for example, this principle translates into the fact that
individuals with similar sensitive characteristics (e.g., ethnicity, gender,
sexual or political orientation) are more likely to be connected, thus in-
troducing unequal influences and generating groups segregations issues
(i.e., ‘‘filter bubbles’’) [118–120]. In our work, we simplify the formula-
tion of FairDrop and introduce a parallel algorithm called Biased Edges
Dropout, which uses a new hyperparameter, the Homophilous Rate 𝜌,
that specifies the maximum ratio of allowed homophilous connections.

Let us present in detail our Biased Edges Dropout strategy. Given the
adjacency matrix 𝐴 and the perturbed one 𝐴̃ according to the NIFTY
strategy (see Section 2), we define

 𝐴̃ = {(𝑣𝑖, 𝑣𝑗 ) ∶ (𝑣𝑖, 𝑣𝑗 ) ∈ ∪ , 𝑎̃𝑖,𝑗 = 𝑎𝑖,𝑗 = 1}, (7)

as the set of edges not dropped by NIFTY and

¬𝐴̃ = {(𝑣 , 𝑣 ) ∶ (𝑣 , 𝑣 ) ∈  , 𝑎̃ = 0, 𝑎 = 1}, (8)
𝑖 𝑗 𝑖 𝑗 ∪ 𝑖,𝑗 𝑖,𝑗
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as the set of dropped edges. Based on  𝐴̃, we compute the percent-
age of homophilous edges. If this percentage is greater than 𝜌, then
the algorithm starts replacing homophilous connections in  𝐴̃ with
eterophilous ones in ¬𝐴̃ until the desired 𝜌 is reached. Of course,
eaching 𝜌 is not always possible if the original sub-graph does not have
nough heterophilous connections. In this case, we reach the closest
ossible value to 𝜌.

.3. Considered classification scenarios

To test the effectiveness of our proposal, we will consider a series
f increasingly challenging scenarios. These scenarios will deal with
ifferent levels of knowledge about the entire graph, i.e., how many
ortions are known and what sub-portion is labelled at the training and
orward phases. In particular:

cenario (1) in the forward phase, we want to classify the unlabelled
nodes of the training graph, i.e.,  =  . This scenario
represents the transductive setting.

cenario (2) when  = ∅, we classify a single node by adding it to ,
i.e.,  ∩ = ∅, | | = 𝑡 = 1, and all the edges between the node
in  and nodes in  are allowed. This scenario represents the
semi-inductive setting.

cenario (3) when  = ∅, we classify the nodes in an entirely unseen
subgraph of , i.e.,  ∩  = ∅ and no edges between nodes
in  and nodes in  are allowed. This scenario represents the
more challenging inductive setting.

The scenario obviously impacts how the hyperparameter selection and
performance assessment strategies are performed. In particular, it im-
pacts how the training, validation, and test sets are constructed. The
splitting is repeated multiple times to ensure statistically meaningful
results.

In the results, we reported the average ACC and the AUROC together
with the average DDP, DEO⋄ with ⋄ ∈ {±}, and CF on the test sets. ACC
and AUROC are the classical metrics, while DDP is computed as follows
|

|

|

|

|

|

|

ÊNodes in 𝑇

with 𝑠=0

[Predicted Label = 1] − ÊNodes in 𝑇

with 𝑠=1

[Predicted Label = 1]
|

|

|

|

|

|

|

,

(9)

DEO⋄ with ⋄ ∈ {±1} are computed as follows
|

|

|

|

|

|

|

|

|

|

|

|

ÊNodes in 
with 𝑠=0 and
𝑦= ⋄ 1

[Predicted Label = ⋄1]

−ÊNodes in 
with 𝑠=1 and
𝑦= ⋄ 1

[Predicted Label = ⋄1]

|

|

|

|

|

|

|

|

|

|

|

|

, (10)

and, finally, CF is computed as follows

ÊNodes in
 .

|

|

|

|

|

[Node Label = Predicted Label]

−
[

Node Label = Predicted Label
setting 𝑠 = ¬𝑠

]

|

|

|

|

|

, (11)

where the Iverson bracket notation has been used.

4. Experimental results

In this section, we compare original NIFTY [85] with our proposal
5

presented in Section 3 on a series of datasets, i.e., German [94], t
Credit [95], Bail [96], Pokec [97], Facebook [98], and Google Plus
[98]. More specifically, in Section 4.1, we will describe the datasets
in detail; in Section 4.2, we will report the experimental settings,
and finally, Sections 4.3 and 4.4 report the actual results and their
discussion respectively.

4.1. Datasets

German [94] and Credit [95] datasets evaluate the risk of
bankruptcy of 1.000 and 30.000 samples analysing 29 and 14 financial
factors respectively. For these two datasets, we decided to use gender
(for German) and age (for Credit, binarized as ≤25 or >25 years of
age [85]).

The Bail [96] dataset presents the risk of recidivism of ≈19.000
amples evaluated across 18 attributes, where skin colour and/or sex
an be exploited as sensitive attributes. In our experiments, we use the
ne identifying the colour of the skin.

Since these datasets are originally tabular and not graph datasets,
e extracted a topology from the samples’ similarities. Following [85],
e defined the similarity between two nodes using the Minkowski
istance between their attributes. In our graphs, we connect samples
elonging to the 80th percentile of the maximum similarity values for
he German dataset. We used the 70th percentile for Credit and 60th
ercentile for Bail datasets.

Finally, in order to include real-world datasets that were born
atively as graphs, we exploited the Pokec [97], Facebook [98], and
oogle Plus [98] datasets.

Pokec represents the most popular social network in Slovakia, and
he dataset contains personal information for about 65.000 users. The
76 features are related to both physical (e.g. age, eye and hair colour)
nd psychological (e.g., hobbies, musical taste, political orientation)
ttributes. As our task for this dataset, we evaluated the performances
n predicting the binary marital status (i.e., engaged or not-engaged)
hile considering the binary region of provenience (i.e. foreign or
ative) as the sensitive attribute.

Facebook and Google Plus datasets are two real-world graph
atasets broadly used in the fair graph learning literature [121,122].
hey consist of 1.045 and 3.601 users, respectively, extracted from
he two world-known social networks. The users are described by 574
nd 2.533 social features related to occupation, education and other
ersonal information. In general, these two datasets are exploited for
valuating the performances of node-clustering algorithms since the
raphs are organized in clusters known as ego-circles [98]. As our
ownstream task, we want to predict whether a node belongs to one
r more ego-circles while imposing fairness with respect to the gender
f the observed users.

Fig. 1 depicts the class and sensitive attributes distributions of the
onsidered datasets along with the edges homophily.

.2. Experimental settings

In order to assess the performance of our proposal, we consider
mixture of technical, i.e. ACC and AUROC (upper is better ↑), and

airness metrics, i.e. DDP, DEO+, DEO−, and CF (lower is better ↓).
In our experimental pipeline, we created 30 different partitions for

raining, validation, and test sets according to the different scenarios
epicted in Section 3.3.

We rely on the grid search hyperparameter selection strategy on
he validation splits, optimizing for 𝑟ℎ ∈ {𝑑, 𝑑∕2, 𝑑∕4} for 𝛩ℎ, 𝑝𝑙 ∈
0.001, 0.0001}, 𝑝𝑤 ∈ {0.00001, 0.000001}, and 𝑝𝑒 = 100 for 𝜽𝑓 , 𝑝𝑑 ∈
0.2, 0.5, 0.8}, 𝑝𝜎 ∈ {0.2, 0.5, 0.8}, 𝜆 ∈ {0.2, 0.5, 0.8}, and 𝜌 ∈ {0.2, 0.5,
.8, 1}. Note that the original NIFTY formulation can be recovered
rom our method by removing Biased Edge Dropout (𝜌 = 1) and Fair
ttribute Preprocessing.

Since we search for optimal models according to different metrics,

he selection of the optimal hyperparameters is not trivial. For this
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Fig. 1. German [94], Credit [95], Bail [96], Pokec [97], Facebook [98], and Google Plus [98] datasets: class and sensitive attributes distributions along with the edges homophily.
Table 1
Comparison between NIFTY and our proposal on the three scenarios and on the six datasets when the DDP is exploited as
the fairness metric and ACC or AUROC is exploited as the technical metrics. Best results are highlighted in bold.

Scenario Dataset Algorithm ACC (↑) DDP (↓) AUROC (↑) DDP (↓)

1

German NIFTY 0.7 ± 0.03 0.14 ± 0.04 0.63 ± 0.05 0.15 ± 0.04
Our proposal 0.7 ± 0.03 0.03 ± 0.03 0.64 ± 0.04 0.09 ± 0.05

Bail NIFTY 0.67 ± 0.04 0.31 ± 0.04 0.7 ± 0.04 0.31 ± 0.04
Our proposal 0.63 ± 0.04 0.03 ± 0.02 0.6 ± 0.05 0.03 ± 0.02

Credit NIFTY 0.77 ± 0.03 0.57 ± 0.09 0.59 ± 0.05 0.57 ± 0.09
Our proposal 0.79 ± 0.02 0.05 ± 0.03 0.6 ± 0.04 0.06 ± 0.03

Pokec NIFTY 0.81 ± 0.03 0.81 ± 0.32 0.9 ± 0.02 0.81 ± 0.32
Our proposal 0.82 ± 0.03 0.31 ± 0.23 0.9 ± 0.02 0.31 ± 0.23

Google Plus NIFTY 0.92 ± 0.02 0.17 ± 0.1 0.35 ± 0.07 0.17 ± 0.09
Our proposal 0.92 ± 0.02 0.02 ± 0.01 0.4 ± 0.12 0.03 ± 0.03

Facebook NIFTY 0.79 ± 0.03 0.08 ± 0.06 0.73 ± 0.05 0.09 ± 0.06
Our proposal 0.79 ± 0.03 0.02 ± 0.02 0.75 ± 0.05 0.02 ± 0.02

(continued on next page)
reason, we will follow the same strategy proposed by the authors
of [100]: the selected hyperparameters are the ones that minimize the
6

fairness metrics (DDP, DEO+, DEO−, or CF) while keeping at least the
𝜏 = 95% of the max value for the technical metrics (ACC or AUROC).
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Table 1 (continued).
Scenario Dataset Algorithm ACC (↑) DDP (↓) AUROC (↑) DDP (↓)

2

German NIFTY 0.7 ± 0.02 0.18 ± 0.03 0.65 ± 0.04 0.19 ± 0.03
Our proposal 0.69 ± 0.01 0.05 ± 0.04 0.63 ± 0.06 0.08 ± 0.05

Bail NIFTY 0.67 ± 0.03 0.32 ± 0.04 0.7 ± 0.03 0.32 ± 0.04
Our proposal 0.63 ± 0.03 0.03 ± 0.02 0.59 ± 0.03 0.04 ± 0.03

Credit NIFTY 0.77 ± 0.03 0.58 ± 0.05 0.58 ± 0.04 0.58 ± 0.05
Our proposal 0.8 ± 0.01 0.04 ± 0.03 0.61 ± 0.04 0.07 ± 0.02

Pokec NIFTY 0.8 ± 0.02 0.62 ± 0.17 0.9 ± 0.01 0.62 ± 0.17
Our proposal 0.8 ± 0.02 0.18 ± 0.1 0.89 ± 0.02 0.19 ± 0.13

Google Plus NIFTY 0.93 ± 0.01 0.21 ± 0.13 0.38 ± 0.08 0.21 ± 0.13
Our proposal 0.92 ± 0.04 0.01 ± 0.01 0.39 ± 0.09 0.01 ± 0.01

Facebook NIFTY 0.8 ± 0.04 0.1 ± 0.08 0.76 ± 0.03 0.1 ± 0.07
Our proposal 0.8 ± 0.04 0.08 ± 0.05 0.76 ± 0.04 0.03 ± 0.02

3

German NIFTY 0.7 ± 0.03 0.25 ± 0.05 0.63 ± 0.05 0.25 ± 0.05
Our proposal 0.69 ± 0.03 0.08 ± 0.04 0.62 ± 0.04 0.18 ± 0.05

Bail NIFTY 0.67 ± 0.03 0.34 ± 0.05 0.69 ± 0.04 0.34 ± 0.05
Our proposal 0.63 ± 0.03 0.03 ± 0.02 0.6 ± 0.05 0.03 ± 0.02

Credit NIFTY 0.76 ± 0.03 0.58 ± 0.09 0.59 ± 0.05 0.58 ± 0.09
Our proposal 0.79 ± 0.02 0.04 ± 0.03 0.6 ± 0.04 0.07 ± 0.03

Pokec NIFTY 0.81 ± 0.04 0.73 ± 0.31 0.91 ± 0.02 0.73 ± 0.31
Our proposal 0.8 ± 0.03 0.33 ± 0.19 0.9 ± 0.02 0.31 ± 0.18

Google Plus NIFTY 0.92 ± 0.02 0.31 ± 0.18 0.35 ± 0.06 0.31 ± 0.18
Our proposal 0.92 ± 0.02 0.04 ± 0.03 0.39 ± 0.92 0.12 ± 0.06

Facebook NIFTY 0.79 ± 0.03 0.13 ± 0.09 0.86 ± 0.03 0.14 ± 0.09

Our proposal 0.79 ± 0.03 0.06 ± 0.04 0.89 ± 0.03 0.06 ± 0.04
Table 2
Comparison between NIFTY and our proposal on the three scenarios and on the six datasets when the DEO+ is exploited as
the fairness metric and ACC or AUROC is exploited as the technical metrics. Best results are highlighted in bold.
Scenario Dataset Algorithm ACC (↑) DEO+ (↓) AUROC (↑) DEO+ (↓)

1

German NIFTY 0.7 ± 0.03 0.14 ± 0.05 0.63 ± 0.05 0.15 ± 0.05
Our proposal 0.7 ± 0.03 0.04 ± 0.03 0.64 ± 0.04 0.08 ± 0.06

Bail NIFTY 0.67 ± 0.04 0.3 ± 0.07 0.7 ± 0.04 0.3 ± 0.07
Our proposal 0.6 ± 0.03 0.04 ± 0.02 0.6 ± 0.05 0.04 ± 0.02

Credit NIFTY 0.77 ± 0.03 0.57 ± 0.12 0.59 ± 0.05 0.57 ± 0.12
Our proposal 0.79 ± 0.02 0.07 ± 0.05 0.6 ± 0.04 0.06 ± 0.04

Pokec NIFTY 0.8 ± 0.03 0.62 ± 0.26 0.89 ± 0.03 0.66 ± 0.29
Our proposal 0.8 ± 0.03 0.25 ± 0.14 0.89 ± 0.02 0.23 ± 0.15

Google Plus NIFTY 0.92 ± 0.02 0.12 ± 0.08 0.35 ± 0.07 0.12 ± 0.08
Our proposal 0.92 ± 0.02 0.04 ± 0.03 0.39 ± 0.09 0.06 ± 0.05

Facebook NIFTY 0.79 ± 0.03 0.09 ± 0.06 0.73 ± 0.06 0.09 ± 0.06
Our proposal 0.79 ± 0.03 0.03 ± 0.02 0.75 ± 0.05 0.04 ± 0.03

2

German NIFTY 0.7 ± 0.02 0.17 ± 0.04 0.65 ± 0.04 0.17 ± 0.05
Our proposal 0.69 ± 0.02 0.1 ± 0.01 0.63 ± 0.06 0.14 ± 0.04

Bail NIFTY 0.66 ± 0.03 0.27 ± 0.09 0.69 ± 0.04 0.27 ± 0.09
Our proposal 0.63 ± 0.03 0.03 ± 0.02 0.59 ± 0.03 0.04 ± 0.03

Credit NIFTY 0.77 ± 0.03 0.56 ± 0.06 0.58 ± 0.04 0.56 ± 0.06
Our proposal 0.8 ± 0.01 0.05 ± 0.04 0.61 ± 0.04 0.07 ± 0.02

Pokec NIFTY 0.8 ± 0.01 0.44 ± 0.17 0.9 ± 0.01 0.51 ± 0.2
Our proposal 0.8 ± 0.02 0.19 ± 0.15 0.91 ± 0.01 0.19 ± 0.15

Google Plus NIFTY 0.93 ± 0.01 0.17 ± 0.14 0.38 ± 0.08 0.17 ± 0.14
Our proposal 0.93 ± 0.01 0.03 ± 0.03 0.44 ± 0.19 0.04 ± 0.03

Facebook NIFTY 0.8 ± 0.04 0.09 ± 0.06 0.74 ± 0.03 0.09 ± 0.06
Our proposal 0.8 ± 0.04 0.04 ± 0.04 0.78 ± 0.03 0.04 ± 0.04

3

German NIFTY 0.7 ± 0.03 0.26 ± 0.07 0.63 ± 0.05 0.26 ± 0.07
Our proposal 0.69 ± 0.03 0.09 ± 0.06 0.62 ± 0.05 0.19 ± 0.06

Bail NIFTY 0.67 ± 0.03 0.32 ± 0.08 0.69 ± 0.04 0.32 ± 0.08
Our proposal 0.63 ± 0.03 0.04 ± 0.03 0.64 ± 0.04 0.04 ± 0.03

Credit NIFTY 0.76 ± 0.03 0.58 ± 0.11 0.58 ± 0.05 0.58 ± 0.11
Our proposal 0.79 ± 0.02 0.08 ± 0.06 0.6 ± 0.04 0.07 ± 0.04

Pokec NIFTY 0.81 ± 0.04 0.65 ± 0.29 0.91 ± 0.02 0.65 ± 0.29
Our proposal 0.81 ± 0.04 0.29 ± 0.17 0.9 ± 0.02 0.25 ± 0.16

Google Plus NIFTY 0.92 ± 0.02 0.19 ± 0.16 0.35 ± 0.06 0.19 ± 0.16
Our proposal 0.92 ± 0.02 0.04 ± 0.03 0.39 ± 0.13 0.1 ± 0.09

Facebook NIFTY 0.79 ± 0.03 0.15 ± 0.08 0.85 ± 0.03 0.15 ± 0.12

Our proposal 0.79 ± 0.03 0.12 ± 0.09 0.9 ± 0.03 0.12 ± 0.09
7
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Table 3
Comparison between NIFTY and our proposal on the three scenarios and on the six datasets when the DEO− is exploited as
the fairness metric and ACC or AUROC is exploited as the technical metrics. Best results are highlighted in bold.
Scenario Dataset Algorithm ACC (↑) DEO− (↓) AUROC (↑) DEO− (↓)

1

German NIFTY 0.7 ± 0.03 0.12 ± 0.06 0.63 ± 0.05 0.14 ± 0.06
Our proposal 0.7 ± 0.03 0.04 ± 0.03 0.64 ± 0.04 0.08 ± 0.06

Bail NIFTY 0.67 ± 0.04 0.31 ± 0.05 0.7 ± 0.04 0.31 ± 0.05
Our proposal 0.63 ± 0.03 0.03 ± 0.02 0.6 ± 0.05 0.02 ± 0.01

Credit NIFTY 0.77 ± 0.03 0.61 ± 0.2 0.59 ± 0.05 0.61 ± 0.2
Our proposal 0.78 ± 0.02 0.07 ± 0.05 0.6 ± 0.04 0.07 ± 0.05

Pokec NIFTY 0.81 ± 0.02 0.8 ± 0.21 0.91 ± 0.02 0.8 ± 0.21
Our proposal 0.81 ± 0.03 0.28 ± 0.14 0.9 ± 0.02 0.25 ± 0.11

Google Plus NIFTY 0.92 ± 0.02 0.18 ± 0.1 0.35 ± 0.07 0.18 ± 0.1
Our proposal 0.92 ± 0.02 0.02 ± 0.02 0.4 ± 0.12 0.03 ± 0.03

Facebook NIFTY 0.79 ± 0.03 0.12 ± 0.1 0.73 ± 0.06 0.13 ± 0.08
Our proposal 0.79 ± 0.03 0.05 ± 0.04 0.75 ± 0.05 0.05 ± 0.04

2

German NIFTY 0.7 ± 0.02 0.19 ± 0.05 0.65 ± 0.04 0.22 ± 0.03
Our proposal 0.69 ± 0.01 0.08 ± 0.05 0.63 ± 0.06 0.11 ± 0.04

Bail NIFTY 0.64 ± 0.03 0.32 ± 0.04 0.7 ± 0.03 0.32 ± 0.04
Our proposal 0.62 ± 0.03 0.02 ± 0.01 0.63 ± 0.04 0.02 ± 0.01

Credit NIFTY 0.77 ± 0.03 0.68 ± 0.24 0.59 ± 0.04 0.68 ± 0.24
Our proposal 0.79 ± 0.01 0.06 ± 0.04 0.6 ± 0.05 0.06 ± 0.04

Pokec NIFTY 0.83 ± 0.02 0.75 ± 0.23 0.92 ± 0.01 0.75 ± 0.23
Our proposal 0.8 ± 0.01 0.26 ± 0.09 0.9 ± 0.01 0.26 ± 0.07

Google Plus NIFTY 0.93 ± 0.01 0.21 ± 0.13 0.38 ± 0.08 0.21 ± 0.13
Our proposal 0.92 ± 0.04 0.01 ± 0.01 0.39 ± 0.09 0.01 ± 0.01

Facebook NIFTY 0.8 ± 0.04 0.2 ± 0.12 0.75 ± 0.05 0.22 ± 0.12
Our proposal 0.8 ± 0.04 0.08 ± 0.04 0.74 ± 0.05 0.07 ± 0.05

3

German NIFTY 0.7 ± 0.03 0.22 ± 0.07 0.63 ± 0.05 0.22 ± 0.07
Our proposal 0.69 ± 0.03 0.07 ± 0.06 0.62 ± 0.04 0.15 ± 0.08

Bail NIFTY 0.67 ± 0.03 0.34 ± 0.06 0.69 ± 0.04 0.34 ± 0.06
Our proposal 0.63 ± 0.03 0.02 ± 0.02 0.6 ± 0.05 0.03 ± 0.02

Credit NIFTY 0.76 ± 0.03 0.61 ± 0.21 0.58 ± 0.05 0.61 ± 0.21
Our proposal 0.77 ± 0.03 0.06 ± 0.05 0.6 ± 0.04 0.06 ± 0.05

Pokec NIFTY 0.83 ± 0.03 0.68 ± 0.23 0.92 ± 0.02 0.68 ± 0.23
Our proposal 0.8 ± 0.03 0.27 ± 0.12 0.91 ± 0.02 0.26 ± 0.13

Google Plus NIFTY 0.92 ± 0.02 0.31 ± 0.19 0.35 ± 0.06 0.31 ± 0.19
Our proposal 0.92 ± 0.02 0.04 ± 0.03 0.39 ± 0.13 0.13 ± 0.06

Facebook NIFTY 0.79 ± 0.03 0.19 ± 0.12 0.85 ± 0.03 0.19 ± 0.12
Our proposal 0.79 ± 0.03 0.08 ± 0.06 0.89 ± 0.03 0.07 ± 0.05
The value 𝜏 = 95% has been selected as a reasonable loss in accuracy to
chieve higher fairness as in [100] but we will also analyse the impact
f 𝜏 on the results later in this section.

In the results, we reported the mean and standard deviation for the
ifferent metrics computed on the different test splits.

Experiments have been coded in Python 3.10.11, and are based on
yG3 2.1.0 and the PyTorch [123] 1.12.1+ 𝑐𝑢116 frameworks. The code
or all the experiments in the paper is available in a git repository.4

.3. Experimental results

Table 1 reports the comparison between NIFTY and our proposal
n the three scenarios over the six datasets when fairness is measured
hrough the DDP and ACC or AUROC is exploited as the technical
etric. Tables 2, 3, and 4 report the analogous results of Table 1 when

airness is measured according to the DEO+, the DEO−, and the CF
etrics respectively.

In order to ease the discussion of the results of Tables 1–4, Fig. 2
raphically outline the same tabular results for the transductive
Fig. 2(a)), semi-inductive (Fig. 2(b)), and inductive (Fig. 2(c)) scenar-
os respectively.

3 https://www.pyg.org/.
4 https://github.com/danif93/Fair-Graph-Representation-Learning.
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From Tables 1–4 and Fig. 2, it is possible to observe how our
proposal consistently outperforms NIFTY in terms of fairness.

Let us consider the DDP metric in Table 1. Pokec is the dataset
where NIFTY results in the highest DDP. In all three scenarios, we can
reduce by more than half the DDP value without sacrificing accuracy
or AUROC (maximum reduction of 0.01). For the Credit dataset, the
improvement in DDP we obtain is of an order of magnitude, again
without sacrificing accuracy or AUROC. For Bail, we observe a similar
improvement in DDP, with a maximum drop of 5% in accuracy. For
the other datasets, we can still observe a considerable reduction in
DDP. Similar considerations can be drawn when considering the DEO
fairness metric in Tables 2 and 3. The highest reductions in DEO (an
order of magnitude) are obtained on the Bail and Credit datasets. Also
in this case, Pokec is the dataset with the highest DEO metric, and we
can reduce it considerably. Finally, concerning CF in Table 4, we can
see improvements of around an order of magnitude for Bail and Credit
datasets. For the other datasets, the improvements are still pretty high,
with a reduction of more than 50% in CF.

To better understand the sensitivity of the results of Tables 1–4 and
Fig. 2 to the hyperparameter choice, Fig. 3 shows the performance in
terms of technical (ACC and AUROC) and fairness (DDP, DEO+, DEO−,
and CF) metrics varying the tested hyperparameters, underling also the
Pareto optimal hyperparameters combinations. We report the results
for the Pokec dataset on the most challenging scenario alone for space
constraints, but results are analogous also on the other datasets. Fig. 3

https://www.pyg.org/
https://github.com/danif93/Fair-Graph-Representation-Learning
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Table 4
Comparison between NIFTY and our proposal on the three scenarios and on the six datasets when the CF is exploited as the
fairness metric and ACC or AUROC is exploited as the technical metrics. Best results are highlighted in bold.
Scenario Dataset Algorithm ACC (↑) CF (↓) AUROC (↑) CF (↓)

1

German NIFTY 0.7 ± 0.03 0.09 ± 0.01 0.63 ± 0.05 0.1 ± 0.02
Our proposal 0.7 ± 0.03 0.02 ± 0.01 0.62 ± 0.05 0.08 ± 0.01

Bail NIFTY 0.67 ± 0.04 0.31 ± 0.02 0.7 ± 0.04 0.31 ± 0.02
Our proposal 0.63 ± 0.03 0.03 ± 0.01 0.6 ± 0.05 0.04 ± 0.01

Credit NIFTY 0.75 ± 0.03 0.85 ± 0.02 0.59 ± 0.05 0.87 ± 0.02
Our proposal 0.79 ± 0.02 0.05 ± 0.01 0.6 ± 0.04 0.19 ± 0.02

Pokec NIFTY 0.8 ± 0.03 0.58 ± 0.05 0.89 ± 0.03 0.58 ± 0.06
Our proposal 0.8 ± 0.03 0.16 ± 0.03 0.89 ± 0.02 0.15 ± 0.02

Google Plus NIFTY 0.92 ± 0.02 0.13 ± 0.08 0.35 ± 0.07 0.13 ± 0.08
Our proposal 0.92 ± 0.02 0.02 ± 0.01 0.38 ± 0.1 0.07 ± 0.02

Facebook NIFTY 0.79 ± 0.03 0.11 ± 0.04 0.73 ± 0.05 0.12 ± 0.03
Our proposal 0.79 ± 0.03 0.06 ± 0.02 0.75 ± 0.05 0.07 ± 0.01

2

German NIFTY 0.7 ± 0.02 0.1 ± 0.01 0.65 ± 0.04 0.11 ± 0.02
Our proposal 0.69 ± 0.02 0.03 ± 0.01 0.63 ± 0.07 0.09 ± 0.01

Bail NIFTY 0.67 ± 0.03 0.31 ± 0.02 0.7 ± 0.03 0.31 ± 0.02
Our proposal 0.63 ± 0.01 0.04 ± 0.01 0.62 ± 0.03 0.04 ± 0.01

Credit NIFTY 0.75 ± 0.03 0.86 ± 0.02 0.58 ± 0.04 0.86 ± 0.01
Our proposal 0.8 ± 0.01 0.05 ± 0.01 0.61 ± 0.04 0.18 ± 0.02

Pokec NIFTY 0.79 ± 0.02 0.59 ± 0.07 0.89 ± 0.01 0.56 ± 0.03
Our proposal 0.79 ± 0.02 0.16 ± 0.02 0.89 ± 0.01 0.14 ± 0.02

Google Plus NIFTY 0.93 ± 0.01 0.17 ± 0.1 0.38 ± 0.08 0.17 ± 0.1
Our proposal 0.93 ± 0.01 0.02 ± 0.01 0.44 ± 0.19 0.03 ± 0.01

Facebook NIFTY 0.8 ± 0.04 0.11 ± 0.03 0.74 ± 0.03 0.11 ± 0.03
Our proposal 0.8 ± 0.04 0.06 ± 0.02 0.75 ± 0.03 0.07 ± 0.01

3

German NIFTY 0.7 ± 0.03 0.13 ± 0.02 0.63 ± 0.05 0.13 ± 0.02
Our proposal 0.7 ± 0.03 0.03 ± 0.01 0.62 ± 0.04 0.06 ± 0.01

Bail NIFTY 0.67 ± 0.03 0.33 ± 0.02 0.69 ± 0.04 0.33 ± 0.02
Our proposal 0.62 ± 0.03 0.04 ± 0.01 0.6 ± 0.05 0.04 ± 0.01

Credit NIFTY 0.75 ± 0.03 0.86 ± 0.02 0.59 ± 0.05 0.87 ± 0.02
Our proposal 0.79 ± 0.02 0.05 ± 0.01 0.6 ± 0.04 0.19 ± 0.01

Pokec NIFTY 0.81 ± 0.04 0.58 ± 0.06 0.91 ± 0.02 0.58 ± 0.06
Our proposal 0.8 ± 0.04 0.17 ± 0.03 0.9 ± 0.02 0.15 ± 0.03

Google Plus NIFTY 0.92 ± 0.02 0.26 ± 0.14 0.35 ± 0.06 0.26 ± 0.14
Our proposal 0.91 ± 0.04 0.04 ± 0.02 0.39 ± 0.13 0.11 ± 0.04

Facebook NIFTY 0.79 ± 0.03 0.17 ± 0.06 0.85 ± 0.03 0.17 ± 0.06
Our proposal 0.79 ± 0.03 0.08 ± 0.02 0.88 ± 0.03 0.09 ± 0.02
i
c
i
i
f
a
o
w
f
d
m

p
e
o

shows that hyperparameter choice does not influence the quality of the
results since the cloud of points, and the Pareto optimal points, corre-
sponding to all the combination of hyperparameters of our proposal
consistently outperform the one of NIFTY.

For completeness, Fig. 4 evaluates the impact of 𝜏 on the fairness
metrics under the same setting of Fig. 3. From Fig. 4 it is possible to
see that 𝜏 = 95% is qualitatively a good threshold, i.e., the one that
allows for minimum loss in accuracy while obtaining the minimum
discrimination (maximum fairness according to the different metrics).
Moreover, when changing 𝜏 results change as expected: increasing 𝜏
decreases fairness since we tend to care more about accuracy than
fairness.

4.4. Discussion

Generally, based on the results of Section 4.3 we can see that our
proposal improves the fairness metrics compared to NIFTY in all the
cases. While in some cases the loss in performance is negligible, in
some other cases, e.g. for the Bail dataset, our proposal is, on one hand,
able to improve the fairness of the trained model up to an order of
magnitude, while, on the other hand, it sacrifices on average 6% points
of accuracy.

This trade-off between fairness and utility is observed in many
works [124,125], and it describes the natural tension between the two
9

opposed objectives, where the former aims at removing information
linked to discrimination, while the latter tries to just maximize the
data prediction accuracy, which is often biased against population
subgroups in real-world datasets. Observing the results on the other
datasets, our method is still able to achieve a substantial improvement
over all the fairness metrics (from ×1.5 to ×10 reduction in discrim-
nation depending on the dataset and the scenario) while achieving
omparable utility in terms of technical metrics. Moreover, when deal-
ng with the Credit, Google Plus, and Facebook datasets, our method
s also able to consistently achieve better utility besides improving
airness, proving its superiority when compared to NIFTY. While NIFTY
lready tries to balance utility with reducing bias, the improvements
f our proposal can be mainly justified by the fair preprocessing step,
hich is able to extract a fair data representation that is also tailored

or performing well for the required task. In this way, the extracted
ata embeddings are thus able to counterbalance the tension between
aintaining high utility and discarding biased information.

In Fig. 2 we graphically represent the relationship between the
redictive performance and the fairness metrics for the three consid-
red scenarios (transductive, semi-inductive and inductive). We can
bserve that the 𝑥-axis spans higher values in the transductive scenario

compared to the semi-inductive and inductive ones. When comparing
the fairness values of the transductive and the inductive scenario, it
is important to consider that GNN rely heavily on the structure of the
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Fig. 2. Technical (ACC, AUROC) and fairness (DDP, DEO+, DEO−, CF) metrics for all the tested datasets under the three scenarios. Top-left is better (small un-fairness and high
accuracy). Applying the proposed method gives lower discrimination rates while preserving utility.
graph to convey information. In the inductive scenario, there are no
edges between the nodes in  and the nodes in , while in the trans-
ductive scenario the nodes in  =  will be, on average, connected
to many nodes in , since they are part of the same graph. In the
10
inductive scenario, improving the fairness metrics is less challenging
compared to the transductive one because the model can rely on less
(biased) topological information since the test samples are composed of
isolated sub-graphs. On the other hand, in the transductive scenario the
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Fig. 3. Hyperparameters distribution according to technical (ACC and AUROC) and fairness (DDP, DEO+, DEO−, and CF) metrics for the test split of the Pokec dataset in the
inductive scenario. The Pareto frontier for best utility and fairness (top-left corner) is highlighted in filled circles. Applying the proposed method gives lower discrimination rates
while preserving utility.
Fig. 4. Fairness metrics (DDP, DEO+, DEO−, CF) on the test split of the Pokec dataset under the inductive setting when 𝜏 ∈ [90%, 100%] for the best-found utility value (ACC,
AUROC). Lower values on the 𝑦-axis are better. Applying our proposal gives the best results in terms of fairness.
model can exploit sensitive information from the neighbouring training
nodes in the GNN’s receptive field, that can lead to unfair solutions in
case of high homophily on the sensitive attribute. We notice that this
behaviour is mostly visible on NIFTY since it does not perform biased
11
edge dropout. Differently, the performance metrics are less impacted
by the specific setting [126]. This is particularly evident for some
datasets, e.g. Pokec with DEO metric or Google Plus and Facebook for
the DEO, DDP and CF metric, where the fairness metric for NIFTY is
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lower (better) in the second and third settings compared to the first
one. However, our proposed method behaves well in all three scenarios,
showing similar levels of performance and fairness metrics.

5. Conclusion

Trustworthy Learning algorithms that can be fed directly with com-
plex and large graphs data are nowadays a necessity due to the increas-
ing complexity and amount of data available in real-world applications.
In fact, on one hand, machine learning models must meet high technical
standards (e.g., high accuracy with limited computational require-
ments), but, at the same time, they must be sure not to discriminate
against subgroups of the population (e.g., based on gender or race).
Graph Neural Networks are currently the most effective solution to
meet the technical requirements, even if it has been demonstrated that
they inherit and amplify the biases contained in the data as a reflection
of societal inequities. In fact, when dealing with graph data, these
biases can be hidden not only in the node attributes but also in the
connections between entities. In this paper, we empowered NIFTY’s
fairness, one of the most effective Fair Graph Neural Networks, with
two new strategies. The first one is a Biased Edge Dropout, namely, we
drop graph edges to balance homophilous and heterophilous sensitive
connections, mitigating the bias induced by subgroup node cardinality.
The second is Fair Attributes Preprocessing, which is the process of
learning a fair transformation of the original node attributes. The
effectiveness of our proposal has been tested on a series of datasets
with increasingly challenging scenarios. These scenarios dealt with
different levels of knowledge about the entire graph, i.e., how many
portions of the graph are known and what sub-portion is labelled at
the training and forward phases. The results have shown promising
results, demonstrating the effectiveness of our proposal. Note that
the two proposed strategies can be also exploited to make any graph
model fairer. This is particularly useful when, differently from the
context of NIFTY, the existing legislation does not allow the explicit
use of sensitive attributes. In fact, both Biased Edge Dropout and Fair
Attributes Preprocessing do not require the sensitive attributes to be
explicitly present among the training features but they just need the
knowledge of the samples’ membership to the sensitive groups. In
future work, we plan to improve the computational requirements of the
methods including a better hyperparameter search strategy, i.e., with
gradient-free methods and to extend the proposed approach to different
graph convolutional operators. Moreover, we plan to study the learning
of fair graph representations in the incremental and online settings,
where both the graph nodes and the supervision arrive over time
and periodically re-training the whole model from scratch when new
training data is available would be computationally inefficient.
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